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Abstract 19 

A wide variety of tools aim to support decision making by modelling, mapping and quantifying 20 

ecosystem services.  If decisions are to be properly informed, the accuracy and potential limitations 21 

of these tools must be well understood. However, dedicated studies evaluating ecosystem service 22 

models against empirical data are rare, especially over large areas. In this paper, we report on the 23 

national-scale assessment of a new ecosystem service model for nutrient delivery and retention, the 24 

InVEST Nutrient Delivery Ratio model. For 36 river catchments across the UK, we modelled total 25 

catchment export of phosphorus (P) and/or nitrogen (N) and compared model outputs to 26 

measurements derived from empirical water chemistry data. 27 

The model performed well in terms of relative magnitude of nutrient export among catchments 28 

(best Spearman’s rank correlation for N and P, respectively: 0.81 and 0.88).  However, there was 29 

wide variation among catchments in the accuracy of the model, and absolute values of nutrient 30 

exports frequently showed high percentage differences between modelled and empirically-derived 31 

exports (best median absolute percentage difference for N and P, respectively: ± 64%, ± 44%).  The 32 

model also showed a high degree of sensitivity to nutrient loads and hydrologic routing input 33 

parameters and these sensitivities varied among catchments.   34 

These results suggest that the InVEST model can provide valuable information on nutrient fluxes to 35 

decision makers, especially in terms of relative differences among catchments. However, caution is 36 

needed if using the absolute modelled values for decision-making. Our study also suggests particular 37 

attention should be paid to researching input nutrient loadings and retentions, and the selection of 38 

appropriate input data resolutions and threshold flow accumulation values.  Our results also 39 

highlight how availability of empirical data can improve model calibration and performance 40 

assessment and reinforce the need to include such data in ecosystem service modelling studies. 41 
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1. Introduction 52 

The ecosystem services concept is increasingly widely applied by decision makers seeking to assess 53 

the likely impacts of environmental change on human health and wellbeing (Braat and de Groot 54 

2012; Tallis et al. 2008).  For ecosystem services to be useful in practice, they must be quantified and 55 

mapped to identify the risks, impacts and potential trade-offs associated with predicted or known 56 

environmental change, or among different change scenarios (Malinga et al. 2015).  To achieve such 57 

assessments, a wide variety of methods and tools have been developed to map, quantify and value 58 

the provision of ecosystem services (Fisher et al. 2009; Malinga et al. 2015; Seppelt et al. 2011; 59 

Sharps et al. 2017).  60 

In recent years, many ecosystem service modelling tools have become freely available to the global 61 

user community. This overcomes issues surrounding proprietary software and data formats, and 62 

enables model development and application to benefit from increased data and model sharing, 63 

cloud computing facilities and a larger user community (Feng et al. 2011).  Critically, these tools 64 

model multiple services, allowing users to take a multi-criterion approach to decision-making (Keller 65 

et al. 2015). Whilst the free and open-source nature of such tools brings many advantages, it allows 66 

users to run a wide range of models, and obtain results, with little knowledge of the modelling 67 

process or expertise in the subject area. A potential pitfall is that users may not familiarise 68 

themselves with the intended use and limitations of the model before using it, and may be unaware 69 

of the uncertainty associated with results that they incorporate into decision making processes 70 

(Willcock et al. 2016).  Whilst a body of literature has begun to emerge exploring the strengths and 71 

weaknesses of these models (Dennedy-Frank et al. 2016; Redhead et al. 2016; Sharps et al. 2017; 72 

Willcock et al. 2016) the number of studies seeking to validate and explore the sensitivities of 73 

ecosystem service models remains limited (Hamel et al. 2017; Maes et al. 2012; Malinga et al. 2015; 74 

Schulp et al. 2014; Seppelt et al. 2011), especially over the large (i.e. regional to national) spatial 75 

scales at which much resource management policy is formulated (e.g. Wilby et al. 2006).  Such 76 

studies are vital in providing user communities with the information required to choose the tools 77 

that are most appropriate for their particular situation, to use them correctly, and to understand 78 

associated uncertainties (Willcock et al. 2016).  They can also provide valuable information on 79 

potential data sources for parameterising models, and help to focus data acquisition by revealing 80 

which parameters have the most influence on model accuracy. As a result, recent reviews have 81 

identified that one of the key obstacles to successful ecosystem service mapping and 82 

implementation into decision making processes is the comparative scarcity of validation or 83 

measurements of uncertainty in many applications of ecosystem service models (Maes et al. 2012; 84 

Malinga et al. 2015; Schulp et al. 2014; Seppelt et al. 2011) 85 
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 86 

Freshwater ecosystem service models that assess how land management affects water quantity and 87 

quality have the advantage of using physical variables that are commonly used in hydrologic 88 

modelling, even though these contribute to a wide range of different final services, from recreation 89 

to human health (Keeler et al. 2012). One of the most frequently modelled services is nutrient 90 

retention, which represents the reduction in nutrient loads between sources and receiving 91 

watercourses, due to biogeochemical processes involved in nutrient transport.  Models of nutrient 92 

retention (e.g InVEST, ARIES, LUCI (Sharps et al. 2017; Vigerstol and Aukema 2011)), typically use a 93 

hydrologic module representing nutrient retention processes or, where available, direct outputs 94 

from more complex nutrient models (e.g. SWAT, RHESSys, see reviews in Breuer et al. (2008); and 95 

Shepherd et al. (1999)).  When the modelling approach includes quantitative estimates of nutrient 96 

transport and retention, it becomes comparatively easier to validate models, because 97 

measurements of water chemistry are, in many countries, collected by environmental bodies and 98 

the water industry and these can be used to estimate watercourse loads for comparison with model 99 

outputs.  Whilst this approach falls short of measuring a final ecosystem service (Keeler et al. 2012), 100 

it is an important step in providing the biophysical underpinning for any further assessments of 101 

ecosystem service value. 102 

In this study, we used data from UK national monitoring to perform a thorough evaluation of the 103 

recently released nutrient retention tool of the Integrated Valuation of Ecosystem Services and 104 

Tradeoffs (InVEST, Sharp et al. 2016) ecosystem service modelling suite.  InVEST is widely used for 105 

modelling multiple ecosystem services and considering trade-offs (e.g. Bai et al. 2013; Leh et al. 106 

2013; Nelson et al. 2009; Sánchez-Canales et al. 2012; Sharps et al. 2017) and is free and open-107 

source. We used national scale, spatially distributed data (of the sort available to most potential 108 

users) for model inputs and performed validation against a long-term, empirically-measured dataset. 109 

