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Abstract

Exponentiating the hypergeometric series 0FL(1, 1, . . . , 1; z), L = 0, 1, 2, . . . , furnishes a recursion relation

for the members of certain integer sequences bL(n), n = 0, 1, 2, . . .. For L > 0, the bL(n)’s are generalizations

of the conventional Bell numbers, b0(n). The corresponding associated Stirling numbers of the second kind

are also investigated. For L = 1 one can give a combinatorial interpretation of the numbers b1(n) and of

some Stirling numbers associated with them. We also consider the L ≥ 1 analogues of Bell numbers for
restricted partitions.

The conventional Bell numbers [1] b0(n), n = 0, 1, 2, . . ., have a well-known exponential generating func-

tion

B0(z) ≡ e(e
z − 1) =

∞∑

n=0

b0(n)
zn

n!
, (1)

which can be derived by interpreting b0(n) as the number of partitions of a set of n distinct elements. In

this note we obtain recursion relations for related sequences of positive integers, called bL(n), L = 0, 1, 2, . . . ,

1 Permanent address: Quantum Processes Group, Open University, Milton Keynes, MK7 6AA, United Kingdom.
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obtained by exponentiating the hypergeometric series 0FL(1, 1, . . . , 1; z) defined by [2]:

0FL(1, 1, . . . , 1
︸ ︷︷ ︸

L

; z) =
∞∑

n=0

zn

(n!)L+1
, (2)

(which we shall denote by 0FL(z)) and which includes the special cases 0F0(z) ≡ ez and 0F1(z) ≡ I0(2
√
z),

where I0(x) is the modified Bessel function of the first kind. For L > 1, the functions 0FL(z) are related to

the so-called hyper-Bessel functions [3], [4], [5], which have recently found application in quantum mechanics

[6], [7]. Thus we are interested in bL(n) given by

e[ 0FL(z)−1] =

∞∑

n=0

bL(n)
zn

(n!)L+1
, (3)

thereby defining a hypergeometric generating function for the numbers bL(n). From eq. (3) it follows formally

that

bL(n) = (n!)
L · d

n

dzn

(

e[ 0FL(z)−1]
)∣
∣
∣
z=0
. (4)

For L = 0 the r.h.s of eq. (4) can be evaluated in closed form:

b0(n) =
1

e

∞∑

k=0

kn

k!
=

{
1

ez

[(

z
d

dz

)n

ez
]}

z=1

. (5)

The first equality in (5) is the celebrated Dobiński formula [1], [8], [9]. The second equality in eq. (5) follows

from observing that for a power series R(z) =
∑
∞

k=0 Akz
k we have

(

z
d

dz

)n

R(z) =
∞∑

k=0

Ak k
n zk (6)

and applying eq. (6) to the exponential series (Ak = (k!)
−1).

The reason for including the divisors (n!)L+1 rather than n! as in the usual exponential generating

function arises from the fact that only by using eq. (3) are the numbers bL(n) actually integers. This can

be seen from general formulas for exponentiation of a power series [8], which employ the (exponential) Bell

polynomials, complicated and rather unwieldy objects. It cannot however be considered as a proof that the

bL(n) are integers. At this stage we shall use eq. (3) with bL(n) real and apply to it an efficient method,

described in [9], which will yield the recursion relation for the bL(n). (For the proof that the bL(n) are

integers, see below eq. (11)). To this end we first obtain a result for the multiplication of two power-series

of the type (3). Suppose we wish to multiply f(x) =
∑
∞

n=0 aL(n)
x
n

(n!)L+1 and g(x) =
∑
∞

n=0 cL(n)
x
n

(n!)L+1 . We

get f(x) · g(x) =
∑
∞

n=0 dL(n)
xn

(n!)L+1 , where

dL(n) = (n!)
L+1

∞∑

r+s=n

aL(r)cL(s)

(r!)L+1(s!)L+1
=

n∑

r=0

(
n

r

)L+1

aL(r) cL(n− r). (7)

Substitute eq. (2) into eq. (3) and take the logarithm of both sides of eq. (3):

∞∑

n=1

zn

(n!)L+1
= ln

(
∞∑

n=0

bL(n)
zn

(n!)L+1

)

. (8)
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Now differentiate both sides of eq. (8) and multiply by z:
(
∞∑

n=0

bL(n)
zn

(n!)L+1

)(
∞∑

n=0

n
zn

(n!)L+1

)

