

Polyphenols extracted from red grape pomace by a surfactant based method show enhanced collagenase and elastase inhibitory activity

Article

Accepted Version

Mohd Maidin, N., Michael, N., Oruna-Concha, M. J. and Jauregi, P. (2018) Polyphenols extracted from red grape pomace by a surfactant based method show enhanced collagenase and elastase inhibitory activity. Journal of Chemical Technology and Biotechnology, 93 (7). pp. 1916-1924. ISSN 0268-2575 doi: https://doi.org/10.1002/jctb.5459 Available at http://centaur.reading.ac.uk/72891/

It is advisable to refer to the publisher's version if you intend to cite from the work. See <u>Guidance on citing</u>. Published version at: http://dx.doi.org/10.1002/jctb.5459 To link to this article DOI: http://dx.doi.org/10.1002/jctb.5459

Publisher: Wiley

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the <u>End User Agreement</u>.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

1	Polyphenols extracted from red grape pomace by a
2	surfactant based method show enhanced collagenase and
3	elastase inhibitory activity
4	
5	Nurmahani Mohd Maidin ^{a,b} , Nicholas Michael ^c , Maria Jose Oruna-Concha ^a and Paula
6	Jauregi ^a *
7	A Dependence of Depident A New York Option of The Hubble of Depidence Depidence of the Hubble of of the Hu
/ 8	Kingdom
9	^b Department of Food Technology, Faculty of Food Science and Technology, Universiti
10	Malaysia Terengganu, Malaysia
11 12	^c Chemical Analysis Facility (CAF), Department of Chemistry, Harborne Building, The University of Reading Reading United Kingdom
12	University of Reading, Reading, Onited Kingdom
14	* Tel: +44 (0) 118 378 8728 Fax: 0118 931 0080 email: <u>p.jauregi@reading.ac.uk</u>
15	
16	Short title: Collagenase and elastase inhibitory activity of polyphenols separated by CGA
17	Abstract
18	BACKGROUND: The aim of this study is to separate polyphenols from grape pomace using a
19	surfactant-based separation, Colloidal Gas Aphrons (CGA) and to investigate their inhibitory
20	activity against skin relevant enzymes, collagenase and elastase. Ethanolic (EE) and hot water
21	crude extracts (HWE) were produced first and then the CGA generated using TWEEN20 were
22	applied resulting in polyphenols enriched fractions (CGA-EE and CGA-HWE, ethanol and hot
23	water extracts derived fractions respectively).
24	
25	RESULTS: Both crude extracts inhibited the enzymes in a dose-dependent manner however,
26	further extraction by CGA led to fractions with higher inhibitory efficiency against collagenase.
27	Although gallic acid was the main component of the CGA-HWE, others such as kaempferol
28	must have contributed to its notency which was over six times more than gallic acid's. The
20	must have contributed to its potency which was over six times more than game acid s. The

CGA-EE was found to be about four times more efficient than its crude extract and over six
 times more efficient than gallic acid in collagenase's inhibition; quercetin was the major
 polyphenol in this fraction.

4

CONCLUSION: It is evident that ethanol and hot water extraction processes led to different
polyphenols composition and thus different inhibitory activity against collagenase and elastase.
Further separation with CGA increased the inhibitory potency of both extracts against
collagenase. Overall the results here showed the potential application of the CGA fractions
from grape extracts in cosmetics.

10

11 Keywords: colloidal gas aphrons, grape pomace, polyphenols, collagenase, elastase

Abbreviations: AAAPVN, N-Succ-Ala-Ala-P-nitroanilide; AOAC; association of
analytical communities; CGA, colloidal gas aphrons; ChC; *C. hystoliticum* collagenase Type
IA; FALGPA; N-[3—(2-furyl)acryloyl]-Leu-Gly-Pro-Ala; ECM; extracellular matrix;
GAE₂₈₀nm, gallic acid equivalents based on total phenol index measure at 280nm; GAE₇₆₀nm,
gallic acid equivalents based on Folin index measure at 760nm; PPE; porcine pancreatic
elastase.

18

19 INTRODUCTION

Over the past two decades, research on the use of natural products, particularly polyphenols, in beauty products has been active but challenging (1). Polyphenols with a hydroxyl group (-OH) attached to an aromatic benzene ring (C_6H_5 -) naturally occur in plants and are therefore abundant in our diet (eg: vegetables, fruits, nuts, seeds and flowers), and have been extensively studied for their protective health effects against cardiovascular diseases and cancers (2). Moreover, they have been proven to exhibit significant antioxidant activity, as well as a UV protection effect which are very crucial for skin care products formulation (3).

1 Green tea is the most widely studied plant for its cosmetic applications. Green tea 2 polyphenols extract incorporated in derma gels were found to display significant antioxidant 3 activity and prevent adverse effects of UV radiation by improving the elasticity of the skin 4 (4,5). Catechins and epigalocatechin gallate from green tea and cocoa beans extracts were found to possibly contribute to this effect (5-7). In addition, catechin could stabilise the 5 6 structure of collagen suggesting the involvement of hydrogen bonding and hydrophobic interactions as major forces in its stabilisation (8). Moreover Sin & Kim (9) found that the 7 8 flavonols, particularly quercetin and kaempferol exhibited higher collagenase inhibitory 9 activity than flavones/isoflavones. In a recent study, Wittenauer et al. (10) found that free 10 phenolic acids, particularly gallic acid extracted from grape had the most potent inhibitory 11 activity against both collagenase and elastase. However, it is worth mentioning that the 12 inhibitory concentration of polyphenols varies between studies and samples (268µM -13 1000µM); this is partly due to the variations in polyphenols composition. Also the size of 14 polyphenols restricts their permeation into the epidermal and corium layers (11) which could 15 hinder their application in cosmetics.

16 Surfactants are often used in cosmetics products to address the problem with the 17 permeation of the desired molecules. Surfactants in their micellar form can help in the 18 solubilisation of compounds (12) hence increasing its permeation through the skin and 19 promoting absorption by lowering the interfacial tension at the skin surface. The delivery of 20 resveratrol and curcumin has been improved by the presence of surfactants in pig skin (13), 21 and the acceleration of hydrocortisone and lidocaine has been observed on hairless mouse skin 22 by using TWEEN80 (14). Therefore, using a surfactant based extraction method is an 23 advantage as the product is extracted in a media (surfactant solution) that is suitable and 24 possibly optimum for its formulation, which can lead to process simplification.

1 In our group, we investigated a surfactant based extraction method, Colloidal Gas 2 Aphrons (CGA), for the separation of polyphenols from grape (15). CGA are microbubbles 3 (10-100µm) generated by intense stirring (>8000rpm) of a surfactant solution above its critical 4 micelle concentration. CGA are composed of an inner core gas surrounded by a thin layer film. The type of surfactant used to generate CGA determines the charge of the outer surface of the 5 6 layer, which could be positive, negative or non-charged and oppositely or non-charged 7 molecules will adsorb resulting in their effective separation (16).