Our objectives were 1) to examine the sensitivity of the model to variation in input parameter 110 

values, spatial resolution and data sources, and 2) to determine the accuracy of the model against 111 

empirical data when using the most informative combination of input parameter values, for both 112 

phosphorus (P) and nitrogen (N). 113 

2. Methods 114 

2.1. THE INVEST NUTRIENT DELIVERY RATIO MODEL 115 

The InVEST (v.3.3.3) suite of tools has been developed to enable decision makers to assess trade-offs 116 

across ecosystem services and to compare the consequences of different future change scenarios, 117 

for example in land use or climate (Sharp et al. 2016).  To this end, InVEST comprises a set of models 118 
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that cover a wide range of ecosystem services.  Like many ecosystem service models, these models 119 

are based on comparatively simple production functions, enabling them to be run quickly on a 120 

standard desktop computer and to take advantage of readily available data (Sharp et al. 2016) and 121 

targeting a user community with potentially limited technical background.  122 

The UK has a long history of issues arising from nutrient contamination of watercourses (Johnes et 123 

al. 1996; Withers and Lord 2002), as it is densely populated and has a large proportion of its land 124 

area under anthropogenic land uses (i.e. agricultural and urban land). This results in high levels of 125 

nutrient input to freshwater systems, and ensuing concerns over the contamination of drinking 126 

water and damage to aquatic ecosystems via eutrophication (Withers and Lord 2002). Validated 127 

nutrient export models, with clear estimates of their accuracy and uncertainty are therefore 128 

particularly valuable to compare nutrient exports under different scenarios of environmental change 129 

or management interventions over larger spatial scales (Johnes et al. 1996; Shepherd et al. 1999; 130 

Wilby et al. 2006). 131 

The InVEST nutrient delivery ratio (NDR) model aims to quantify relative nutrient export and 132 

retention across different catchments or sub-catchments, and to reflect changes in nutrient 133 

export/retention under different change scenarios. The model maps the transport of nutrients from 134 

catchment sources to the stream network. It combines the advantages of nutrient transport models 135 

(e.g. SWAT (Arnold et al. 1998); RHESSys (Tague and Band 2004)), which often work at the scale of 136 

subwatersheds or hydrological units to provide quantitative estimates of nutrient flows, and index 137 

models (Drewry et al. 2011), which spatially map source risk and transport factors. 138 

The model computes a nutrient mass balance that represents the long-term, steady-state flow of 139 

nutrients based on i) nutrient sources associated with different land use/land cover (LULC) in the 140 

landscape, and ii) the retention properties (e.g. LULC, slope) of pixels belonging to the same flow 141 

path (Parn et al. 2012; Sharp et al. 2016). Specifically, nutrient sources across the landscape are 142 

derived from LULC-specific nutrient application (loading) rates, which can be determined from 143 

empirical data. Nutrient sources can be divided into surface and subsurface sources (which 144 

conceptually represent sediment-bound and dissolved components, a distinction common to many 145 

nutrient transport models (Newham et al., 2004; Newham et al., 2008). The model only includes 146 

diffuse sources of nutrient; point sources are not included and need to be added in post-processing 147 

of model outputs.  Next, the model uses topographic routing and an index, the NDR factor, to 148 

emulate the movement of nutrients across the landscape and into a watercourse. The NDR factor is 149 

calculated for each landscape pixel based on the properties (e.g. slope, retention coefficient) of 150 

pixels that belong to the same flow path. This empirical approach is in contrast to more complex, 151 
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process based models that incorporate detailed representations of nutrient cycling (see Breuer et al. 152 

2008 for a review). At the catchment outlet, the nutrient export to water is calculated as the sum of 153 

the pixel-level contributions.  For further details on the model, see Supplementary Material, 154 

Appendix S1 and Sharp et al. (2016).  Model source code is available in Hamel and Sharp (2017) 155 

Because of the qualitative nature of the NDR factor approach, calibration of the model is necessary 156 

to gain confidence in the quantitative outputs. The main calibration factor is the kb parameter, which 157 

governs the relationship between the connectivity index, which is a function of topography, and the 158 

NDR factor. This relationship is further described in the user’s guide (Sharp et al., 2016) and is akin to 159 

the structure of the InVEST sediment delivery ratio model (Hamel et al. 2015), which can be used 160 

independently to model this other facet of water quality. 161 

2.2. MODEL INPUTS 162 

Spatially explicit model inputs required for the NDR model are a digital elevation model (DEM), land 163 

use/land cover (LULC) raster data, nutrient runoff proxy raster data and a vector delineation of the 164 

watersheds.  We used the Centre for Ecology & Hydrology’s Integrated Hydrological Digital Terrain 165 

Model (CEH IHDTM, Morris and Flavin 1990) for the DEM.  The IHDTM was resampled or aggregated 166 

to the required resolution (see below), filled to eliminate sinks and combined with a digital 167 

watercourse network (Moore et al. 1994) to ensure routing along known watercourses. These 168 

processes were performed in ArcMap (v10.3 © ESRI, Redlands, CA). The model also requires a 169 

threshold value for flow accumulation (TFA) to define streams, which is expressed as a number of 170 

upstream pixels.  Within the model, watercourses are assumed not to retain or add to the nutrient 171 

load, and nutrients reaching a stream pixel will contribute directly to the total load from the 172 

catchment (Sharp et al. 2016).  The TFA value was selected following sensitivity analyses and 173 

examination of watercourse maps (See below, section 2.3). 174 

LULC data were obtained from the 25 m resolution raster version of the UK Land Cover Map 2007 175 

(LCM2007, Morton et al. 2011).  The LCM2007 data are derived from satellite imagery, generalised 176 

digital cartography and image segmentation, and classify the UK land surface into 23 broad habitat 177 

classes (Jackson 2000; Morton et al. 2011).  The InVEST model requires several parameter values for 178 

each distinct LULC class. These include the nutrient load applied to the land (kg ha-1 y-1), the 179 

proportional retention of that nutrient load, the length of flow path required to achieve that 180 

retention (in metres), and the proportion of the nutrient load that travels via subsurface flow. This 181 

last variable is set to zero by default, making the assumption that all nutrients travel via surface or 182 

shallow subsurface flow. However, if modified, the model then requires two further parameters – 183 

the subsurface nutrient retention efficiency and the flow length required to achieve this.  184 
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Nutrient loading and nutrient retention coefficients for each LULC class were obtained by performing 185 

an extensive literature search for values relevant to the UK and for habitats that most closely 186 

matched the broad habitats defined by the LCM2007 (Supplementary Material, Table S1).  Where 187 

several possible values for a single LULC class were found, the median value was used. A wide variety 188 

of sources provided information on P (Dillon and Kirchner 1975; Fozzard et al. 1999; Johnes 1996; 189 

May et al. 2001; May et al. 1996; McGuckin et al. 1999; Smith et al. 2005) with rather fewer 190 

supplying suitable values for N (Johnes 1996; Shi et al. 2006).  Because many of these publications 191 

report measured or estimated export coefficients from land to water, which are a function of the 192 

two required model inputs (load to land and retention), some loads were estimated from export 193 

coefficients according to the following formula (Sharp et al. 2016): 194 

𝐿𝑜𝑎𝑑 𝑡𝑜 𝑙𝑎𝑛𝑑 =
𝐸𝑥𝑝𝑜𝑟𝑡 𝑓𝑟𝑜𝑚 𝑙𝑎𝑛𝑑

1 − 𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛
 195 

Critical flow length (i.e. the distance of travel required to achieve the nutrient retention coefficient) 196 

was set to the resolution of the input LULC raster across all LULC classes, catchments and nutrients, 197 

which was consistent with the relatively coarse resolution (25m at the minimum). 198 

Previous studies have shown that choice of input data can have major impacts on the accuracy of 199 

InVEST ecosystem service models where these data relate to parameters to which the model is 200 

highly sensitive (Hamel and Guswa 2015; Pessacg et al. 2015; Redhead et al. 2016; Sánchez-Canales 201 

et al. 2012).  We compared three sets of input data for the nutrient runoff proxy raster. These were, 202 

