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Introduction 

 

The aim of the study of population dynamics is to identify the causes of numerical change in a 

population and explain how the interaction between these causes results in the observed changes. 

Figure 13.1, this volume, illustrates many of the components involved.  These components have 

been allocated separate chapters in this volume, and the next chapter takes one important crop 

pest species, Sitobion avenae (English grain aphid), and uses a modelling approach to illustrate 

how the components integrate to describe its population dynamics over different spatial scales.  

 This chapter looks at the abundance on crops of several aphid species and what 

explanations for the patterns observed can be proposed from field-derived evidence. 

 Analyses based on age-specific life tables and key factor analysis, which are well-

established techniques for many other insects (Southwood, 1966), are not available in their 

normal format to aphidologists. Such analyses require a census of the different life stages of the 

insect over several generations; this is impossible when generations largely overlap, as they 

rapidly do with aphids following initial establishment. Also, the polyphenism of aphids, with 

high numbers of a local population being dispersing alatae, can result in sub-populations on 

widely differing host plants. Some of these may be crops, and others wild plants; up to now this 

has severely limited our understanding of the population dynamics of the regional population of 

an aphid species. 

Given the complexities when sub-populations occur on a succession of hosts, long term 

studies of aphid population dynamics have focused on monoecious aphids on long-lived plants 

such as trees. It is then possible to census a resident aphid population over an extended period of 

time. The best-known example is probably the work of Dixon and his co-workers over many 

years on the sycamore aphid, Drepanosiphum platanoidis (Kindlmann et al., 2007).  
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Overwintering Populations  

 

Most aphids that are crop pests are of primary interest on an ephemeral crop plant, but also utilize 

other plants at other times. Until now, the emphasis on studying their population dynamics has 

been on the population cycle on the crop, which only on a regional and not on a field scale is 

likely to be relevant to the long term population dynamics of a species.  

The annual nature/management of most crops means that the aphids often need to disperse 

to other hosts for overwintering, though in mild winters in the UK some aphids can overwinter on 

autumn-sown or perennial crops; this then leads to an earlier build-up of the population in spring 

(Oakley and Walters, 2008).  Overwintering populations of Rhopalosiphum padi (bird cherry–oat 

aphid) can of be found on autumn-sown cereal crops, and Morgan (2008) theorized from a 

simulation model with barley that decreasing the mortality rates of apterous nymphs by as little as 

5% over the autumn and winter amplified summer peak densities by as much as 60-fold. 

Most crop pest aphid species are able to reproduce sexually, and in temperate regions this 

typically occurs in autumn (Dixon, 1973). After mating, oviparous females produce eggs that 

overwinter. Aphids may overwinter as eggs or in the mobile stages. Some species adopt one or 

the other strategy exclusively but some have different options in different clones (Chapter 4, this 

volume). Aphid population dynamics over winter are dependent primarily on temperature and 

predation.  The impact of these factors determines levels of mortality and can be direct, 

interactive or mediated through their effect on plant condition.  

Only a small proportion of the alatae leaving crops will find a suitable host for 

overwintering (Ward et al., 1998). Where species overwinter on wild herbaceous plants (e.g. M. 

persicae – Davis and Radcliffe, 2008) or grasses scattered over large areas, sampling populations 

is nigh on impossible.  Much of our knowledge on winter mortality in the field (where there are a 

variety of mortality factors) therefore comes from species that overwinter on trees, and 

particularly in the egg stage. However, much laboratory work has been done on the cold-

hardiness of many aphid species feeding on crops (reviewed by Bale, 1999), which has shown the 

ability of eggs to survive temperatures as low as -40oC although nymphs and adults start to die at 

temperatures as high as -5oC. Winter temperatures in Southern England thus do not generally 

affect eggs but can lead to mortality of newly hatched nymphs (Way and Banks, 1964).  

Harrington and Taylor (1990) followed field populations of M. persicae through the winter on 

brassicas and found that a major cause of mortality was low temperature inhibiting movement to 

suitable new feeding sites within a plant.  
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Correlations between D. noxia abundance and remote-sensed imagery have allowed the 

development of models using vegetation indices to be used as proxies for overwintering aphid 

abundance. Soil and topography are important factors, possibly due to desiccation increasing 

aphid mortality rates (Merrill et al., 2009). Mortality of overwintering D. noxia nymphs and 

adults correlates strongly with the accumulated hours below 0oC (Armstrong and Peairs, 1996). 