=

∞∑

n=0

n bL(n)
zn

(n!)L+1
, (9)

which with eq. (7) yields the desired recurrence relation

bL(n+ 1) =
1

n+ 1

n∑

k=0

(
n+ 1

k

)L+1

(n+ 1− k) bL(k), n = 0, 1, . . . (10)

=

n∑

k=0

(
n

k

)(
n+ 1

k

)L

bL(k), (11)

bL(0) = 1. (12)

Since eq. (11) involves only positive integers, it follows that the bL(n) are indeed positive integers. For L = 0

one gets the known recurrence relation for the Bell numbers [9]:

b0(n+ 1) =

n
∑

k=0

(

n

k

)

b0(k). (13)

We have used eq. (11) to calculate some of the bL(n)’s, listed in Table I, for L = 0, 1, . . . , 6. Eq.(11),

for n fixed, gives closed form expressions for the bL(n) directly as a function of L (columns in Table I):

bL(2) = 1 + 2
L, bL(3) = 1 + 3 · 3L + (3!)L, bL(4) = 1 + 4 · 4L + 3 · 6L + 6 · 12L + (4!)L, etc.

The sets of bL(n) have been checked against the most complete source of integer sequences available

[10]. Apart from the case L = 0 (conventional Bell numbers) only the first non-trivial sequence L = 1

is listed:1 it turns out that this sequence b1(n), listed under the heading A023998 in [10], can be given a

combinatorial interpretation as the number of block permutations on a set of n objects which are uniform,

i.e. corresponding blocks have the same size [12].

Eq.(1) can be generalized by including an additional variable x, which will result in “smearing out” the

conventional Bell numbers b0(n) with a set of integers S0(n, k), such that for k > n, S0(n, k) = 0, and

S0(0, 0) = 1, S0(n, 0) = 0. In particular,

B0(z, x) ≡ ex(e
z − 1) =

∞∑

n=0

[
n∑

k=1

S0(n, k) x
k

]

zn

n!
, (14)

which leads to the (exponential) generating function of S0(n, l), the conventional Stirling numbers of the

second kind, (see [1], [8]), in the form

(ez − 1)l
l!

=

∞∑

n=l

S0(n, l)

n!
zn, (15)

and defines the so-called exponential or Touchard polynomials l
(0)
n (x) as

l(0)n (x) =

n∑

k=1

S0(n, k)x
k . (16)

They satisfy

l(0)n (1) = b0(n), (17)

1(others have since been added)
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justifying the term “smearing out” used above.

The appearance of integers in eq. (3) suggests a natural extension with an additional variable x:

BL(z, x) ≡ ex[ 0FL(z)−1] =
∞∑

n=0

[
n∑

k=1

SL(n, k) x
k

]

zn

(n!)L+1
, (18)

where we include the right divisors (n!)L+1 in the r.h.s of (18).

This in turn defines “hypergeometric”polynomials of type L and order n through

l(L)n (x) =
n∑

k=1

SL(n, k)x
k, (19)

which satisfy

l(L)n (1) = bL(n), (20)

with the bL(n) of eq. (10). Thus the polynomials of eq. (19) ”smear out” the bL(n) with the generalized

Stirling numbers of the second kind, of type L, denoted by SL(n, k) (with SL(n, k) = 0, if k > n, SL(n, 0) = 0

if n > 0 and SL(0, 0) = 1), which have, from eq. (18) the “hypergeometric”generating function

( 0FL(z)− 1)l
l!

=
∞∑

n=l

SL(n, l)

(n!)L+1
zn, L = 0, 1, 2, . . . . (21)

Eq.(21) can be used to derive a recursion relation for the numbers SL(n, k), in the same manner as eq. (3)

yielded eq. (12). Thus we take the logarithm of both sides of eq. (21), differentiate with respect to z, multiply

by z and obtain:
(
∞∑

n=0

SL(n, l − 1)
(n!)L+1

zn

)(
∞∑

n=0

n

(n!)L+1
zn

)

=

∞∑

n=0

n SL(n, l)

(n!)L+1
zn, (22)

which, with the help of eq. (7), produces the required recursion relation

SL(n+ 1, l) =

n∑

k=l−1

(
n

k

)(
n+ 1

k

)L

SL(k, l − 1), (23)

SL(0, 0) = 1, SL(n, 0) = 0, (24)

which for L = 0 is the recursion relation for the conventional Stirling numbers of the second kind [1], [8], and

in eq. (23) the appropriate summation range has been inserted. Since the recursions of eq. (23) and eq. (24)

involve only integers we conclude that SL(n, l) are positive integers.