1) WorldClim precipitation data (Hijmans et al. 2005), which are readily available, widely used and 203 

have global coverage interpolated to approximately 1km resolution 2) UK Met Office UKCP09 data at 204 

5km resolution (Jenkins et al. 2008; Perry and Hollis 2005), which gave good estimates of total 205 

annual water yield when used in the relevant InVEST model (Redhead et al. 2016), and 3) CEH-GEAR 206 

data at 1km resolution (Tanguy et al. 2014), which has a higher spatial resolution. All datasets 207 

comprise gridded rainfall per raster cell at monthly or annual time steps, derived from interpolation 208 

and correction for geographic and topographic factors of measurements taken from a national 209 

network of meteorological stations. Data were derived from the mean of annual values between 210 

2000 and 2012 to match the period of the validation data.  We also tested a randomised dataset 211 

using values drawn from the range of all three datasets to test the impact of large errors in the 212 

nutrient runoff proxy raster on model accuracy.  213 

2.3. SENSITIVITY ANALYSIS  214 

As well as varying input datasets for the nutrient runoff proxy raster we also tested the sensitivity of 215 

the model to changes in the values of the input parameters. This is key to understanding why the 216 
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model behaves as it does, setting appropriate ranges for calibration of parameter values and helping 217 

subsequent users to identifying those parameters for which it is most worthwhile investing in to 218 

obtain more accurate data. To do this, first we ran the model on “hypothetical” versions of our test 219 

catchments, with the UKCP09 precipitation data, default values for threshold flow accumulation and 220 

kb parameter (TFA = 1000 and kb= 2, respectively), input LULC and DEM raster resolution of 25m and 221 

a single land cover class with a mean nutrient load to land (4.7 kg ha-1y-1) and retention (0.3) 222 

(because the model has the same structure, these analyses are valid for N and P).  We then varied 223 

each of the precipitation data, nutrient load and nutrient retention by ±50% and ±90% and examined 224 

the percentage difference in modelled nutrient export to water. These values were chosen because 225 

the percentage difference between the median and maximum/minimum export coefficients was 226 

approximately 100%, so these variations explore the likely range of variation encountered when 227 

using literature derived coefficients. 228 

For the single-value parameters (TFA and kb) we explored a range of values.  We tested three TFA 229 

values (100, 1,000 and 10,000).  We used these three values because preliminary analyses 230 

determined that more subtle variations in TFA made very little difference to the overall length of 231 

steam network, especially in larger catchments. Preliminary analyses also determined that values 232 

below 100 were very likely to overestimate the stream network density, whilst values above 10,000 233 

were not met in all catchments (i.e. no modelled watercourses were created).  Because the ideal TFA 234 

value was catchment specific (see Results, section 3.1), we also used another approach, which 235 

involved setting the threshold either at default (1000) or high (10,000) but combining known 236 

watercourses into the LULC raster as a separate class with appropriately low retention.  We used the 237 

same digital watercourse network to do this as was used to correct the flow paths generated from 238 

the DEM (Moore et al. 1994).  For kb we compared values of 0.5, 1, 2 (the default), 4, 8 and 16.  239 

Preliminary analyses determined that, whilst kb is dimensionless and can in principle accept any 240 

value, values above this range made progressively less differences to the relationship between 241 

topography and nutrient delivery, whilst values below this range tend to collapse the function to the 242 

point where extreme changes in connectivity are required to impact on nutrient delivery. In all 243 

model runs we assumed a subsurface flow proportion of zero (i.e. all nutrient transported via 244 

surface flow). 245 

Because the spatial scale and resolution of the input data can affect ecosystem service model 246 

outputs (Sharp et al. 2016), especially those with a dynamic flow component (Grafius et al. 2016), we 247 

also compared models run with versions of the LCM2007 and IHDTM at the highest resolution 248 

available (25m, the resolution of the raster LCM2007), and at lower resolutions that could easily be 249 

derived from these data (50m, the resolution of the IHDTM, 100, 200, 400 and 800 m.) Coarser 250 
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resolutions greatly speed up the modelling but potentially reduce accuracy.  When changing the 251 

resolution of the input rasters, TFA was adjusted to keep the flow path length consistent across 252 

raster resolutions, following Hamel et al. (2017).  Coarser inputs than 800m were not tested, as at 253 

values above this some smaller catchments begin to have flow paths of only 1 or 2 cells, making 254 

setting an appropriate TFA impossible.  255 

2.4. VALIDATION DATA 256 

The data used for validation were derived from the UK Environment Agency’s Water Information 257 

Management System (WIMS), which provides records of total N and total P concentrations for a 258 

network of sampling points across England and Wales (Envrionment Agency 2017).  Because these 259 

data represent instantaneous concentrations of nutrients, it was necessary to find sites with 260 

coincident records of river flow, and sufficiently frequent measurements of nutrient concentrations 261 

to enable the robust estimation of total annual nutrient load in the watercourse – comparable with 262 

the output of the NDR model – and to account for inter- and intra- annual variation.  To achieve this, 263 

sites from WIMS were filtered to exclude sites with less than 5 years of available data over the years 264 

2000-2010, with each year containing at least one measurement per month of total N or P.  These 265 

sites were then overlain with the locations of all flow gauging stations in the National River Flow 266 

Archive (NRFA). The NRFA collates, quality controls, archives and disseminates hydrometric data 267 

from gauging stations operated by government funded environmental bodies across the UK (Fry and 268 

Swain 2010 ).  WIMS sites that were spatially coincident with NRFA gauging stations had the 269 

necessary daily flow data available to enable annual nutrient loads to be calculated and their 270 

catchments had been previously defined using the IHDTM.  These temporal and spatial filters 271 

resulted in 33 catchments being identified as having sufficient data to act as a validation dataset for 272 

P.  However, because total N was measured at a smaller proportion of sites (most measure NOx), 273 

only three catchments met all of the above criteria for N. Therefore, we reduced to three the 274 

required number of years with at least monthly measurements, giving 16 catchments with sufficient 275 

data for N. 276 

Total annual nutrient load for each year was calculated from the WIMS and NRFA data for each 277 

catchment using the Beale Ratio Estimator (BRE, Beale 1962) which relates the ratio of average load 278 

to average flow, at times when concentrations are measured, to the ratio of average true load to 279 

average true flow over the entire period of interest (Dunn et al. 2014). Whilst there are a wide 280 

variety of methods available with which to extrapolate loads from intermittent data, ratio estimators 281 

have been used in previous validation studies (Terrado et al. 2014) and the BRE has been shown to 282 

produce robust results, especially when the measurement frequency of the concentration data is 283 

lower than that for discharge (Dolan et al. 1981; Dunn et al. 2014; Meals et al. 2013; Quilbé et al. 284 
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2006; Richards and Holloway 1987), as was the case here.  The median BRE nutrient load across 285 

years for each catchment was then calculated.   286 

Because the NDR model only accounts for nutrients from diffuse sources, it was necessary to adjust 287 

the modelled output of total load by an estimated load for point sources, to enable comparison with 288 

the validation data.  In the UK, point sources can contribute the majority of P and a substantial 289 

proportion of N to waterways (Edwards and Withers 2008), although this varies across space and 290 

time (Arheimer and Lidén 2000).  The estimated load from point sources was obtained using a GIS 291 

layer of wastewater treatment works (WWTWs) provided from UK Water Companies through the 292 

