

# In vitro fermentability of xylooligosaccharide and xylo-polysaccharide fractions with different molecular weights by human faecal bacteria

Article

Accepted Version

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Ho, A. L., Kosik, O., Lovegrove, A., Charalampopoulos, D. and Rastall, R. A. (2018) In vitro fermentability of xylooligosaccharide and xylo-polysaccharide fractions with different molecular weights by human faecal bacteria. Carbohydrate Polymers, 179. pp. 50-58. ISSN 0144-8617 doi: https://doi.org/10.1016/j.carbpol.2017.08.077 Available at http://centaur.reading.ac.uk/73126/

It is advisable to refer to the publisher's version if you intend to cite from the work.

To link to this article DOI: http://dx.doi.org/10.1016/j.carbpol.2017.08.077

Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the <u>End User Agreement</u>.



## www.reading.ac.uk/centaur

### CentAUR

Central Archive at the University of Reading

Reading's research outputs online

| 1  | In vitro fermentability of xylo-oligosaccharide and xylo-polysaccharide fractions with                                                     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | different molecular weights by human faecal bacteria                                                                                       |
| 3  |                                                                                                                                            |
| 4  | Ai Ling Ho <sup>a,1</sup> , Ondrej Kosik <sup>b</sup> , Alison Lovegrove <sup>b</sup> , Dimitris Charalampopoulos <sup>a</sup> , Robert A. |
| 5  | Rastall <sup>a*</sup>                                                                                                                      |
| 6  |                                                                                                                                            |
| 7  | <sup>a</sup> Department of Food and Nutritional Sciences, University of Reading, Whiteknights, P.O.                                        |
| 8  | Box 226, Reading RG6 6AP, United Kingdom.                                                                                                  |
| 9  | <sup>b</sup> Centre for Crop Genetic Improvement, Dept. of Plant Biology and Crop Science,                                                 |
| 10 | Rothamsted Research, Harpenden, Herts AL5 2JQ, United Kingdom.                                                                             |
| 11 |                                                                                                                                            |
| 12 | *Corresponding author (Tel.: +44 (0)118 378 6726; Fax: +44 (0)118 931 0080)                                                                |
| 13 |                                                                                                                                            |
| 14 | E-mail addresses: alho@ums.edu.my (A.L. Ho), ondrej.kosik@rothamsted.ac.uk (O. Kosik),                                                     |
| 15 | alison.lovegrove@rothamsted.ac.uk (A. Lovegrove), d.charalampopoulos@reading.ac.uk (D.                                                     |
| 16 | Charalampopoulos), r.a.rastall@reading.ac.uk (R. A. Rastall)                                                                               |
| 17 |                                                                                                                                            |
| 18 | <sup>1</sup> Present/permanent address: Faculty of Food Science and Nutrition, Universiti Malaysia                                         |
| 19 | Sabah, Jalan UMS, 88450 Kota Kinabalu, Sabah, Malaysia.                                                                                    |
| 20 |                                                                                                                                            |

#### 22 Abstract

23 Xylo-oligosaccharides and xylo-polysaccharides (XOS, XPS) produced by autohydrolysis 24 of the fibre from oil palm empty fruit bunches (OPEFB) were purified using gel filtration 25 chromatography to separate the XOS and XPS from the crude autohydrolysis liquor. Six mixed fractions of refined XOS and XPS with average degree of polymerisation (avDP) of 26 27 4-64 were obtained. These were characterised in terms of their composition and size by 28 HPLC, MALDI-ToF-MS (selected fractions) and carbohydrate gel electrophoresis (PACE). 29 They were assessed in batch culture fermentations using faecal inocula to determine their 30 ability to modulate the human faecal microbiota *in vitro* by measuring the bacterial growth, 31 organic acid production and the XOS assimilation profile. The gut microbiota was able to 32 utilise all the substrates and there was a link between the XOS/XPS degree of 33 polymerisation with the fermentation properties. In general, XOS/XPS preparations of 34 lower avDP promote better *Bifidobacterium* growth and organic acid production. 35 36 **Keywords** 37 Autohydrolysis; in vitro fermentation; Oil palm empty fruit bunches; Xylo-oligo and xylo-38 polysaccharides 39 40 **1. Introduction** 41 The benefits of non-digestible oligosaccharides (NDOs) in modulating the intestinal 42 and colonic microbiota that have an effect on human gut health have been well established 43 and the study of NDOs derived from plant cell walls as emerging prebiotics has raised 44 much interest. This is because plant cell walls, especially derived from cereal grains, are

| 45 | part of our dietary fibre intake; the particular components of plant cell walls of interest in                |
|----|---------------------------------------------------------------------------------------------------------------|
| 46 | the context of prebiotics are the hemicelluloses. Hemicelluloses are the second most                          |
| 47 | abundant class of polysaccharides available in the plant kingdom with xylan being the most                    |
| 48 | common. Xylans have a backbone of $\beta$ -(1 $\rightarrow$ 4) linked xylose units that are often substituted |
| 49 | with arabinose, methylated or non-methylated glucuronic acid, acetic acid or ferulic acid                     |
| 50 | (Ebringerová, Hromadkova & Heinze, 2005). Thus, depending on the origin of the plant                          |
| 51 | cell wall and treatment process, various xylo-oligosaccharides (XOS, avDP $\leq 20$ ) or xylo-                |
| 52 | polysaccharides (XPS, $avDP > 20$ ) with or without branching can be obtained.                                |
| 53 | In this regard, plant lignocellulosic biomass generated at the agricultural field and                         |
| 54 | processing plant, which was once considered as waste for disposal, offers an enormous                         |
| 55 | potential resource as a basic feedstock for XOS production (Moure, Gullón, Domínguez &                        |
| 56 | Parajó, 2006). In the context of biorefining, hydrothermal treatments such as autohydrolysis                  |
| 57 | have been investigated as an initial step of a possible multi-stage process for the utilisation               |
| 58 | of lignocellulosic materials, as it can produce soluble oligosaccharides, leaving cellulose                   |
| 59 | and lignin in the solid phase for other usage (Parajó, Garrote, Cruz & Domínguez, 2004).                      |
| 60 | The XOS obtained from autohydrolysis treatment also retain some substituents that are                         |
| 61 | present in the native xylan such as acetyl groups, which could have an effect on their                        |
| 62 | fermentability by the human intestinal microbiota (Kabel, Schols & Voragen, 2002b).                           |
| 63 | Earlier studies on the ability of XOS to modulate the intestinal microbiota                                   |
| 64 | investigated linear XOS of small molecular weight with a DP around 2-3. The low                               |
| 65 | molecular weight XOS significantly promoted the growth of bifidobacteria and led to an                        |
| 66 | increase in short chain fatty acid (SCFA) production in the bacterial cultures (Crittenden et                 |

| 67 | al., 2002; Okazaki, Fujikawa & Matsumoto, 1990; Palframan, Gibson & Rastall, 2003a)               |
|----|---------------------------------------------------------------------------------------------------|
| 68 | and in <i>in vivo</i> studies in humans and animals (Campbell, Fahey & Wolf, 1997; Childs et al., |
| 69 | 2014; Chung, Hsu, Ko & Chan, 2007). Pure culture studies using XOS from corn cob and              |
| 70 | rice husk autohydrolysis with $DP \le 4$ also enhanced the growth of bifidobacteria despite       |
| 71 | having some acetyl groups and/or uronic acid substituents (Gullón et al., 2008; Moura et          |
| 72 | al., 2007). In Kabel, Kortenoeven, Schols & Voragen (2002a), a XOS preparation with               |
| 73 | wider range mixed DP (DP 2-11) was used and when fermented in vitro with human faecal             |
| 74 | inocula, the substrate was almost completely degraded in 20-40 h of fermentation. The             |
| 75 | fermentation rate and the SFCA profiles however varied depending on the substituents that         |
| 76 | were present, whereby the linear XOS and arabinose substituted XOS (AXOS) were                    |
| 77 | fermented faster than acetylated XOS and methylglucuronylated XOS was the slowest. The            |
| 78 | bacteriology profile however was not the focus in that study, so the way the substituents         |
| 79 | modulate the gut microbiota is unknown. Increases in potentially health-positive bacterial        |
| 80 | groups such as Bifidobacterium spp. and Lactobacillus/Enterococcus spp. were seen with            |
| 81 | high average molecular weight arabinoxylans of 66,278 and 354 kDa (Hughes, Shewry, Li,            |
| 82 | Gibson, Sanz & Rastall, 2007). However, the arabinoxylans tested also significantly               |
| 83 | promoted clostridial growth. Van Craeyveld (2008) in a more systematic study on the               |
| 84 | influence of the average degree of polymerisation (avDP) and average degree of arabinose          |
| 85 | substitution (avDAS) of XOS preparation in the cecum of rats, showed that low molecular           |
| 86 | weight AXOS (avDP-avDAS of 5-0.27 and 3-0.26) increased Bifidobacterium spp.                      |
| 87 | significantly more than high molecular weight AXOS (avDP –avDAS of 61-0.58). On the               |
| 88 | other hand, the measured branched SCFA was the lowest with avDP 61, so this could                 |
| 89 | potentially suppress the metabolites from protein fermentation.                                   |
|    |                                                                                                   |

| 90                                                          | In a previous study, results have demonstrated that it is possible to produce purified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 91                                                          | XOS fractions of a variety of avDP from oil palm biomass autohydrolysis liquor (Ho et al.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 92                                                          | 2014). The aim of this work was to study the effect of XOS and XPS obtained from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 93                                                          | purification of autohydrolysed OPEFB at different avDP 4-64 upon the gut microbiota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 94                                                          | population. The rationale for inclusion of higher avDP XOS/XPS preparations in this study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 95                                                          | is they may have better persistence into the distal colon, with potential benefits to chronic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 96                                                          | gut diseases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 97                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 98                                                          | 2. Materials and methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 99                                                          | 2.1 Preparation of XOS/XPS fractions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 100                                                         | The XOS/XPS preparation was according to Ho et al. (2014). Briefly, the fibre of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                             | The XOS/XPS preparation was according to Ho et al. (2014). Briefly, the fibre of dried oil palm empty fruit bunches (OPEFB) was subjected to non-isothermal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 101                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 101<br>102                                                  | dried oil palm empty fruit bunches (OPEFB) was subjected to non-isothermal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 101<br>102<br>103                                           | dried oil palm empty fruit bunches (OPEFB) was subjected to non-isothermal<br>autohydrolysis treatment in a two litre capacity stainless steel reactor (Parr Instruments Co.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 101<br>102<br>103<br>104                                    | dried oil palm empty fruit bunches (OPEFB) was subjected to non-isothermal<br>autohydrolysis treatment in a two litre capacity stainless steel reactor (Parr Instruments Co.,<br>llinois, United States) with an operational temperature 210 °C and a liquid to solid ratio of 8                                                                                                                                                                                                                                                                                                                                                                                     |
| 101<br>102<br>103<br>104<br>105                             | dried oil palm empty fruit bunches (OPEFB) was subjected to non-isothermal<br>autohydrolysis treatment in a two litre capacity stainless steel reactor (Parr Instruments Co.,<br>llinois, United States) with an operational temperature 210 °C and a liquid to solid ratio of 8<br>(w/w). The liquor obtained from autohydrolysis treatment was filtered and purified using                                                                                                                                                                                                                                                                                         |
| 101<br>102<br>103<br>104<br>105<br>106                      | dried oil palm empty fruit bunches (OPEFB) was subjected to non-isothermal<br>autohydrolysis treatment in a two litre capacity stainless steel reactor (Parr Instruments Co.,<br>llinois, United States) with an operational temperature 210 °C and a liquid to solid ratio of 8<br>(w/w). The liquor obtained from autohydrolysis treatment was filtered and purified using<br>preparative gel filtration chromatography (GFC) (Ho et al., 2014) with a BPG 100/950                                                                                                                                                                                                 |
| 100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>108 | dried oil palm empty fruit bunches (OPEFB) was subjected to non-isothermal<br>autohydrolysis treatment in a two litre capacity stainless steel reactor (Parr Instruments Co.,<br>llinois, United States) with an operational temperature 210 °C and a liquid to solid ratio of 8<br>(w/w). The liquor obtained from autohydrolysis treatment was filtered and purified using<br>preparative gel filtration chromatography (GFC) (Ho et al., 2014) with a BPG 100/950<br>column filled with Superdex 30 <sup>TM</sup> (Amersham Pharmacia Biotech, Uppsala, Sweden). The                                                                                              |
| 101<br>102<br>103<br>104<br>105<br>106<br>107               | dried oil palm empty fruit bunches (OPEFB) was subjected to non-isothermal<br>autohydrolysis treatment in a two litre capacity stainless steel reactor (Parr Instruments Co.,<br>llinois, United States) with an operational temperature 210 °C and a liquid to solid ratio of 8<br>(w/w). The liquor obtained from autohydrolysis treatment was filtered and purified using<br>preparative gel filtration chromatography (GFC) (Ho et al., 2014) with a BPG 100/950<br>column filled with Superdex 30 <sup>TM</sup> (Amersham Pharmacia Biotech, Uppsala, Sweden). The<br>liquid fractions were freeze dried and then pooled together to obtained six mixed freeze- |