8 In the present study the aim was to determine if the extraction of polyphenols by the 9 CGA method led to enhanced in vitro inhibitory activity against Clostridium histolyticum 10 collagenase (ChC) and porcine pancreatic elastase (PPE) enzymes. The relationship between 11 polyphenol composition of the raw and the CGA extracts, and their inhibitory activity were 12 also investigated in order to identify the key polyphenols responsible for these activities. To 13 the best of our knowledge, this is the first study on the potential inhibitory activity of red grape 14 pomace extracts and their CGA fractions against ChC and PPE.

15

16

MATERIALS AND METHODS

17 Grape pomace (Barbera) provided by wineries in Nothern Italy was oven dried at 60°C 18 until the residual moisture content was <5%, and milled into particle size of <2mm. The 19 phenolic extracts were obtained by ethanol-aqueous extraction using 60% (v/v) and hot water 20 extraction at 60°C and 100°C in a shaking water bath (100rpm) in circular motion for 2 hours 21 and 1 hour, respectively (See Figure 1 for full extraction process). For both extractions, the 22 ratio of solute to solvents used was 1:8 according to (17). The extracts were kept at -20°C 23 freezer until further use. Extractions were carried out in triplicate.

1	C. hystoliticum collagenase type IA (ChC), N-[3-(2-furyl)acryloyl]-Leu-Gly-Pro-Ala
2	(FALGPA), porcine pancreatic elastase (PPE) type III, N-Succ-Ala-Ala-p-nitroanilide
3	(AAAPVN), phenol crystals and BCA reagents were obtained from Sigma (St. Louis, MO).
4	The polyphenols standards used for HPLC analysis and inhibition studies were gallic acid
5	(≥95%), caffeic acid (≥95%), epicatechin (≥95%), p-coumaric acid (≥95%), benzoic acid
6	(\geq 99.5%), <i>trans</i> -resveratrol (\geq 95%), quercetin (\geq 95%), malvidin-3-o-glucoside (\geq 95%),
7	cyanidin-3-o-glucoside (\geq 95%), petunidin-3-o-glucoside (\geq 95%) and delphinidin-3-o-
8	glucoside (≥95%) from Sigma (St. Louis, MO); and procyanidin (B2 ≥90%), from Fluka
9	(Buchs, Switzerland). All solvents were of HPLC grade or LC-MS grade.

10

11 Figure 1: Schematic representation of the extraction of polyphenolic compounds present in grape 12 pomace. The whole procedure was performed in triplicate (n = 3). EE, ethanol extract, HWE, hot water

13 extract, CGA-EE; Aphron phase of EE, CGA-HWE; Aphron phase of HWE, LP-EE, liquid phase of 14

EE and LP-HWE; liquid phase of HWE

1 Characterisation of grape pomace

2 **Phenolic compounds**

3 The grape pomace extracts, liquid and CGA fractions recovered were characterised for
4 its total phenolics and anthocyanins. Total phenolics were measured by:

(i) direct measurement based on the absorbance reading at 280nm. Results were expressed by
gallic acid equivalents (GAE_{280nm}) by means of calibration curve with standard gallic acid
ranging from 0-150mg/L (17). (ii) Folin-Ciocalteu method (18). The results were expressed as
gallic acid equivalents (GAE_{760nm}).

9 Total anthocyanins content was determined by applying the method from AOAC (19).
10 This method is based on the anthocyanins structural transformation that occurs with a change
11 in pH and commonly referred as pH differential method. The results were expressed as mg/L
12 malvidin-3-glucoside equivalents (ME).

13

14 Non-phenolic compounds

Total proteins were quantified according to the bicinchoninic acid assay (BCA) (20).
Briefly, 100µl of standard or sample was mixed with 2 mL of the BCA working reagent (copper sulphate solution:BCA solution at a ratio of 1:50). The mixture was allowed to stand at 37°C for 30 mins, and then allowed to cool at room temperature for 5 mins. Finally, the absorbance for each sample/standard was read at 562nm within 8 mins with water as a blank. Bovine serum albumin (0-1.0mg/L) was used as a standard for protein quantification.

Total sugar content was performed adopting the method from Dubois et al. (21). In test tubes, 0.4mL of glucose standard/sample was added followed by 0.2mL or 5% phenol solution.
Subsequently, 1mL of sulphuric acid was pipetted direct to the solution and vortexed. The mixture was allowed to stand for 20-30mins to cool off. The absorbance of the mixture was read at 490nm and a calibration curve was constructed with different concentrations (10 100mg/L) of glucose standard. The results were expressed as mg/L glucose equivalent.

3

4 Determination of polyphenols composition by HPLC

Separation of the polyphenols was performed using an Agilent HPLC 1100 series system
equipped with a degasser, a quaternary pump and a photodiode array detector (Agilent,
Waldbronn, Germany) with Chemstation software. The column used was a C18 HiChrom
column (150 mm x 4.6 mm i.d; 5µm particle size and 100 Å pore size; part no.EXL-1211546U) operated at 25°C.

10 The mobile phase consisted of 2% formic acid (v/v) and 5% acetonitrile (v/v) in water 11 (mobile phase A) and 2% formic acid (v/v) in acetonitrile (mobile phase B) using the following 12 gradient: 5-15% B (15 mins), 15-30% B (15 mins), 30-50% B (10 mins), 50-95% B (5 mins) 13 and 95-5% B (5 mins), at a flow rate of 1mL/min. The total run was 50 mins. The pre time of 14 10 mins was allowed for re-equilibrating. The injection volume was 20µL for pure standards 15 and 100µL for grape extracts. The polyphenols were monitored simultenesouly at 280nm 16 (hyroxybenzoic acids and flavanols), 320nm (hydroxycinnamic acids and stilbenes), 365nm 17 (flavonols) and 520nm (anthocyanins).

18

19 Identification of polyphenols by LC-MS

The LC-MS analyses were carried out using a Thermo Scientific Accela HPLC with PDA UV/Vis detector interfaced to a Thermo Scientific LTQ Orbitrap XL with ESI source. Chromatographic separation was carried out using an Ace-5 C18 column; 150 x 2.1 mm, 5µm particle, 300 Å pore (part no. 221.1502). All samples were analysed without dilution and in 10 fold dilution. Dilutions were done in mobile phase A2 buffer (0.1% formic acid (v/v) in LC- MS water). Mobile phase B2 buffer was 0.1% formic acid (v/v) in acetonitrile. Injections
volumes were 20µL. The following gradient was used: 0 min 5% B2; 5-15% B2 (15mins), 1530% B2 (15mins), 30-50% B2 (5mins), 50-95% B2 (5mins), 95-5% B2 (5mins) and 5% B2
(10mins), at a flow rate of 200µL/min.