Environment Agency (see Williams et al. 2009).  Although there is a wide variety of other point 293 

sources of N and P releases (Edwards and Withers 2008), WWTWs are likely to be the largest 294 

contributor at a whole-catchment scale in the UK (Bowes et al. 2005; Edwards and Withers 2008).  295 

For each WWTW, data were available describing the maximum human population served and the 296 

treatment type employed (i.e. primary, secondary or tertiary). These data were combined with a 297 

mean annual per capita export of P and N in untreated sewage of 0.52 kg P and 4.5 kg N and nutrient 298 

retention efficiencies for the different treatment types, both derived from a recent UK-wide review 299 

(Naden et al. 2016), to give an estimated annual N and P output for each WWTW.  N and P outputs 300 

from individual WWTWs were then summed to give an annual load from WWTWs per catchment. 301 

This value was then subtracted from the per-catchment BRE to give a total export from diffuse 302 

sources only for comparison with the output of the InVEST NDR model.  We removed catchments for 303 

which the estimated nutrient export from point sources contributed to more than 50% of the total 304 

estimated export (mostly relatively heavily urbanised catchments, Fig. 1), as these were unlikely to 305 

be well represented by the model (which focuses on diffuse sources) and would be highly influenced 306 

by any errors in our estimation of point source nutrient exports, giving final sample sizes of 28 for P 307 

and 14 for N (Figure 1 and Supplementary Material, Table S1). 308 
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 309 

Fig. 1. Map of southern UK showing catchments providing validation data for nitrogen (yellow), 310 

phosphorus (red) or both (orange).  Blue catchments indicate those which had sufficient nutrient 311 

and flow measurements, but were estimated to have over 50% of total nutrient runoff due to point 312 

sources and so were excluded from further analyses. Urban areas are also shown in grey (from 313 

LCM2007).  Note that none of these catchments overlap. 314 

2.5. STATISTICAL ANALYSIS 315 

Comparisons between the modelled and measured data were made by performing linear regressions 316 

implemented in R (R Core Team 2014), as well as comparing the percentage differences between 317 

modelled and measured.   Many stakeholders require models simply to predict accurately the rank 318 

order of locations in terms of ecosystem services, rather than absolute values (Willcock et al. 2016) 319 

and the InVEST model does not necessarily aim for accurate prediction of values (Sharp et al. 2016). 320 

Therefore, we also tested the accuracy of the InVEST NDR model in predicting relative export values 321 

using rank correlation (Spearman's rho). 322 

 323 

3. Results 324 

3.1. SENSITIVITY ANALYSIS 325 

Modelled nutrient export from the NDR model was insensitive to variation in precipitation 326 

(Supplementary Material Fig S1A).  This was expected since these variations were applied as 327 

https://www.google.co.uk/search?client=firefox-b&q=Spearman%27s+rho&spell=1&sa=X&ved=0ahUKEwjL0LislezRAhUFWxoKHU3JBlkQvwUIGSgA
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consistent percentage change across the entire spatial extent.  Because the role of this input is to 328 

represent relative runoff between pixels, the model is still likely to be sensitive to different inputs 329 

where they show different spatial patterns, as opposed to different magnitudes.  This was addressed 330 

by comparing the three different input datasets (see below, Section 3.2). 331 

The model was sensitive to variation in the nutrient loading and retention values (Supplementary 332 

Material Fig S1B and S1C) although sensitivity was linear.  Because land cover was held constant for 333 

these analyses, sensitivity to these parameters did not show any catchment specificity.  334 

In contrast, sensitivity to the two calibration parameters was highly catchment specific. Figure 3 335 

illustrates the percentage change in modelled nutrient export compared to the values obtained 336 

when using the default parameter values of 2 for kb and 1000 for TFA. The effect of kb on the 337 

magnitude and direction of change in nutrient export was catchment specific (Fig 2A).  Overall, 338 

decreasing kb to 0.5 produced the most extreme changes (-20% to +35%), whilst increasing kb to 4 339 

resulted in changes of ±10%. Further increases in kb resulted in changes that remained within this 340 

range for the majority of catchments (Fig 2A). Catchment sensitivity appeared driven by topography, 341 

with more topographically varied catchments in the uplands showing decreases in nutrient export in 342 

response to increased kb values and less varied, lowland catchments showing the opposite response 343 

(Pearson’s r against % change at kb = 0.5; Mean catchment altitude n = 35, r = 0.704, p < 0.001; 344 

Standard deviation in catchment altitude n = 35, r =  0.709, p < 0.001).    345 

 346 

Fig. 2 Sensitivity of the NDR model output to variation in the values of A) Borselli kb parameter and 347 

B) Flow accumulation threshold, TFA (with wc indicating where the threshold was applied along with 348 

known watercourses from the digital watercourse network being added to the LULC raster).  Each 349 

colour represents a different catchment. 350 

Sensitivity to variation in the flow accumulation threshold TFA was also catchment specific (Fig 2B).  351 

This was unsurprising as the degree to which a given TFA value accurately represents actual 352 
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watercourses will vary among catchments depending on their hydrogeology and topography. As can 353 

be seen in Figure 4, the default value of 1000 overestimated the stream density in some catchments 354 

whilst underestimating it in others.  Thus, either reducing or increasing the threshold improved 355 

representation of the routing of nutrients in some catchments but made it less accurate in others – 356 

values of 100 captured most watercourses in some catchments (Fig. 3A and 3B) whilst in others 357 

actual watercourses were best represented by TFA of 10,000 (Fig. 3C and 3D).  Addition of mapped 358 

watercourses to the LULC input with a TFA of 1000 resulted in comparatively minor changes to the 359 

nutrient export (Fig 2B), but ensured that no catchment had known watercourses which were not 360 

modelled as such.  Using the same approach with a TFA of 10,000 had a large effect on the modelled 361 

nutrient export (Fig 2B), reducing nutrient export by up to 20%, by restricting in-stream transport to 362 

mapped watercourses only.  Which of these latter results is the more accurate is likely to depend on 363 

the accuracy of the mapped watercourse network (Baker et al. 2007), many of which, for example 364 

ditches and field drains, have not been mapped into a hydrologically consistent network for the UK.  365 

Because small, unmapped watercourses are known to have a potentially high impact on nutrient flux  366 

(Edwards and Withers 2008; Foster et al. 2003; Heathwaite et al. 2006) we chose to use a TFA value 367 

of 1000 with watercourses from Moore et al. (1994) added to the LULC raster for further analyses. 368 

 369 

Fig. 3 Examples of two catchments showing the catchment specific effects of variation in the flow 370 

accumulation threshold, TFA, on modelled watercourse location.  Panels A and C show the known 371 

watercourse network (in blue) overlain onto the hydrologically corrected digital elevation model. 372 

Panels B and D show streams as determined by three flow accumulation thresholds (100 = green; 373 
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1000 = green + yellow; 10,000 = green + yellow + red).  The catchments are shaded according to 374 

altitude from dark (low, minimum = sea level) to pale (high, maximum = 600 m.a.s.l) grey. 375 

3.2. MODEL VALIDATION AND COMPARISON OF INPUT DATASETS 376 

Whilst the slope of the relationship remained similar for both nutrients, both N and P showed 377 

increasing percentage differences at resolutions coarser than 100m (Table 1 and Figure 4A and D). 378 

