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• Optical data can be used to drivemodels
of peatland carbon flux.

• Water, temperature and vegetation in-
dices are important model factors.

• Challenges from peatland heterogeneity
and vegetation composition

• Remote sensing driven models have the
potential to fill gaps in current research
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Peatlands store large amounts of terrestrial carbon and any changes to their carbon balance could cause large
changes in the greenhouse gas (GHG) balance of the Earth's atmosphere. There is still much uncertainty about
how the GHG dynamics of peatlands are affected by climate and land use change. Current field-based methods
of estimating annual carbon exchange between peatlands and the atmosphere include flux chambers and eddy
covariance towers. However, remote sensing has several advantages over these traditional approaches in
terms of cost, spatial coverage and accessibility to remote locations. In this paper, we outline the basic principles
of using remote sensing to estimate ecosystem carbon fluxes and explain the range of satellite data available for
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such estimations, considering the indices andmodels developed tomake use of the data. Past studies, which have
used remote sensing data in comparisonwith ground-based calculations of carbon fluxes over Northern peatland
landscapes, are discussed, aswell as the challenges of workingwith remote sensing on peatlands. Finally, we sug-
gest areas in need of future work on this topic. We conclude that the application of remote sensing to models of
carbon fluxes is a viable research method over Northern peatlands but further work is needed to develop more
comprehensive carbon cycle models and to improve the long-term reliability of models, particularly on peatland
sites undergoing restoration.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Peatlands are a large store of terrestrial carbon and any change in
their carbon balance could therefore cause large changes in the atmo-
spheric greenhouse gases (GHGs) of the planet. The atmospheric store
of carbon is estimated to be about 750 Gt C, compared to an estimated
500 ± 100 Gt C stored in Northern peatlands (Yu, 2012). Although
peatlands are an important part of the terrestrial carbon cycle and
store approximately a third of the world's soil carbon (Gorham, 1991;
Limpens et al., 2008), there is still much uncertainty about how these
areas are affected by climate and land use change. There is alsomuch var-
iation betweenpeatland types,with the greatest difference between acid-
ic rain-fed bogs and more nutrient rich minerotrophic fens. Peat bogs in
pristine condition are considered to be net carbon sinks (Yu, 2012), yet
many areas of peatland have experienced degradation through human
activity (such as draining, grazing and burning and conversion to planta-
tion forestry), which decreases the net carbon uptake from the atmo-
sphere (Fleischer et al., 2016). Peatland restoration is recognised as one
of the ways to reach carbon emission reduction targets under the Kyoto
Protocol (Hiraishi et al., 2013; IPCC, 2014), and it is therefore essential
to developways of verifying and quantifying the effect of such restoration
procedures. Field measurement techniques are limited by scale and cost,
whereas Remote Sensing (RS) presents an opportunity to provide data
to carbon flux models over large areas quickly and cheaply.

Peatland ecosystems differ from other areas due to their high water
table and very distinctive vegetation composition. Fluctuations in the
water table influence the amount and distribution of oxygen available
in the soil profile, which in turn influences carbon emissions. The carbon
cycle of peatland ecosystems is complex and includes many compo-
nents (a conceptual diagram of key components of the cycle in peat
bogs is shown in Fig. 1). CO2 enters the peatland system though photo-
synthesis of the vegetation (Gross Primary Productivity or GPP), and
leaves it through autotrophic (plant) respiration (Ra), and heterotro-
phic respiration (Rh) (microbial decomposition). The sum of Ra and
Rh gives ecosystem respiration (Reco), whilst the difference between
Reco and GPP equals Net Ecosystem Exchange (NEE).

Models using RS data focus on estimating GPP, Reco and also NPP –
Net Primary Productivity, which is the difference between GPP and Ra.
The various flux processes in the peatland carbon cycle are typically
considered at timescales from hours to a few years, largely due to the
short monitoring records currently available. Over the course of a
peatland's lifetimewhich often spans several millennia, however, natu-
ral (e.g. natural fires) and human (e.g. afforestation) disturbances
should also be considered to capture the full breadth of a peatland's car-
bon cycle, as should shifts in climatic conditions. Methane (CH4) is not
considered in this review, as methane and carbon dioxide are often
studied separately and require different methodologies. At this time,
RS methods for estimating CH4 emissions are still in their infancy com-
pared to those of CO2 estimates (see Tagesson et al., 2013). In peatland,
carbon can also leave the system as dissolved organic/inorganic carbon
(DOC/DIC) in streams and pipe outflow, or as particulate organic carbon
(POC) due to surface erosion through wind and washout; these are not
included in RS estimations of NEE. For more information about the
peatland carbon cycle see Limpens et al. (2008). The current review fo-
cuses on biogenic CO2 fluxes, which are the largest and most variable
component at annual timescales (Helfter et al., 2015).

Field based studies show that several factors affect the spatial and
temporal variance of carbon fluxes across peatlands, particularly water
table depth (WTD) and temperature (Lafleur et al., 2003; Bubier et al.,
2003; Dinsmore et al., 2009; Lund et al., 2012; Strachan et al., 2016). Tem-
perature and WTD help to determine plant species composition in the
long term, while, in the shorter term, changes in these climatic variables
affect plant photosynthesis and soil respiration (Bubier et al., 2003). Un-
usually dry or drained peatlands produce more CO2 but less CH4, whilst
in wet peatlands this is reversed (Waddington and Price, 2000).

Peatland NEE is also strongly linked to vegetation composition, as
different plant species have differing responses to climatic variables,
and provide differing quantities of available organicmatter formicrobial

http://creativecommons.org/licenses/by/4.0/
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Fig. 1. Simplified carbon cycle in peat bogs. The catotelm is deep peat which remains saturated, whilst the acrotelm is where the water table varies. Net Ecosystem Exchange (NEE) is the
combination of Gross Primary Productivity (GPP) and all ecosystem Respiration (Reco). Reco is the combination of autotrophic respiration (Ra) and aerobic decomposition/heterotrophic
respiration (Rh). Net Primary Productivity (NPP) is the combination of GPP and Ra.
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decomposition. Different vegetation species dominate on different
peatland types, with the most commonly considered distinction being
between bog and fen. Bogs are generally acidic and support Sphagnum
moss cover, whilst fens are more variable and support a greater propor-
tion of sedges. The composition of vegetation communities is also affect-
ed by the site's microtopography, which often consists of areas of low
waterlogged land (hollows), lawns, and higher, dryer areas (hum-
mocks) (Lindsay et al., 1985; Nilsson et al., 2008) (see Fig. 2). This
paper considers variations in peatland topography at the microscale
(hummocks and hollows, 0.2 to 2 m), mesoscale (pools and intrusions
of forest etc. 2 to 50 m), and macroscale (landscape level).

Current field-basedmethods of estimatingNEE on peatlands include
flux chambers and eddy covariance (EC) towers (see Fig. 3). Chamber
studies measure NEE on a cm2 scale, and so are useful for gaining infor-
mation aboutmicroscale spatial heterogeneity of fluxeswithin peatland
sites, such as contributions of different species and microtopographic
variations. However, due to logistical constraints, chamber measure-
ments are often taken infrequently and over relatively brief timescales,
so temporal variation is poorly explored (Marushchak et al., 2013). Fur-
thermore, the small spatial scale does not allow for easy upscaling due
to the difficulty of averaging or interpolating across such a varied land-
scape (Humphreys et al., 2006). EC towers estimate NEE over a larger
area (m2 to km2), known as a footprint, frommeasurements of CO2 con-
centration and air turbulence. Flux towermeasurements are recorded at
high frequency and over relatively extended periods of time (i.e. able
to record half-hourly averages of CO2 measurements taken at fre-
quencies of around 10 Hz all year round), allowing good analysis of
temporal variation over the site. However, EC towers have high
equipment and maintenance costs, often suffer down-time due to
equipment failure, and there are not many in place on peatland
sites. The data from EC towers are also often noisy and prone to
gaps. The spatial heterogeneity of peatlands means that a single
flux tower cannot necessarily be assumed to be a good proxy for an
entire landscape or region.
Remote sensing has several advantages over traditional field studies,
in particular, cost, scale, and viewing of remote locations. While RS also
includes measurements by aeroplanes, unmanned aerial vehicles and
kites, here we focus exclusively on satellite remote sensing. Satellites
such as Terra, Aqua and Landsat have been used in many studies of ter-
restrial carbon fluxes over various ecosystems (Prince and Goward,
1995; Xiao et al., 2004; Yuan et al., 2010; Sims et al., 2008; Wu, 2012).
Many satellite datasets are freely available, have a regular resampling
interval (between one and sixteen days for the most widely used satel-
lites) and cover large areas of land (Harris et al., 2005; Crichton et al.,
2014). Some also have a relatively long time series archive (e.g. Landsat,
dating from the 1970s). Remote sensing also has the advantage of
allowing researchers to be able to study an environment whilst
minimising exposure to the risks of fieldwork, and disruption to the en-
vironment in question, aswell asmaximising the usefulness of available
resources (Malenovsky et al., 2015). It has the potential to be particular-
ly useful for peatland studies, which often cover large isolated areas and
can be difficult to access for continuous field studies (Connolly et al.,
2009). However, data frommany satellites have a coarse spatial resolu-
tion which makes it difficult to accurately distinguish the small scale
heterogeneity of peatlands (Crichton et al., 2014). Remote sensing in
general is limited by the fact that it only measures energy incident at
the sensor, the distribution of which (e.g. as a function of wavelength)
then has to be used to infer the characteristics of interest. Such tech-
niques cannot measure gas fluxes directly and rely on models to esti-
mate properties such as GPP and NEE. The extreme remoteness of
satellite data also means that the radiation is affected by absorption by
gases in the atmosphere, and atmospheric scattering from aerosols
and other molecules, which can reduce its accuracy (Vermote et al.,
1997). Peat bog areas are particularly prone to heavy rainfall and there-
fore cloud cover due to their prevalence in, and indeed reliance upon,
humid environments.