We have calculated some of the numbers SL(n, l) using eq. (21) and have listed them in Tables II and III,

for L = 1 and L = 2 respectively. Observe that S1(n, 2) =

(
2n+ 1

n+ 1

)

− 1 and SL(n, n) = (n!)L, L = 1, 2.

Also, by fixing n and l, the individual values of SL(n, l) have been calculated as a function of L with the

help of eq. (23), see Table IV, from which we observe

SL(n, n) = (n!)
L, L = 1, 2, . . . . (25)

which is the lowest diagonal in Table IV. We now demonstrate that the repetitive use of eq. (23) permits

one to establish closed-form expressions for any supra-diagonal of order p, i.e. the sequence SL(n + p, n),
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for p = 1, 2, 3, . . ., if one knows the expression for all SL(n + k, n) with k < p. We shall illustrate it here

for p = 1, 2. To this end fix l = n on both sides of eq. (23). It becomes, upon using eq. (25), and defining

αL(n) ≡ SL(n+ 1, n), a linear recursion relation

αL(n) =
n[(n+ 1)!]L

2L
+ (n+ 1)LαL(n− 1), αL(0) = 0, (26)

with the solution

αL(n) = SL(n+ 1, n) =
n(n+ 1)

2

[
(n+ 1)!

2

]L

(27)

=

[
(n+ 1)!

2

]L

S0(n+ 1, n), (28)

which gives the second lowest diagonal in Table IV. Observe that for any L, SL(n+ 1, n) is proportional to

S0(n+1, n) = n(n+1)/2. The sequence S1(n+1, n) = 1, 9, 72, 600, 5400, 8564480, . . . is of particular interest:

it represents the sum of inversion numbers of all permutations on n letters [10]. For more information about

this and related sequences see the entry A001809 in [10]. The SL(n+ 1, n) for L > 1 do not appear to have

a simple combinatorial interpretation. A recurrence equation for βL(n) ≡ SL(n + 2, n) is obtained upon
substituting eq. (25) and eq. (27) into eq. (23):

βL(n) =
n(n+ 1)

2!

[
(n+ 2)!

2!

]L(
n− 1
2L

+
1

3L

)

+ (n+ 2)LβL(n− 1), βL(0) = 0. (29)

It has the solution

SL(n+ 2, n) =
n(n+ 1)(n+ 2)

3 · 23

[
(n+ 2)!

2

]L(
3

2L
(n− 1) + 4

3L

)

(30)

which is a closed form expression for the second lowest diagonal in Table IV. Clearly, eq. (30) for L = 0 gives

the combinatorial form for the series of conventional Stirling numbers

S0(n+ 2, n) =
n(n+ 1)(n+ 2)(3n+ 1)

4!
. (31)

In a similar way we obtain

SL(n+ 3, n) =
n(n+ 1)(n+ 2)(n+ 3)

3 · 24

[
(n+ 3)!

3

]L

×
(

n2
(
3

8

)L

+ n

(
1

4L−1
− 3

L+1

8L

)

+
2 + 2 · 3L
8L

− 1

4L−1

)

(32)

which for L = 0 reduces to

S0(n+ 3, n) =
1

48
n2(n+ 1)2(n+ 2)(n+ 3). (33)

Combined with the standard definition [8], [9]

S0(n, l) =
(−1)l
l!

l∑

k=1

(−1)k
(
l

k

)

kn. (34)
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eqs.(28), (31) and (33) give compact expressions for the summation form of S0(n + p, n). Further, from

eq. (34), use of eq. (6) gives the following generating formula

S0(n, l) =
(−1)l
l!

[(

z
d

dz

)n
(
l∑

k=1

(−1)k
(
l

k

)

zk

)]

z=1

(35)

=
(−1)l
l!