When reporting percentage differences across catchments we used the median of mathematical 379 

absolute percentage differences to avoid spurious impressions of increased average accuracy 380 

resulting from a wider range of under- and overestimates. At coarser (>100m) resolutions, although 381 

absolute values became increasingly erroneous for both nutrients, modelled N tended to preserve 382 

relative magnitudes of differences between catchments (shown by slightly increased Spearman’s ρ).  383 

Indeed, the relatively stable values for rLR
2 for N suggest that coarser resolutions gave increasingly 384 

severe underestimates, but that the relationship between modelled and measured data remained 385 

relatively consistent across catchments.  In contrast, at coarser resolutions than 100m, modelled P 386 

became increasingly inaccurate in terms of both absolute and relative export, and the relationship 387 

between modelled and measured data became increasingly inconsistent (table 1). 388 

In practical terms, finer resolutions substantially increased the model run time, from around 30 389 

seconds at 800m resolution, through 5 minutes at 100m resolution to around 4 hours at 25m 390 

resolution.  The size of the input and output files was also substantially greater at finer resolutions, 391 

with output export maps for a single nutrient of 1.5 gigabytes, 100 megabytes and 2 megabytes for 392 

resolutions of 25, 100 and 800 metres, respectively. Given the observed drop off in rLR
2 and 393 

Spearman’s ρ for P and the increased percentage difference between modelled and measured data 394 

for both nutrients at resolutions coarser than 100m (Table 1 and Figure 4) we selected a resolution 395 

of 100m for further model testing and validation.  396 

Table 1 Comparisons of total P and N export from the InVEST NDR model with exports estimated 397 

from measured flows and nutrient concentrations, for varying resolutions of input data.  Estimated 398 

exports were adjusted to remove point sources.  Results are: median absolute percentage 399 

difference; Spearman’s   and the intercept, slope and r2 (rLR
2) of a linear regression; between the 400 

two datasets. 401 

Nutrient 
Resolution 

(m) 

Median 
absolute % 
difference 

Spearman’s 

rho () 

Linear regression 

Intercept Slope 
(± 95% CI) 

rLR
2 

P
h

o
sp

h
o

r

u
s 

25 54.51 0.77 0.31 0.49 (±0.12) 0.72 

50 56.43 0.78 0.34 0.49 (±0.12) 0.71 

100 55.73 0.79 0.34 0.49 (±0.12) 0.73 
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200 56.30 0.79 0.31 0.48 (±0.13) 0.69 

400 67.91 0.75 0.15 0.47 (±0.14) 0.62 

800 88.96 0.56 -0.28 0.44 (±0.23) 0.36 
       

N
it

ro
ge

n
 

25 72.57 0.75 0.31 0.67 (±0.27) 0.71 

50 70.37 0.78 0.33 0.67 (±0.27) 0.72 

100 72.58 0.81 0.28 0.69 (±0.25) 0.76 

200 76.56 0.83 0.15 0.71 (±0.23) 0.80 

400 84.11 0.87 -0.25 0.79 (±0.23) 0.81 

800 95.51 0.88 -1.28 0.98 (±0.37) 0.73 

 402 

Because the sensitivity of the model to kb appeared relatively high (Fig. 3A), and because there was 403 

no clear way to assess which value was most appropriate from our sensitivity analysis alone, we ran 404 

the model and compared to validation data for values of kb of 0.5, 1, 1.5, 2, 2.5, 3, 3.5 and 4.  We did 405 

not explore values of kb beyond the range 0.5 - 4 here because sensitivity analysis demonstrates that 406 

at values much over 4 the impact of Kb on the model levels off, whilst at values approaching zero, 407 

the results diverge towards extreme values (Figure 2A). Overall, the effect of varying kb on the fit to 408 

the validation data was not large, with near identical rLR
2, slope and Spearman’s correlation 409 

coefficient (Table 2).  From Figure 4B and 4E, it can be seen that lower kb values resulted in median 410 

percentage differences closer to zero, but this appears due to an increased number of outliers with 411 

substantial overestimates rather than a general improvement across catchments.  This is perhaps 412 

unsurprising, given the widely varying catchment responses to changes in kb seen in Figure 3A. There 413 

was thus no clear evidence to support altering the value of kb from the default of 2 for our modelling 414 

across multiple catchments.   415 

Table 2 Comparisons of P and N export from the InVEST NDR model with exports estimated from 416 

measured flows and nutrient concentrations (adjusted to remove point sources), for eight values of 417 

kb. 418 

Nutrient kb 
Median 

absolute % 
difference 

Spearman’s 

rho () 

Linear regression 

Intercept Slope 
(± 95% CI) 

rLR
2 

P
h

o
sp

h
o

ru
s 

0.5 41.16 0.77 0.41 0.49 (±0.12) 0.71 

1 53.97 0.76 0.37 0.49 (±0.12) 0.71 

1.5 58.43 0.77 0.33 0.49 (±0.12) 0.71 

2 55.73 0.79 0.34 0.49 (±0.12) 0.73 

2.5 56.99 0.79 0.32 0.49 (±0.12) 0.72 

3 55.41 0.79 0.31 0.49 (±0.12) 0.72 

3.5 53.59 0.79 0.30 0.49 (±0.12) 0.72 
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4 54.54 0.79 0.29 0.49 (±0.12) 0.72 
       

N
it

ro
ge

n
 

0.5 64.00 0.78 0.38 0.68 (±0.24) 0.75 

1 72.99 0.78 0.32 0.68 (±0.24) 0.75 

1.5 75.49 0.80 0.27 0.68 (±0.24) 0.76 

2 72.58 0.81 0.28 0.69 (±0.25) 0.76 

2.5 73.72 0.81 0.25 0.69 (±0.25) 0.76 

3 74.52 0.81 0.22 0.70 (±0.25) 0.76 

3.5 75.11 0.81 0.21 0.70 (±0.25) 0.76 

4 75.56 0.81 0.19 0.70 (±0.24) 0.77 

 419 

Having explored the effect of kb and the input data resolution, we then compared the three input 420 

precipitation data sources.  The choice of precipitation data again made comparatively little 421 

difference to either N or P export (Table 3 and Figure 4C and 4F).  The randomised precipitation 422 

dataset did show reductions in  and rLR
2 but actually decreased median percentage difference. 423 

Table 3 Comparisons of total P and N export from the InVEST NDR model with exports estimated 424 

from measured flows and nutrient concentrations (adjusted to remove point sources), for three 425 

difference sources of precipitation data (WorldClim, Met Office UKCP09 and CEH-GEAR). 426 

Nutrient 
Precipitation 
data source 

Median 
absolute % 
difference 

Spearman’s 

rho () 

Linear regression 

Intercept Slope 
(± 95% CI) 

rLR
2 

P
h

o
sp

h
o

ru
s 

WorldClim 56.40 0.81 0.33 0.51 (±0.12) 0.73 

UKCP09 55.73 0.79 0.34 0.49 (±0.12) 0.73 

CEH-GEAR 57.07 0.77 0.35 0.49 (±0.12) 0.71 

Random 55.13 0.69 0.37 0.46 (±0.17) 0.53 

       