Despite recent advances in the use of remote sensing tomonitor car-
bon fluxes across ecosystems such as forests and cropland (e.g. Xiao



Fig. 2. Photo showing peatland microtopography at Forsinard Flows RSPB reserve, Scotland. Hummocks are raised features, hollows are depressed, and lawns are relatively flat surfaces.
Each of these features is also characterised by a different vegetation complement. Top left: View as seen by the human eye. Top right: a 100 m2 area as the satellite would see it (5 cm
resolution aerial photography). Lower image: The microtopographical features across an area of 10 m by 8 m using 5 cm resolution aerial photography.
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et al., 2004; Sims et al., 2008; Yuan et al., 2010), less attention has been
given to the application of RS in peatland areas even though they are a
critical component of the carbon cycle (Yu, 2012). In this review paper
we evaluate the current state of knowledge concerning the estimation
of CO2 fluxes in peatland using remote sensing and identify priority
areas in need of future research. This review paper consists of five sec-
tions including this introduction. Section 2 reviews current methodolo-
gies, summarizing key satellites used and variousmethods of estimation
of peatland carbon dynamics from RS data. Several of the most com-
monly used models and their strengths and weaknesses are discussed.
Section 3 reflects on previous studies where remote sensing was used
to estimate carbon and water dynamics over peatlands. The insights
gained in this section generate an assessment of those model parame-
ters likely to produce the best results in a peatland landscape, and
offer an understanding of current research gaps. Section 4 considers
the challenges which the researcher must be aware of when using re-
mote sensing to study peatlands, and suggests ways in which these dif-
ficulties may be overcome. The final discussion section (Section 5)
summarises the areas of research in this topic which are at the forefront
of current study and are only just beginning to be explored, as well as
the main areas in need of further work concerning the estimation of
CO2 fluxes in peatlands using remote sensing.
2. Methods of measuring carbon fluxes remotely

2.1. Satellite sensors: what do they measure?

Some of the most commonly used remote sensing instruments are
passive sensors detecting reflectance within the electromagnetic spec-
trum (see Fig. 4). This includes visible and near-infrared (NIR), and
also thermal infrared (TIR) and microwave sensing spectroscopy. Visi-
ble and NIR sensors detect changes in the absorbance/reflectance ratio
over landscapes. Where there is a large cover of green plants, for in-
stance, green light will be reflected and red light absorbed, causing a
peak in the green wavelengths detected by the sensor. Vegetation indi-
ces make use of this effect (see Section 2.2.2). Similarly, TIR spectrosco-
py can be used to measure surface temperatures and also to infer soil
water content by detecting thermal infrared radiation emitted by a sur-
face (Harris et al., 2006).



Fig. 3. Spatial scales at which carbon flux estimation tools can operate. The shading indicates a rough guide to the footprint of a flux chamber and an EC tower, compared to the footprint of
a satellite such asMODIS (whole box). Aerial remote sensing is included here but not discussed in the text.Microscale is considered to be changes in topography and vegetation up to 2m,
whilst mesoscale concerns larger areas of variation, such as bog pools or small areas of forestry.
(Aeroplane image from NERC, 2016; satellite image from NASA, 2010).
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Active remote sensing involves equipment which interacts with the
landscape by emitting energy towards the surface and measuring how
much is reflected back to the sensor. Microwave imaging can be used
to detect land cover and vegetation structure, and also soil water con-
tent, through the amount of backscatter detected (Kasischke et al.,
2009). Light Detection and Ranging (LiDAR) uses a laser to measure
structural changes at the earth's surface, and can therefore be useful in
assessing the structure of vegetation. Synthetic Aperture Radar (SAR)
Fig. 4. Diagram of the relevant section
can detect ground motion through very precise measurements of
Earth surface height, allowing short term elevation changes due to sub-
sidence or oxidisation, seasonal elevation changes due to the gas con-
tent of the peat (peat breathing), and other changes in surface texture
and vegetation height to be observed (Cigna and Sowter, 2017).

This review focuses mainly on the visible and NIR data, as these are
the most useful for estimating carbon fluxes due to their association
with plant photosynthesis.
of the electromagnetic spectrum.



Table 1
Comparison of satellite sensors used for carbon flux estimationwhich arementioned in this review. For key to acronyms please see text and the table of acronyms given at the start of this
manuscript.

Satellite
(instrument)

Spectral resolution Spatial
resolution

Temporal
resolution

Operated by In operation since Other notes

Terra and Aqua
(MODIS)

0.4 to 14.4 μm (36 bands) 250 m, 500 m,
1 km

1–2 days NASA Terra: Dec., 1999,
Aqua: May 2002

Landsat 7
(ETM+)

0.45 to 12.50 μm (8 bands) 30 m 16 days USGS/NASA Apr., 1999 Band 8 panchromatic and at 15 m
spatial resolution

Landsat 8 OLI
and TIRS

0.43 to 12.51 μm (11 bands) 30 m 16 days NASA/USGS Feb., 2013 Band 8 at15 m resolution

Sentinel-2
(MSI)

0.44 to 2.19 μm (13 bands) 10 m, 20 m, 60
m

5 days ESA Mar., 2017 Vis and IR bands at 10 m spatial
resolution; IR and NIR at 20 m.

Sentinel-3A
OCLI

400 to 1020 nm (21 bands) 300 m to 1 km 1–4 days EUMETSAT Feb., 2016

Sentinel-3A
SLSTR

550 to 12,000 nm (9 bands) 300 m to 1 km 2 days EUMETSAT Feb., 2016

Hyperion 0.4 to 2.5 μm (220 bands) 30 m 16 days NASA Nov., 2000 to Jan.,
2017

Only source of spaceborne
hyperspectral imaging till 2005

WorldView-1 400 to 900 nm (1 band) 0.5 m 2 days DigitalGlobe Sep., 2007 Commercial
WorldView-2 0.4 to 1.4 μm (8 bands) 0.3 to 2 m 1 day DigitalGlobe Oct., 2009 Commercial
WorldView-3 400 to 2245 nm (28 bands) 0.3 to 3.7 m 1 day DigitalGlobe Aug., 2014 Commercial
GOSAT
(TANSO-FTS)

0.758 to 14.3 μm (4 bands) 10.5 km
diameter
footprint

3 days JAXA Jan., 2009 Only 2–5% of data usable, detects
CH4, CO2 in air column

GOSAT
(TANSO-CAI)

0.380 to 1.62 μm (4 bands) 0.5 to 1.5 km 3 days JAXA Jan., 2009 Only 2–5% of data usable, due to
cloud cover.

OCO-2 3 high resolution channels
(0.76 μm, 1.61 μm, 2.06 μm)

1.29 km × 2.25
km

16 days NASA Jul., 2014 Data impacted by cloud cover;
detects CO2 in air column

SUOMI-NPP
(VIIRS)

0.41 to 12.5 μm (22 bands) 357 m, 750 m 2 to 4 days NASA/NOAA/DoD Oct., 2011 To succeed MODIS

SPOT 6 & 7 450 to 890 nm (5 bands) 1.5 to 6 m When
commissioned

Spot Image SPOT 6: Sept 2012,
SPOT 7: June 2014

Commercial

MERIS 0.39 to 1.04 μm (15 bands) 260 × 300 m
(land)

3 days ESA March 2002 to May
2012

No longer in use

FLEX 500 to 780 nm 300 m 1 month ESA Not yet launched
EnMAP Hyperspectral 30 m Unknown German Research Centre

for Geosciences (GFZ)
Not yet launched

HyspIRI Infrared region Unknown Unknown NASA Not yet launched Study phase
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There are many satellites now in orbit which are specifically de-
signed for Earth Observation (EO) uses. A selection showing the range
of satellite data available to researchers for carbon flux estimation are
detailed below and in Table 1.

• Terra and Aqua are satellites run by NASA. Both carry an instrument
known asMODIS (Moderate Resolution Imaging Spectroradiometer).
They cover themajority of the Earth's surface every 1–2 days, and can
acquire data in 36 spectral bands (from 0.4 to 14.4 μm) with a spatial
resolution of 250m to 1 km (NASA, 2016a). MODIS is particularly use-
ful in that is has a processing systemwhich creates several data prod-
ucts, including vegetation indices and an estimate of GPP (see Section
2.2.3) usingmodels designed to convert measurements of energy into
secondary derived parameters. For most other satellites this process-
ing must be done by the user.

• The Landsat program is a series of satellites (Landsat 7 and 8 are cur-
rently operating) run by the US Geological Survey (USGS). Each satel-
lite covers the Earth every 16 days, collecting data in several bands
within the visible/NIR and TIR wavelengths at a spatial resolution of
30 m for the visible/NIR and 100 m for the thermal bands (USGS,
2016). The first Landsat was launched in 1972. The availability of
over forty years of data means that Landsat is especially useful for re-
searchers studying change over time. However, the completeness of
the data archive is limited, especially during the 1970s and 1980s.

• Sentinel-2 is a mission run by the European Space Agency (ESA),
consisting of two satellites: Sentinel-2A and Sentinel-2B. Each satellite
carries a multispectral imager with image resolution on certain sen-
sors down to 10m, andwhen both satellites are operational the return
interval is every five days (ESA, 2016). This mission is a continuation
of the SPOT and Landsat missions, and similar orbits should allow
data from Sentinel-2 to be used as an addition to existing datasets
(ESA, 2016). The finer resolution and frequent return interval of this
mission should make the data it produces invaluable for a number
of land-monitoring applications, including peatland carbon fluxes.
Sentinel-1 (SAR) does not currently have a known application in
modelling GHG exchange, although it is being used by some re-
searchers to estimate peatland condition.

• Sentinel-3 also consists of two satellites; Sentinel-3A is already in
orbit, and Sentinel-3B is scheduled to be launched in 2018. Sentinel-
3 will collect spectral data over land (Ocean and Land Colour Instru-
ment (OLCI)), and temperature data (Sea and Land Surface Temper-
ature Radiometer (SLSTR)) every two days (ESA, 2016). Although it
has a faster revisit time than Sentinel-2, the spatial resolution is
much coarser, being 300 m at best.

• Hyperionwas an imaging spectrometer on board EO-1 designed to be
compatible with Landsat data (and flew in formation with Landsat 7),
but had amuch higher spectral resolution and could detect 220 bands
(0.4 to 2.5 μm) at 30 m spatial resolution (USGS, 2011). This means
the data are useful for calculating indices such as the Photochemical
Reflectance Index (PRI) and red-edge (see Section 2.2.2), which re-
quire a high spectral resolution (Gitelson et al., 2012; Harris et al.,
2014; Yu et al., 2014). Hyperion's fine resolution alsomade it especial-
ly useful in heterogeneous environments (Christian et al., 2015). Un-
fortunately EO-1 has now been decommissioned and only ever
captured data on request, but all data which were collected are now
freely available.