5 The MS parameters were as follow: a standard of caffeic acid was infused into the MS 6 source alongside the HPLC flow at 20% mobile phase B; using a T-piece the source and 7 transmission settings were optimised for both positive and negative ion modes. The salient 8 settings were as follows: sheath gas flow at 45, aux gas at 10, sweep gas at 0 and the capillary 9 temperature was at 300°C. For the positive mode, the source voltage was 5Kv, capillary voltage 10 was 31v and tube lens was 125v. For the negative mode, the source voltage was 5Kv, capillary 11 voltage was -35v and tube lens was -90v.

The MS was operated using a Data-dependent acquisition (DDA) method. In brief, an MS1 scan was performed using the Orbitrap detector scanning from 85 to 1000 m/z at a resolution of 30,000 storing data in profile. Phthalate (413.266230 m/z) was used as lock-mass. Then, MS2 (fragmentation event) was triggered on the most dominant ion found in the MS1 scan. This MS2 was performed in the ion trap, using collision-induced dissociation (CID) and the data was stored as centroid.

Data was analysed using Qual Browser (Xcalibur 2.1) Thermo Scientific. Theoretically, m/z was calculated for both the protonated (positive ion mode) and deprotonated (negative ion mode) for each compound. Extracted ion chromatograms (EICs) for these m/z (5ppm mass tolerance) as well as the UV chromatograms were generated at 280nm, 320nm and 520nm. The retention time of the standards from the MS1 scans and the MS2 fragmentation spectra from the standards were compared to the samples (unit resolution mass tolerance).

1 When the retention time, parent mass and fragmentation matched the standard, a 2 confident match was determined. In some instances, due to the nature of DDA experiments, 3 the ion of interest was not fragmented in which case only the retention time and parent mass 4 could be used and a less confident match was determined. In the case of phenolics, when there 5 were no standards and hence no retention time available, the fragmentation spectra were 6 referred solely on the match of fragmentation spectra reported in Kammerer et al. (22).

7

8

Separation with Colloidal Gas Aphrons (CGA) using 10mM TWEEN20

9 In the previous work by our group, it was found that high recovery of polyphenols from 10 grape ethanolic extracts could be obtained by CGA generated with the cationic surfactant Cetyl 11 trimethylammonium bromide (CTAB) and the non-ionic TWEEN20 (15). In the present work, 12 ethanolic and hot water extracts were first obtained from grape pomace (see Figure 1 for full 13 separation process). Hot water extract (HWE) was applied to the CGA for the first time. CGA 14 generated from 10mM TWEEN20 were then applied to each extract based on the optimum 15 conditions found in our previous work eg: the ratio of extract to the CGA was kept constant at 16 16:1 and the drainage time was kept at 5min. CGA separations of grape pomace extracts were 17 carried out in a flotation glass column (i.d 5cm, height: 50cm). The CGA were pumped by a 18 peristaltic pump (Watson Marlow) from the CGA generating container into the column which 19 contained 60mL of ethanolic extract of grape pomace. The volume of collapsed CGA and 20 drained liquid phase were measured. The initial extracts of EE and HWE contained 2624 mg 21 GAE_{TPI}/L and 1562 mg GAE_{TPI}/L respectively. Both fractions were diluted at an appropriate 22 dilution with deionized water for all the tests.

23 The percentage recovery of a specific compound (y) in the CGA phase (Ry) was 24 calculated based on the differences between the total amount of added y in the feed ($M_{y/\text{feed}}$) 25 and the amount of y measured in the separated liquid phase ($M_{y/liq}$). For some experiments, the 1 amount of *y* in the CGA phase was also calculated and the mass balance deviation was within 2 10%. The separation factor (SF) was also calculated based on the concentrations of compound 3 y in the CGA phase ($[y]_{CGA}$) and in the liquid phase ($[y]_{LP}$) as described in Eq.1:

4
$$SF = \frac{[y]_{CGA}}{[y]_{LP}}$$
(Eq. 1)

- 5
- 6

7 Collagenase and Elastase inhibitory activity of crude extracts and CGA fractions

8 The inhibitory activity of gallic acid, grape pomace crude extracts and the CGA fractions 9 against C. histolyticum collagenase (ChC) and porcine pancreatic elastase (PPE) were 10 measured spectrophotometrically according to the method used by Wittenauer et al., (10) by 11 using a multi-mode Tecan GENios microplate reader equipped with analysis software Xfluor4 12 version 4.51 (Salzburg, Austria). Both enzymes were incubated with the extracts and their CGA 13 fractions with relevant substrates (see below). The inhibitory potential of the grape pomace 14 extracts were examined in dilutions so as to establish a dose-dependent curve in order to 15 calculate the half-maximal inhibitory concentrations (IC₅₀). Due to the high concentration of 16 polyphenols in the grape pomace extracts, the dilutions of 1:50 to 1:200 with total polyphenolic 17 contents ranging from 52.5 to 7.8 mg GAE/L were applied before being incubated with 18 collagenase and elastase.

Collagenase (ChC) assay: In this assay the enzymatic reaction rate was measured based on the consumption of the substrate peptide FALGPA. Therefore, the slopes of the reaction rates decreased with the increased in extract (inhibitor) concentration. Briefly, ChC (0.16 U/mL) and FALGPA (3mM) were dissolved in 0.05M tricine buffer containing 0.4M NaCl and 0.01M CaCl₂; the pH was adjusted to 7.5 with 1M NaOH. The inhibitory activity of the following samples were measured:

- a. Dilutions of ethanolic and hot water grape pomace extracts with water at concentration
 of (1:50), (1:100) and (1:200) (extract:water).
- b. CGA and liquid fractions derived from CGA separations generated from TWEEN20
 surfactant.
- 5 c. Aqueous solution of gallic acid (43 mg/L, 85 mg/L, 128 mg/L and 170 mg/L).

Briefly, $30 \ \mu$ l of the samples (a-c) were incubated with $10 \ \mu$ l of ChC solution and $60 \ \mu$ l of tricine buffer for 20 mins at 37°C, after which, 20 \mu l of FALGPA solution was added to initiate the reaction. The reaction rate was measured over 20mins by measuring the decreased in the absorbance of FALGPA at 340nm. Initial velocities were determined and a dosedependent curve was established. The concentration to inhibit 50% of the enzyme activity, IC₅₀ values were then determined from the curves. The inhibition activity (%) was calculated according to Eq.2.