[(

z
d

dz

)n

[(1− z)l − 1]
]

z=1

, n ≥ l. (36)

The formula (1) can be generalized by putting restrictions on the type of resulting partitions. The

generating function for the number of partitions of a set of n distinct elements without singleton blocks

b0(1, n) is [8], [14], [15],

B0(1, z) = e
ez−1−z =

∞∑

n=0

b0(1, n)
zn

n!
, (37)

or more generally, without singleton, doubleton . . ., p−blocks (p = 0, 1, . . .) is [15]

B0(p, z) = e
ez−

∑p

k=0
zk

k! =

∞∑

n=0

b0(p, n)
zn

n!
, (38)

with the corresponding associated Stirling numbers defined by analogy with eq. (14) and eq. (22). The

numbers b0(1, n), b0(2, n), b0(3, n), b0(4, n) can be read off from the sequences A000296, A006505, A057837

and A057814 in [10], respectively. For more properties of these numbers see [11].

We carry over this type of extension to eq. (3) and define bL(p, n) through

BL(p, z) ≡ e 0
FL(z)−

∑p

k=0
zk

(k!)L+1 =

∞∑

n=0

bL(p, n)
zn

(n!)L+1
, (39)

where bL(0, n) = bL(n) from eq. (3). (We know of no combinatorial meaning of bL(p, n) for L ≥ 1, p > 0).
The bL(p, n) satisfy the following recursion relations:

bL(p, n) =

n−p
∑

k=0

(
n

k

)(
n+ 1

k

)L

bL(p, k), (40)

bL(p, 0) = 1, (41)

bL(p, 1) = bL(p, 2) = · · · = bL(p, p) = 0, (42)

bL(p, p+ 1) = 1. (43)

That the bL(p, n) are integers follows from eq. (40). Through eq. (39) additional families of integer Stirling-

like numbers SL,p(n, k) can be readily defined and investigated.

The numbers b0(p, n) are collected in Table V, and Tables VI and VII contain the lowest values of b1(p, n)

and b2(p, n), respectively.

Formula (1) can be used to express e in terms of b0(n) in various ways. Two such lowest order (in

differentiation) forms are

e = 1 + ln

(
∞∑

n=0

b0(n)

n!

)

= (44)

= ln

(
∞∑

n=0

b0(n+ 1)

n!

)

. (45)
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In the very same way, eq. (3) can be used to express the values of 0FL(z) and its derivatives at z = 1 in

terms of certain series of bL(n)’s. For L = 1, the analogues of eq. (44) and eq. (45) are

I0(2) = 1 + ln

(
∞∑

n=0

b1(n)

(n!)2

)

, (46)

I0(2) + ln(I1(2)) = 1 + ln

(
∞∑

n=0

b1(n+ 1)

(n+ 1)(n!)2

)

(47)

and for L = 2 the corresponding formulas are

0F2(1, 1; 1) = 1 + ln

(
∞∑

n=0

b2(n)

(n!)3

)

, (48)

0F2(1, 1; 1) + ln ( 0F2(2, 2; 1)) = 1 + ln

(
∞∑

n=0

b2(n+ 1)

(n+ 1)2(n!)3

)

. (49)

By fixing z0 at values other than z0 = 1, one can link the numerical values of certain combinations of

0FL(1, 1, . . . ; z0) , 0FL(2, 2, . . . ; z0),. . . and their logarithms, with other series containing the bL(n)’s.

The above considerations can be extended to the exponentiation of the more general hypergeometric

functions of type 0FL(k1, k2, . . . , kL; z) where k1, k2, . . . , kL are positive integers. We conjecture that for

every set of kn’s a different set of integers will be generated through an appropriate adaptation of eq. (3).

We quote one simple example of such a series. For

0F2(1, 2; z) =

∞∑

n=0

zn

(n+ 1)(n!)3
(50)

eq. (3) extends to

e[ 0F2(1,2;z)−1] =

∞∑

n=0

f2(n)
zn

(n+ 1)(n!)3
(51)

where the numbers

f2(n) = (n+ 1)(n!)
2

[
dn

dzn
e[ 0F2(1,2;z)−1]

]

z=0

(52)

turn out to be integers: f2(n), n = 0, 1, . . . , 8 are: 1, 1, 4, 37, 641, 18276, 789377, 48681011, etc. (A061683).

The analogue of equations (23) and (44) is:

0F2(1, 2; 1) = 1 + ln

(
∞∑

n=0

f2(n)

(n+ 1)(n!)3

)

. (53)
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Table I: Table of bL(n): L, n = 0, 1, . . . , 6. (The rows give sequences A000110, A023998, A061684–A061688.)