• Worldview is a series of 3 satellites owned by DigitalGlobe, which
provide commercial earth observation data. The spatial resolution
can be as high as 30 cm, with daily coverage and both multi- and
super-spectral bands available (DigitalGlobe, 2016).

• GOSAT is a Japanese satellite which carries out column gas abundance
measurements using the Thermal And Near-infrared Sensor for
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carbon Observation (TANSO) instrument (composed of the Fourier
transform spectrometer (FTS) and the cloud and aerosol imager
(CAI) (NIES, 2016). Column gas abundances are calculated by
analysing the IR light reflected from the surface compared to the IR
light emitted from the atmosphere, allowing the amounts of CO2,
CH4, H2O and O2 to be estimated (NIES, 2016). Column gas abundance
satellite missions can be used to estimate CO2 fluxes by inverting at-
mospheric transport models. Unfortunately the outputs tend to be
very coarse resolution (0.5 to 1.5 km), which makes them less useful
for studies of specific land cover types.

• Orbiting Carbon Observatory 2 (OCO-2) is also a column gas abun-
dance mission run by NASA. It has a longer return interval than
GOSAT (16 days), and a footprint of 1.29 × 2.25 km. It carries three
high resolution spectrometers, with two focused on CO2 channels,
and one on O2 (NASA, 2016b).

Planned future sensors include: FLEX (Fluorescence Explorer)
which is specifically designed to detect energy at the vegetation fluores-
cence peaks (see Section 2.2.2.1 for the uses of fluorescence data) (Kraft
et al., 2012; ESA, 2015); EnMAP, whichwill carry a hyperspectral sensor
and is due to launch in 2018 (EnMAP, 2016); and HyspIRI which will
focus on the infrared region (NASA, 2016c).

One sensor which is no longer running, but which is mentioned in
the following sections of this paper, and forwhich thedata are still avail-
able, is theMedium Resolution Imaging Sensor (MERIS) (ESA, 2017).

2.2. Estimating GPP

There are several techniques using RS data which have been devel-
oped to estimate carbon fluxes, and many of the most well-known are
explained in this section. It is also important tomention the ground val-
idation techniques which are commonly used to assess the accuracy of
these models. The two ways of measuring carbon fluxes directly are
flux chambers and EC towers (see Fig. 3). Flux chambers are not often
used as a validation method for models using satellite data due to
their small coverage. EC towers are more commonly used, and rely on
the principle that gasmovement in the atmosphere is through turbulent
motion. See Section 1 for discussion of the coverage of these two
methods, and Section 4 for discussion of some of the problems arising
from their use as ground-validation methods.

2.2.1. The LUE model
The most widely used model for estimating GPP from remotely

sensed data is currently the Light Use Efficiency (LUE) model devel-
oped by Monteith (1977) (Hilker et al., 2008). The equation for this
model is:

GPP ¼ fPAR � PAR � ɛ
where PAR is the total photosynthetically active radiation incident

on the vegetation, fPAR is the fraction of photosynthetically active radi-
ation absorbed by vegetation, and ɛ is the conversion efficiency of
absorbed energy which is then fixed as carbon within an ecosystem.
The product of fPAR and PAR is sometimes given as APAR (Absorbed
Photosynthetically Active Radiation). PAR is measured as the amount
of light within the wavelengths that plants are able to absorb and use
for photosynthesis (400 to 700 nm), and can be calculated usingweath-
er and climate data (Pfeifer et al., 2012). PAR is affected by cloud cover
(Min, 2005), and when considering ground plant species such as
mosses, also by the presence of a higher vegetation canopy (Chong
et al., 2012). In many LUE models fPAR is modelled as a function of a
vegetation index, and is often assumed to have a linear relationship
with the NDVI (Normalised Differentiation Vegetation Index)
(Huemmrich et al., 2010). fPAR is also related to Leaf Area Index (LAI)
as this partially determines howmuch energy is absorbed by the canopy
(Yuan et al., 2007; Pfeifer et al., 2012). An issuewith the relationship be-
tween fPAR and LAI for Sphagnum is in defining an appropriate light ex-
tinction coefficient, which is often set to unrealistic values (Weston
et al., 2014). ɛ is often calculated from a constant of ɛmax for a specific
biome (e.g. grassland, forest, cropland) adjusted for limiting factors
such as temperature and moisture availability (Garbulsky et al., 2011;
Tan et al., 2012). It is also possible to calculate ɛ directly from the Photo-
chemical Reflectance Index (PRI – see Section 2.2.2).

LUE-basedmodels are very useful because they require few species-
dependent parameters, and can be fairly easily calculated from remotely
sensed data (Anderson et al., 2008). However, the calculation of ɛ in
many models is considered to be overly simplistic. LUE varies with
plant species, ecosystem types, and seasons, and so is unlikely to be ac-
curately represented by a modified constant (Peñuelas et al., 1995).

2.2.2. Vegetation indices
Many EO implementations of the LUE model use a vegetation index

(VI) to estimate fPAR, and in some cases to infer other ecosystem prop-
erties. VIs can be useful proxies for environmental variables such as
water content of vegetation (see Section 3.3), for identifying land
cover categories, and in some cases (such as PRI) as a proxy for ɛ in
the LUEmodel. Belowwe review some key VIs useful in GPP estimation
studies.

One of the oldest andmost widely used VIs is theNDVI (Normalised
Difference Vegetation Index), which is calculated from the difference
in reflection between the red band and the near-infrared (NIR) band
(see Fig. 5). The equation is:

NDVI ¼ NIR−redð Þ= NIRþ redð Þ

As healthy green plants absorb light in the red band and reflect it in
theNIRband,where there is an abundance of green vegetation theNDVI
values will be high. However, the NDVI tends to saturate at high LAI
values and is sensitive to the scattering effect of atmospheric aerosols
(Walker et al., 2014). The saturation effect can cause a summer plateau
in NDVI values in some ecosystems but may not be particularly notice-
able in northern peatlands due to the low LAI values of these environ-
ments (see Section 3.2).

The Enhanced Vegetation Index (EVI) is designed to overcome
some of the limitations of NDVI. In particular, it includes reflectance in
the blue light band to counteract the effect of aerosols, as the light
which interacts with these is mostly in the blue portion of the spectrum
(Balzarolo et al., 2016), and has generally lower values to compensate
for the saturation effect of the NDVI (Heute et al., 2002; Rahman et al.,
2005). In general it is agreed that the EVI is a more structural measure,
linked to LAI and vegetation canopy structure, as it is more sensitive to
NIR (Rossini et al., 2012), whilst the NDVI correlates better with plant
chlorophyll content by being more sensitive to the red bands (Heute
et al., 2002; Walker et al., 2014). Verma et al. (2015) found that EVI
alone, validated against the Fluxnet dataset which included several dif-
ferent ecosystems, gave as much information about seasonal GPP
change as the more complex PAR-based models, and as the MOD17
model (see Section 2.2.3). The MODIS product MOD13 contains both
NDVI and EVI products.

The Red Edge Position (REP) index monitors the position of the
point of steepest slope between the red and NIR wavelengths in a spec-
tral image (see Fig. 5) (Baranoski and Rokne, 2005). As chlorophyll in-
creases, more red light can be absorbed by the plant and so the red
edge moves to increasingly longer wavelengths (Dash and Curran,
2004). Stresses such as low water availability reduce the chlorophyll
content and so the red edge shifts to lower wavelengths (Harris et al.,
2005). REP is best calculated with narrow-band sensors (e.g. Hyperion
– see Section 2.1) which can more accurately determine the position



Fig. 5. An example of a spectral reflectance graph of Sphagnummoss. The visible and NIR bands follow thewavelengths used by Landsat (blue 450–515 nm; green 525–600 nm; red 630–
680 nm; NIR 845–885 nm). Vegetation fluorescence peaks (690 and 740 nm) and the water reflectance trough (950–970 nm, used by theWI) are added. The sample was taken from the
Forsinard Flows RSPB reserve and the reflectance was taken in the laboratory using a Ger3700 spectrometer (unpublished data). It is worth noting that the reflectance of Sphagnum is
greatly impacted by water content, bleaching and increasing reflectance in all wavelengths as it dries.
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of the red-edge (Yu et al., 2014), although Dash and Curran (2004) cre-
ated a successful index known as the MTCI (MERIS Terrestrial Chloro-
phyll Index), which used this principle on MERIS data (Rossini et al.,
2012).

The Photochemical Reflectance Index (PRI) is a more recent VI de-
velopment, and measures LUE through a different mechanism than
plant greenness. The NDVI and EVI are considered useful proxies for
the fPAR because they indicate leaf area and chlorophyll amount. The
PRI is considered to be a proxy for ɛ because it measures light-use effi-
ciency directly (Peñuelas et al., 2011; Garbulsky et al., 2011). PRI, and
also fluorescence (see Section 2.2.2.1), are based on our understanding
of the photoprotective mechanisms within plants. In some circum-
stances plantswill absorbmore light energy than can be used by chloro-
phyll to make glucose. When this is the case, light energy is either
transferred to xanthophyll molecules inside the photosynthetic organ-
elles and emitted as heat energy, or emitted as fluorescence (Gamon
et al., 1992; Peñuelas et al., 1995). The shift in reflectance associated
with increased xanthophyll concentration can be detected at a wave-
length of 531 nm by comparison with a reference wavelength. The ref-
erence wavelength is often given as 570 nm, although there is some
debate (Grace et al., 2007; Van Gaalen et al., 2007; Gamon et al., 1992)
about what specific wavelength works best at leaf or canopy scale.

PRI is better than alternative ways of estimating LUE from look-up
tables based on vegetation type, as done in many satellite-based LUE
models of GPP, because a singlemeasurement already includes environ-
mental constraints and can vary freely across different biomes without
the use of categorisation (Peñuelas et al., 2011; Tan et al., 2012). Howev-
er, PRI requires narrowband sensors with a spectral resolution of 3
to10 nm. One of the biggest issues with the PRI is that the ratio has
not yet been standardised across studies, with different wavelengths
being used at different sites and scales, which makes cross-
comparison difficult (Garbulsky et al., 2011). PRI was originally
developed at the leaf level (Gamon et al., 1992) and it is uncertain
howwell the same wavelengths can be transferred to canopymeasure-
ments where scattering affects the signature (Gamon et al., 1992;
Peñuelas et al., 1995; Garbulsky et al., 2011).