110 2.2 Characterization of XOS/XPS fractions

| 111 | Prior to the determination of average molar mass and chemical compositions, the            |
|-----|--------------------------------------------------------------------------------------------|
| 112 | XOS/XPS samples were dissolved in deionised water to obtain a concentration of 10 g/L.     |
| 113 | The apparent molar mass of samples was determined by high performance liquid               |
| 114 | chromotography (HPLC) (Agilent 1100 series, Winnersh, UK). A size exclusion column         |
| 115 | BIOSEP-SEC S2000 (Phenomenex, Cheshire, UK) was used at 30 °C with 50 mM NaNO <sub>3</sub> |
| 116 | as mobile phase at 0.7 mL/min. The eluate was detected using a refractive index (RI)       |
| 117 | detector. External standards with different molecular weights, i.e. xylose,                |
| 118 | maltooligosaccharides (DP 2-5) and dextrans (1-71 kDa, Sigma, Dorset, UK) were used for    |
| 119 | calibration.                                                                               |
| 120 | The composition of the XOS/XPS samples was assayed by HPLC to quantify free                |
| 121 | monosaccharides (glucose, xylose and arabinose), aliphatic acids (acetic acid, formic acid |
| 122 | and levulinic acid) and furan derivatives (furfural and 5-hydroxymethylfurfural, HMF)      |
| 123 | compounds. An Aminex HPX-87H column (BioRad, Hemel Hempstead, UK) was used at              |
| 124 | 50 °C with 5 mM $H_2SO_4$ as mobile phase. The monosaccharides and aliphatic acids were    |
| 125 | detected with a RI detector while furfural and HMF were detected using a diode array       |
| 126 | detector (DAD) at 280 nm.                                                                  |
| 127 | The oligosaccharide content was determined by an indirect method using                     |
| 128 | quantitative acid hydrolysis; this was done by mixing the XOS/XPS sample with $H_2SO_4$    |
| 129 | (72 % w/w) to obtain a final acid concentration of 4 % (w/w) and the sample was heated at  |
| 130 | 121 °C for 60 min to induce hydrolysis. The post hydrolysed liquor was analysed with       |
| 131 | HPLC and the oligosaccharide concentration was expressed as the increase in sugar          |
| 132 | monomers (Sluiter et al., 2006).                                                           |

| 133 | The total phenolic content was assayed spectrophometrically by the Folin Ciocalteu             |
|-----|------------------------------------------------------------------------------------------------|
| 134 | method using gallic acid as standard (Singleton & Rossi, 1965).                                |
| 135 |                                                                                                |
| 136 | 2.3 MALDI-Tof-MS of XOS fractions                                                              |
| 137 | MALDI-ToF-MS was used to analyse the extracted OPEFB XOS fractions in native                   |
| 137 | WALDI-TOF-WIS was used to analyse the extracted Of EFB XOS fractions in native                 |
| 138 | and permethylated form for XOS avDP 4, 7 and 14. Initial analysis of the native fractions      |
| 139 | did not produce strong signals (Figure S1) so analyses were also performed with                |
| 140 | permethylated fractions. Permethylation of XOS fractions was performed using the               |
| 141 | NaOH/DMSO slurry method using 0.5 mL of methyl iodide (Ciucanu & Kerek, 1984).                 |
| 142 | Permethylated glycans were dried under a stream of nitrogen and re-dissolved in 100 $\mu$ L of |
| 143 | methanol. Five $\mu$ L of native or permethylated XOS fractions (10 mg/mL) were mixed with     |
| 144 | 5 $\mu L$ of 2, 5-dihydroxybenzoic acid (DHB, 10 mg/mL dissolved in 50 % MeOH with 1%          |
| 145 | TFA, v/v) matrix. One $\mu$ L of native or permethylated glycans mixed with DHB matrix was     |
| 146 | spotted onto a MALDI target plate and allowed to air-dry. MALDI-ToF-MS was carried             |
| 147 | out using a Micromass MALDI-LR mass spectrometer (Waters, Manchester, UK) using a              |
| 148 | mass acquisition between $m/z$ 450 and 3 000. The MALDI set-up was as described by             |
| 149 | Marsh et al. (2011). Glycan adduct ions $[M + Na]^+$ were assigned. Experimentally             |
| 150 | determined masses were interpreted using GlycoMod (ExPaSy).                                    |
| 151 |                                                                                                |
| 152 | 2.4 Analysis of XOS/XPS fractions by carbohydrate gel electrophoresis                          |
| 153 | Polysaccharide Analysis by Carbohydrate Gel Electrophoresis (PACE) was used to                 |
| 154 | analyse the extracted OPEFB XOS/XPS fractions. Fractions were run with and without             |

| 155 | digestion with xylanase 11. Briefly, for xylanase digested samples, 200 $\mu$ g aliquots were                                                                        |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 156 | digested with Xyn11 (4 $\mu L$ $\approx$ 21.92 $\mu g;$ Prozomix, UK) for 16 h at 40 $^{\circ}C$ in total volume of                                                  |
| 157 | $500 \mu$ L. Digestion was terminated by boiling the samples for 30 min and samples were                                                                             |
| 158 | dried in vacuo. Aliquots (200 µg) of undigested XOS/XPS fractions were also dried down.                                                                              |
| 159 | All samples together with standard xylo-oligosaccharides (Xyl <sub>1-6</sub> ; Megazyme, Ireland) were                                                               |
| 160 | labelled with ANTS and ran on acrylamide gel as described by Kosik, Bromley, Busse-                                                                                  |
| 161 | Wicher, Zhang & Dupree (2012). Gels were visualized under UV light using a GelDoc-It                                                                                 |
| 162 | TS2 imager (UVP, Germany) equipped with a GFP emission filter (513-557 nm).                                                                                          |
| 163 |                                                                                                                                                                      |
| 164 | 2.5 In vitro batch fermentation                                                                                                                                      |
| 165 | The six different fractions of XOS/XPS along with commercial XOS (avDP2,                                                                                             |
| 166 | Shandong Longlive Biotechnology Co. Ltd (SLBC), China) and birch wood xylan (Sigma,                                                                                  |
| 167 | Dorset, UK) were evaluated for the ability to modulate the gut microbiota using an <i>in vitro</i>                                                                   |
| 168 | batch culture fermentation system inoculate with human faecal sample.                                                                                                |
| 169 | Fructooligosaccharides (avDP 4, Raftilose®, Orafti, Tienan, Belgium) were used as the                                                                                |
| 170 | positive control. The <i>in vitro</i> fermentation was carried out a 50 mL working volume glass                                                                      |
| 171 | jacketed bioreactors, sterile of stirred batch culture fermentation system. The carbohydrates                                                                        |
| 172 | sources were added at 1 % (w/v). The basal medium (per litre) consisted of: 2 g peptone                                                                              |
| 173 | water, 2 g yeast extract, 0.1 g NaCl, 0.04 g K <sub>2</sub> HPO <sub>4</sub> , 0.04 g KH <sub>2</sub> PO <sub>4</sub> , 0.01 g MgSO <sub>4</sub> .7H <sub>2</sub> O, |
| 174 | 0.01 g CaCl.6H <sub>2</sub> O, 2 g NaHCO <sub>3</sub> , 2 mL Tween 80, 0.05 g haemin, 0.01 mL vitamin K <sub>1</sub> , 0.5                                           |
| 175 | g L-cysteine-HCl, 0.5 g bile salt and 4 mL resazurin solution (0.25 g/L).                                                                                            |

| 176 | The fermentation of each substrate was carried out in triplicate with each of three                 |
|-----|-----------------------------------------------------------------------------------------------------|
| 177 | healthy human faecal donors, who had not taken prebiotic or probiotic products for 3                |
| 178 | months, or antibiotics for six months prior to the study. Each vessel containing                    |
| 179 | fermentation medium was inoculated with 5 mL of faecal slurries, which was prior diluted            |
| 180 | at 10 % (w/w) with anaerobic phosphate-buffered saline (PBS, 0.1 M) and homogenised in              |
| 181 | a stomacher (Stomacher 400; Seward, West Sussex, UK) for 2 min at medium speed.                     |
| 182 | The fermentation was carried out at pH 6.7-6.9, controlled using an automated pH                    |
| 183 | controller (Fermac 260; Electrolab, Tewkesbury, UK) and at 37 °C (using a                           |
| 184 | thermocirculator) under anaerobic atmosphere, which was achieved through continuous                 |
| 185 | sparging with nitrogen gas. Samples (5 mL) were taken from each fermentation vessel at 0,           |
| 186 | 10, 24 and 36 h for organic acid analysis and bacterial enumeration using the fluorescent in        |
| 187 | situ hybridisation (FISH) technique.                                                                |
| 188 |                                                                                                     |
| 189 | 2.6 Enumeration of bacteria                                                                         |
| 190 | The target faecal bacteria groups were enumerated by FISH using 16S rRNA                            |
| 191 | targeted oligonucleotide probes labelled with the fluorescent Cy3 dye. An aliquot (375 $\mu$ L)     |
| 192 | of sample from each sampling time was mixed with 3 volumes of 4 $\%$ (w/v) cold                     |
| 193 | paraformaldehyde (PFA) solution. The duration of fixation was 5-10 h at 4 $^{\circ}$ C, followed by |
| 194 | centrifugation at 13 000 x $g$ for 5 min; the cell pellet was then washed twice with 1 mL cold      |
| 195 | filter sterilised PBS. The washed cells were then resuspended in 150 $\mu L$ PBS and 150 $\mu L$ of |

196 absolute ethanol and stored at -20 °C until analysis.

| 197 | To further process the PFA-fixed sample, 10 $\mu$ L of each sample was diluted with               |
|-----|---------------------------------------------------------------------------------------------------|
| 198 | PBS/SDS (sodium dodecyl sulphate) diluent and the diluted samples (20 $\mu$ L) were applied       |
| 199 | onto six-well of a polytetrafluoroethylene/poly-1-lysine coated slide (Tekdon Inc., Myakka        |
| 200 | City, FL). The samples were dried at 48 °C for 15 min in a desktop plate incubator and then       |
| 201 | dehydrated using a series of ethanol solution at 50 %, 80 % and 96 % (v/v) for 3 min each.        |
| 202 | The excess ethanol was evaporated by drying the slides in a desktop plate incubator for 2         |
| 203 | min followed by addition of 50 $\mu$ L of mixed hybridisation solution (5 $\mu$ L oligonucleotide |
| 204 | probe solution and 45 $\mu$ L hybridisation buffer) onto each well. The slide with samples were   |
| 205 | hybridised in a microarray hybridisation incubator (Grant-Boekel, Cambridge, UK) for 4 h,         |
| 206 | washed in 50 mL washing buffer for 15 min and dipped in cold distilled water for 2 s.             |
| 207 | Slides were dried with compressed air and a drop of PVA-DABCO antifade (polyvinyl                 |
| 208 | alcohol mounting medium with 1, 4-diazabicyclo (2.2.2) octane) was added onto each well.          |
| 209 | The microscope cover slip was placed on each slide and the cell numbers of                        |
| 210 | microorganisms were determined by direct counting under an epifluorescence microscope             |
| 211 | (Eclipse 400; Nikon, Surrey, UK) with Fluor 100 lens. A total of 15 fields of view were           |
| 212 | counted for each well.                                                                            |
| 213 | The probes used were Bif164 (Langendijk et al., 1995), Bac303 (Manz, Amann,                       |
| 214 | Ludwig, Vancanneyt & Schleifer, 1996), Lab158 (Harmsen, Elfferich, Schut & Welling,               |
| 215 | 1999), Ato291 (Harmsen, et al., 2000), Prop853 (Walker, Duncan, McWilliam Leitch,                 |
| 216 | Child & Flint, 2005), Erec482 (Franks et al., 1998), Rrec584 (Walker et al., 2005),               |
| 217 | Fprau655 (Hold, Schwiertz, Aminov, Blaut & Flint, 2003), Chis150 (Franks et al., 1998),           |
| 218 | and mixed Eub338 I, II, III (Daims, Brühl, Amann, Schleifer & Wagner, 1999) for                   |
| 219 | enumerating Bifidobacterium spp., Bacteroides-Prevotella, Lactobacillus-Enterococcus,             |

Atopobium cluster, propionate producing bacteria (Clostridium cluster IX), *Eubacterium rectale-Clostridium cocoides* group (Clostridium cluster XIVa and XIVb), *Roseburia* spp.,
 *Faecalibacterium prausnitzii* cluster *Clostridium histolyticum* group (Clostridium cluster I
 and II) and total bacteria, respectively.