13 ChC inhibition (%) =
$$\frac{\text{Initial velocity control} - \text{Initial velocity sample}}{\text{Initial velocity control}} * 100 \quad (Eq.2)$$

- 14
- 15

16 Elastase (PPE) assay: porcine pancreatic elastase (PPE) inhibitory activity of the individual 17 samples (a-c) was determined spectrophotometrically by using the AAAPVN as the substrate 18 and by monitoring the production of p-nitroaniline at 405nm to determine the reaction rate. 19 Briefly, 10 µl was taken and loaded into wells together with 100 µl of Tris buffer and 30 µl of 20 samples. The mixture was incubated for 20mins at 25°C. Subsequently, 40 µl of the AAAPVN 21 (dissolved in 2mM Tris buffer at 0.25mg/mL) was added. Since the PPE was performed with 22 AAAPVN as the substrate peptide, the enzyme activity can be calculated from the released of 23 p-nitroaniline as a product, leading to the increased in absorption values. The absorbance was

monitored for 20mins after the addition of AAAPVN and the initial velocities, the inhibitory
effect and IC₅₀. The values were calculated as in Eq.2.

3

4 Statistical analysis

All the experiments were performed in triplicate. The data were subjected to the analysis of variance using IBM® SPSS® Statistics 21 software programme where statistical differences were noted. Differences among different treatments were determined using Tukey test. The significance level was defined at p<0.05. The results were reported as means \pm SD.

10 **RESULTS AND DISCUSSIONS**

11 Ethanolic and hot water extraction

12

13 The chemical composition of the crude grape pomace extracts was determined. In 14 general, the content of total phenols, anthocyanin and protein was higher in EE but sugar was 15 higher in HWE. The total phenolic content in EE was 21.0 ± 0.1 mg GAE/g of pomace. This 16 value was almost two times higher than in HWE (12.5 \pm 0.1 mg GAE/g pomace). A similar 17 result was obtained by the Folin-Ciolcateau method where EE had 22.0 ± 0.2 mg GAE/g while 18 HWE had 17.0 ± 0.2 mg GAE/g dry weight pomace. These results closely followed the values 19 obtained in the literature for grape pomace (17,23) and they were higher than those obtained 20 for the Brazilian grape extract as reported by Beres et al. (24). The total monomeric 21 anthocyanins content in EE was 6.6 ± 0.6 mg ME/g, almost three times higher than in HWE 22 $(2.3 \pm 0.7 \text{ mg ME/g dry weight})$. Low levels of protein were recovered in both extracts (0.4 and 23 0.2 mg BSA equivalent/g dry weight of grape pomace) and a slightly higher sugar was extracted 24 in HWE than in EE.

1 Polyphenol composition of crude grape pomace extracts

The main composition of the EE and HWE analysed by HPLC is shown in Table 1. Oualitative analysis with LC-MS was also conducted to confirm the identification and/or identify the individual polyphenols in EE and HWE. It must be noted that minor amounts of phenolics may escape from the extraction due to the interaction with dietary fibers, proteins and other polymerised structures (22). In this analysis, fourteen standards of phenols and anthocyanins were analysed against both extracts as not all standards were commercially available. Retention time of standards, MS1 spectra and MS2 fragmentation spectra of the standards were compared to samples'. If the retention time, MS1 and MS2 matched, a confident assignment was given. If only the retention time and MS1 matched, a semi-confident assignment was given. The results of the mass spectrometry data in both positive-ion mode (anthocyanins) and negative-ion mode (phenolic acids, anthoxanthins, stilbenes, flavonols and flavanols) of compounds in the extracts are shown in Table 2.

Concentration (mg/L)							
Compound/Sample	EE	CGA	LP	HWE	CGA	LP	
Phenolic acids							
Gallic acid	32.3 ± 2.8	4.1 ± 0.1	2.2 ± 0.3	74.5 ± 6.8	24.9 ± 1.4	12.2 ± 2.5	
Caffeic acid	17.5 ± 1.4	ND	ND	12.4 ± 0.3	ND	ND	
Syringic acid	24.5 ± 0.9	2.5 ± 0.1	2.0 ± 0.1	17.6 ± 0.4	10.2 ± 3.9	7.4 ± 1.8	
Chlorogenic acid	7.1 ± 0.4	ND	ND	21.2 ± 2.3	ND	3.5 ± 2.5	
4-hydroxy benzoic acid	ND	ND	ND	6.9 ± 0.1	ND	ND	
Total phenol acids	81.3 ± 5.3	6.6 ± 0.1	4.2 ± 0.1	132.6 ± 9.1	35.1 ± 5.3	23.1 ± 6.8	
		Flavo	onols				
Resveratrol	36.80 ± 3.90	ND	ND	ND	ND	ND	
Quercetin	108.40 ± 5.10	31.1 ± 0.5	17.4 ± 0.7	29.6 ± 0.3	ND	ND	
Kaempferol	16.10 ± 1.50	6.5 ± 0.2	3.9 ± 0.7	67.5 ± 0.9	23.5 ± 0.1	24.4 ± 0.1	
Total flavonols	$\begin{array}{c} 161.30 \pm \\ 10.50 \end{array}$	37.6 ± 0.7	21.3 ± 1.4	97.1 ± 1.1	23.5 ± 0.1	24.4 ± 0.1	
		Flavanols					
Catechin	3.1 ± 0.2	ND	ND	30.9 ± 0.1	9.5 ± 0.3	ND	
Epicatechin	28.7 ± 4.0	ND	ND	18.3 ± 0.6	ND	ND	
Total flavanols	31.8 ± 4.2	ND	ND	49.2 ± 0.6	9.5 ± 0.3	ND	
Anthocyanins							
Delphinidin 3-o-glucoside	72.2 ± 15.5	36.0 ± 6.3	17.6 ± 7.8	29.7 ± 0.2	1.9 ± 0.6	1.0 ± 0.9	
Petunidin 3-o-glucoside	33.5 ± 16.3	17.4 ± 7.5	9.4 ± 0.3	11.6 ± 0.4	1.1 ± 0.4	0.7 ± 0.5	
Cyanidin 3-o-glucoside	13.8 ± 2.1	8.2 ± 0.3	4.0 ± 0.2	$4.9\ \pm 0.1$	0.2 ± 0.3	0.1 ± 0.2	
Malvidin 3-o-glucoside	85.0 ± 17.2	41.2 ± 0.1	23.9 ± 0.3	30.2 ± 0.1	3.7 ± 1.5	2.4 ± 1.3	
Total anthocyanins	204.5 ± 51.1	102.8 ± 13.9	54.9 ± 7.9	76.5 ± 0.5	7.0 ± 2.6	4.2 ± 2.8	
Total	478.9 ± 71.0	147.0 ± 14.8	80.44 ± 9.33	355.2 ± 11.4	75.0 ± 8.0	51.7 ± 9.6	