The high spectral resolution required to accurately calculate PRI
means that broad band sensors such as those used on most satellites
are not well suited to calculating this index. Hyperspectral sensors
cover the spectrum close to continuously, and so have a band centred
at 531 nm, whereas most broad-band sensors do not have such a
band. MODIS is an exception, however, because Band 11 happens to
be centred at around 531 nm (actually 526–536 nm) (Drolet et al.,
2005; Goerner et al., 2011). This band has only recently beenmade rou-
tinely available from the Terra satellite (previously it was only proc-
essed over the ocean), but it is expected that it will be used in many
carbon flux studies over the next few years. There is no band at
570 nm, which means that alternative bands must be used as the refer-
ence wavelength. Bands 1 (620–670 nm), 4 (545–565 nm), 12 (546–
556 nm) and 13 (662–672 nm) have been found to give reasonable re-
sults as reference bands (Drolet et al., 2005; Goerner et al., 2011).

Finally, there are two key points to keep in mind when considering
VIs as a proxy for GPP. First, most VIs measure plant greenness rather
than actual photosynthesis. Greenness often reaches its maximum be-
fore maximum photosynthesis and stressed leaves often reduce photo-
synthesis without changing colour (Gamon et al., 1992; Grace et al.,
2007). Balzarolo et al. (2016) found that the MODIS VIs predict an ear-
lier growing season start date than in-situ EC data suggests, over a
range of different ecosystem types, as a result of this effect. Kross et al.
(2013) found that this phenological disparity between carbon dynamics
and biomass dynamics was evident in four peatland sites of different
types, although they suggested that this may be overcome by using an
index such as PRI which is more closely related to photosynthetic activ-
ity. Second, as well as the problems with the calculation of specific
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vegetation indices, all VIs are affected by disturbance from other factors
such as topography, observance angle, soil background effects, moisture
and atmospheric conditions (see Section 4 for more discussion of these
issues) (Peñuelas et al., 2011; Garbulsky et al., 2011; Pfeifer et al., 2012;
Walker et al., 2014).

2.2.2.1. Fluorescence. Solar Induced Fluorescence (SIF) is a photo-
protective mechanism bywhich excess light not used during photosyn-
thesis is emitted at longer wavelengths. Although fluorescence can pro-
vide useful information about plant stress, the relationship between
photosynthetic carbon flux and fluorescence is not simple due to the in-
teraction with the xanthophyll cycle (Harris, 2008). Once plant stress
occurs, fluorescence decreases with photosynthesis as the xanthophyll
mechanism (measured by PRI) is activated (Meroni et al., 2009). Fluo-
rescence is, however, a good way of detecting photosynthesis changes
over short timescales, and responds before chlorophyll abundance or
LAI show any change (Meroni et al., 2009).

The two fluorescence peaks in vegetation are at approximately
690 nm in the red bands and 740 nm (see Fig. 5) in the NIR (Meroni
et al., 2009; Van Wittenberghe et al., 2015). However, measuring fluo-
rescence requires sensors even finer than those used for PRI, with a res-
olution of b1 nm (Grace et al., 2007). The precise centre wavelength of
the band used also varies slightly with resolution; Meroni et al. (2009)
found that a spectral resolution of 0.005 nmwas optimal, and anything
larger caused a degradation of the signal. As with PRI, fluorescence has
been suggested to be more easily measured at leaf level to avoid the
canopy scattering and re-absorbance effects (Peñuelas et al., 1995;
Van Wittenberghe et al., 2015). Because of the technical challenges as-
sociated with measuring fluorescence, almost all previous studies
have used ground-based or airborne sensors (Meroni et al., 2009).
However, Guanter et al. (2007) showed that space-based fluorescence
detection was possible using MERIS. It has also been demonstrated
from OCO-2 and GOSAT, as the high spectral resolution used in these
sensors is able to pick out the fluorescence signal (Frankenberg et al.,
2014). The launch of the ESA FLEX mission will make fluorescence de-
tection over large areas from space much more accessible.

2.2.3. LUE model development
Several models have been developed to estimate GPP, working from

the basis of the LUEmodel and often incorporating vegetation indices as
proxies for fPAR and/or ɛ. This section details some of the most well-
known models which have been developed over the last two decades,
and compares their model formulations and variables in Table 2.
Table 2
Simplified description of well-known RS GPP models, and their major strengths and weakness

Model Equation Source of
fPAR

Source of other variables

MOD17 GPP= fPAR × PAR × (Emax × f(Tmin)
× f(VPD))

From LAI
(MOD15)

VPD (Vapour Pressure De
land cover MOD12)
Tmin (minimum tempera

GLO-PEM GPP = fPAR × PAR × (Emax × Ta ×
VPD × soil moisture)

NDVI Ta (air temperature from
relationship)
Soil moisture (from NDVI
VPD (vapour pressure defi
infra-red)

VPM GPP = fPAR × PAR × (Emax × Ts ×
Ws × Ps)

EVI Ts (air temperature scalar
Ws (water scalar from LS
Ps (leaf phenology scalar
deciduous/evergreen and

EC-LUE GPP = fPAR × PAR × (Emax ×
min(Ts, Ws))

NDVI Ts (air temperature scalar
Ws (water scalar, from ev

TG GPP = EVIs × LSTs × m – LSTs (land surface temper
EVIs (enhanced vegetatio
m (unit scalar)
Early GPP models such as CASA (Potter et al., 1993) and 3-PG
(Landsberg and Waring, 1997) combined satellite data with field data
such as meteorological inputs and soil/vegetation types. The first
model to rely solely on remotely sensed data was the Global Produc-
tion Efficiency model (GLO-PEM) (Prince and Goward, 1995). GLO-
PEM uses data from the AVHRR (Advanced Very High Resolution Radi-
ometer) to calculate a basic LUE model with a developed ɛ parameter.ɛmax is given a different value for C3 and C4 plants, and modified by
air temperature, Vapour Pressure Deficit (VPD) and soil moisture
(Prince and Goward, 1995). VPD is calculated as the difference between
the saturation point of air and the currentwater vapour in the air, and is
linked to carbon fluxes through the relationship between photosynthe-
sis and evapotranspiration (Shurpali et al., 1995). GLO-PEMwas an im-
portant step forward, but as the first fully RS-reliant model it should be
considered as method development, and many further improvements
have been made in later models. In particular, Tan et al. (2012) found
that GLO-PEM's generalisations of plant categories only poorly account
for ecosystem variation.

The terrestrial Vegetation Photosynthesis Model (VPM) is a mod-
ified LUE model which uses the Land Surface Water Index (LSWI) as a
modifier of ɛ. The fPAR is calculated as a linear function of the Enhanced
Vegetation Index (EVI), and attempts to solve problems created by non-
photosynthetic vegetation registering as photosynthetically active in re-
mote sensing data (Xiao et al., 2004). Dong et al. (2015) found that the
VPMwas the best model for explaining variance in cropland and prairie
under drought conditions, and attributed this to the combination of EVI
and awater content index. Dong et al. (2015) also pointed out, however,
that the VPM requires more data inputs than simpler models and so
cannot be used in places where there is no meteorological data. The
VPM has been validated over a number of different ecosystems and
has been shown to give good results using data from several satellite
sensors, including both MODIS and Hyperion (Xiao et al., 2004;
Christian et al., 2015). The VPM was used over peatlands by Kross
et al. (2016), as is discussed in more detail in Section 3.2.

The EC-LUE (Eddy Covariance LUEmodel) is so named because it is
a modified LUE model which was developed using the latent heat flux
measured by EC towers in its calculation (Yuan et al., 2007). The
model relies on air temperature and evaporative fraction (EF) tomodify
LUE. Interestingly, the model constrains GPP by either temperature or
water deficiency, depending on which is most limiting (Yuan et al.,
2007). In the original 2007 model the EF was calculated using latent
heat flux and the Bowen ratio (Yuan et al., 2007), but later versions of
the model use net radiation from climate observation networks, modi-
fied by evapotranspiration parameters (Yuan et al., 2010). This means
es for use over peatlands.

Strengths and weaknesses Reference

fecit - determined from Strength: No site optimisation needed
Weakness: No peatland classification

Running and
Zhao, 2015

ture from GMAO)
NDVI and LST Strength: First fully RS-based model

Weakness: Broad plant category
generalisations

Prince and
Goward, 1995

and LST relationship)
cit from thermal

from ground data) Strength: Validated under drought
conditions
Weakness: Requires meteorological
data

Xiao et al., 2004
WI)
based on
LSWI relationship)
from ground data) Strength: Validated across a wide

range of ecosystems
Weakness: May overestimate GPP at
moss-dominated sites

Yuan et al.,
2007, 2010aporative fraction)

ature scalar) Strength: Only requires two inputs
Weakness: No water stress
component

Sims et al., 2008
n index scalar)
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that the model can now be applied to large areas without tower data,
and has also been shown to be more accurate than the 2007 EC-LUE
model (Yuan et al., 2010). The EC-LUE model was validated against
fifty-four sites with EC towers, but these sites only covered sixmajor bi-
omes, and did not specifically include peatland or wetland sites. Yuan
et al. (2010) found that the model overestimated GPP at high latitude
sites, and suggested that this may be caused by a high proportion of
mosses which have a lower LUE than vascular plants.

Temperature and greenness (TG)models are a general class of sat-
ellite based GPP models which use land surface temperature (LST) as a
proxy for other environmental variables in the LUE equation. A recent
example is that of Sims et al. (2008) which only includes LST and EVI,
and is therefore easily calculated from MODIS products. Sims et al.
(2008) found that the LST dataset from MODIS correlates well with
both PAR and VPD, and can therefore be used as a remotely sensed
proxy. Their results showed that the TG model performed better than
MOD17 across a range of North American biomes, but noted that it per-
forms significantly less well at sites where vegetation is sparse (Sims
et al., 2008). Verma et al. (2015) found that the TG model performed
as well as more complex models when compared to EC data from the
Fluxnet dataset across several different biomes. However, Dong et al.
(2015) point out that it does not include any water stress modifier
and so estimates variance in drought years rather poorly.