224

225 2.7 Organic acid analysis

226 An aliquot (1 mL) of sample from each sampling time was centrifuged at 13 000 x g 227 for 10 min and the supernatant was stored at -20 °C until analysis. Organic acids analysis 228 was performed using an HPLC (1100 series; Agilent, Winnersh, UK) with refractive index 229 detection. Prior to the analysis, the samples, after thawing, were centrifuged at 13 000 x g 230 for 10 min and the supernatants were filtered through a 0.22 µm filter unit. An ion 231 exclusion column, Rezex ROA-Organic Acid H+ (8%) (Phenomenex, Cheshire, UK) was 232 used for the analysis, using 2.5 mM H<sub>2</sub>SO<sub>4</sub> as eluent. The column was heated at 84 °C and 233 the eluent flow rate was set at 0.5 mL/min. The injection volume used was 20 µL with 40 234 min run time. Organic acids were quantified using standard calibration curves for lactate, 235 acetate, propionate, butyrate and valerate at concentrations of 12.5, 25, 50, 75 and 100 mM. 236 Formate was determined using a formate dehydrogenase-based assay kit (Megazyme, 237 Ireland). 238 239 2.8 Carbohydrate assimilation profile during fermentation 240 The assimilation profile for the nine different carbohydrates substrates used for the 241 batch culture fermentations was determined by High Performance Anion-Exchange

| 261 | 3. Results and discussion                                                                    |
|-----|----------------------------------------------------------------------------------------------|
| 260 |                                                                                              |
| 259 | point. Differences were considered to be significant when $p < 0.05$ .                       |
| 258 | changes for each bacterial group concentration at inoculation and subsequent sampling        |
| 257 | the different substrates. A paired independent t-test was also used to determine significant |
| 256 | differences among the bacterial group populations and organic acid concentrations among      |
| 255 | analysis of variance (ANOVA) and Tukey's posthoc test was used to determine significant      |
| 254 | Statistical analysis was performed using SPSS for Windows, version 17.0. One-way             |
| 253 | 2.9 Statistical analysis                                                                     |
| 252 |                                                                                              |
| 251 | were used for identification.                                                                |
| 250 | Standard glucose, arabinose, xylose and xylose oligomers (DP 2-6, Megazyme, Ireland)         |
| 249 | was then equilibrated for 20 min with 8.75 mM NaOH and 2.4 mM sodium acetate.                |
| 248 | performed with 125 mM NaOH and 500 mM sodium acetate for 10 min and the column               |
| 247 | NaOH and 150 mM sodium acetate from 45-49 min. After 50 minutes, a washing step was          |
| 246 | from 0-19 min; 30 mM NaOH and 25 mM sodium acetate from 20-44 min; and 96.875 mM             |
| 245 | mL/min with the following linear gradient: 8.75 mM NaOH and 2.4 mM sodium acetate            |
| 244 | water at a dilution factor of 30. The injection volume was 25 $\mu$ L and the flow rate 1    |
| 243 | Pulsed Amperometric Detection (PAD). Samples were filtered and diluted with deionised        |
| 242 | Chromatography (HPAEC, Dionex, Camberley, UK) using a CarboPac PA-1 column and               |

262 3.1 Characterization of the XOS/XPS fractions

263 The chemical analysis of the six fractions of purified and freeze dried OPEFB
264 autohydrolysis liquor is shown in Table 1. In all cases, XOS/XPS were the dominant
265

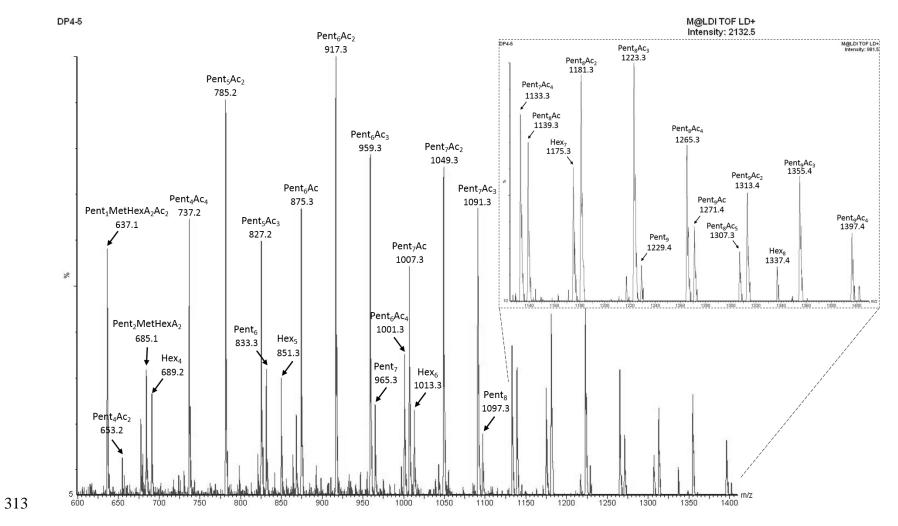
#### 266 **Table 1**

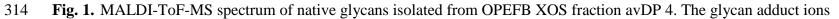
267 Composition of OPEFB fibre fractions (g/100 g freeze dried sample) obtained after GFC purification<sup>a</sup>

268

| Sample no. | avDP <sup>b</sup> | Residues in linkage (g/100 g) |       |      | Ratio <sup>c</sup> |         | Free Monomers<br>(g/100 g) |        | Total phenolics<br>(g/100 g) |      |
|------------|-------------------|-------------------------------|-------|------|--------------------|---------|----------------------------|--------|------------------------------|------|
|            | -                 | Glc                           | Xyl   | Ara  | AcO                | Ara/Xyl | AcO/Xyl                    | Xylose | Acetic acid                  |      |
| 1          | 4                 | 1.75                          | 62.25 | 1.49 | 9.16               | 0.02    | 0.37                       | 1.23   | 1.73                         | 0.46 |
| 2          | 7                 | 1.62                          | 65.38 | 1.16 | 10.30              | 0.02    | 0.39                       | 0.86   | 0.80                         | 0.37 |
| 3          | 14                | 1.56                          | 67.32 | 1.22 | 11.23              | 0.02    | 0.42                       | 0.65   | 0.48                         | 0.33 |
| 4          | 28                | 1.61                          | 67.68 | 1.18 | 12.43              | 0.02    | 0.46                       | 0.57   | 0.46                         | 0.31 |
| 5          | 44                | 2.31                          | 64.00 | 1.21 | 12.75              | 0.02    | 0.50                       | n.d    | 0.48                         | 0.43 |
| 6          | 64                | 2.83                          | 59.28 | 1.16 | 12.95              | 0.02    | 0.55                       | n.d    | 0.46                         | 0.43 |

<sup>a</sup>In freeze dried form and reconstitute with deionised water to give final concentration of 10 g/L. Calculations were made by assuming the freeze dried samples have 5% moisture content.


<sup>b</sup>avDP – Average degree of polymerization as determined by size exclusion chromatography

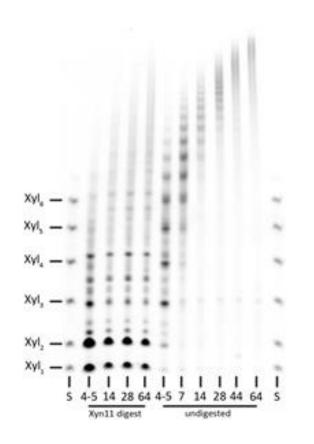

<sup>c</sup>Ratio in mol/mol

AcO - acetyl groups linked to oligosaccharides; n.d. - not detected

| 270 | oligosaccharides, accounting for 78-83 % of the total oligosaccharides. The highest                                                               |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 271 | XOS/XPS yield was found in the middle fractions (avDP 14 and 28); free monomeric                                                                  |
| 272 | compounds (xylose and acetic acid) were present at slightly higher concentrations in XOS                                                          |
| 273 | fractions with lower DP (avDP 4 and 7) than in the other fractions with free xylose absent                                                        |
| 274 | in XPS fractions with higher DP (avDP 44 and 64). The oligosaccharides of the higher DP                                                           |
| 275 | fractions (XPS, avDP 44 and 64) were more acetylated. The acetyl groups contribute to the                                                         |
| 276 | oligosaccharides solubility in water (Nabarlatz, Ebringerová & Montané, 2007) and this                                                            |
| 277 | may be the reason that high molecular weight XOS fractions were present in OPEFB                                                                  |
| 278 | autohydrolysis liquor. The arabinose content was rather low for all fractions, with an                                                            |
| 279 | arabinose to xylose ratio of approximating 0.02. The gluco-oligosaccharides (GlcOS) were                                                          |
| 280 | presumably derived from cellulose and were present at 2-3% w/w. There was also a small                                                            |
| 281 | amount of total phenolic compounds (<0.5 % w/w) found in all samples.                                                                             |
| 282 | OPEFB fractions (avDP 4, 7 and 14) were analysed by MALDI-ToF-MS (larger                                                                          |
| 283 | avDP fractions were too large for MALDI-ToF-MS analysis). XOS/XPS fractions were all                                                              |
| 284 | analysed in both their native and permethylated forms by MALDI-ToF-MS. All XOS/XPS                                                                |
| 285 | fractions analysed in their native form showed acetylated pentose oligosaccharide ions                                                            |
| 286 | (labelled Pent <sub>n</sub> Ac <sub>n</sub> , the $_{n}$ denoting the number of pentose (Pent) or acetyl (Ac) groups                              |
| 287 | respectively). In avDP 4 the most dominant ion is $m/z$ 917.27 (Pent <sub>6</sub> Ac <sub>2</sub> ) (Fig. 1) with                                 |
| 288 | acetylated oligosaccharides ranging from Pent <sub>4</sub> Ac <sub>2</sub> ( $m/z$ 653.19) to Pent <sub>9</sub> Ac <sub>4</sub> ( $m/z$ 1397.42). |
| 289 | Also present are pentose oligosaccharides with no acetylation or other modifications with                                                         |
| 290 | DP 6 to 9 ( $m/z$ 833.25 to 1229.38) and hexose oligosaccharides of DP 4-8 ( $m/z$ 689.21 to                                                      |
| 291 | 1337.42). There could also be small pentose oligosaccharides with methylated-glucuronic                                                           |
| 292 | acid substitutions (ions at $m/z$ 637.18 and 685.18) found in the native avDP 4 fraction. The                                                     |