1 Table 1: Polyphenol contents (mg/L) of grape pomace extracts and CGA fractions.

2 ND: not detected; EE: ethanol extract; HWE: hot water extract; CGA: CGA phase; LP: liquid phase.

3 Values represent mean \pm standard deviation (n = 3).

1 Table 2: LC-MS data of phenolic compounds extracted from grape pomace

No.	Compound	Retention time (min)	m/z	MS/MS fragments m/z	EE	HWE			
	Phenolic acids								
1	* Gallic acid	3.2	169.0142	125					
2	Caftaric acid	6.5	311.0409	179/135					
3	*p-hydroxybenzoic acid	7.3	137.0244	93	\checkmark	\checkmark			
4	* Caffeic acid	10.6	179.0350	135		\checkmark			
5	* Ferulic acid	10.8	193.0506	134	\checkmark	\checkmark			
6	* Fertaric acid	10.9	325.0565	193	\checkmark				
7	Syringic acid	11.4 Anthoxan	197.0455 thins and Stilben	153/182 es	\checkmark	\checkmark			
			[M-H]-		,	,			
8	Procyanidin B1	7.4	577.1351	407/425					
9	* Catechin	8.9	289.0718	245					
10	* Procyanidin B2	10.1	577.1351	407/425					
11	* Epicatechin	13.1	289.0718	245		\checkmark			
12	* Epicatechin gallate	19.6	441.0827	289					
13	* trans-resveratrol	23.1	227.0714	185		\checkmark			
14	* Quercetin	20.4	301.0354	151/179		\checkmark			
15	Kaempferol	27.9	285.0405	257					
16	Quercetin 3-o- galactoside	19.8	463.0882	301	\checkmark	\checkmark			
17	Quercetin 3-o- glucoside	20.4	463.0882	301		\checkmark			
			Anthocyanins [M]+						
18	*Delphinidin 3-o- glucoside	8.52	465.1028	303	\checkmark	\checkmark			
19	*Cyanidin 3-o- glucoside	10.9	449.1078	287	\checkmark	\checkmark			
20	*Petunidin 3-o- glucoside	12.4	479.1184	317	\checkmark	\checkmark			
21	*Malvidin 3-o- glucoside	14.1	493.1341	331		\checkmark			
22	Peonidin 3-o- glucoside	14.7	463.1235	301		\checkmark			
23	Delphinidin 3-o- acetylglucoside	16.3	507.1133	303	\checkmark	\checkmark			
24	Cyanidin 3-o- acetylglucoside	18.7	491.1184	287	\checkmark				
25	Malvidin 3-o- acetylglucoside	21.5	535.1446	331	\checkmark	\checkmark			
26	Peonidin 3-o- acetylglucoside	21.6	505.1341	301	\checkmark	\checkmark			

27	Cyanidin 3-o-p- coumaroylglucoside	23.1	595.1446	287	\checkmark	\checkmark
28	Petunidin 3-o-p- coumaroylglucoside	23.9	625.1552	317		
29	Peonidin 3-o-p- coumaroylglucoside	25.1	609.1603	301	\checkmark	\checkmark
30	Malvidin 3-o-p-	25.6	639.1708	331		\checkmark

coumaroyIglucoside All compounds were confirmed according to Kammerrer et al. (22).

*compounds were confirmed with pure standards.

1 2 3 EE: ethanol extract; HWE: hot water extract.

4

5 A total of 30 phenolic compounds were present in both extracts. Among these, 7 phenolic 6 acids, 10 anthoxanthins and stilbenes and 13 anthoxyanins were detected in both extracts. All 7 anthocyanins detected were of monoglucoside (glu), acetyl and p-coumaroyl derivatives of 8 delphinidin (DEL), cyanidin (CYA), petunidin (PET), peonidin (PEO) and malvidin (MAL). 9 Out of these 30 compounds, 15 were given confident assignment as the retention times, MS1 10 and MS2 matched with the standards. These compounds were gallic acid, p-hydroxybenzoic 11 acid, caffeic acid, ferulic acid, fertaric acid, catechin, procyanidin B2, epicatechin, epicatechin 12 gallate, trans-resveratrol, quercetin, delphinidin 3-o-glucoside, cyanidin 3-o-glucoside, 13 petunidin 3-o-glucoside and malvidin 3-o-glucoside. The MS2 mode was used to provide 14 information on the aglycone and its corresponding sugar due to the observed m/z fragmentation 15 values (303 for DEL; 287 for CYA; 317 for PET; 301 for PEO; and 331 for MAL) which were 16 matched to those reported in the literature (22). In this analysis, quercetin 3-o-glucoside and 17 quercetin 3-o-galactoside have the same MS1 and MS2, therefore their retention times are the 18 same; thus, differentiation of these polyphenols cannot be made. In the case of anthocyanins, 19 all anthocyanins and derivatives were present in both EE and HWE. However, differences were 20 noted in the composition of phenolic acids and anthoxanthins/stilbenes between both extracts 21 where the EE was lacking the presence of caftaric acid and epicatechin gallate.

22 In general, both extracts had the same type of compounds present but interestingly they 23 differed in their composition. This is particularly clear when the mass percentage of groups of 1 polyphenols (eg: phenolic acids) is calculated from data in Table 1. For example, phenolic 2 acids were present at higher proportion in the HWE (37%) than in the EE (17%); in both 3 extracts gallic acid was the predominant phenolic acid. Similarly flavanols where at higher 4 proportion in HWE (14%) than in EE (7%). However the composition of flavonols was similar 5 in both extracts, (34% and 27% in EE and HWE respectively) but quercetin was predominant 6 in EE and Keampferol in HWE. The anthocyanins composition was higher in EE (43%), than 7 in HWE (22%). However, with regards to the collagenase and elastase inhibitory activities and 8 their relationship to polyphenols composition (see below) phenolic acids, flavonols and 9 flavanols were the most relevant as anthocyanins have not been related to these activities.

10

11 Separation of polyphenols from crude grape extracts by CGA

12 Table 3 shows the recovery (%) and separation factor (SF) of the CGA separation from 13 EE and HWE. Very similar recoveries of phenols and anthocyanins were obtained from both 14 extracts. Generally, the recovery of compounds was higher in EE than in HWE. A separation 15 factor higher than one indicated higher affinity of the compound for the CGA phase than the 16 liquid phase. This was the case for all compounds in both extracts although higher SF's were 17 obtained for EE. The selecvity of the separation in relation to both protein and sugar was low 18 as these were also preferentially separated into the CGA phase although the SF of sugar from 19 HWE was lower than one. The low ratio value of V_{LP}/V_{CGA} (ie: low volume of liquid drained 20 in relation to volume of CGA) was an indication of a stable CGA which might be due to the 21 presence of other compounds (glucose and proteins) which could increase the viscosity of the 22 liquid in the continuous phase and hence increased the stability of the CGA (15). It is also 23 important to highlight that some aggregates were observed in the CGA phase which did not 24 completely solubilise during analysis, hence this would probably lead to an underestimation of 25 the net recovery. Overall, the recovery results were in agreement with our previous work (15).