NASA uses MODIS data to produce an estimate of GPP. This product,
which has been assigned a data code ofMOD17, uses amodified version
of the LUE algorithm to produce an 8-day total GPP at 1 km resolution
across the globe (Running and Zhao, 2015). The difference between
the MOD17 product and other LUE models is that it uses modelled pro-
cesses rather than vegetation indices to calculate fPAR. This MOD17
fPAR is taken from theMODIS LAI product (MOD15),which is generated
by inversion of a physical model of light scattering in the plant canopy
against observed MODIS reflectance data. Daily meteorological data
from the NASA Global Modelling and Assimilation Office (GMAO), in-
cluding Vapour Pressure Deficit (VPD) and minimum temperature, are
used to calculate PAR, and also to limit ɛmax (Running et al., 2004; Tan
et al., 2012; Running and Zhao, 2015).

Several studies have attempted to analyse the accuracy of the
MOD17 product for different biomes and have concluded that there
are inherent errors associated with the meteorology, radiometry and
biophysical inputs. Heinsch et al. (2006) found that the largest source
of error across fifteen sites in different biomes across North America
was the VPD, which is calculated from NASA/GMAO data and used as
a drought proxy to limit ɛ. In MOD17 VPD was found to often be
underestimated, leading to a GPP overestimation compared to EC
tower data (Heinsch et al., 2006). Another source of error in ecosystem
studies is that the MOD17 ɛmax and the limits of VPD and temperature
Table 3
MOD17 land cover types, from Running and Zhao (2015) p11. Note there is
no peatland/wetland category.

Class value Class description

0 Water
1 Evergreen needleleaf forest
2 Evergreen broadleaf forest
3 Deciduous needleleaf forest
4 Deciduous broadleaf forest
5 Mixed forest
6 Closed shrubland
7 Open shrubland
8 Woody savanna
9 Savanna
10 Grassland
12 Cropland
13 Urban or built-up
16 Barren or sparsely vegetated

254 Unclassified
255 Missing data
are estimated from the MODIS land cover classification product,
MOD12Q (Tan et al., 2012). MOD12Q has a limited number of land
cover classifications (see Table 3). This can cause errors in GPP estima-
tion. It can be seen (Table 3) that there is no specific class for peatlands.
This means that peatlands as a whole are classified as other land cover
types. Such land-cover types almost certainly do not possess the high
percentage of organic matter and waterlogged conditions so character-
istic of peatland ecosystems. Kross et al. (2013) found that northern
peatlands were often misclassified as evergreen needleleaf forest,
mixed forest, or closed shrubland. Finally, Tan et al. (2012) point out
that theMOD17 product does not include any estimate of surface mois-
ture, whichmay particularly limit its usefulness when used on peatland
sites. Some peatland species rely on high surface moisture for their
water inputs, and including this factor in models can help to assess des-
iccation effects on photosynthesis (see Section 3.3).

2.3. Estimating ecosystem respiration

To obtain a full picture of ecosystem carbon exchange (i.e. to esti-
mate NEE), we need both an estimate of GPP and an estimate of ecosys-
tem respiration (Reco). Ecosystem respiration is a combination of two
sources of respiration: autotrophic respiration (Ra) from the plants
themselves, and heterotrophic respiration (Rh) frommicrobiota within
the soil (Fig. 1). Ra consists of maintenance respiration and growth res-
piration, whilst Rh consists of rhizomicrobial respiration, and microbial
decomposition of plant residues and other soil organic matter (SOM)
(Gao et al., 2015). There are far fewer successful models of ecosystem
respiration (Reco) compared to GPP because it ismuch harder to account
for the variation found between ecosystems, particularly using RS
(Olofsson et al., 2008; Jägermeyr et al., 2014).

Many models produce an estimate of NPP, which is the difference
between GPP and Ra. In LUE-based models maintenance and growth
respiration can be accounted for as part of the ɛ parameter (Running
et al., 2004) but there are fewer models which seek to estimate respira-
tion directly, and particularly soil (heterotrophic) respiration. Despite
this, several studies have suggested that the relationships between
Reco and GPP (Vourlitis et al., 2003) and Reco and temperature
(Rahman et al., 2005; Olofsson et al., 2008) are strong enough to esti-
mate Reco from RS data. Some models use a Q10 function, which gives
a change in sensitivity of respiration to temperature with every 10°
(Reichstein et al., 2003). Some studies and models which include soil
respiration are discussed below, and listed in Table 4.

Reichstein et al. (2003) found that soil water and temperature were
good predictors for soil respiration. They also found that adding LAI as a
proxy for productivity to the model improved the result. Their study
was based on closed-chamber data from forest and shrubland sites
across Europe and North America, but it was suggested that the vari-
ables could easily be estimated from RS data. This was proved to be
the case by Anderson et al. (2008) who used a model which calculated
soil moisture from microwave sensing, soil temperature from thermal
imaging, and LAI from a vegetation index. Their model results showed
good agreement with tower flux data over pasture land in Oklahoma
(Anderson et al., 2008). Model development over such a small area,
however, is unlikely to create a model which is reliable over other eco-
systems or climates, and more validation work is needed.

Turner et al. (2006) created a model which estimates both Ra and
Rh. The Ra portion of the model calculates maintenance respiration
using a base rate and a Q10 function, while the growth respiration equa-
tion is based on the fraction of carbon available for growth (given as
0.33) used in respiration. Rh is calculated using a base rate modified
by in-situ measurements of soil temperature, soil moisture and stand
age. Both maintenance respiration and heterotrophic respiration are
scaled by fPAR as a proxy for live biomass (Turner et al., 2006). Turner
et al. (2006)'s model shows potential for a fully remote sensing based
model, but also relies on data from a process-based model and in-situ
data.



Table 4
Respiration models and their major strengths and weaknesses for use over peatlands.

Model Equation Variables Strengths and weaknesses Reference

Anderson
et al.,
2008

Rh = (0.135 + 0.054 ×
LAI)θ10exp[0.069(Ts,10–25.0)]

LAI (from vegetation index) Strength: Fully RS based
Weakness: Only developed over
pasture land

Anderson
et al., 2008θ10 (the 0 to 10 cm average volumetric water content, derived

from microwave data)
TS,10 (the 10-cm soil temperature, derived from thermal band
imagery)

Turner
et al.,
2006

Rm= Rm_b × Q10
((Tair − 20) / 10) ×

(1/ − k)(log(l − FPAR)
R m_b (base rate of maintenance respiration, from model) Strength: Calculates Rh and Ra

separately
Weakness: Relies on in-situ data

Turner
et al., 2006Q10 (change in rate for a 10 °C increase in temperature, 2.0 used by

Turner et al., 2006)
Tair (daily (24 h) mean air temperature from database)
k (radiation extinction coefficient, 0.5 used)

Rg = (GPP − Rm) × Rg_frac Rg_frac (fraction of carbon available for growth that is used for
growth respiration (0.33, Waring and Running, 1998))

Rh = Rh_base × SST × SSW × SSA ×
FPAR

Rh_base (base rate of heterotrophic respiration, from model)
SST (scalar for soil temperature from database)
SSW (scalar for soil water content from database)
SSA (stand age factor from Landsat data)

Wu et al.,
2014

Rh = a(NDVI × LSTn) + b LSTn (night time LST) Strength: Simple to use
Weakness: No soil water parameter

Wu et al.,
2014a = slope (related to annual LAI max)

b = intercept (related to annual LAI average)
RECO Reref = p1 + p2 × EVImean + p3 ×

LSTmean

EVImean (mean annual springtime EVI) Strength: Good results across the
Fluxnet network
Weakness: Limited biome classification

Jägermeyr
et al., 2014LSTmean (mean annual daytime LST)

Restd = (p4 / (p5 + p6 − ((LSTn −
10) / 10)) + p7 × EVI + p8

LSTn (night-time LST)
EVI (8-day EVI/EVImean)

ReRSM Re = a × GPP + Rref ×
eE0 × ((1 / 61.02) − (1 / T + 46.02))

Rref (EOM-derived respiration at reference temperature) Strength: Excellent model performance
over Tibet and Northern China
Weakness: Only validated over limited
ecosystems

Gao et al.,
2015T (average of daytime and night-time LST)
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Wuet al. (2014) usedNDVI and LST fromMODIS to calculate soil res-
piration, along with two further parameters determined from site LAI.
They found that night-time LST is more useful as it is a less noisy signal
than daytime LST. Their model explained 78% of variance in eight years
of flux data from a Canadian forest, but was limited by the lack of a soil
water variable.

Jägermeyr et al. (2014) designed the RECOmodel to estimate global
respiration. They assigned the world's ecosystems to one of three cli-
mate zones, each zone then being divided into further sub-categories
of forested and non-forested biomes. Different model parameters
were then created for each category. The model equation has two com-
ponents: Rref which is the reference respiration (calculated from yearly
means of EVI and LST), and Rstd which is the seasonal variation in the
ratio of Rref to Reco (calculated using night-time LST, EVI and the differ-
ence between day and night LST as a soil water proxy in water-limited
biomes). The model results were compared with several different sites
across the Fluxnet network to give an R2 value of 0.62. The limited clas-
sification of biomes in the model, however, means that
parameterisation may not take into account the wide variety of ecosys-
tems that were not specified. This may be acceptable for a globalmodel,
but could cause large errors if applied to a specific ecosystem without
additional parameterisation.

Gao et al. (2015) created the model ReRSM, which separates Reco

into GPP derived components (growth and rhizomicrobial respiration)
and ecosystem organic matter (EOM) derived components (mainte-
nance respiration, respiration from decomposition of plant residue
and other SOM). The GPP component is calculated using EVI and LSWI
(Land Surface Water Index). The EOM contribution to total respiration
is calculated using the Lloyd-Taylormodel which is another exponential
function which relates temperature and respiration (Lloyd and Taylor,
1994) calculated from MODIS LST (Gao et al., 2015). They found that
this model could explain 90% of the variation in respiration from EC
data over five different ecosystem types in Northern China and the Ti-
betan plateau, with a root mean squared error (RMSE) of 0.05. These
numbers suggest an excellentmodel performance, but cannot necessar-
ily be transferredwell to other ecosystem types, andmay particularly be
less accurate in areas affected by drought as there is no soil water com-
ponent affecting the EOM derived respiration (Gao et al., 2015).
These GPP and Reco models were all developed on ecosystems other
than peatland, and future application of these models to peatland areas
will require an assessment of the effect of parameters such as tempera-
ture and soil moisture on respiration in different peatland types (see
Hilker et al., 2008 and Tan et al., 2012 for reviews of GPP models over
other ecosystems).