| 293 | permethylated version of avDP 4 fraction (data not shown); although the acetylated                                                          |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|
| 294 | residues of the pentose oligosaccharides are lost, we were able to see a pentose ladder                                                     |
| 295 | starting from Pent <sub>3</sub> ( $m/z$ 549.25) up to Pent <sub>9</sub> ( $m/z$ 1509.69) and ladder of pentose                              |
| 296 | oligosaccharide substituted with single glucuronic acid up to DP 8 (Pen <sub>1</sub> HexA <sub>1</sub> , $m/z$ 447.18                       |
| 297 | to Pen <sub>7</sub> HexA <sub>1</sub> , $m/z$ 1407.63) that could not be observed in native form of the sample.                             |
| 298 | Similarly to the native version of avDP 4 XOS fraction hexose oligosaccharide ladder was                                                    |
| 299 | observed (Hex <sub>3</sub> $m/z$ 681.33- Hex <sub>8</sub> $m/z$ 1701.83) These data confirm the data in Table 1                             |
| 300 | which showed gluco-oligosaccharides (hexose oligosaccharides), xylo- and arabino-                                                           |
| 301 | oligosaccharides (pentose oligosaccharides) and acetylated oligosaccharides. Mass                                                           |
| 302 | spectrometry of OPEFB fractions of avDP 7 and avDP 14 also confirmed the data in Table                                                      |
| 303 | 1. The predominant ions were the acetylated pentoses e.g. $m/z$ 785.18 (Pent <sub>5</sub> Ac <sub>2</sub> ) up to                           |
| 304 | Pent <sub>9</sub> Ac <sub>5</sub> ion ( $m/z$ 1439.43) and methylated glucuronic acid substituted oligosaccharides                          |
| 305 | were also present ( $m/z$ 637.18 and $m/z$ 685.18) (Supplementary Fig. 1a). The permethylated                                               |
| 306 | avDP7 fraction (Supplementary Fig. 1b) also contained hexose oligosaccharides (Hex <sub>4</sub> , $m/z$                                     |
| 307 | 885.43 to Hex <sub>10</sub> $m/z$ 2110.03) as well as pentose oligosaccharide substituted with                                              |
| 308 | glucuronic acid (Pent <sub>2</sub> HexA <sub>1</sub> , $m/z$ 607.26 to Pent <sub>9</sub> HexA <sub>1</sub> , $m/z$ 1727.77). In OPEFB the   |
| 309 | avDP 14 fraction (Supplementary Fig. 1c) acetylated pentose oligosaccharides range from                                                     |
| 310 | Pent <sub>5</sub> Ac <sub>2</sub> , $m/z$ 785.23 to Pent <sub>18</sub> Ac <sub>6</sub> , $m/z$ 2669.82. Also, observed in the permethylated |
| 311 | avDP14 (Supplementary Fig.1d) are glucuronic acid substituted pentoses, Pent <sub>3</sub> HexA <sub>1</sub> ( $m/z$                         |
| 312 | 767.33) to Pent <sub>13</sub> HexA <sub>1</sub> ( $m/z$ 2368.07).                                                                           |






 $[M+Na]^+$  are indicated for acetylated pentose oligosaccharides (Pent<sub>n</sub>Ac<sub>n</sub>), for pentose oligosaccharides (Pent<sub>n</sub>), for pentoses with



The DP ranges of the OPEFB fractions obtained from MALDI-ToF-MS analysis were as follows: avDP 4 (DP 2-9), avDP 7 (DP 3-12), avDP 14 (DP 3-18). The OPEFB fractions were also xylanase cleaved and visualised by polysaccharide analysis using carbohydrate gel electrophoresis (PACE) (Fig.2) which confirms the predominant oligosaccharides were xylo-oligosaccharides and that the gel filtration fractionation of the avDP 4 to avDP 64 contained similar oligosaccharides but with increasing xylose chain length.

324



325

Fig. 2. PACE gel showing separation of extracted OPEFB XOS fractions digested with Xyn11 and undigested. S - Standard xylose<sub>1-6</sub> ladder; 4-5 = avDP 4; 14 = avDP 14; 28 = avDP 28 and 64 = avDP 64, digested with Xyn11. 4-5 = avDP 4; 7 = avDP 7; 14 = avDP 14; 28 = avDP 28; 44 = avDP 44 and 64 = avDP 64, undigested OPEFB XOS fractions.

| 332 | Changes in the bacterial populations during the in vitro fermentations with the                       |
|-----|-------------------------------------------------------------------------------------------------------|
| 333 | different XOS fractions are shown in Table 2. A significant increase (p<0.05) of                      |
| 334 | Bifidobacterium population, ranging between 0.5-0.8 log cells/mL for all time points                  |
| 335 | compared to time 0 h was observed for the XOS fractions with avDP of 4, 7 and 14,                     |
| 336 | commercial XOS and FOS. In the case of the XOS fractions with avDP of 28 and 44,                      |
| 337 | significant increases (p< $0.05$ ) were observed for the 10 h sample, whereas for the XOS             |
| 338 | fraction with avDP of 64, although an increase was observed for the 10 h sample, this was             |
| 339 | not statistically significant ( $p \ge 0.05$ ). For all these higher avDP (28, 44, 64) fractions, the |
| 340 | concentrations were sustained for the 24 h and 36 h samples and were not statistically                |
| 341 | different to 0 h. Taking into account the above and the fact that the effect of the XOS               |
| 342 | fractions with low avDP (avDP 4-14) on the Bifidobacterium population was similar to that             |
| 343 | of commercial XOS, which mainly consists of DP 2-3, it can be inferred that bifidobacteria            |
| 344 | preferred the lower molecular weight XOS fractions. This is also supported by the fact that           |
| 345 | birch wood xylan did not have a significant effect on the Bifidobacterium population. In the          |
| 346 | pure culture study, there were few strains of Bifidobacterium capable of fermenting high              |
| 347 | molecular weight XOS or xylan (Palframan, Gibson & Rastall, 2003b). The reason for the                |
| 348 | increase in the <i>Bifidobacterium</i> population at 10 h for the XOS fractions of avDP 14, 28, 44    |
| 349 | could be that the bifidobacteria utilise the low molecular weight XOS, which were present             |
| 350 | in the fractions as demonstrated by the MALDI-ToF-MS. Another possibility is that higher              |
| 351 | molecular weight XOS was hydrolysed to smaller XOS molecules by other microorganisms                  |
| 352 | such as Bacteroides (Chassard, Goumy, Leclerc, Del'homme & Bernalier-Donadille, 2007;                 |

#### Table 2

Mean bacterial populations in pH-controlled batch cultures at 0, 10, 24 and 36 h<sup>a</sup>