N
it

ro
ge

n
 

WorldClim 70.70 0.88 0.17 0.74 (±0.21) 0.83 

UKCP09 72.58 0.81 0.28 0.69 (±0.25) 0.76 

CEH-GEAR 73.59 0.84 0.28 0.69 (±0.25) 0.75 

Random 65.27 0.74 0.28 0.68 (±0.27) 0.71 

 427 

 428 

 429 
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 430 

Fig. 4 Boxplots showing the effect of spatial resolution (i.e. dimensions of raster cells in metres) 431 

(A,D), Borselli kb (B,E) and precipitation data source (C,F) on percentage differences between 432 

estimated total nutrient export per catchment from the InVEST NDR model and corresponding 433 

exports estimated from gauged flow and measured nutrient concentration data (adjusted to remove 434 

point sources), for phosphorus (A,B,C) and nitrogen (D,E,F).  Grey shaded areas indicate the range of 435 

variation in estimated nutrient export values resulting from interannual variation in estimated 436 

exports (quartiles, light grey) and the maximum and minimum values for average per capita nutrient 437 

outflow from point sources (dark grey) 438 
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Modelled total nutrient export showed a better fit to the empirical data than did modelled load 439 

alone (P: rLR
2 = 0.73, 0.56, Spearman’s  = 0.79, 0.69, N: rLR

2 = 0.76, 0.72, Spearman’s  = 0.80, 0.75, 440 

for load and export, respectively, with 100m resolution inputs, Kb = 2 and UKCP09 precipitation 441 

data).  The NDR factor component of the model thus results in substantial increases in model 442 

performance over a simple summation of loads, especially for P. 443 

Because the results at all values of kb  and the different precipitation datasets resulted in good 444 

predictions of the relative magnitude of nutrient export (ρ = 0.77 - 0.81 and 0.75 - 0.88, for 445 

phosphorous and nitrogen, respectively) but relatively large underestimates of absolute values 446 

(range of absolute median estimates ±44.4% – ±58.4% and ±65.3% – ±76.6% for phosphorous and 447 

nitrogen, respectively), we ran a final model with reduced retention coefficients for both nutrients.  448 

Whilst this deviates from parameter values reported from empirical studies (see section 2.2), we 449 

were interested to see if a large improvement in accuracy could be made by performing a simple, 450 

uniformly applied adjustment to retention values.  We therefore divided retention values by two and 451 

re-ran the model (with 100m resolution inputs, Kb = 2 and UKCP09 precipitation data).  Although this 452 

resulted in slightly reduced absolute median percentage differences (by 8.5% and 9.2% for 453 

phosphorous and nitrogen, respectively), the Spearman’s  and the slope and rLR
2 from linear 454 

regression were also reduced (4-10% reduction Spearman’s , 4-13% reduction in rLR
2, 8%-12% 455 

reduction in slope).  This suggests that modifying the retention coefficients away from literature 456 

values helps to reduce the median level of underestimates, but reduces the ability of the model to 457 

predict relative magnitude of nutrient export between catchments, probably by worsening 458 

overestimation in low exporting catchments whilst improving underestimation in high yielding ones 459 

(Figure 5). 460 

 461 
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Fig. 5. Nutrient export per catchment from the InVEST NDR model plotted against exports estimated 462 

from measured flows and nutrient concentrations (adjusted to remove point sources), for P (panel 463 

A) and N (panel B).  Points represent InVEST results (input resolution = 100m, kb = 2, precipitation 464 

data = UKCP09) against Beale Ratio Estimated nutrient export from measurements.  Horizontal bars 465 

span the range given by 25th to 75th percentile of interannual variation in the Beale ratio estimated 466 

nutrient export ± the maximum and minimum values for average per capita nutrient outflow from 467 

point sources.  Vertical bars indicate the range in modelled export resulting from running the model 468 

with values of kb between 0.5 and 4, input raster resolution of 25, 50, 100 and 200 metres and the 469 

three different precipitation datasets. A 1:1 relationship is indicated by the dotted line.  Note axes 470 

are on a log10 scale. 471 

4. Discussion 472 

4.1. PERFORMANCE OF THE INVEST NDR MODEL 473 

Our results suggest that the InVEST NDR model can give good results in terms of the relative 474 

magnitude of N and P export across a wide variety of UK river catchments, with  between 0.7 and 475 

0.83 depending on the scale of input data and parameter values used.  However, accuracy in terms 476 

of estimating actual nutrient export was comparatively low with the majority of catchments showing 477 

over or underestimates of up to 44% for P and 65% for N.  It should be noted that attempting to gain 478 

good model performance over a large number of widely varying catchments is a challenging test for 479 

the model. Performance is expected to be higher with calibration at the regional level with 480 

catchments having similar hydrogeological properties.  Whilst some studies perform such model 481 

performance assessment (e.g. Bai et al. 2013; Terrado et al. 2014), many ecosystem service models 482 

are applied at regional or national scales without validation (Martínez-Harms and Balvanera 2012). A 483 

survey across sub-Saharan Africa demonstrated that many stakeholders wish to run ecosystem 484 

service models at national scales (Willcock et al. 2016). Furthermore, ecosystem service models are 485 

often perceived as being of great use in data-scarce parts of the world (Pandeya et al. 2016; Villa et 486 

al. 2014) where there are few opportunities to calibrate or validate. Therefore, it is important for 487 

studies such as ours to demonstrate some of the possible pitfalls of applying ecosystem service 488 

models without extensive validation and sensitivity testing. 489 

4.2. UNDERSTANDING MODEL SENSITIVITIES 490 

Sensitivity to variation in the input parameter values is unsurprising and, of course, desirable if a 491 

model is to be used to assess change over time or among future change scenarios.  However, it is 492 

also important to understand that such sensitivities can determine how appropriate a model is to a 493 

particular study region, where to focus most effort on data acquisition (Boithias et al. 2014; Sánchez-494 
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Canales et al. 2012), or to aid in assessing the uncertainty associated with model outcomes.  In brief, 495 

the model appeared most sensitive to the nutrient loading and retention values, the threshold flow 496 

accumulation and the resolution of the input raster data (beyond a certain range). We discuss each 497 

of the parameters in turn. 498 

4.2.1. Nutrient load and retention 499 

The linear response between nutrient export and nutrient load and nutrient retention coefficients is 500 

to be expected, given that nutrient export is calculated as the product of nutrient load on a pixel and 501 

the NDR factor, which is proportional to nutrient retention parameters from downslope pixels. 502 

These parameters are thus the major drivers by which the spatial configuration of land use/land 503 

cover affects nutrient runoff.  Importantly, nutrient loads and retention efficiencies will vary greatly 504 

in time and space.  In our test catchments, most of which are dominated by arable land or 505 

agriculturally-improved grassland, such variation will be driven by crop type, stocking density, 506 

fertiliser application rates and timings, and other farm management practices.  It is, therefore, 507 

essential to research these values sufficiently to ensure that they are robust for the land cover types 508 

that are dominant in the study region and those that are of most interest in relation to any change 509 

scenarios that are being explored.  510 

4.2.2. kb parameter 511 

The Borselli kb parameter determines the relationship between hydrologic connectivity (the degree 512 

of connection from patches of land to the stream) and the NDR.  Higher values mean that the 513 

relationship between the connectivity index and the NDR factor becomes linear, whereas lower 514 

values mean that this relationship becomes a step function. This relationship is site-specific, as 515 

demonstrated by the very different responses to varying kb shown by different catchments in our 516 

sensitivity analysis. This is also likely to be the reason that, from our results, calibration to produce 517 

the best cross-catchment absolute accuracy may not result in the most accurate predictions of 518 

relative magnitude between catchments and vice versa. Therefore, although this parameter is in 519 

practice the main parameter used for calibration (Sharp et al. 2016), where possible kb should be 520 

determined regionally, across catchments with similar hydrogeological properties. 521 