Havelka et al. (2014) found that >87 day degrees below -5oC led to complete mortality of 

anholocyclic D. noxia populations.  

Temperature and predation can interact by affecting the development and activity of 

predator populations. Favourable temperature conditions for overwintering active aphids are also 

suitable for parasitoids which then effectively control aphid populations, whereas in the absence 

of parasitoids, aphid populations increase rapidly (Legrand et al., 2004). With some species such 

as M. persicae, however, higher populations are found in winters with higher temperatures, 

regardless of the presence of several predator groups, which do not appear to affect winter 

survival (Harrington and Cheng, 1984).  

 Leather (1993) gives data from 13 sources on the egg mortality over winter of 6 aphid 

species (Table 12.1). Mortality ranged from 23 to 99%, and included 8 instances of 70% or over. 

Such high mortalities would be largely due to predation. Aphis fabae (black bean aphid) eggs on 

spindle trees (Euonymus europaeus) suffer mortality between 18 and 73% with evidence of 

predation by birds and anthocorid bugs, although some eggs fail to hatch despite developing 

fully, even when predators are absent (Way and Banks, 1964).  Eggs of A.  glycines show similar 

high levels of mortality (~70%) (Welsman et al., 2007). The impact of predators may be affected 

by temperature (see above). 

 

 

Spring Populations  

 

Few data seem available on the effect of abiotic factors on the development of populations in 

spring at the overwintering sites, but the positive effects of temperature on aphid development 

time and fecundity are well established (Chapter 5, this volume). Higher spring temperatures 

increase numbers and rainfall decreases populations of M. persicae (Cocu et al., 2005). 

Predation probably has a limited impact on aphid populations in the spring. Although 

many predators were found on bird cherry in the spring, a high proportion of the R. padi 

population was winged by the time predator numbers peaked, suggesting that emigration to 

grasses explains the population decline on the winter host rather than predation (Leather and 
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Lethi, 1982). A similar situation occurs for A. fabae, where fundatrices hatch 3-6 weeks before 

natural enemies become common, suggesting a time lag between aphid and predator populations 

and that predation does not significantly affect aphid populations at this time (Way and Banks, 

1968). 

 

 

Onset of Dispersal to Crops 

 

The dispersal of aphids to crops is usually a consequence of a switch from the production of 

wingless to winged offspring. In host-alternating aphids the number of wingless generations that 

occur following egg hatch on the woody winter host before winged emigrants appear is usually 

genetically determined. In aphids passing the winter in the mobile stages the proportion of alatae 

usually increases as the population becomes crowded, and as the young spring growth of the 

winter host plant becomes mature and less suitable for the aphids (Chapter 4, this volume).  

Intra-specific competition as population density increases leads to an increase in the 

proportion of winged aphids and a slowdown in the reproductive rate of wingless adults (Way 

and Banks, 1968). If high numbers of aphids overwinter, there will be fewer parthenogenetic 

generations than at lower densities before winged forms are produced (Wiktelius, 1984). 

However, some host-alternating aphids can persist on their primary hosts under certain 

conditions. The rose aphid (Macrosiphim rosae), for example, can continue to produce sexual 

morphs on roses; these aphids then join in the sexual phase with those returning in the autumn 

from secondary hosts (Blackman and Eastop, 2006)..  

 

Arrival on Crops 

 

The timing of immigration will be affected by differences in temperature conditions between 

years, and climate change is obviously highly relevant here. In general, higher spring 

temperatures advance the onset of migration and rainfall delays it (Cocu et al., 2005).  

A point often ignored is that insect and plant phenologies often have different drivers. The timing 

of aphid dispersal to crops is largely dependent on temperature whereas many aspects of the 

development of plants are to a great extent governed by photoperiod, which remains consistent 

from year to year. Since under a climate change scenario photoperiod remains constant, it is 

likely to have a considerable impact on the interaction between aphids and their host plants. 
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 Some areas which suffer from aphid pests do not host overwintering populations. In 

Minnesota, USA, M. persicae migrates from the south to colonize herbaceous plants before 

moving onto potato crops (Davis and Radcliffe, 2008).  