| Probe      | Time (h)Bacterial population (log10 cells/ml batch culture fluid) in substrate |                             |                              |                            |                             |                            |                           |                            |                             |                            |
|------------|--------------------------------------------------------------------------------|-----------------------------|------------------------------|----------------------------|-----------------------------|----------------------------|---------------------------|----------------------------|-----------------------------|----------------------------|
|            |                                                                                | OPEFB XOS                   | OPEFB XOS                    | OPEFB XOS                  | OPEFB XPS                   | OPEFB XPS                  | OPEFB XPS                 | Birch wood                 | XOS                         | FOS                        |
|            |                                                                                | (avDP 4)                    | (avDP 7)                     | (avDP 14)                  | (avDP 28)                   | (avDP 44)                  | (avDP 64)                 | xylan                      | (SLBC)                      | (Raftilose)                |
| Bif164     | 10                                                                             | 8.38 (0.19) <sup>ab*</sup>  | 8.37 (0.18) <sup>ab*</sup>   | 8.41 (0.27) <sup>ab*</sup> | 8.31 (0.16) <sup>ab*</sup>  | 8.26 (0.16) <sup>ab*</sup> | 8.22 (0.10) <sup>ab</sup> | 8.15 (0.10) <sup>a</sup>   | 8.65 (0.13) <sup>b**</sup>  | 8.64 (0.08) <sup>b**</sup> |
|            | 24                                                                             | 8.56 (0.14) <sup>a*</sup>   | 8.50 (0.19) <sup>a*</sup>    | 8.59 (0.16) <sup>a*</sup>  | 8.40 (0.29) <sup>a</sup>    | 8.36 (0.28) <sup>a</sup>   | 8.29 (0.28) <sup>a</sup>  | 8.25 (0.29) <sup>a</sup>   | 8.53 (0.06) <sup>a**</sup>  | 8.48 (0.12) <sup>a*</sup>  |
| 7.85(0.09) | 36                                                                             | 8.41 (0.15) <sup>a*</sup>   | 8.46 (0.13) <sup>a*</sup>    | 8.54 (0.10) <sup>a**</sup> | 8.30 (0.24) <sup>a</sup>    | 8.24 (0.21) <sup>a</sup>   | 8.10 (0.21) <sup>a</sup>  | 8.01 (0.23) <sup>a</sup>   | 8.38 (0.19) <sup>a*</sup>   | 8.31 (0.35) <sup>a</sup>   |
| Bac303     | 10                                                                             | 8.58 (0.08) <sup>a*</sup>   | 8.62 (0.17) <sup>a</sup>     | 8.64 (0.27) <sup>a</sup>   | 8.62 (0.13) <sup>a*</sup>   | 8.46 (0.26) <sup>a</sup>   | 8.43 (0.14) <sup>a*</sup> | 8.48 (0.34) <sup>a</sup>   | 8.54 (0.11) <sup>a</sup>    | 8.63 (0.20) <sup>a</sup>   |
|            | 24                                                                             | 8.50 (0.14) <sup>a**</sup>  | 8.50 (0.06) <sup>a**</sup>   | 8.71 (0.04) <sup>a*</sup>  | 8.59(0.25) <sup>a*</sup>    | 8.50 (0.44) <sup>a</sup>   | 8.41 (0.50) <sup>a</sup>  | 8.59 (0.35) <sup>a</sup>   | 8.42 (0.13) <sup>a*</sup>   | 8.46 (0.21) <sup>a</sup>   |
| 8.10(0.09) | 36                                                                             | 8.30 (0.17) <sup>a</sup>    | 8.31 (0.12) <sup>a</sup>     | 8.46 (0.04) <sup>a**</sup> | 8.33 (0.32) <sup>a</sup>    | 8.43 (0.29) <sup>a</sup>   | 8.27 (0.46) <sup>a</sup>  | 8.32 (0.14) <sup>a*</sup>  | 8.29 (0.20) <sup>a</sup>    | 8.15 (0.08) <sup>a</sup>   |
| Lab158     | 10                                                                             | 8.30 (0.19) <sup>a</sup>    | 8.42 (0.25) <sup>a</sup>     | 8.45 (0.23) <sup>a*</sup>  | 8.45 (0.20) <sup>a*</sup>   | 8.38 (0.26) <sup>a</sup>   | 8.29 (0.05) <sup>a*</sup> | 8.27 (0.14) <sup>a</sup>   | 8.51 (0.13) <sup>a*</sup>   | 8.45 (0.22) <sup>a</sup>   |
|            | 24                                                                             | 8.36 (0.17) <sup>a</sup>    | 8.50 (0.19) <sup>a*</sup>    | 8.57 (0.20) <sup>a*</sup>  | 8.46 (0.07) <sup>a**</sup>  | 8.29 (0.35) <sup>a</sup>   | 8.24 (0.24) <sup>a</sup>  | 8.42 (0.19) <sup>a*</sup>  | 8.35 (0.14) <sup>a*</sup>   | 8.30 (0.15) <sup>a*</sup>  |
| 7.97(0.04) | 36                                                                             | 8.31 (0.17) <sup>a</sup>    | 8.45 (0.12) <sup>a*</sup>    | 8.46 (0.14) <sup>a*</sup>  | 8.27 (0.11) <sup>a</sup>    | 8.10 (0.31) <sup>a</sup>   | 8.04 (0.32) <sup>a</sup>  | 8.13 (0.19) <sup>a</sup>   | 8.28 (0.24) <sup>a</sup>    | 8.32 (0.35) <sup>a</sup>   |
| Ato291     | 10                                                                             | 8.22 (0.03) <sup>ab*</sup>  | 8.19 (0.05) <sup>ab*</sup>   | 8.12(0.05) <sup>ab**</sup> | 8.07 (0.18) <sup>a</sup>    | 8.00 (0.07) <sup>a</sup>   | 8.05 (0.14) <sup>a</sup>  | 7.97 (0.32) <sup>a</sup>   | 8.42 (0.17) <sup>ab**</sup> | 8.56 (0.20) <sup>b**</sup> |
|            | 24                                                                             | 8.14 (0.09) <sup>bcd*</sup> | 8.08 (0.10) <sup>abc**</sup> | 7.93 (0.11) <sup>ab</sup>  | 7.99 (0.03) <sup>abc*</sup> | 7.87 (0.04) <sup>ab</sup>  | 7.72 (0.05) <sup>a</sup>  | 8.00 (0.20) <sup>abc</sup> | 8.35 (0.20) <sup>cd*</sup>  | 8.51 (0.23) <sup>d**</sup> |
| 7.78(0.10) | 36                                                                             | 7.88 (0.23) <sup>abc</sup>  | 7.80 (0.17) <sup>ab</sup>    | 7.81 (0.16) <sup>ab</sup>  | 7.69 (0.10) <sup>a</sup>    | 7.60 (0.15) <sup>a</sup>   | 7.57 (0.15) <sup>a</sup>  | 7.66 (0.21) <sup>a</sup>   | 8.22 (0.24) <sup>bc</sup>   | 8.37 (0.05) <sup>c**</sup> |
| Prop853    | 10                                                                             | 7.90 (0.04) <sup>a*</sup>   | 8.07 (0.12) <sup>a</sup>     | $8.08(0.08)^{a^*}$         | 8.11 (0.05) <sup>a**</sup>  | 8.05 (0.03) <sup>a**</sup> | 8.01 (0.23) <sup>a</sup>  | 7.92 (0.32) <sup>a</sup>   | 7.99 (0.23) <sup>a</sup>    | 7.97 (0.25) <sup>a</sup>   |
| -          | 24                                                                             | 8.03 (0.26) <sup>a</sup>    | 8.12 (0.09) <sup>a*</sup>    | 8.17 (0.08) <sup>a*</sup>  | 8.13 (0.14) <sup>a*</sup>   | 8.04 (0.30) <sup>a</sup>   | 7.87 (0.37) <sup>a</sup>  | 7.98 (0.23) <sup>a</sup>   | 8.02(0.32) <sup>a</sup>     | 7.97 (0.37) <sup>a</sup>   |
| 7.71(0.05) | 36                                                                             | 7.87 (0.33) <sup>a</sup>    | 7.92 (0.16) <sup>a</sup>     | 7.86 (0.19) <sup>a</sup>   | 7.78 (0.13) <sup>a</sup>    | 7.74 (0.41) <sup>a</sup>   | 7.68 (0.41) <sup>a</sup>  | 7.76 (0.20) <sup>a</sup>   | 7.61 (0.12) <sup>a</sup>    | 7.86 (0.24) <sup>a</sup>   |
| Erec482    | 10                                                                             | 8.09 (0.20) <sup>a</sup>    | 8.18 (0.47) <sup>a</sup>     | 8.28 (0.48) <sup>a</sup>   | 8.29 (0.37) <sup>a</sup>    | 8.15 (0.18) <sup>a</sup>   | 8.20 (0.14) <sup>a</sup>  | 8.20 (0.18) <sup>a</sup>   | 8.28 (0.30) <sup>a</sup>    | 8.31 (0.24) <sup>a</sup>   |
|            | 24                                                                             | 8.26 (0.12) <sup>a*</sup>   | 8.44 (0.34) <sup>a</sup>     | 8.35 (0.51) <sup>a</sup>   | 8.43(0.27) <sup>a</sup>     | 8.08 (0.52) <sup>a</sup>   | 8.22 (0.27) <sup>a</sup>  | 8.24 (0.14) <sup>a*</sup>  | 8.36 (0.15) <sup>a*</sup>   | 8.33 (0.08) <sup>a**</sup> |
| 7.99(0.04) | 36                                                                             | 8.43 (0.10) <sup>a*</sup>   | 8.41 (0.33) <sup>a</sup>     | 8.27 (0.47) <sup>a</sup>   | 8.28 (0.09) <sup>a*</sup>   | 8.19 (0.32) <sup>a</sup>   | 8.13 (0.41) <sup>a</sup>  | 8.20 (0.33) <sup>a</sup>   | 8.28 (0.14) <sup>a*</sup>   | 8.14 (0.12) <sup>a</sup>   |
| Rrec584    | 10                                                                             | 7.48 (0.16) <sup>a</sup>    | 7.48 (0.11) <sup>a</sup>     | 7.49 (0.18) <sup>a</sup>   | 7.45 (0.02) <sup>a*</sup>   | 7.38 (0.02) <sup>a*</sup>  | 7.35(0.06) <sup>a*</sup>  | 7.38 (0.12) <sup>a</sup>   | 7.52(0.22) <sup>a</sup>     | 7.41 (0.17) <sup>a</sup>   |
|            | 24                                                                             | 7.61 (0.06) <sup>ab</sup>   | 7.58 (0.11) <sup>ab</sup>    | 7.46 (0.19) <sup>a</sup>   | 7.54 (0.10) <sup>ab</sup>   | 7.51 (0.17) <sup>ab</sup>  | 7.50(0.06) <sup>a</sup>   | 7.50(0.15) <sup>a</sup>    | 7.85 (0.05) <sup>b*</sup>   | $7.76(0.11)^{ab^*}$        |
| 7.38(0.05) | 36                                                                             | 7.70 (0.22) <sup>a*</sup>   | 7.65 (0.15) <sup>a</sup>     | 7.65 (0.21) <sup>a</sup>   | 7.53 (0.07) <sup>a*</sup>   | 7.59 (0.20) <sup>a</sup>   | 7.60 (0.12) <sup>a</sup>  | 7.40 (0.20) <sup>a</sup>   | 7.87 (0.20) <sup>a*</sup>   | 7.75 (0.15) <sup>a</sup>   |
| Fprau655   | 10                                                                             | 7.58 (0.26) <sup>a</sup>    | 7.67 (0.29) <sup>a</sup>     | 7.66 (0.30) <sup>a</sup>   | 7.72 (0.13) <sup>a</sup>    | 7.61 (0.19) <sup>a</sup>   | 7.62 (0.13) <sup>a</sup>  | 7.65 (0.30) <sup>a</sup>   | 7.53 (0.26) <sup>a</sup>    | 7.67 (0.34) <sup>a</sup>   |
|            | 24                                                                             | 7.36 (0.08) <sup>a</sup>    | 7.45 (0.11) <sup>a</sup>     | 7.57 (0.24) <sup>a</sup>   | 7.84 (0.10) <sup>a*</sup>   | 7.51 (0.27) <sup>a</sup>   | 7.58 (0.22) <sup>a</sup>  | 7.74 (0.27) <sup>a</sup>   | 7.49 (0.20) <sup>a</sup>    | 7.60 (0.22) <sup>a</sup>   |
| 7.54(0.10) | 36                                                                             | 7.44 (0.24) <sup>a</sup>    | 7.46 (0.02) <sup>a</sup>     | 7.47 (0.21) <sup>a</sup>   | 7.56 (0.19) <sup>a</sup>    | 7.40 (0.11) <sup>a*</sup>  | 7.55 (0.27) <sup>a</sup>  | 7.48 (0.28) <sup>a</sup>   | 7.34 (0.12) <sup>a</sup>    | 7.43 (0.25) <sup>a</sup>   |
| Chis150    | 10                                                                             | 7.41 (0.21) <sup>a</sup>    | 7.48 (0.09) <sup>a</sup>     | 7.44 (0.13) <sup>a</sup>   | 7.49 (0.10) <sup>a</sup>    | 7.38 (0.07) <sup>a</sup>   | 7.38 (0.15 ) <sup>a</sup> | 7.44 (0.09) <sup>a</sup>   | 7.36 (0.11) <sup>a</sup>    | 7.56 (0.27) <sup>a</sup>   |
|            | 24                                                                             | 7.34 (0.04) <sup>a</sup>    | 7.34 (0.15) <sup>a</sup>     | 7.23 (0.06) <sup>a</sup>   | 7.31 (0.10) <sup>a</sup>    | 7.27 (0.05) <sup>a</sup>   | 7.24 (0.07) <sup>a</sup>  | 7.36 (0.09) <sup>a</sup>   | 7.28 (0.03) <sup>a</sup>    | 7.34 (0.12) <sup>a</sup>   |
| 7.33(0.05) | 36                                                                             | 6.93 (0.12) <sup>a</sup>    | 6.97 (0.08) <sup>a*</sup>    | 6.95 (0.15) <sup>a</sup>   | 6.91 (0.06 ) <sup>a*</sup>  | 6.90 (0.16) <sup>a</sup>   | 6.71 (0.07) <sup>a*</sup> | 6.95 (0.15) <sup>a*</sup>  | 6.88 (0.08) <sup>a*</sup>   | 6.80 (0.06 ) <sup>a*</sup> |
| Eub338     | 10                                                                             | 9.17 (0.11) <sup>a</sup>    | 9.21 (0.12) <sup>a*</sup>    | 9.22 (0.10) <sup>a*</sup>  | 9.19 (0.06) <sup>a*</sup>   | 9.16 (0.15) <sup>a</sup>   | 9.10 (0.10) <sup>a*</sup> | 9.06 (0.14) <sup>a</sup>   | 9.33 (0.18) <sup>a</sup>    | 9.30 (0.11) <sup>a*</sup>  |
|            | 24                                                                             | 9.25(0.17) <sup>a</sup>     | 9.25 (0.10) <sup>a*</sup>    | 9.30 (0.14) <sup>a*</sup>  | 9.25 (0.13) <sup>a*</sup>   | 9.24 (0.18) <sup>a</sup>   | 9.12 (0.13) <sup>a</sup>  | 9.12 (0.16) <sup>a</sup>   | 9.27 (0.16) <sup>a</sup>    | 9.18 (0.11) <sup>a</sup>   |
| 8.79(0.06) | 36                                                                             | 9.16(0.19) <sup>a</sup>     | 9.15(0.15) <sup>a</sup>      | 9.22 (0.13) <sup>a</sup>   | 9.08 (0.05) <sup>a*</sup>   | 9.08 (0.34) <sup>a</sup>   | 8.93 (0.33) <sup>a</sup>  | 8.91 (0.19) <sup>a</sup>   | 9.09 (0.17) <sup>a</sup>    | 9.06 (0.13) <sup>a</sup>   |

<sup>a</sup>Standard deviation is shown in parentheses (n=3). Significant differences (p<0.05) between substrates are indicated with different letters in a same row. <sup>\*</sup>Significant differences from value at 0 h, p<0.05; <sup>\*\*</sup>Significant differences from value at 0 h, p<0.01 (Value at 0 h is shown in the far left under 'Probe' column)

354 Falony, Calmeyn, Leroy & De Vuyst, 2009). This was also observed in studies carried out 355 by Mäkeläinen and co-workers (2010a; 2010b), a high molecular weight xylan (DP 35-40) 356 was not efficiently metabolised by a range of *Bifidobacterium* strains in pure culture studies 357 but when they tested the same xylan in a semi continuous colon simulator system using 358 faecal inoculum, they observed a significant increase in the *Bifidobacterium* sp. population. 359 Another bacterial group which had significant difference between substrates is the 360 Atopobium cluster. Atopobium has the highest count on FOS, significantly higher (p<0.05) 361 than OPEFB XOS of avDP 28, 44 and 64. These results are consistent with Hughes et al. 362 (2007) whereby the large molecular weight AXOS (278 kDa and 354 kDa) generally did 363 not induce growth of Atopobium.

364

365 3.3 Organic acid analysis

Table 3 shows the organic acid concentrations in the fermentations; acetate was the leading SCFA produced, followed by propionate, formate, lactate and butyrate. Across all substrates, formate and lactate were transient metabolites reaching maximum at 10 h. Acetate and propionate concentration on the other hand continued to rise up to 24 h and/or 36 h, whereas butyrate, though present at low concentration initially, increased steadily up to 36 h.