1

2

Table 3: Recovery efficiency (%) and separation factor (SF) by CGA separations of EE and HWE

Extract	EE	HWE
V _{CGA} /V _{feed}	16	16
V _{LP} /V _{CGA} -phase	0.50	0.55
Recovery (%)		
GAE _{FI}	83.45 ^{bc}	85.87°
GAE _{TPI}	79.40 ^ь	71.39 ^{ab}
ME	84.99 ^c	77.39 ^b
Glucose	71.74 ^a	68.91ª
Protein	85.86 ^c	66.45 ^a
SF		
GAE _{FI}	4.71°	1.31 ^b
GAE _{TPI}	1.89 ^b	1.20 ^b
ME	1.47 ^a	1.31 ^b
Glucose	1.65 ^a	1.34 ^b
Protein	1.72 ^{ab}	0.87 ^a

3 GAE_{FI}, Gallic acid equivalent (Folin-Cioulcateau index; GAE_{TPI}, Gallic acid equivalent (total phenol index); ME,

4 Malvidin glucoside equivalent; V_{LP}/V_{CGA-phase}, ratio of volume of liquid phase to the volume of CGA phase. Same

5 superscript letters in the same column (for each recovery and SF) indicates means were not statiscally different

6 (p>0.05) according to ANOVA (n=3).

7

8 Collagenase and elastase inhibitory activity

9 The ethanolic (EE) and hot water extracts (HWE) of grape pomace were tested for their 10 ChC and PPE inhibitory activity. Collagen, which occupies around 70-80% of the skin weight 11 is known to provide structural integrity (6). Due to skin ageing, collagen is rapidly degraded 12 by the action of collagenase. As shown in Figures 2(A) and 2(B), the grape pomace extracts showed a linear dose-dependant relationship with inhibitory activities. From these dose-13 14 dependent relationships, IC₅₀ values were calculated to be 35.4mg/L (HWE), 78.8mg/L (EE) and 130mg/L (gallic acid). The maximum inhibitory activity measured for EE was 34%, 15 16 therefore above this activity (up to 50%) a linear relationship with concentration was assumed 17 in order to determine the IC₅₀.

Figure 2: Dose dependent inhibition of collagenase (A) and elastase (B) activity by gallic acid, ethanol
 extract (EE) and hot water extract (HWE) (n =3).

3

The same trend was observed for PPE inhibitory activity. Elastin is an insoluble fibrous protein which occupies only 2-4% of the skin dermis weight but plays a vital role ensuring the elasticity of the skin (6). Based on the IC₅₀ results, HWE (18.7mg/L) had the highest potency as compared to EE (35.5mg/L) and galic acid (82.0mg/L). Similar IC₅₀ value was obtained with the methanolic extract of grape pomace (14.7mg/L) which may suggests comparable polyphenol composition (10).

10 The higher inhibitory activity of HWE than EE against collagenase and elastase can be 11 explained by the differences in polyphenols composition. The phenolic acids such as gallic acid 12 and chlorogenic acid in HWE which account for 37% of total polyphenols could have a

1 pronounced effect on the inhibitory activities. Gallic acid, a low molecular weight hydrophilic 2 compound could play an important part in the observed activity by accessing the active centre 3 site of the elastase and blocking the binding of substrates to this site (10). However, given that 4 the potency of the extract was superior than that of the gallic acid alone (Table 4), it is clear 5 that other components also may contribute to the activity, perhaps in a synergistic manner. 6 Chlorogenic acid, for example, which is a derivative of cinnamic acid, could also contribute as 7 it is well known for its potent antioxidant and anti-inflammatory activities (25). Moreover, the 8 catechin and epicatechin which were present at high proportion in HWE (14%) could interact 9 with the elastase by hydrophobic interactions, causing conformational changes of elastase and 10 thus increasing the inhibitory activity (7). On the other hand, EE had high composition of 11 flavonols, particularly quercetin and resveratrol but they are larger molecules with lower 12 solubility in water than the phenolic acids which could possibly limit their activity.

13

Collagenase and elastase inhibitory activity of CGA fractions in relation to polyphenolic profile

In order to determine the most active fractions after separation by CGA, CGA and liquid phases from both EE and HWE were tested for ChC and PPE. The inhibitory activities against ChC ad PPE are shown in Figures 3(A) and (B), respectively. Contrary to the crude extracts, EE fractions demonstrated higher activity than HWE fractions, CGA-EE had 67% collagenase inhibitory activity and CGA-HWE 55%; the liquid phases had 60% and 46% activity, respectively. This small difference in activity between the liquid and CGA phases can be explained based on their polyphenol composition (Table 1).

Figure 3: Anti-collagenase activity (A) and anti-elastase activity (B) of CGA fractions from EE and
 HWE. Bars are means ± standard deviation of three determinations (n = 3). Same superscript letters
 indicates means with no significant difference (p>0.05) according to ANOVA (n=3).

4

5 For example, the composition of phenolic acids in CGA-HWE and LP-HWE were almost 6 the same (mass percentages of phenolic acids over total phenols were 47% and 45% 7 respectively) and for flavonols composition was higher in the liquid phase (31% in CGA and 8 47% in liquid phase). The same trend was noted in CGA-EE and LP-EE where phenolic acids 9 and flavonols compositon was very similar in both fractions (4.5 and 5.2% phenolic acids in 10 CGA and LP respectively and 26% flavonols in both fractions). This similarity in compositon 11 supports the insignificant differences in inhibitory activities of these fractions against both 12 enzymes. Kaempferol was found at high concentration in both CGA-HWE and LP-HWE (23.5 and 24.4 mg/L respectively) but in the case of CGA-EE, the most predominant flavonol was 13

1 quercetin (31.1mg/L). These compounds could possibly be the main contributors to the 2 inhibitory activities observed whereby the hydroxyl group in C-3 might played a role in 3 conferring the inhibitory activity (9). Moreover, the high content of gallic acid in CGA-HWE 4 (24.9mg/L) and in LP-HWE (12.2mg/L) could also be important for the ChC inhibitory 5 activity. The hydroxyl group from gallic acid could act as a hydrogen bond acceptor/donors 6 with the hydroxyl, amino or carboxyl groups of the collagenase's side chain functional groups 7 which can alter its structure, while the benzene rings of the polyphenols can form hydrophobic 8 interactions with collagenase (8,10).