L bL(0) bL(1) bL(2) bL(3) bL(4) bL(5) bL(6)

0 1 1 2 5 15 52 203

1 1 1 3 16 131 1 496 22 482

2 1 1 5 64 1 613 69 026 4 566 992

3 1 1 9 298 25 097 4 383 626 1 394 519 922

4 1 1 17 1 540 461 105 350 813 126 573 843 627 152

5 1 1 33 8 506 9 483 041 33 056 715 626 293 327 384 637 282

6 1 1 65 48 844 209 175 233 3 464 129 078 126 173 566 857 025 139 312

Table II: Table of SL(n, l): for L = 1 and l, n = 1, 2, . . . , 8. (The triangle, read by columns,

gives A061691, the rows and diagonals give A017063, A061690, A000142, A001809, A061689.)

l S1(1, l) S1(2, l) S1(3, l) S1(4, l) S1(5, l) S1(6, l) S1(7, l) S1(8, l)

1 1 1 1 1 1 1 1 1

2 2 9 34 125 461 1 715 6 434

3 6 72 650 5 400 43 757 353 192

4 24 600 10 500 161 700 2 361 016

5 120 5 400 161 700 4 116 000

6 720 52 920 2 493 120

7 5 040 564 480

8 40 320

Table III: Table of SL(n, l): for L = 2 and l, n = 1, 2, . . . , 8. (The triangle, read by

columns, gives A061692, the rows and diagonals give A061693, A061694, A001044, A061695.)

l S2(1, l) S2(2, l) S2(3, l) S2(4, l) S2(5, l) S2(6, l) S2(7, l) S2(8, l)

1 1 1 1 1 1 1 1 1

2 4 27 172 1 125 7 591 52 479 369 580

3 36 864 17 500 351 000 7 197 169 151 633 440

4 576 36 000 1 746 000 80 262 000 3 691 514 176

5 14 400 1 944 000 191 394 000 17 188 416 000

6 518 400 133 358 400 23 866 214 400

7 25 401 600 11 379 916 800

8 1 625 702 400

8



Table IV: Table of SL(n, l): l, n = 1, 2, . . . , 6.

l SL(1, l) SL(2, l) SL(3, l) SL(4, l) SL(5, l) SL(6, l)

1 1 1 1 1 1 1

2 (2!)L 3 · 3L 4 · 4L + 3 · 6L 5 · 5L + 10 · 10L 6 · 6L + 15 · 15L + 10 · 20L

3 (3!)L 6 · 12L 10 · 20L+15 · 30L 15 · 30L + 60 · 60L + 15 · 90L

4 (4!)L 10 · 60L 20 · 120L + 45 · 180L

5 (5!)L 15 · 360L

6 (6!)L

Table V: Table of b0(p, n): p = 0, 1, 2, 3; n = 0, . . . , 10. (The columns give A000110, A000296, A006505,

A057837.)

n b0(0, n) b0(1, n) b0(2, n) b0(3, n)

0 1 1 1 1

1 1 0 0 0

2 2 1 0 0

3 5 1 1 0

4 15 4 1 1

5 52 11 1 1

6 203 41 11 1

7 877 162 36 1

8 4 140 715 92 36

9 21 147 3 425 491 127

10 115 975 17 722 2 557 337

Table VI: Table of b1(p, n): p = 0, 1, 2; n = 0, . . . , 9. (The columns give A023998, A061696, A061697.)

n b1(0, n) b1(1, n) b1(2, n)

0 1 1 1

1 1 0 0

2 3 1 0

3 16 1 1

4 131 19 1

5 1 496 101 1

6 22 482 1 776 201

7 426 833 23 717 1 226

8 9 934 563 515 971 5 587

9 277 006 192 11 893 597 493 333
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Table VII: Table of b2(p, n): p = 0, 1, 2; n = 0, . . . , 8. (The columns give A061698–A061700.)

n b2(0, n) b2(1, n) b2(2, n)

0 1 1 1

1 1 0 0

2 5 1 0

3 64 1 1

4 1 613 109 1

5 69 026 1 001 1

6 4 566 992 128 876 4 001

7 437 665 649 4 682 637 42 876

8 57 903 766 800 792 013 069 347 117
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