All OPEFB XOS produced significantly lower (p<0.05) amount of lactate than commercial XOS and FOS. The wider DP distribution and possibility the presence of substituents on OPEFB XOS may affect the accessibility for bifidobacterial fermentation. Kabel et al. (2002a) also observed a higher amount of lactate in non-substituted XOS than 376 substituted XOS. According to Falony et al. (2009), metabolism in bifidobacteria produces 377 more formate, acetate and ethanol at the expense of lactate when there is limited access to 378 substrate. Different carbohydrates are known to promote the growth of different species of 379 bifidobacteria, resulting in varying amount of lactate (Palframan et al., 2003b). 380 The initial acetate level in OPEFB XOS avDP 4 was high, possibly as a result of 381 free acetic acid present in the low molecular weight substrate. XOS in all OPEFB fractions 382 and the commercial XOS resulted in higher acetate and less propionate and butyrate than 383 FOS. This typical profile corresponds with previous studies conducted on XOS and xylan

- fermentation (Englyst, Hay & Macfarlane, 1987; Kabel et al., 2002a; Rycroft, Jones,
- 385 Gibson & Rastall, 2001).

#### 386 Table 3 Mean organic acid concentrations in pH-controlled batch cultures at 0, 10, 24 and 36 h<sup>a</sup>

| Organic<br>acid | Time |                              |                               |                              | С                            | oncentration (mM            | )                           |                            |                              |                              |
|-----------------|------|------------------------------|-------------------------------|------------------------------|------------------------------|-----------------------------|-----------------------------|----------------------------|------------------------------|------------------------------|
|                 | (h)  | OPEFB XOS                    | OPEFB XOS                     | OPEFB XOS                    | OPEFB XPS                    | OPEFB XPS                   | OPEFB XPS                   | Birch wood                 | XOS (Suntory)                | FOS (Raftilose)              |
|                 |      | (avDP 4)                     | (avDP 7)                      | (avDP 14)                    | (avDP 28)                    | (avDP 44)                   | (avDP 64)                   | xylan                      |                              | × /                          |
| Lactate         | 0    | 0.00 (0.00) <sup>a</sup>     | 0.00 (0.00) <sup>a</sup>      | 0.00 (0.00) <sup>a</sup>     | 0.00 (0.00) <sup>a</sup>     | 0.00 (0.00) <sup>a</sup>    | 0.00 (0.00) <sup>a</sup>    | 0.00 (0.00) <sup>a</sup>   | 0.78 (0.68) <sup>a</sup>     | 0.79 (0.68) <sup>a</sup>     |
|                 | 10   | 4.88 (2.92) <sup>a</sup>     | 1.85 (2.32) <sup>a</sup>      | 2.46 (2.38) <sup>a</sup>     | 0.81 (1.40) <sup>a</sup>     | 2.34 (1.44) <sup>a</sup>    | $0.46 (0.79)^{a}$           | 0.79 (0.72) <sup>a</sup>   | 16.11 (5.89) <sup>b*</sup>   | 19.29 (6.34) <sup>b*</sup>   |
|                 | 24   | 0.56 (0.98) <sup>a</sup>     | 0.32 (0.56) <sup>a</sup>      | 1.02 (1.76) <sup>a</sup>     | $0.00 (0.00)^{a}$            | 0.50 (0.87) <sup>a</sup>    | 0.00 (0.00) <sup>a</sup>    | 0.32 (0.56) <sup>a</sup>   | 0.00 (0.00) <sup>a</sup>     | 0.00 (0.00) <sup>a</sup>     |
|                 | 36   | 0.00 (0.00) <sup>a</sup>     | 0.00 (0.00) <sup>a</sup>      | 0.00 (0.00) <sup>a</sup>     | 0.00 (0.00) <sup>a</sup>     | 0.45 (0.78) <sup>a</sup>    | 0.00 (0.00) <sup>a</sup>    | 0.47 (0.81) <sup>a</sup>   | 0.00 (0.00) <sup>a</sup>     | 0.00 (0.00) <sup>a</sup>     |
| Formate         | 0    | 0.58 (0.04) <sup>d</sup>     | 0.16 (0.07) <sup>bc</sup>     | 0.11 (0.07) <sup>abc</sup>   | 0.11 (0.06) <sup>abc</sup>   | 0.13 (0.06) <sup>abc</sup>  | 0.36 (0.04) <sup>a</sup>    | 0.16 (0.03) <sup>c</sup>   | 0.03 (0.04) <sup>ab</sup>    | 0.01 (0.01) <sup>a</sup>     |
|                 | 10   | 8.42 (8.28) <sup>a</sup>     | 7.61 (7.02) <sup>a</sup>      | 4.26 (5.39) <sup>a</sup>     | 8.37 (6.06) <sup>a</sup>     | 4.11 (5.44) <sup>a</sup>    | 5.80 (7.78) <sup>a</sup>    | 2.64 (1.64) <sup>a</sup>   | 14.06 (3.49) <sup>a*</sup>   | 14.96(5.90) <sup>a*</sup>    |
|                 | 24   | 5.33(3.65) <sup>a</sup>      | 5.66 (8.32) <sup>a</sup>      | 3.54(6.12) <sup>a</sup>      | 4.26 (7.38) <sup>a</sup>     | 6.44 (5.58) <sup>a</sup>    | 2.19 (3.56) <sup>a</sup>    | 0.05 (0.08) <sup>a</sup>   | 6.56 (5.94) <sup>a</sup>     | 1.69 (2.86) <sup>a</sup>     |
|                 | 36   | 0.00 (0.00) <sup>a</sup>     | 1.93 (3.34) <sup>a</sup>      | 0.55 (0.95) <sup>a</sup>     | 0.00 (0.00) <sup>a</sup>     | 2.34 (2.54) <sup>a</sup>    | 0.00 (0.00) <sup>a</sup>    | 0.00 (0.00) <sup>a</sup>   | 1.24 (2.15) <sup>a</sup>     | 0.00 (0.00) <sup>a</sup>     |
| Acetate         | 0    | 10.08 (2.41) <sup>c</sup>    | 6.70 (1.79) <sup>bc</sup>     | 6.00 (1.56) <sup>b</sup>     | 5.62 (1.72) <sup>ab</sup>    | 5.20 (0.50) <sup>ab</sup>   | 5.18 (0.38) <sup>ab</sup>   | 5.84 (0.06) <sup>ab</sup>  | 2.18 (0.03) <sup>a</sup>     | 2.31 (0.30) <sup>a</sup>     |
| (A)             | 10   | 48.44 (21.23) <sup>a</sup>   | 47.45 (24.27) <sup>a</sup>    | 47.84 (23.12) <sup>a</sup>   | 51.72 (24.48) <sup>a</sup>   | 33.12 (22.07) <sup>a</sup>  | 37.19 (27.31) <sup>a</sup>  | 25.53 (6.71) <sup>a*</sup> | 54.82 (8.47) <sup>a**</sup>  | 47.55 (11.02) <sup>a*</sup>  |
|                 | 24   | 77.39 (21.26) <sup>b*</sup>  | 71.61 (7.48) <sup>ab**</sup>  | 78.37 (6.57) <sup>b**</sup>  | 62.35 (11.82) <sup>ab*</sup> | 57.30 (28.36) <sup>ab</sup> | 43.50 (26.36) <sup>ab</sup> | 28.98 (7.96) <sup>a*</sup> | 60.19 (2.00) <sup>ab**</sup> | 43.10 (6.47) <sup>ab**</sup> |
|                 | 36   | 79.80 (22.19) <sup>b*</sup>  | 68.68 (10.00) <sup>ab**</sup> | 78.70 (6.86) <sup>b**</sup>  | 54.60 (10.09) <sup>ab*</sup> | 59.49 (27.07) <sup>ab</sup> | 41.44 (30.12) <sup>ab</sup> | 21.32 (7.03) <sup>a</sup>  | 60.53 (3.77) <sup>ab**</sup> | 39.61 (7.66) <sup>ab*</sup>  |
| Propionate      | 0    | 3.08 (0.52) <sup>a</sup>     | 2.75 (0.19) <sup>a</sup>      | 2.69 (0.18) <sup>a</sup>     | 2.67 (0.19) <sup>a</sup>     | 2.70 (0.10) <sup>a</sup>    | 2.69 (0.22) <sup>a</sup>    | 2.76 (0.18) <sup>a</sup>   | 2.61 (0.11) <sup>a</sup>     | 2.67 (0.42) <sup>a</sup>     |
| (P)             | 10   | 9.23 (4.64) <sup>a</sup>     | 13.84 (10.69) <sup>a</sup>    | 15.60 (11.96) <sup>a</sup>   | 12.77 (1.82) <sup>a*</sup>   | 7.96 (1.94) <sup>a*</sup>   | 11.37 (6.05) <sup>a</sup>   | 10.28 (2.78) <sup>a*</sup> | 13.28 (8.04) <sup>a</sup>    | 15.55 (14.71) <sup>a</sup>   |
|                 | 24   | 16.57 (4.75) <sup>a*</sup>   | 20.10 (7.20) <sup>a</sup>     | 25.10 (8.72) <sup>a*</sup>   | 18.43 (2.87) <sup>a*</sup>   | 18.15 (10.37) <sup>a</sup>  | 11.46 (10.51) <sup>a</sup>  | 13.22 (4.72) <sup>a</sup>  | 18.07 (8.97) <sup>a</sup>    | 18.58 (16.11) <sup>a</sup>   |
|                 | 36   | 17.93 (5.55) <sup>a*</sup>   | 18.82 (6.41) <sup>a*</sup>    | 25.70 (7.51) <sup>a*</sup>   | 16.35 (2.54) <sup>a*</sup>   | 19.27 (11.63) <sup>a</sup>  | 11.28 (11.08) <sup>a</sup>  | 9.91 (3.20) <sup>a</sup>   | 17.96 (9.82) <sup>a</sup>    | 18.22 (16.91) <sup>a</sup>   |
| Butyrate        | 0    | 0.00 (0.00) <sup>a</sup>     | 0.00 (0.00) <sup>a</sup>      | 0.00 (0.00) <sup>a</sup>     | 0.00 (0.00) <sup>a</sup>     | 0.00 (0.00) <sup>a</sup>    | 0.00 (0.00) <sup>a</sup>    | 0.00 (0.00) <sup>a</sup>   | 0.00 (0.00) <sup>a</sup>     | 0.00 (0.00) <sup>a</sup>     |
| (B)             | 10   | 1.11 (1.72) <sup>a</sup>     | 1.85 (1.84) <sup>a</sup>      | 1.87 (2.33) <sup>a</sup>     | 2.08 (1.47) <sup>a</sup>     | 1.11 (1.44) <sup>a</sup>    | 1.89 (1.06) <sup>a</sup>    | 1.76 (0.86) <sup>a</sup>   | 1.89 (1.65) <sup>a</sup>     | 2.68 (1.08) <sup>a*</sup>    |
|                 | 24   | 2.99 (1.81) <sup>a</sup>     | 3.08 (2.13) <sup>a</sup>      | 3.32 (3.40) <sup>ab</sup>    | 3.67 (1.74) <sup>ab</sup>    | 1.66 (1.46) <sup>a</sup>    | 2.66 (2.48) <sup>a</sup>    | 3.39 (1.92) <sup>ab</sup>  | 11.41 (5.31) <sup>bc</sup>   | 13.16 (3.29) <sup>c*</sup>   |
|                 | 36   | 4.07 (1.75) <sup>ab</sup>    | 3.52 (2.31) <sup>a</sup>      | 4.49 (4.11) <sup>ab</sup>    | 4.09 (1.03) <sup>ab*</sup>   | 2.40 (2.02) <sup>a</sup>    | 3.24 (3.60) <sup>a</sup>    | 3.09 (2.79) <sup>a</sup>   | 12.30 (4.64) <sup>bc*</sup>  | 13.23 (2.49) <sup>c*</sup>   |
| Total           | 0    | 13.73 (2.70) <sup>b</sup>    | 9.61 (1.85) <sup>ab</sup>     | 8.80 (1.65) <sup>a</sup>     | 8.40 (1.87) <sup>a</sup>     | 8.04 (0.42) <sup>a</sup>    | 8.23 (0.56) <sup>a</sup>    | 8.77 (0.22) <sup>a</sup>   | 5.59 (0.67) <sup>a</sup>     | 5.77 (1.38) <sup>a</sup>     |
|                 | 10   | 72.09(29.09) <sup>a</sup>    | 72.60 (33.75) <sup>a</sup>    | 72.03 (32.92) <sup>a</sup>   | 75.74 (32.56) <sup>a</sup>   | 48.64 (27.61) <sup>a</sup>  | 56.71 (41.11) <sup>a</sup>  | 41.00(11.33) <sup>a*</sup> | 100.15 (7.69) <sup>a**</sup> | 100.03 (1.46) <sup>a**</sup> |
|                 | 24   | 102.84 (27.40) <sup>a*</sup> | 100.77 (7.09) <sup>a**</sup>  | 111.35 (6.55) <sup>a**</sup> | 88.71 (21.28) <sup>a*</sup>  | 84.05 (44.15) <sup>a</sup>  | 59.80 (42.27) <sup>a</sup>  | 45.97(13.62) <sup>a*</sup> | 96.24 (4.10) <sup>a**</sup>  | 76.52 (10.92) <sup>a**</sup> |
|                 | 36   | 101.80(26.14) <sup>ab*</sup> | 92.95 (6.64) <sup>ab**</sup>  | 109.44 (2.12) <sup>b**</sup> | 75.04 (12.69) <sup>ab*</sup> | 83.96 (41.10) <sup>ab</sup> | 55.95 (44.40) <sup>ab</sup> | 34.79 (12.76) <sup>a</sup> | 92.03 (7.57) <sup>ab**</sup> | 71.05 (17.60) <sup>ab*</sup> |
| A:P:B           | 0    | 1:0.3:0                      | 1:0.4:0                       | 1:0.5:0                      | 1:0.5:0                      | 1:0.5:0                     | 1:0.5:0                     | 1:0.5:0                    | 1:1.2:0                      | 1:1.2:0                      |
|                 | 10   | 1:0.2:0.03                   | 1:0.3:0.03                    | 1:0.3:0.03                   | 1:0.3:0.04                   | 1:0.3:0.04                  | 1:0.3:0.06                  | 1:0.4:0.07                 | 1:0.3:0.03                   | 1:0.4:0.06                   |
|                 | 24   | 1:0.2:0.04                   | 1:0.3:0.04                    | 1:0.3:0.04                   | 1:0.3:0.06                   | 1:0.3:0.04                  | 1:0.3:0.06                  | 1:0.5:0.1                  | 1:0.3:0.2                    | 1:0.5:0.3                    |
|                 | 36   | 1:0.2:0.05                   | 1:0.3:0.05                    | 1:0.3:0.06                   | 1:0.3:0.08                   | 1:0.3:0.05                  | 1:0.3:0.06                  | 1:0.5:0.1                  | 1:0.3:0.2                    | 1:0.5:0.4                    |