3. Previous studies on peatlands

Remote sensing studies of peatland carbon fluxes can be placed into
two broad categories: classification studies, which divide the landscape
into types with similar conditions, and carbon flux estimation studies
using models such as those explored in Section 2 (Whiting, 1994).

3.1. Classification studies

Classification studies can be used both to identify peatland as a dis-
tinct land use (in comparison with areas of forest or agricultural land
for example) and also to identify vegetation communities and topo-
graphic features within a peatland environment. These classification
studies can then be used to define key parameters (e.g. ɛmax) in order
to adjust a general model to specific conditions.

Peatlands are often classified in RS studies on the basis of vegetation
types. Different plant species dominate under different conditions, and
can affect the carbon fluxes of the peatland. A higher proportion of vas-
cular plants to mosses increases both photosynthesis and autotrophic
respiration and is also likely to be associated with an increase in hetero-
trophic respiration because a larger amount of available substrate is
present (Limpens et al., 2008; Dinsmore et al., 2009; Walker et al.,
2016). It is important to note that different vegetation compositions
on peatland differ not only in their overall NEE, but also in the response
of their carbon fluxes to environmental change (Bubier et al., 2003).
Bubier et al. (2003), for example, showed that sedge-dominated com-
munities within a bog experienced a greater decrease in photosynthesis
under drought conditions than communities dominated by ericaceous
shrubs in the same ecosystem. It is therefore important to have an un-
derstanding of vegetation communities and differential responses
when creating a carbon flux model. Some carbon flux estimations can
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be achieved simply by applying knowledge of differential responses to
land cover and climatic data, as can be seen at a large scale in MOD17.

Several studies have considered the heterogeneity of peatland vege-
tation at different scales, and have developedways of classifying areas of
differing vegetation composition based on spectral reflectance and
structural data – these are not specifically discussed here but can be
found in papers such as Bubier et al. (1997), Frolking et al. (1998),
Thomas et al. (2003), Anderson et al. (2009), Forbrich et al. (2011),
Crichton et al. (2014), and Parry et al. (2015).

3.2. Carbon flux estimation studies

Relating remote sensing directly to peatland carbon fluxes is an area
of research which is growing rapidly, although as yet there are still only
a few published studies from this increased research activity and there-
fore any conclusions must necessarily be of a tentative nature. Some
studies have used the MOD17 GPP product compared with data from
flux towers, but have found that this product has poor accuracy over
peatland environments (Schubert et al., 2010; Kross et al., 2013).
Kross et al. (2013) found that the MOD17 product underestimated
Eddy Covariance GPP at three of their four sites across Canada and
Finland (one bog and two fen). They suggest this is due to the unsuit-
ability of the ɛmax downscaling algorithm in peatland ecosystems.
Connolly et al. (2009), however, showed that the MODIS fPAR product
had a good relationship with fPAR derived from field-based LAI mea-
surements. This suggests that although the MOD17 product may pro-
vide a good structural analysis and estimate of potential
photosynthesis, it is held back by the algorithms for establishing LUE,
which are not calibrated well within peatland environments. Kross
et al. (2013) suggest that theVPDmodifier of LUE in theMOD17product
may be particularly unnecessary over peatlands, as it appears to have
had little effect during their study period, and does not have much of
a relationship to soil moisture (Harris and Dash, 2011).

Other studies have used vegetation index models as an estimate for
field flux data (see Table 5). Harris and Dash (2011) compared MTCI,
which uses the red-edge principle, to GPP observations at a raised bog
and a moderately rich treed fen and found that there was a good rela-
tionship in the active growing seasons of 2004 and 2005 for both sites.
Unfortunately, they did not compare this to the performance of other
vegetation indices, although the MTCI principle is similar to the NDVI.
Kross et al. (2013) considered MODIS NDVI at one raised bog site and
three different fen sites, and found that the relationship between
NDVI and GPP observationswas good at capturing interannual variation
at individual sites, and that moreover the same regression coefficient
(for NDVI andGPP observations) could be used at several siteswith sim-
ilar characteristics. This suggests that NDVIwould be a useful vegetation
index in developing a peatland RS model which could be used without
site-specific calibration. Harris and Dash (2011) give the R2 value for a
1:1 relationship between MTCI and GPP values as 0.71 (0.46–0.87),
whilst Kross et al. (2013) give the R2 value for NDVI and GPP as 0.43
(0.39–0.71). These are not directly comparable, however, as the studies
Table 5
Simple vegetation indices using NIR and red bands (NDVI andMTCI) compared to groundmeas
to different methods of carbon flux and spectral measurement.

Study Site type Com

Whiting, 1994 Coastal fen, interior fen and bog NEE:
Letendre et al., 2008 Open raised bog NEE:
Schubert et al., 2010 Raised temperate ombrotrophic bog GPP:
Schubert et al., 2010 Boreal oligotrophic minerotrophic fen GPP:
Harris and Dash, 2011 Raised bog GPP:
Harris and Dash, 2011 Moderately rich treed fen GPP:
Kross et al., 2013 Raised ombrotrophic bog GPP:
Kross et al., 2013 Moderately rich treed fen GPP:
Kross et al., 2013 Open minerotrophic moderately rich fen GPP:
Kross et al., 2013 Mesotrophic sub-arctic poor fen GPP:
Levy and Gray, 2015 Blanket bog GPP:
were over different sites and time spans, and because the MTCI uses
MERIS data whilst Kross et al. (2013) used MODIS NDVI.

Whiting (1994) give a positive correlation value between NDVI
(measured in the field using a handheld spectroradiometer) and NEE
of 0.43 (using chamber data) over a combination of bog and fen sites,
but observed unexpectedly high NDVI values at a site which had a
large proportion of brown-green Sphagnum species present, and sug-
gest that the differing combinations of moss and vascular plants may
complicate the NDVI:NEE relationship. Levy and Gray (2015) studied a
peat bog site in Northern Scotland and found only a low correlation co-
efficient of 0.23 between EC GPP and MODIS NDVI. These studies sug-
gest that NDVI can give us some information about peatland carbon
flux, but more factors are needed to create an accurate model on a
large scale.

Schubert et al. (2010) compared MODIS NDVI and EVI as predictors
of GPP across a raised bog and aminerotrophic fen in Sweden and found
that EVI gave better results (R2 values of 0.37 and 0.45 compared to 0.26
and 0.36). In particular, they noted that the NDVI curve levelled off in
summer, indicating saturation. Letendre et al. (2008) completed a
study using a handheld spectroradiometer which found that the R2

value for NDVI and NEE at their Sphagnum-dominated open raised bog
site in Canada was as low as 0.12, but that combining NDVI with PRI
gave a better result (R2 of 0.26). Letendre et al. (2008) discovered that
the Chlorophyll Index (CI, based on red-edge position) gave the best
correlation with NEE, with an R2 of 0.37. Van Gaalen et al. (2007) and
Harris' (2008) laboratory studies found that PRI was a good indicator
of short term (minutes to hours) changes in photosynthetic efficiency
within individual Sphagnum species, but required a priori knowledge
of the species present. This means it may provide good results under
laboratory conditions, but may not translate well to larger scale field
studies with the intermixture of Sphagnum species present in field con-
ditions. Sphagnum patches of a single species rarely exceed 20 cm2, and
it is common to find species entirely intermingled to the extent that
even a fine resolution spectrometer would pick up reflectance signals
from more than one species.

Kross et al. (2016) considered the variation of the LUE parameter ɛ
over different peatland types in Canada and Finland (same sites as
Kross et al., 2013). They found that monthly variations in ɛ correlated
with variations in air temperature and MODIS NDVI, and that annual
variations correlated with wetness as measured using LSWI. They also
applied the VPM to their study sites, and found good agreement be-
tween ɛ calculated using MODIS data to drive the VPM, and ɛ calculated
using ground-measured data. Unfortunately they did not publish the
carbon flux estimates from the VPM.

3.3. Temperature and water content

The two variablesmostwidely considered to affect peatland GPP are
soil moisture/Water Table Depth (WTD) and temperature (Harris and
Dash, 2011). However, there are issues with including these in RS-
driven models as there is debate over whether RS indices can
urements of carbon flux. This table highlights the difficulty of comparing across studies due

parison R2 CO2 data Spectral data

NDVI 0.18 Chamber Field spectroradiometer
NDVI 0.12 Chamber Field spectroradiometer
NDVI 0.26 Eddy Covariance MODIS 250 m
NDVI 0.36 Eddy Covariance MODIS 250 m
MTCI 0.74 Eddy Covariance MERIS 1 km
MTCI 0.77 Eddy Covariance MERIS 1 km
NDVI 0.71 Eddy Covariance MODIS 250 m
NDVI 0.66 Eddy Covariance MODIS 250 m
NDVI 0.64 Eddy Covariance MODIS 250 m
NDVI 0.39 Eddy Covariance MODIS 250 m
NDVI 0.09 Eddy Covariance MODIS 250 m
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adequately represent these variables, and therefore to what extent in-
cluding them improves a model (Connolly et al., 2009; Schubert et al.,
2010; Harris and Dash, 2011).

Harris and Dash (2011) found that adding LST to their MTCI-based
model did not greatly improve results. They suggest that this may be
due to the poor performance of LST as a proxy for more stable soil tem-
peratures, but allow that it may be a useful VPD proxy, and therefore
more valuable under drought conditions. In contrast, Schubert et al.
(2010) found that adding LST to their EVI-based model did improve re-
sults, and also gave a good correlationwith Reco. Harris and Dash (2011)
based their work on a raised bog and a moderately rich treed fen in
Canada, whereas Schubert et al. (2010) were working on a raised
ombrotrophic bog and an oligotrophic minerotrophic fen in Sweden –
both used EC data as a ground validation method.

Soil water content is likely to be a particularly important model var-
iable in peatland environments as these ecosystems rely on exception-
ally high water tables to function. In a natural bog the catotelm will
remain saturated all year round, whilst the acrotelm experiences fluctu-
ations (see Fig. 1). Even a small drop in the water table can impact pro-
ductivity, because Sphagnum moss is particularly sensitive to moisture
availability. It is also important to note that damaged peatlands and
those undergoing restorationmay experiencemuchgreaterfluctuations
than natural bog.