9 The differences in inhibitory activity against PPE between the LP and CGA fractions (Fig 3B) 10 could be explained based on the differences in composition (see above). On the other hand the 11 much higher activity in the EE fractions than in the HWE fractions could not be clearly 12 explained in terms of differences in composition of groups of polyphenols but individual 13 polyphenols. For example, quercetin was predominantly present in the CGA-EE whilst none 14 was detected in the CGA-HWE. This suggests that quercetin is a key compound responsible 15 for PPE inhibition. Quercetin could possibly alter the specificity of the elastase substrate by 16 interacting with subsite of MMP-9 active site (26).

17 Table 4: Inhibitory efficiency (%/mg GAE_{FI}L⁻¹) of crude extracts and CGA-separated fractions

Extract/Activity	EE	CGA-EE	LP-EE	HWE	CGA-HWE	LP-HWE	Gallic acid
ChC	0.63	2.43	2.18	1.41	2.45	0.37	0.38
PPE	1.41	1.40	1.43	2.67	0.28	0.02	0.61

- 18
- 19

In order to assess if any of the fractions had been preferentially enriched with the most active polyphenols the activity potency had to be determined. However, these fractions showed poor dose-dependency relationship (data not shown) and the IC50 could not be determined.

Therefore, the inhibitory potency of CGA fractions was expressed as inhibitory efficiency 1 2 which is the activity in relation to the total phenols content ($\% / \text{mg GAE}_{\text{FI}}$ L⁻¹) (Table 4). The 3 CGA-EE fraction was found to be about four times more efficient than its crude extract and 4 over six times more efficient than gallic acid in relation to ChC inhibitory activity. However the efficiency of both CGA and LP fractions was almost the same which is in agreement with 5 6 results in Fig 3. Interestingly the efficiency in CGA-HWE was seven times higher than in LP 7 and almost double that in the raw extract (HWE). Moreover the efficiency of the CGA 8 fractions of both raw extracts was six times higher than gallic acid's which suggests that the 9 inhibition of these enzymes could be the result of synergistic activity of different polyphenols. 10 This has been observed in a formulation of four combined super fruits extract (*Ginkgo biloba*, 11 Punica granatum, Ficus carica, and Morus alba) against collagenase (27).

12 In the case of PPE inhibitory activity, no increase in efficiency was noted for the 13 CGA/LP fractions of EE and the efficiency of the HWE decreased after CGA separation. The 14 inhibitory efficiencies of the raw extracts were superior to that of pure gallic acid.

15 From results above it could be hypothesised that TWEEN20 might play a role in 16 facilitating the delivery of the polyphenols to the target site of the collagenase. This explained 17 why the efficient of the CGA-EE increased substantially as compared to the crude extract's 18 and it was comparable to that of CGA-HWE. It is also worth mentioning that the surfactant did 19 not inhibit or activate both ChC and PPE (data not shown) hence, the inhibitory activities were 20 solely due to the action of polyphenols in the fractions. Non-ionic surfactants were known to 21 cause the least irritating effect to skin compared to anionic surfactants hence they were 22 preferred for inclusion in many skin care products (28). Moreover, surfactants in general are 23 known to alter the skin permeation by forming non-specific hydrophobic interactions involving 24 the alkyl chains of the surfactant and the hydrophobic regions of the keratin in stratum corneum 25 (30). Most studies about non-ionic surfactants and biological activities revealed that the C12

alkyl chain was the most important character in terms of perturbation of the membrane which
explained the surfactant solubility and partitioning (31). Although most studies revealed that
their interactions with non-ionic surfactants did not alter skin permeation to a significant level,
enhancement has been noted in some studies whereby penetration of lidocaine (a type of drug)
significantly increased through hairless mouse skin with TWEEN20 and TWEEN60 (28).

6

7 CONCLUSIONS

8 The extraction of polyphenols from grape pomace by ethanol and hot water led to crude 9 extracts with different polyphenol compositions and this also resulted in differences in 10 collagenase and elastase inhibitory activity. Phenolic acids were present at higher proportion 11 in the HWE (37%) than in the EE (17%) which suggested their important role in the inhibition. 12 HWE was the most efficient at inhibiting both collagenase and elastase and both EE and HWE 13 were superior to gallic acid. Further extraction by CGA led to higher inhibitory efficiency 14 against collagenase although there was no difference in efficiency between the separated 15 phases for EE but there was for HWE. Gallic acid was the main component of the CGA-HWE 16 but other polyphenols (eg: kaempferol) must have contributed also to its potency as this fraction 17 inhibited collagenase over six times more efficiently than gallic acid. The CGA-EE fraction 18 was found to be about four times more efficient than its crude extract and over six times more 19 efficient than gallic acid in collagenase's inhibition; quercetin was found to be the major 20 polyphenol in this fraction. These results suggested that although quercetin was highly 21 insoluble in water and had high molecular weight, TWEEN20 helped to improve its solubility 22 and therefore facilitated its delivery to the enzyme. Therefore, CGA separation led to fractions 23 enriched in active polyphenols with enhanced collagenase inhibitory activity in both CGA and 24 liquid phases. Although the polyphenols composition in CGA and liquid phases in both extracts

were very similar, and hence their inhibitory activities, it must be stressed that further 1 2 separation with CGA led to CGA fractions with less sugar and protein (and ethanol when 3 applied to the ethanolic extract) which can be an advantage in terms of formulation. It should 4 be noted that the concentration of these polyphenols in the CGA fractions were topically 5 relevant (generally between 25-100µM). Moreover the surfactant in these fractions could act 6 as a carrier and solubilising agent to enhance the permeation of polyphenols across the skin. 7 Therefore, the surfactant rich solution may provide an optimum media that could facilitate the 8 permeation of the polyphenols through the skin. This research shows the potential of CGA to 9 revalorise the grape marc and to obtain an extract with potential in cosmetics applications.