4.2.3. Threshold flow accumulation  522 

Varying the flow accumulation threshold TFA had a substantial effect on model output.  This effect is 523 

partly explained by the model structure, which assumes that stream pixels do not export any 524 

nutrient. Therefore, changing the density of the stream network also changes the number of pixels 525 

that actually contribute to nutrient loading and retention (e.g. 66%, 92%, 98%, 99% at TFAs of 10, 526 

100, 1000 and 10000, respectively, at 25m DEM resolution). Our results show that, as with kb, 527 
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selecting a single value that is equally applicable across a number of catchments is difficult, because 528 

catchment topography and hydrogeological attributes (e.g. groundwater flow) can change the 529 

threshold that needs to be set to capture actual watercourses.  Comparing the derived stream 530 

network to a known watercourse network is a key first step to selecting an appropriate value, and 531 

our results also suggest that modifying the DEM and LULC map to capture known watercourse 532 

networks may provide a robust approach to overcoming this issue when conducting cross-catchment 533 

analyses. 534 

4.2.4. DEM and LULC raster resolution 535 

Changing the resolution of the input DEM and LULC spatial data had comparatively little effect on 536 

the accuracy of the model output for both P and N at resolutions less than or equal to 100m. Whilst 537 

this is in contrast to other studies which have concluded that increased data resolution usually 538 

results in increased model accuracy (Brazier et al. 2005), decreased sensitivity to input raster 539 

resolution is a stated aim of the design of the NDR model (Sharp et al. 2016), hence the inclusion of 540 

TFA and critical flow length parameters which the user can modify.  It appears that resolutions finer 541 

than 100m gain little in absolute accuracy to justify the very substantial increases in file size (making 542 

data harder to store, manage and disseminate) and running time which result from running the 543 

model with finer resolution inputs.   544 

However, resolutions coarser than 100m resulted in decreasing accuracy, especially for P.   This is 545 

likely to be a result of coarser resolution cells losing spatial detail, with values being generalised to 546 

average (DEM) or dominant (LULC) values per cell.  The most likely mechanism for the effects we 547 

observed are loss of detail from the LULC raster.  If the key LULC classes governing nutrient export 548 

are relatively small in area, they may be lost from aggregated inputs.  For example, in UK upland 549 

catchments which are largely semi-natural, small areas of agricultural land close to watercourses 550 

would have a disproportionate effect on total nutrient export, but may not form the majority cover 551 

of any non-watercourse pixels in a coarse resolution LULC map, removing their potential to influence 552 

modelled nutrient export.  The two nutrients differed somewhat in their responses to resolution 553 

(with N retaining accurate relative magnitude and a consistent relationship between modelled and 554 

measured data, even though underestimation became more severe).  This is probably because of 555 

their different loadings and export pathways. Phosphorus is more associated with high releases from 556 

proportionally small areas with high hydrologic connectivity whilst nitrogen is more evenly spread 557 

across land cover classes and less directly linked to the degree of hydrologic connectivity (Edwards 558 

and Withers 2008; Withers and Lord 2002), such that the loss of spatial detail at coarser resolutions 559 

affects the ability of the model to reflect actual export to different degrees. 560 
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4.2.5 Precipitation data source 561 

Unlike the InVEST water yield model (Redhead et al. 2016), the NDR model appeared relatively 562 

insensitive to the source of input precipitation data.  All three datasets produced similar results, and 563 

even the randomised data only reduced accuracy slightly. To some extent this is unsurprising. The 564 

effect of precipitation data is to modify the per pixel load to account for runoff potential by relating 565 

the precipitation per cell to the average across the raster (see Supplementary Material, Appendix 566 

S1).  Therefore, providing that general spatial patterns are preserved between input datasets, this 567 

should be sufficient to obtain similar results.  The lack of effect of using randomised data is perhaps 568 

more surprising, as here the spatial pattern of relative runoff has been removed.  However, by using 569 

long term average data at 1km to 5km scales, the range of values is not high within many 570 

catchments, so even when randomising the data the distribution of runoff potential across the 571 

landscape does not vary hugely (Supplementary Material, Table S2). Of course, for those catchments 572 

with a higher range in precipitation (in our analysis this was limited to larger catchments spanning 573 

upland and lowland), randomisation will have a greater effect, so in locations where rainfall is more 574 

variable within catchments (e.g. Boithias et al. 2014; Terrado et al. 2014), or over timescales where 575 

temporal variation becomes an issue, this parameter may become of much greater importance. 576 

4.3. LIMITATIONS OF THE MODEL 577 

The InVEST NDR model includes only a relatively limited number of the wide range of complex, and 578 

spatially and temporally variable processes that influence nutrient transport from land to 579 

watercourses (see reviews in Arheimer and Lidén 2000; Edwards and Withers 2008; Parn et al. 580 

2012).  Whilst this is clearly stated in the InVEST documentation, it is important to explore some of 581 

these limitations to remind potential users of the sensible use of the model and to explain the 582 

relatively large and variable underestimates of nutrient delivery that our results show. 583 

One of the most obvious limitations of applying this model within the UK is that it focuses on diffuse 584 

(i.e. non-point) sources of nutrient only, while most UK catchments, especially those in more 585 

populated areas, are also affected by nutrient discharges from WWTWs. This is not a limitation of 586 

the model as such, but it is a problem that needs to be addressed when comparing modelled output 587 

with measured values. This is discussed below under limitations of our validation approach (Section 588 

4.3). 589 

A limitation of the model that is harder to compensate for is the presence of catchment specific 590 

processes that may affect nutrient transport and export in ways that are hard to predict or capture 591 

within model frameworks that are based on an average load per area of land use/land cover class.  592 

These include nutrient releases from so-called intermediate sources (because they are neither 593 
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diffuse nor a predictable point source) such as field drains, septic tanks, farmyard and/or road/track 594 

runoff (Edwards and Withers 2008).  Such features are difficult to include as a LULC class because 595 

they are rarely well mapped and nutrient releases from them are often difficult to predict because of 596 

high spatial and temporal variation (Edwards and Withers 2008; Withers et al. 2014).  For example, 597 

field drains can release large amounts of P into watercourses from agricultural land during storm 598 

events, bypassing surface flow and normal retention capabilities (Foster et al. 2003; Heathwaite et 599 

al. 2006; Hooda et al. 1999). Such features may be especially important in rural catchments where 600 

most other sources are diffuse (Jarvie et al. 2003). In addition, it has been shown that interpolation 601 

of infrequent data is unlikely to give reliable estimates of in-stream P loads where temporal changes 602 

in stream flow and P concentrations happen very quickly in response to rainfall and surface runoff 603 

(Defew et al. 2013). 604 

The model can be set to apportion a set amount of nutrient transport to subsurface flow for each 605 

LULC class; this is then subject to a simple exponential decay function driven by distance to stream. 606 