Zhang et al. (2015) make the point that the effect of water content
on LUE is complex, and different indices may provide additional infor-
mation within one model. Several studies (Vogelmann and Moss,
1993; Bryant and Baird, 2003; Harris et al., 2005, 2006; Van Gaalen
et al., 2007) have shown that the spectral reflectance of several Sphag-
num species changes as themosses respond to differentmoisture condi-
tions – in particular, reflectance increases as the Sphagnum dries and
becomes paler. Sphagnum has very pronounced water absorption fea-
tures at 990 and 1200 nm(Harris et al., 2005, 2006). The subject ofmea-
suring peatland water content from remote sensing data could provide
enough material for an entire paper in itself, so a brief summary is all
that is given here (see Harris and Bryant, 2009 for more information).

Water indices, as with vegetation indices, can be calculated using
visible and infra-red data from satellites. The Water Index (WI) studies
the changes in the reflectance trough at 950–970 nm (see Fig. 5), which
is caused by the light absorbance of water in plants, compared to a ref-
erence wavelength at 900 nm (Peñuelas et al., 1997). The Land Surface
Water Index (LSWI), also known as the Normalised Difference Water
Index (NDWI) uses the principle that the SWIR band at 1.24 μm mea-
sures both water content and other plant factors, whereas the NIR
band at 0.86 μm only responds to factors other than water content –
the difference is therefore an index of vegetation water content (Gao,
1996). The floatingWater Band Index (fWBI) considers the minima be-
tween 930 and 980 nm to be thewater absorption band. This minimum
is compared to the reference wavelength at around 900 nm (Strachan
et al., 2002; Harris, 2008).

McMorrow et al. (2004) and Meingast et al. (2014) used specific
bands (1400 and 1940 nm; 970, 1200, 1450, 1950 and 2250 nm) to in-
dicate water content and estimate WTD. Meingast et al. (2014) found
that the bands in the NIR range gave the best results over vegetated
peat. This corroborates Harris et al. (2005)'s work which found that
water indices using the NIR range gave the best results in their laborato-
ry work on Sphagnum drought stress. Letendre et al. (2008) found that
both the LSWI and the WI had strong correlations with volumetric
water content in peat (Pearson's coefficients of 0.77 and 0.75 respec-
tively). They also found that using a ratio of NDVI/WI improved the re-
lationship between the vegetation index alone and NEE values at their
study site in Canada (Letendre et al., 2008). Harris (2008) found that
the fWBI correlated very well with the pooled data for photosynthetic
efficiency from five different Sphagnum species under drought stress
(correlation coefficients of 0.58–0.90). Overall, studies show that
water indices using the visible and NIRwavelengths are adequate prox-
ies for water content in the vegetation and acrotelm of bog
environments, although passive RS is unlikely to givemuch information
about water contents deeper in the soil. There is no consensus as yet on
which is the best, and it may be the case that different indices are better
suited to different peatland landscapes and vegetation communities.

4. Challenges of working with RS on peatlands

Remote sensing of peatland vegetation can be a challenge when
there are both vascular plants and mosses present at a site, due to the
different heights of the species. It can be difficult to accurately measure
LAI when there is vertical heterogeneity in the vegetation (Garrigues
et al., 2008), and if there is a thick vascular canopy the presence and
spectral signal of Sphagnum can sometimes be missed altogether
(Parry et al., 2015). This height differentiation can also cause a differ-
ence in the PAR received by different plants (Chong et al., 2012).
Huemmrich et al. (2010) suggest that at some sites it is necessary to
treat peatlands as a two-level environment, with a moss understory
and a vascular canopy, and to include this distinction in remote sensing
models.

The response of Sphagnum mosses to environmental conditions is
spectrally very different to that of vascular plants. Reflectance in the
SWIR regions of the spectrum is lower than for vascular plants due to
the higher water content of Sphagnum (Bubier et al., 1997; Bryant and
Baird, 2003). Calculating NDVI over peatlands has shown unusually
high values compared to vascular plant communities, and this can affect
GPP estimates in peatlands where Sphagnum is prevalent (Whiting,
1994; Letendre et al., 2008). Different plant types also have differing
spectral responses to drought (Bryant and Baird, 2003; Lund et al.,
2010; Urbanová et al., 2013). Yuan et al. (2014) adjusted the EC-LUE
model over boreal forests to take into account the presence of mosses
and their effect on GPP estimations. They found that a model with sep-
arate ɛmax values for vascular plants and mosses, and an estimation of
proportional contribution to the satellite signal from each, gave a
more accurate result (Yuan et al., 2014). Letendre et al. (2008) suggest
that the Sphagnum challengemay be at least partly overcome by includ-
ing a water index in any given model.

The prevalence of different vegetation species is strongly related to
the type of peatland being studied. There is some evidence that the dif-
ference between types of peatland is great enough to affect the relation-
shipwith spectral data (see Section 3.2), but as yet there are not enough
studies available to quantify this difference. Correctly identifying
peatland type and relating this to spectral data is important for generat-
ing accurate estimates of carbon flux.

Many peatlands are water-saturated for a large proportion of the
year, which can cause problems for remote sensing. Highwater content
may cause an increase in light scattering, or a change in absorption fea-
tures, which will affect the satellite signal. Also, many of the models
discussed (e.g. MOD17, GLO-PEM, EC-LUE, VPM, Turner et al., 2006;
Anderson et al., 2008) in this paper assume that a lack of water is a lim-
iting factor on GPP and Reco. However, healthy peatland environments
almost always have a very high water table so the water factors in
many of these models developed in other ecosystems may need to be
re-evaluated for peatlands. Another aspect these models do not consid-
er is that complete saturation is a limiting factor on soil respiration in
peatland environments.

Peatland environments are often very cloudy, which can limit the
data available from remote sensing. This is an issue with all remote
sensing in the visible and infrared wavelengths, but is a particular prob-
lem in some ecosystems such as high latitudewetlands. One of theways
to dealwith this issue is to use data from a satellitewhich has a frequent
pass interval (e.g.MODIS, Sentinel-3), as there is then a higher chance of
collecting a reasonable amount of useful data which can be gap-filled
sensibly. The trade-off here is in terms of spatial resolution. Other op-
tions include using active sensors which can penetrate cloud cover, or
utilising aerial imaging which can be obtained by flying below the
cloud layer – though shadows and low light may then become major
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factors. One issue associated with cloud cover is that the GPP estimated
from RS data may be overestimated if only clear day estimates are used.
The range of LUE values is generally much smaller on clear days than on
cloudy days – and peatlands occur most widely in areas of high cloud
cover (Drolet et al., 2005).

The microtopography of peatlands (see Fig. 2) can also affect carbon
fluxes (Bubier et al., 2003; Forbrich et al., 2011), but is difficult to detect
directly with RS, particularly when spatial resolution is coarse (Crichton
et al., 2014). Waddington and Roulet (1996) found that the scale from
which extrapolation is attempted can affect whether the overall esti-
mate is a sink or a source – variation in fluxes is greatest at the
microtopography level, although there are also carbon flux variations
at the mesoscale due to features such as pools and sections of different
land cover. Pools in particular are an important component of the car-
bon cycle on peatlands, and ignoring their presencemay lead to an inac-
curate estimate of NEE (Waddington and Roulet, 1996; Lindsay, 2010;
Turner et al., 2016).

There are several ways to solve the heterogeneity issue; thefirst is to
use very fine resolution imagery which can detect different vegetation
communities, and use this data to analyse the proportion of land
which is hummocks and hollows in order to estimate variations in car-
bon flux within the cells of coarser resolution data (Forbrich et al.,
2011). The second is to assume that although peatland is heterogeneous
at a small scale, peatland sites are fairly homogenous at a larger scale
(this is known as a repeat mosaic). In other words, the assumption is
that the grid square size covered by satellites such as MODIS will be a
reasonably representative sample of the entire peatland area. A third
option is to downscale data from a coarse resolution satellite. There
are several methods for downscaling (e.g. Hill et al., 2011; Stoy and
Quaife, 2015), one of which is themodel STARFM (Spatial and Temporal
Adaptive Reflectance Fusion Model) which combines Landsat data
(which has fine spatial resolution but a long pass interval, with data
from MODIS (which has a coarse spatial scale but short pass interval),
to create a product with fine resolution and a short repeat interval
(Gao et al., 2006; Walker et al., 2014).

Validation of remote sensing carbon flux models is usually per-
formed using data from EC towers, but there can be issues with scale
and geolocation (see Fig. 3). Both EC footprints and satellite pixel sizes
can vary. EC footprints change size and shape with wind direction and
speed, whilst satellites typically collect data from a slightly different
area on each pass, and require geo-correction (Schubert et al., 2010;
Harris and Dash, 2011). Clearly, the larger the area covered by the EC
footprint, themore chance there is of being able tomatch it to a satellite
pixel (see Fig. 3). The assumption that peatlands are fairly homogenous
at large scales and that one satellite point or EC footprint is representa-
tive of the whole landscape is necessary for this validation to be mean-
ingful. More work is needed to determine whether or not this
assumption can be considered reasonable.

Every method of calculating carbon flux is subject to its own errors,
including RS, EC and chamber techniques. For optical sensors in satel-
lites, corrections for atmospheric effects must be made before the data
are used. The translation of raw RS data into products and models also
introduces error. Data from EC towers, in the form which is often used
for validation of RS models, are the result of a series of processing
steps which include calculating the flux from the raw turbulence and
gas concentration data; averaging the flux over time periods; removing
periods of very low turbulence; gap-filling; and partitioning into GPP
and Reco (typically using a temperature dependant model of Reco fitted
to night time data when GPP is zero). This means that eddy covariance
data are not a truly accurate measure of carbon flux, yet they are often
treated as though they are a direct measurement. Chamber fluxes are
usually considered to be on too small a scale to be a useful validation
method for remotely sensed flux estimates, and there are concerns
that collar insertion methodology may cause inaccurate results
(Heinemeyer et al., 2011). In particular, the short timescale and small
area of chamber measurements means that extrapolating to a whole
satellite pixel over several months is likely to give results so inaccurate
as to be meaningless.