<sup>a</sup>Standard deviation is shown in parentheses with n=3. Significant differences (p<0.05) between substrates are indicated with different letters in a same row. \*Increased significantly from value at 0 h, p<0.05; \*\*Increased significant differences from value at 0 h, p<0.01

387 The significant increase in acetate at 24 h and 36 h for XOS of avDP 4, 7, 14 and 28
388 can be linked to the two major acetate producers; *Bifidobacterium* spp. and the *Bacteroides*389 *Prevotella* group.

390 There was no significant increase in butyrate on any OPEFB XOS while 391 commercial XOS resulted in similar butyrate level to FOS ( $p \ge 0.05$ ). Nevertheless, the XOS 392 preparation of lower avDP (4, 14, 28) were not different to commercial XOS ( $p \ge 0.05$ ). 393 Although the human gut microbiota has also been known to be able to further metabolise 394 acetate to butyrate (Duncan, Barcenilla, Stewart, Pryde & Flint, 2002; Duncan et al., 2004), 395 the conversion of acetate from OPEFB XOS to butyrate was generally lower. 396 The type and molecular weight of the substrates influenced rate and amount of 397 organic acid produced. Based on total organic acid, it is noticeable that commercial XOS 398 and FOS were the fastest fermentable substrates, reaching at least 100 mM at 10 h. As for 399 OPEFB XOS, the three lowest avDP (4, 7, 14) reached 100 mM at 24 h while other 400 fractions of higher avDP (28, 44, 64) had less than 100 mM and birch wood xylan, the least 401 fermentable substrate had the lowest organic acid of all with 46 mM at 24 h. 402 403 3.4 Carbohydrate assimilation profile during fermentation

404 The carbohydrate was profiled in the samples during the course of fermentation using

405 HPAEC-PAD to observe the changes in DP. The assimilation profile of OPEFB XOS of

406 avDP14 from each faecal donor is illustrated in Fig. 3. The three donors showed slight

407 variation in magnitudes and trends that coincides with rather high standard deviation

408 observed in the organic acid data. At 10 h, donor 1 XOS were utilised faster, leaving behind

| 409 | xylose. For donor 2, since the rate of fermentation is slower, some oligosaccharides were    |
|-----|----------------------------------------------------------------------------------------------|
| 410 | still present at 10 h and without much increase of xylose. Donor 3 had a trend between       |
| 411 | donor 1 and 2 whereby the XOS were also quickly fermented and broken down into xylose,       |
| 412 | xylobiose and xylotriose. At 24 h there was no detectable sugar remaining in all the culture |
| 413 | samples. While the xylose and low DP XOS were being consumed by the bacteria,                |
| 414 | accumulation could arise from continual digestion of XOS/XPS from the higher DP. This        |
| 415 | similar degradation characteristic was also observed in XOS (DP 2-6) derived from rice       |
| 416 | husk when fermented with a single bifidobacteria culture (Gullón et al., 2008).              |
| 417 | Analysis with HPAEC-PAD however does not provide information on acetyl groups                |
| 418 | as deacetylation occurs in the high pH eluent used in HPAEC (Kabel et al., 2002a). As such,  |
| 419 | the chromatogram could not show the susceptibility of acetylated XOS during fermentation.    |
| 420 |                                                                                              |

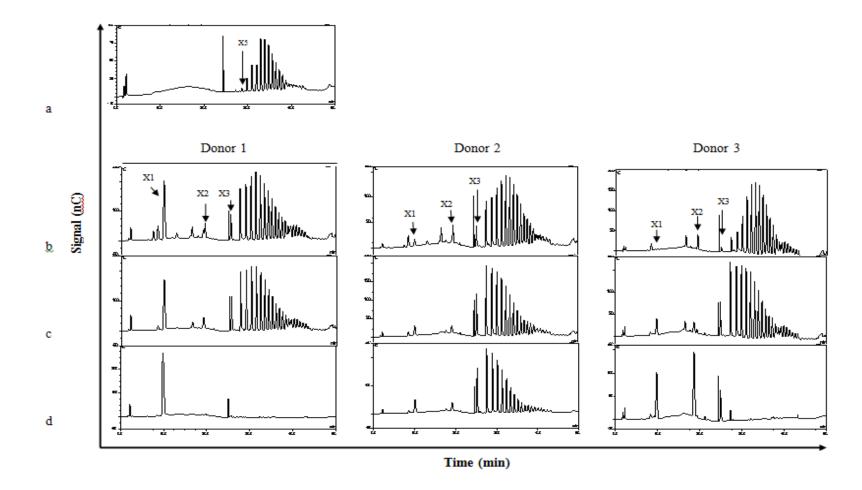



Fig. 3. Degradation profile of OPEFB XOS avDP 14 at different time by faecal culture from three donors using HPAEC-PAD:
(a) Substrate before fermentation, (b) Immediately after substrate addition into fermenter, (c) After 5 h, (d) After 10 h. X1, X2,
X3 on the chromatogram indicate the position of xylose, xylobiose and xylotriose, respectively.

#### **4. Conclusion**

| 426                                                                                      | The solubility of high avDP XOS/XPS preparation from OPEFB through                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 427                                                                                      | autohydrolysis process is rather interesting as it could be incorporated into many food                                                                                                                                                                                                      |
| 428                                                                                      | processes. The acetyl group may aid XOS/XPS solubility, however the impact of this on                                                                                                                                                                                                        |
| 429                                                                                      | fermentation in the gut was not conclusive from the present results. Nevertheless, the                                                                                                                                                                                                       |
| 430                                                                                      | degree of polymerisation has significant influence on OPEFB XOS/XPS fermentability by                                                                                                                                                                                                        |
| 431                                                                                      | the gut microflora. The <i>in vitro</i> study conducted in this work shows the low avDP XOS (4,                                                                                                                                                                                              |
| 432                                                                                      | 7, 14) were more selective to beneficial bacteria than the higher avDP XPS (22, 44, 64).                                                                                                                                                                                                     |
| 433                                                                                      | OPEFB XOS fractions of avDP 14 appeared to be the most bifidogenic.                                                                                                                                                                                                                          |
| 434                                                                                      |                                                                                                                                                                                                                                                                                              |
| 435                                                                                      | Acknowledgements                                                                                                                                                                                                                                                                             |
|                                                                                          |                                                                                                                                                                                                                                                                                              |
| 436                                                                                      | This work was supported by Malaysian Ministry of Higher Education for funding a                                                                                                                                                                                                              |
| 436<br>437                                                                               | This work was supported by Malaysian Ministry of Higher Education for funding a scholarship to Ai Ling Ho. The XOS fractions used in this study was produced using the                                                                                                                       |
|                                                                                          |                                                                                                                                                                                                                                                                                              |
| 437                                                                                      | scholarship to Ai Ling Ho. The XOS fractions used in this study was produced using the                                                                                                                                                                                                       |
| 437<br>438                                                                               | scholarship to Ai Ling Ho. The XOS fractions used in this study was produced using the facilities provided at Bioenergy Unit, LNEG, Portugal. Rothamsted Research receives                                                                                                                   |
| 437<br>438<br>439                                                                        | scholarship to Ai Ling Ho. The XOS fractions used in this study was produced using the facilities provided at Bioenergy Unit, LNEG, Portugal. Rothamsted Research receives grant-aided support from the Biotechnology and Biological Sciences Research Council                               |
| 437<br>438<br>439<br>440                                                                 | scholarship to Ai Ling Ho. The XOS fractions used in this study was produced using the facilities provided at Bioenergy Unit, LNEG, Portugal. Rothamsted Research receives grant-aided support from the Biotechnology and Biological Sciences Research Council                               |
| 437<br>438<br>439<br>440<br>441                                                          | scholarship to Ai Ling Ho. The XOS fractions used in this study was produced using the facilities provided at Bioenergy Unit, LNEG, Portugal. Rothamsted Research receives grant-aided support from the Biotechnology and Biological Sciences Research Council (BBSRC) of the UK.            |
| <ul> <li>437</li> <li>438</li> <li>439</li> <li>440</li> <li>441</li> <li>442</li> </ul> | scholarship to Ai Ling Ho. The XOS fractions used in this study was produced using the facilities provided at Bioenergy Unit, LNEG, Portugal. Rothamsted Research receives grant-aided support from the Biotechnology and Biological Sciences Research Council (BBSRC) of the UK. References |

- 446 Chassard, C., Goumy, V., Leclerc, M., Del'homme, C., & Bernalier-Donadille, A. (2007).
- 447 Characterization of the xylan-degrading microbial community from human faeces.
- 448 FEMS Microbiology Ecology, 61, 121-131.
- 449 Childs, C. E., Roytio, H., Alhoniemi, E., Fekete, A. A., Forssten, S. D., Hudjec, N., Lim, Y.
- 450 N., Steger, C. J., Yaqoob, P., Tuohy, K. M., Rastall, R. A., Ouwehand, A. C., &
- 451 Gibson, G. R. (2014). Xylo-oligosaccharides alone or in synbiotic combination with
- 452 *Bifidobacterium animalis* subsp. *lactis* induce bifidogenesis and modulate markers of
- 453 immune function in healthy adults: A double-blind, placebo-controlled, randomised,
- 454 factorial cross-over study. *British Journal of Nutrition*, 111, 1945-1956.
- 455 Chung, Y.-C., Hsu, C.-K., Ko, C.-Y., & Chan, Y.-C. (2007). Dietary intake of
- 456 xylooligosaccharides improves the intestinal microbiota, fecal moisture, and pH value
  457 in the elderly. *Nutrition Research*, 27, 756-761.
- 458 Ciucanu, I., & Kerek, F. (1984). A simple and rapid method for the permethylation of

459 carbohydrates. *Carbohydrate Research*, *131*, 209-217.