A value can be defined by the user across all LULC classes (Sharp et al. 2016), but in reality 607 

subsurface flow and nutrient retention varies considerably within LULC classes.  There are also many 608 

features that, whilst contributing to nutrient retention and export, lie below the spatial resolution of 609 

most input LULC maps. These include riparian buffer strips or riparian vegetation that can retard or 610 

reduce the level of nutrients entering the watercourse (Aguiar Jr et al. 2015; Darch et al. 2015; Lena 611 

et al. 1994; Parn et al. 2012).  Once nutrient enters a watercourse it may be subject to further 612 

retention by aquatic vegetation or uptake by riverine sediments (Jarvie et al. 2005).  However, on an 613 

annual scale, most of these in stream nutrient sinks are temporary and much of the nutrient 614 

delivered to a watercourse from land eventually leaves the catchment in one form or another 615 

(Bowes and House 2001). 616 

Although the two nutrients are modelled in identical ways by the InVEST model, the extent to which 617 

the model is able to reflect the real world flow of the two nutrients is likely to differ, hence our 618 

observed differing accuracies for N and P. This is because of differences in anthropogenic sources, 619 

temporal and spatial variation is levels of output, and the chemical properties of the two elements 620 

and the various forms in which they are usually transported through soil-water systems. One key 621 

difference is that N can be removed from the hydrological system by denitrification to atmospheric 622 

N2 and, in some cases, very high retention can be achieved within a watercourse by riverine or 623 

wetland vegetation that promotes such processes (Parn et al. 2012; Saunders and Kalff 2001).  No 624 

equivalent process exists for P (Parn et al. 2012), so at times of high P runoff, the normal retention 625 

capacity of any particular land cover class may be more likely to become saturated, leading to higher 626 

than expected exports (Koerselman et al. 1990).  Phosphorus flows are often dominated by point 627 
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source releases and temporal factors such as surface runoff during and after storm events. In 628 

contrast, N transport is more often associated with broader land cover patterns, subsurface flow and 629 

soil chemistry (Edwards and Withers 2008; Nedwell et al. 2002; Parn et al. 2012; Withers and Lord 630 

2002).   631 

The issues outlined above may be part of the reason why a simple, universally applied reduction of 632 

retention coefficients did not substantially improve model accuracy. However, it is also worth noting 633 

that the ability of the model to obtain good predictions in terms of the relative magnitude of 634 

nutrient export, despite these limitations, suggests that the model and its results are useful if 635 

interpreted with caution, especially in order to identify spatial patterns of N or P delivery across 636 

catchments or to examine relative change under potential scenarios, which is the intended use for 637 

most InVEST models (Sharp et al. 2016). However, the relative export or retention of nutrients alone 638 

may not be sufficiently informative for decision makers, who may need to know whether export is 639 

sufficient to meet a threshold (e.g. a legal maximum for drinking water or a level known to cause 640 

certain ecological impacts) or to place an economic value the service of nutrient retention in terms 641 

of avoided water treatment costs. In this case, an understanding of the absolute accuracy of 642 

modelled nutrient export figures, and how to best improve this, is key. Of note, the model is open-643 

source and its code is regularly updated by the development team or external contributors so that 644 

such limitations may be addressed in the future. For example, the NDR model used here was already 645 

an improvement over a previous version (Water Quality model, InVEST v3.2). 646 

4.4. LIMITATIONS OF THE VALIDATION APPROACH 647 

Validation of the model using the approach detailed in this paper has its limitations. Without actual 648 

measurements of nutrient export to water, estimations of average annual export will always be 649 

subject to a degree of error arising from a variety of factors whatever the method of calculation 650 

used.  651 

Firstly, whilst the Beale ratio approach to calculating nutrient has been shown to provide better 652 

results than other methods (Dolan et al. 1981; Dunn et al. 2014; Meals et al. 2013; Quilbé et al. 653 

2006; Richards and Holloway 1987), it has the potential to underestimate in-stream nutrient load if 654 

nutrient sampling does not coincide with periods of peak flow (Quilbé et al. 2006) or peak runoff, as 655 

may occur during short duration, extreme weather events.  During such events, P transport is very 656 

difficult to measure accurately unless sampled at very high frequencies, which is rarely the case for 657 

routine monitoring data (Defew et al. 2013). Also, the peak flows recorded by gauging stations may 658 

themselves be underestimates where these events affect the accurate measurement of flow (e.g. 659 

bypassing of the gauging station by groundwater or flooding, water transfer, etc.).  However, our 660 
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results suggested that BRE derived values were mostly larger than the modelled N and P values, 661 

even when compared to the interquartile range of BRE values across years or the inter-annual 662 

ranges per catchment, so this is unlikely to be a major driver of this apparent error in model 663 

predictions. 664 

Because the model only accounts for nutrients derived from surface runoff, it was necessary to 665 

adjust the validation data to estimate the total that would be derived from diffuse sources, only.   666 

Using WWTW locations and average per capita nutrient export values is common practice, but 667 

potential per capita figures show wide variation between studies, catchments and over time 668 

(Edwards and Withers 2008; Johnes 1996; Naden et al. 2016).  However, this variation is unlikely to 669 

show a systematic bias towards over- or under-estimation across catchments and so our results 670 

should provide a fair reflection of model performance in terms of the slope of the linear regression 671 

line, even if individual catchments over- or under-estimate the proportion of nutrient export that is 672 

derived from point sources.  We also quantified the likely extent of this potential error by examining 673 

the variation in estimated diffuse source nutrient export imparted by varying the maximum and 674 

minimum per capita values for nutrient export from point sources. Even so, there remains a 675 

potential for unquantified error in terms of unmapped point sources and variation in per capita 676 

values among catchments.  Because we excluded catchments where point source nutrient exports 677 

appeared to contribute over 50% to the total in-stream nutrient load, we also excluded heavily 678 

urbanised catchments. So, our validation cannot inform on the ability of the model to predict diffuse 679 

pollution in these types of catchment. 680 

4.5. CONCLUSIONS 681 

Whilst the InVEST NDR model gives good estimates of the relative magnitude of nutrient exports 682 

across catchments, absolute values are frequently underestimated even after calibration of input 683 

parameter values. This is to be expected given the simple nature of the InVEST model and the aims 684 

of using it to compare the outcomes of change scenarios across a wide range of ecosystem services 685 

(Sharp et al. 2015).   Key model sensitivities were to nutrient loading and retention factors and the 686 

threshold flow accumulation.  Input raster resolution had major impacts on model performance only 687 

at resolutions coarser than 100m.  For resolutions finer than this, there was little in the way of 688 

increased accuracy to offset the increased model run time and output data volume.  689 

 Collating the data sources for input and validation of the model, even in such a well-studied region 690 

such as the UK, was time consuming and complex.  Similar difficulties are likely to be encountered in 691 

regions that have less frequent monitoring schemes for nutrients and water flow.  Since one of the 692 

stated aims of the InVEST model is to allow meaningful analyses to take place in data-poor regions, 693 
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we recommend the following uncertainty assessment analyses: exploration of alternative input 694 

datasets for the study region, sensitivity analyses on loads and retention efficiencies for dominant 695 

LULC types, TFA, and kb, and a thorough exploration of the model outputs before using them to 696 

inform decisions.  This reflects the recommendations of the designers of the InVEST NDR model 697 

(Hamel et al. 2015; Sharp et al. 2016) and the findings of previous studies across a number of 698 

ecosystem services (Boithias et al. 2014; Pessacg et al. 2015; Redhead et al. 2016; Sánchez-Canales 699 

et al. 2012).  700 
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