One advantage of satellites with long time series, such as Landsat
and MODIS, is that between instrument errors are avoided. Infra-Red
Gas Analysers (IRGAs) used in chamber studies and Eddy Covariance
towers have advanced greatly in precision over the last decade, mean-
ing that comparison between early and modern chamber or EC studies
is difficult. Satellites with long time series do not have this problem be-
cause the instrument is the same. Satellites also avoid the operator error
which can occur between researchers using different protocols for their
chamber or EC studies. The frequency of measurements can increase
precision in satellite data compared to chamber studies, particularly
for satellites with a frequent return interval.

Future studies intending to use RS data should consider the resolu-
tion and coverage of available RS data when designing their ground-
validation methodology. In particular, footprint size and coverage in re-
lation to EC towers, and sampling locations and frequency in relation to
chamber studies, should be decided with regard to the RS data. One po-
tential solution to the different coverage of chamber, EC andRS data is to
scale fluxes using proportional cover (Forbrich et al., 2011;Marushchak
et al., 2013). This can be done in terms ofmicrotopography by consider-
ing the proportion of the measured area comprising of hummocks, hol-
lows and lawns (see Fig. 2) or in terms of variation in vegetation species.
Issues to consider when attempting proportional cover corrections in-
clude the time and access needed to identify features or vegetation
over the entire area of the EC footprint or satellite pixel. Enough mea-
surements should be taken to allow a reliable average for each identified
feature type or vegetation species. The proportional cover can be deter-
mined by surveying the entire footprint area, possibly using aerial pho-
tography. It is also important to have ground validation data for all
seasons, as different vegetation species can have a proportionally very
different contribution to fluxes at different times of the year.

5. Potential future work

The previous section (Section 4) has highlighted a number of chal-
lenging issues which must be addressed when RS methods are applied
to peatland environments. More work is clearly needed in overcoming
these challenges, particularly in separating the signal of vascular plants
from mosses, and in considering the problems of heterogeneous
microtopography and peatland types (see Section 4). This section, how-
ever, discusses some of the largest gaps this review has identified in the
literature which need to be addressed in future in order to improve re-
motely sensed estimates of carbon fluxes over peatlands.

The area of remote sensing carbon flux estimation over all ecosys-
tems is dynamic and wide ranging, with many different models and
methodologies being developed. The problemwith many of these stud-
ies, however, is that they are too narrow for comparison. They consider
one particular site in one particular ecosystem, and develop a remote
sensingmodelwhich gives good results compared to thefluxmeasuring
method on the ground (most often EC). Even studieswhich look atmul-
tiple sites and attempt to create a global model often focus on a narrow
range of only four or five ecosystem types. Peatlands and their huge va-
riety of types are almost never included as a separate category in remote
sensing models of carbon flux, and as such are certain to be over or
under-estimated. More cohesive studies are therefore needed, which
not only look at peatland carbon fluxes across sites and countries, but
also which link peatland flux models to those developed in other
ecosystems.

Roulet et al. (2007) point out that the peatland carbon cycle is com-
plex and includes many components, some of which are under-studied.
Peatland studies using remote sensing have so far focused almost en-
tirely on estimating GPP, and there is a need for more work on the po-
tential of remote sensing for estimating respiration fluxes. One major
challenge when using current models of Reco over peatland environ-
ments is that they are designed for use on well-drained soils, and so
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do not include the concept that water saturation may decrease soil res-
piration. In carbon peatland studies using field measurements, NEE cal-
culations dominate. There are few studies that combine NEE with CH4

and DOC, and there is very little work combining these using remote
sensing (Sturtevant and Oechel, 2013; Watts et al., 2014).

Considering the range of GPP models discussed in Section 2.2.3, it is
evident that LUE-based models are still the dominant method for using
RS to assess the carbon uptake of ecosystems. Most studies agree that
theMOD17 product is a poor estimate for peatland GPP, most likely be-
cause the LUE modifiers are based on a look-up table with no specific
peatland category. NDVI and EVI are both widely used as proxies for
fPAR, and studies over peatland have given good results using one or
the other of these indices. More work is needed, however, to determine
which is the most effective proxy, particularly when combined with
other model factors. Narrow-band indices such as PRI should also be
considered in future studies, particularly with the operation of new
narrow-band satellite sensors such as EnMAP.

In both peatland and other ecosystem studies, temperature and
water stress have been shown to be useful modifiers of LUE and to im-
prove the model results. There is still much debate about the best indi-
ces to use, however, particularly for water stress which is an essential
consideration in peatlands, given their semi-permanent saturation. Fu-
ture studies should seek to determine which water indices are best
able to capture the entire range of water contents experienced within
peatland landscapes.

An interesting avenue of future work would be to consider combin-
ing visible and NIR data with RS data from other sources such as InSAR.
The combination of texture, elevation and colour changes has the po-
tential to inform a future generation of peatland models.

There is a need for more long-term studies on peatland in order to
inform the temporal variability that should be expected of model out-
puts, and the inputs that are most influential in longer-term peatland
carbon flux variations (Marushchak et al., 2013; Helfter et al., 2015;
Strachan et al., 2016). Some satellites (e.g. Landsat) have long data ar-
chives, which could be extremely useful in historical studies of peatland
carbon flux, but only if themodels used are validated under appropriate
conditions. Carbon fluxes are known to vary greatly between years at
the same site, and it is possible for a peatland to be a carbon source
one year and a sink the next (Silvola et al., 1996; Lafleur et al., 2003;
Roulet et al., 2007; Yu, 2012). For example, Roulet et al. (2007) moni-
tored a bog in Canada for six years,with the lowest annualNEE (greatest
sink) during the period of −112 g CO2/m2 and the highest (smallest
sink) of −2 g CO2/m2. Many field studies only report on one growing
season and exclude winter fluxes altogether, therefore potentially
underestimating annual Reco (Roulet et al., 2007; Sturtevant and
Oechel, 2013). It is also important to repeat studies across several differ-
ent types of peatland, as it cannot be assumed that areas with different
characteristics will respond in a similar manner to environmental
changes (Lund et al., 2010; Kross et al., 2016). Remote sensing has the
potential to easily estimate carbon fluxes over large areas and long pe-
riods of time and could therefore fill a gap in the literature of long-
term carbon flux studies over peatlands - but it is important to have re-
liable models first, and to continue to validate models appropriately.

As restoration of peatland offers the potential to increase carbon se-
questration (Silvola et al., 1996; Urbanová et al., 2013; Beetz et al.,
2013), it is important to increase understanding of how rewetting af-
fects peatland carbon fluxes in the long term (Bussell et al., 2010).
Modelling driven by remote sensing data could be a useful approach
for large-scale monitoring of peatland restoration schemes, but more
work is needed on whether RS data can adequately detect changes in
peatland carbon fluxes that are due to restoration processes. We are
currently unaware of any published studies utilising remotely sensed
data to examine the effects of restoration on carbon fluxes from
peatlands. Restoration is generally accepted to improve carbon uptake
in comparison to drained and degraded sites, even if the resulting car-
bon balance is still net emitting or near neutral (Beetz et al., 2013).
However, several studies have shown that rewetting is more effective
on some peatland sites than others, and there may be some areas
which can be improved but never fully restored to a near-natural condi-
tion (Basiliko et al., 2007; Clark et al., 2010; Worrall et al., 2011). It is
therefore important to have more long term (5 years plus) studies on
restoration of different peatland types, in an attempt to characterise
what makes a peatlandmore or less likely to be producing reduced car-
bon emissions through restoration, and to analyse which restoration
methods are the most successful (Bain et al., 2011). Many restoration
programmes on Northern peatlands are still in their early stages, and
it will be important to continue monitoring on longer timescales of sev-
eral decades. This is an area of future work into which RS could be use-
fully integrated.

6. Conclusions

This critical review provides clear evidence for the potential of using
RS methods in Northern peat bog carbon flux estimations as well as in
other peatlands around the world. The review also highlights a number
of cautionary issues which must be accommodated when using RS
methods in a peatland habitat, and it identifies a number of challenges
which have yet to be adequately tackled.

Some researchers have already applied GPPmodels to peatland eco-
systems, and some have focused on the effectiveness of specific aspects,
such as the correlation of vegetation indices with peatland dynamics.
The studies considered in this review suggest that the best RS GPP
model for peatlands is likely to include either NDVI or EVI, and to have
both temperature and water modifiers of LUE. There are many ways of
measuringwater stress usingRS data, and the studies in this review sug-
gest that visible and NIR wavelengths produce potentially usable esti-
mates of peatland water through indices such as the LSWI, WI and
fWBI. The best model is therefore likely to be based on visible and NIR
wavelengths which are readily available from several satellite sensors
already in operation, although spatial resolution will be improved by
newer satellites with finer sensor capabilities.

Respiration is a harder problem to solve in RS models of peatland
carbon fluxes. Different studies havemodelled respiration in very differ-
ent ways, and there is as yet no commonly used model structure as
there is with the LUE model for GPP. The studies considered in this re-
view suggest that respiration (both Ra and Rh) is sensitive to tempera-
ture and to productivity/biomass. In addition, soil respiration is
concluded to be sensitive to soil water content. Water is especially im-
portant in peatlands, which may have the opposite response to most
ecosystems – increasing soil respiration with lower than normal water
levels.

Many of the problems encounteredwhen applying RSmodels of car-
bon fluxes to peatlands are the same as for any other ecosystem: satel-
lite issues such as atmospheric scattering and geocorrection and ground
validation issueswith the estimation of fluxes frommethods such as EC.
However, other concerns are unique to peatland environments, such as
the spectral and height differences between vascular and non-vascular
vegetation types, and the microscale heterogeneity of many peatlands.
Morework is therefore needed into the upscaling of fluxes froma repeat
mosaic environment, and into the potential of having a model which
splits its parameterisation between vascular and non-vascular
vegetation.

This review suggests that there is a need for multi-disciplinary stud-
ies across several peatland sites over several years using RS. Remote
sensing models, particularly those for GPP, are now attaining levels of
confidence where they could be considered plausible additions to the
suite of methods used to measure carbon exchange in peat bog sites.
Of particular interest would be studies that explore the potential use
of RS in the construction of total carbon budgets, including GPP, Reco,
CH4 and DOC. There is, however, so far little published information in
the peer-reviewed literature from sites which have been subject to res-
toration management. This dearth of information is surprising, given
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the high profile now afforded peatland ecosystems within decision-
making circles around the world and the scale of resources devoted to
such restoration in order to stem carbon losses and restore long-term
carbon storage.
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