- 10
- 11

12 **REFERENCES**

- Menaa F, Menaa A, Tréton J. Polyphenols against Skin Aging. Polyphenols Hum Heal
 Dis. 2013;1:819–30.
- Haslam E, Cai Y. Plant polyphenols (vegetable tannins): gallic acid metabolism. Nat
 Prod Rep. 1994;11(1):41–66.
- Perona JS, Cabello-Moruno R, Ruiz-Gutierrez V. The role of virgin olive oil
 components in the modulation of endothelial function. J Nutr Biochem [Internet].
 2006;17(7):429–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16481154
- Chiu AE, Chan JL, Kern DG, Kohler S, Rehmus WE, Kimball AB. Double-blinded,
 placebo-controlled trial of green tea extracts in the clinical and histologic appearance of
 photoaging skin. Dermatol Surg [Internet]. 2005;31(7 Pt 2):855–60; discussion 860.
 Available from: http://www.ncbi.nlm.nih.gov/pubmed/16029678
- Türkoğlu M, Uğurlu T, Gedik G, Yılmaz AM, Süha Yalçin A. In vivo evaluation of
 black and green tea dermal products against UV radiation. Drug Discov Ther [Internet].
 2010;4(5):362–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22491240
- Hong Y-H, Jung EY, Noh DO, Suh HJ. Physiological effects of formulation containing
 tannase-converted green tea extract on skin care: physical stability, collagenase,
 elastase, and tyrosinase activities. Integr Med Res [Internet]. Korea Institute of Oriental
 Medicine; 2014;3(1):25–33. Available from:
 http://www.sciencedirect.com/science/article/pii/S2213422013000991
- Wahab NA, Rahman RA, Ismail A, Mustafa S, Hashim P. Assessment of Antioxidant
 Capacity, Anti-collagenase and Anti-elastase Assays of Malaysian Unfermented Cocoa
 Bean for Cosmetic Application. Nat Prod Chem Res [Internet]. 2014;2(2). Available
 from: http://dx.doi.org/10.4172/2329-6836.1000132

- Madhan B, Krishnamoorthy G, Rao JR, Nair BU. Role of green tea polyphenols in the
 inhibition of collagenolytic activity by collagenase. Int J Biol Macromol.
 2007;41(1):16–22.
- Sin BY, Kim HP. Inhibition of Collagenase by Naturally-Occurring Flavonoids. Arch
 Pharm Res [Internet]. 2005;28(10):1152–5. Available from: http://apr.psk.or.kr
- Wittenauer J, Mäckle S, Sußmann D, Schweiggert-weisz U, Carle R. Inhibitory effects
 of polyphenols from grape pomace extract on collagenase and elastase activity.
 Fitoterapia [Internet]. Elsevier B.V.; 2015;101:1–9. Available from: http://dx.doi.org/10.1016/j.fitote.2015.01.005
- Zillich O V, Schweiggert-Weisz U, Hasenkopf K, Eisner P, Kerscher M. Release and in vitro skin permeation of polyphenols from cosmetic emulsions. Int J Cosmet Sci [Internet]. 2013;35(5):491–501. Available from: http://dx.doi.org/10.1111/ics.12072
- 12. Löf D, Schillèn K, Nilsson L. Flavonoids: Precipitation kinetics and interaction with
 surfactant micelles. J Food Sci. 2011;76(3):35–9.
- 15 13. Yutani R, Morita S, Teraoka R, Kitagawa S. Distribution of Polyphenols and a
 Surfactant Component in Skin during Aerosol OT Microemulsion-Enhanced
 Intradermal Delivery. Chem Pharm Bull. 2012;60(8):989–94.
- 18 14. Williams AC, Barry BW. Penetration enhancers. Adv Drug Deliv Rev. 2004;56(5):603–
 19 18.
- Spigno G, Amendola D, Dahmoune F, Jauregi P. Colloidal gas aphrons based separation
 process for the purification and fractionation of natural phenolic extracts. Food Bioprod
 Process [Internet]. Institution of Chemical Engineers; 2015;94:434–42. Available from:
 http://dx.doi.org/10.1016/j.fbp.2014.06.002
- Spigno G, Jauregi P. Recovery of Gallic Acid with Colloidal Gas Aphrons (CGA). Int J
 Food Eng [Internet]. 2005;1(4):1–10. Available from: http://www.degruyter.com/view/j/ijfe.2005.1.4/ijfe.2005.1.4.1038/ijfe.2005.1.4.1038.x
 ml
- Amendola D, De Faveri DM, Spigno G. Grape marc phenolics: Extraction kinetics,
 quality and stability of extracts. J Food Eng. 2010;97:384–92.
- 30 18. Singleton VL, Rossi JAJ. Colorimetry of total phenolics with acid reagents. Am J Enol
 31 Vitic. 1965;16:144–58.
- Lee J, Rennaker C, Wrolstad RE. Correlation of two anthocyanin quantification
 methods: HPLC and spectrophotometric methods. Food Chem. 2008;110(3):782–6.
- Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, et al.
 Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150:76–85.
- Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric Method for
 Determination of Sugars and Related Substances. Anal Chem. 1956;28(3):350–6.
- 38 22. Kammerer D, Claus A, Carle R, Schieber A. Polyphenol Screening of Pomace from Red
 39 and White Grape Varieties (Vitis vinifera L.) by HPLC-DAD-MS/MS. J Agric Food
 40 Chem. 2004;52:4360–7.
- 41 23. Tseng A, Zhao Y. Wine grape pomace as antioxidant dietary fibre for enhancing nutritional value and improving storability of yogurt and salad dressing. Food Chem.

- 1 2013;138(1):356–65.
- Beres C, Simas-Tosin FF, Cabezudo I, Freitas SP, Iacomini M, Mellinger-Silva C, et al.
 Antioxidant dietary fibre recovery from Brazilian Pinot noir grape pomace. Food Chem
 [Internet]. Elsevier Ltd; 2016;201:145–52. Available from: http://www.sciencedirect.com/science/article/pii/S0308814616300383
- Farah A, Monteiro M, Donangelo CM, Lafay S. Chlorogenic Acids from Green Coffee
 Extract are Highly Bioavailable in Humans 1, 2. J Nutr. 2008;(July):2309–15.
- 8 26. Saragusti AC, Ortega MG, Cabrera JL, Estrin DA, Marti MA, Chiabrando GA.
 9 Inhibitory effect of quercetin on matrix metalloproteinase 9 activity Molecular
 10 mechanism and structure-activity relationship of the flavonoid-enzyme interaction. Eur
 11 J Pharmacol [Internet]. Elsevier B.V.; 2010;644(1–3):138–45. Available from:
 12 http://dx.doi.org/10.1016/j.ejphar.2010.07.001
- 13 27. Ghimeray AK, Jung US, Lee HY, Kim YH, Ryu EK, Chang MS. In vitro antioxidant,
 14 collagenase inhibition, and in vivo anti-wrinkle effects of combined formulation
 15 containing Punica granatum, Ginkgo biloba, Ficus carica, and Morus alba fruits extract.
 16 Clin Cosmet Investig Dermatol. 2015;
- 17 28. Zatz JL, Lee B. Skin Penetration Enhancement by Surfactants. In: Rieger MM, Rhein
 18 LD, editors. 2nd ed. New York: Marcel Dekker; 1997. p. 501–17.
- 19

20 Acknowledgement

- 21 The authors would like to thank the Ministry of Education Malaysia (MOE) and Universiti
- 22 Malaysia Terengganu (UMT) for their financial support. The authors are also grateful to winery
- 23 in Northern Italy for providing the grape pomace.