- 460 Crittenden, R., Karppinen, S., Ojanen, S., Tenkanen, M., Fagerström, R., Mättö, J., Saarela,
- 461 M., Mattila-Sandholm, T., & Poutanen, K. (2002). *In vitro* fermentation of cereal
- dietary fibre carbohydrates by probiotic and intestinal bacteria. *Journal of the Science*
- 463 *of Food and Agriculture*, 82, 781-789.
- 464 Daims, H., Brühl, A., Amann, R., Schleifer, K.-H., & Wagner, M. (1999). The domain-
- 465 specific probe EUB338 is insufficient for the detection of all bacteria: Development
- 466 and evaluation of a more comprehensive probe set. *Systematic and Applied*
- 467 *Microbiology*, 22, 434-444.

| 468 | Duncan, S. H., Barcenilla, A., Stewart, C. S., Pryde, S. E., & Flint, H. J. (2002). Acetate |
|-----|---------------------------------------------------------------------------------------------|
| 469 | utilization and butyryl coenzyme A (CoA):Acetate-CoA transferase in butyrate-               |
| 470 | producing bacteria from the human large intestine. Applied and Environmental                |
| 471 | Microbiology, 68, 5186-5190.                                                                |
| 472 | Duncan, S. H., Holtrop, G., Lobley, G. E., Calder, A. G., Stewart, C. S., & Flint, H. J.    |
| 473 | (2004). Contribution of acetate to butyrate formation by human faecal bacteria.             |
| 474 | British Journal of Nutrition, 91, 915-923.                                                  |
| 475 | Ebringerová, A., Hromadkova, Z., & Heinze, T. (2005). Polysaccharides I: Structure,         |

- 476 characterization and use. *Advances In Polymer Science*, *186*, 1-67.
- Englyst, H. N., Hay, S., & Macfarlane, G. T. (1987). Polysaccharide breakdown by mixed
  populations of human faecal bacteria. *FEMS Microbiology Letters*, 45, 163-171.
- 479 Falony, G., Calmeyn, T., Leroy, F., & De Vuyst, L. (2009). Coculture fermentations of
- 480 *Bifidobacterium* species and *Bacteroides thetaiotaomicron* reveal a mechanistic
- 481 insight into the prebiotic effect of inulin-type fructans. *Applied and Environmental*
- 482 *Microbiology*, 75, 2312-2319.
- 483 Franks, A. H., Harmsen, H. J. M., Raangs, G. C., Jansen, G. J., Schut, F., & Welling, G. W.
- 484 (1998). Variations of bacterial populations in human feces measured by fluorescent *in*
- 485 *situ* hybridization with group-specific 16S rRNA-targeted oligonucleotide probes.
- 486 *Applied and Environmental Microbiology*, 64, 3336-3345.
- 487 Gullón, P., Moura, P., Esteves, M. P., Girio, F. M., Domínguez, H., & Parajó, J. C. (2008).
- 488 Assessment on the fermentability of xylooligosaccharides from rice husks by
- 489 probiotic bacteria. *Journal of Agricultural and Food Chemistry*, 56, 7482-7487.

| 490 | Harmsen, H. J. M., Elfferich, P., Schut, F., & Welling, G. W. (1999). A 16S rRNA-targeted     |
|-----|-----------------------------------------------------------------------------------------------|
| 491 | probe for detection of lactobacilli and enterococci in faecal samples by fluorescent in       |
| 492 | situ hybridization. Microbial Ecology in Health and Disease, 11, 3-12.                        |
| 493 | Harmsen, H. J. M., Wildeboer-Veloo, A. C. M., Grijpstra, J., Knol, J., Degener, J. E., &      |
| 494 | Welling, G. W. (2000). Development of 16S rRNA-based probes for the                           |
| 495 | Coriobacterium group and the Atopobium cluster and their application for                      |
| 496 | enumeration of Coriobacteriaceae in human feces from volunteers of different age              |
| 497 | groups. Applied and Environmental Microbiology, 66, 4523-4527.                                |
| 498 | Ho, A. L., Carvalheiro, F., Duarte, L. C., Roseiro, L. B., Charalampopoulos, D., & Rastall,   |
| 499 | R. A. (2014). Production and purification of xylooligosaccharides from oil palm               |
| 500 | empty fruit bunch fibre by a non-isothermal process. Bioresource Technology, 152,             |
| 501 | 526-529.                                                                                      |
| 502 | Hold, G. L., Schwiertz, A., Aminov, R. I., Blaut, M., & Flint, H. J. (2003). Oligonucleotide  |
| 503 | probes that detect quantitatively significant groups of butyrate-producing bacteria in        |
| 504 | human feces. Applied and Environmental Microbiology, 69, 4320-4324.                           |
| 505 | Hughes, S. A., Shewry, P. R., Li, L., Gibson, G. R., Sanz, M. L., & Rastall, R. A. (2007). In |
| 506 | vitro fermentation by human fecal microflora of wheat arabinoxylans. Journal of               |
| 507 | Agricultural and Food Chemistry, 55, 4589-4595.                                               |
| 508 | Kabel, M. A., Kortenoeven, L., Schols, H. A., & Voragen, A. G. J. (2002a). In vitro           |
| 509 | fermentability of differently substituted xylo-oligosaccharides. Journal of                   |
| 510 | Agricultural and Food Chemistry, 50, 6205-6210.                                               |
|     |                                                                                               |

| 511 | Kabel, M. A., Schols, H. A., & Voragen, A. G. J. (2002b). Complex xylo-oligosaccharides    |
|-----|--------------------------------------------------------------------------------------------|
| 512 | identified from hydrothermally treated Eucalyptus wood and brewery's spent grain.          |
| 513 | Carbohydrate Polymers, 50, 191-200.                                                        |
| 514 | Kosik, O., Bromley, J. R., Busse-Wicher, M., Zhang, Z., and Dupree, P. (2012). Studies of  |
| 515 | enzymatic cleavage of cellulose using polysaccharide analysis by carbohydrate gel          |
| 516 | electrophoresis (PACE). Methods in Enzymology, 510, 51-67.                                 |
| 517 | Langendijk, P. S., Schut, F., Jansen, G. J., Raangs, G. C., Kamphuis, G. R., Wilkinson, M. |
| 518 | H., & Welling, G. W. (1995). Quantitative fluorescence in situ hybridization of            |
| 519 | Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its                  |
| 520 | application in fecal samples. Applied and Environmental Microbiology, 61, 3069-            |
| 521 | 3075.                                                                                      |
| 522 | Mäkeläinen, H., Forssten, S., Saarinen, M., Stowell, J., Rautonen, N., & Ouwehand, A. C.   |
| 523 | (2010a). Xylo-oligosaccharides enhance the growth of bifidobacteria and                    |
| 524 | Bifidobacterium lactis in a simulated colon model. Beneficial Microbes, 1, 81-91.          |
| 525 | Mäkeläinen, H., Saarinen, M., Stowell, J., Rautonen, N., & Ouwehand, A. C. (2010b).        |
| 526 | Xylo-oligosaccharides and lactitol promote the growth of Bifidobacterium lactis and        |
| 527 | Lactobacillus species in pure cultures. Beneficial Microbes, 1, 139-148.                   |
| 528 | Manz, W., Amann, R., Ludwig, W., Vancanneyt, M., & Schleifer, KH. (1996).                  |
| 529 | Application of a suite of 16S rRNA-specific oligonucleotide probes designed to             |
| 530 | investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural        |
| 531 | environment. Microbiology, 142, 1097-1106.                                                 |
| 532 | Marsh, J. T., Tryfona, T., Powers, S. J., Stephens, E., Dupree, P., Shewry, P. R., &       |
| 533 | Lovegrove, A. (2011). Determination of the N-glycosylation patterns of seed                |

| 534 | proteins: Applications to determine the authenticity and substantial equivalence of |
|-----|-------------------------------------------------------------------------------------|
| 535 | genetically modified (GM) crops. Journal of Agricultural and Food Chemistry, 59,    |
| 536 | 8779-8788.                                                                          |

- 537 Moura, P., Barata, R., Carvalheiro, F., Gírio, F., Loureiro-Dias, M. C., & Esteves, M. P.
- 538 (2007). *In vitro* fermentation of xylo-oligosaccharides from corn cobs autohydrolysis
  539 by *Bifidobacterium* and *Lactobacillus* strains. *LWT Food Science and Technology*,
- *40*, 963-972.
- 541 Moure, A., Gullón, P., Domínguez, H., & Parajó, J. C. (2006). Advances in the
- manufacture, purification and applications of xylo-oligosaccharides as food additives
  and nutraceuticals. *Process Biochemistry*, *41*, 1913-1923.
- Nabarlatz, D., Ebringerová, A., & Montané, D. (2007). Autohydrolysis of agricultural byproducts for the production of xylo-oligosaccharides. *Carbohydrate Polymers*, 69,
- 546 20-28.
- 547 Okazaki, M., Fujikawa, S., & Matsumoto, N. (1990). Effect of xylooligosaccharide on the
  548 growth of bifidobacteria. *Bifidobacteria and Microflora*, *9*, 77-86.
- 549 Palframan, R., Gibson, G. R., & Rastall, R. A. (2003a). Development of a quantitative tool
- 550 for the comparison of the prebiotic effect of dietary oligosaccharides. *Letters in*
- 551 *Applied Microbiology*, *37*, 281-284.
- 552 Palframan, R. J., Gibson, G. R., & Rastall, R. A. (2003b). Carbohydrate preferences of
- 553 *Bifidobacterium* species isolated from human gut. *Current Issues in Intestinal*
- 554 *Microbiology*, *4*, 71-75.

- 555 Parajó, J. C., Garrote, G., Cruz, J. M., & Domínguez, H. (2004). Production of
- 556 xylooligosaccharides by autohydrolysis of lignocellulosic materials. *Trends in Food*557 *Science and Technology*, *15*, 115-120.
- 558 Rycroft, C. E., Jones, M. R., Gibson, G. R., & Rastall, R. A. (2001). A comparative in vitro
- 559 evaluation of the fermentation properties of prebiotic oligosaccharides. *Journal of*

560 *Applied Microbiology*, *91*, 878-887.

- 561 Singleton, V. L., & Rossi, J. A. J. (1965). Colorimetry of total phenolics with
- phosphomolybdic-phosphotungstic acid reagents. *American Journal of Enology and Viticulture*, *16*, 144-158.
- 564 Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2006).
- 565 Determination of sugars, by-products, and degradation products in liquid fraction
- 566 process samples. *Laboratory Analytical Procedure (NREL/TP-510-42623)*. Colorado:
- 567 National Renewable Energy Laboratory.
- 568 Van Craeyveld, V., Swennen, K., Dornez, E., Van de Wiele, T., Marzorati, M., Verstraete,
- 569 W., Delaedt, Y., Onagbesan, O., Decuypere, E., Buyse, J., De Ketelaere, B., F.
- 570 Broekaert, W., Delcour, J. A., & Courtin, C. M. (2008). Structurally different wheat-
- 571 derived arabinoxylooligosaccharides have different prebiotic and fermentation

572 properties in rats. *The Journal of Nutrition*, *138*, 2348–2355.

- 573 Walker, A. W., Duncan, S. H., McWilliam Leitch, E. C., Child, M. W., & Flint, H. J.
- 574 (2005). pH and peptide supply can radically alter bacterial populations and short-
- 575 chain fatty acid ratios within microbial communities from the human colon. *Applied*
- 576 *and Environmental Microbiology*, 71, 3692-3700.