 In a survey of a large agricultural region, Macfadyen et al. (2015) found that the timing of 

emigration by aphid crop pests overwintering in the mobile stages close to the crop occurred 

shortly after crop emergence. By contrast, host-alternating aphids such as A. glycines tend to have 

a delayed arrival in relation to the phenology of the crop (Hodgson et al., 2005). Indeed, Ragsdale 

et al. (2004) report a lengthy gap between the production of alatae on Rhamnus spp. in the spring 

and the arrival of the aphid on soybean. This suggests that a third host plant was involved. Aphids 

that initially colonize crops can be from transient migrant populations as well as local 

overwintering populations from adjacent hedgerows and natural vegetation. Using genetic 

profiling of aphids caught in suction-traps, Vialatte et al. (2007) showed that S. avenae tend to 

come mainly from local overwintering sites in years with a major aphid outbreak on wheat crops. 

 The prediction of the likely size of aphid populations arriving on crops has been discussed 

in Chapter 16, this volume. 

 

  

The Population Cycle on Crops 

 

Methodology 

 

Most aphids that are crop pests are of primary interest on an ephemeral crop plant, and utilize 

other plants at other times. Until now, the emphasis on studying their population dynamics has 

been on the population cycle on the crop.  This is unlikely to be relevant to the long term 

population dynamics of a species (see earlier); a population explosion or crash there will have 

little or no impact on the dynamics of the regional population (Mackauer and Way, 1976). Thus 

Onstad et al. (2005) found little similarity among 14 soybean fields in Illinois, USA, in 3 

summers either in the number of A. glycines or synchrony in their population dynamics. 

Speculation as to the reasons for the changes of aphid numbers on a crop have often been 

based on nothing more than numbers of apterous aphids and alatoid nymphs counted in a 

sequence of visual inspections of the crop, coupled with counts of predators, mummies and 

diseased aphids noticed at the same time. Smith (1966) sought to identify the relative importance 

of the different factors involved in population changes between successive samples of 

Acyrthosiphon spartii on Cytisus scoparius (broom) by calculating aphid increase rates from 
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laboratory data and working out predation from the number of predators seen multiplied by the 

voracity of the different predator taxa in the laboratory. Unfortunately aphid increase and 

predator voracity calculated at constant temperature does not reflect what happens in the field 

where the temperature fluctuates. For aphids, fecundity is very different between fluctuating and 

constant temperatures, though the direction of difference varies between studies (Chapter 5, this 

volume). For natural enemies, Hodek (1957) showed that Coccinella septempunctata larvae 

doubled their food consumption at naturally fluctuating temperatures in comparison with their 

voracity at constant temperature equivalent to the mean of the fluctuating temperature.  

Moreover, plants grown under controlled and usually artificially-lit conditions are of quite 

different and often poorer quality as hosts for aphids.  Furthermore, predator voracities in the 

laboratory ignore the time spent searching in the field, but perhaps more importantly predator 

numbers encountered while sampling aphids are likely to be serious underestimates (see later). As 

a result, Smith (1966) overestimated aphid increase rates and underestimated predation by insect 

taxa to the extent that he had a huge gap of unexplained mortality, for which he invoked 

predation by birds. 

Others have attempted to measure mortality factors and emigration directly in the field. 

van Emden (1963), working with B. brassicae on Brussels sprouts, marked 120 leaves with 

colonies and visited them every 4 days to look for non-emerged mummies, cast skins of departed 

alatae, signs of activity of predators such as moist smears and sucked aphids, new mummies 

formed etc. When no more aphids were left on a leaf, a substitute was marked on a nearby plant. 

No attempt was made to measure aphid increase rate in the field, but counts of the aphid 

population on the crop at the same sampling intervals were made. 

van den Berg et al. (1997) and Mills and Latham (2009) made direct observations of 

aphid colonies for standardized time windows to assess predation; however, much predation 

happens at night. van den Berg et al. used clip cages to try to measure aphid increase rate in the 

absence of predators. 

In the end, data on changes in aphid reproductive rate will have to be included in a 

population dynamics exercise and, at present, we do not have a satisfactory numerical approach 

for such an analysis conducted on a crop. The principal barrier is that changes in aphid 

reproductive rate are crucial; they are continually affected by temperature and other weather 

variables and also by host substrate condition, which also varies continually with weather and as 

leaves mature and then age (van Emden, 1965; van Emden and Bashford, 1969). Perhaps not 

surprisingly, therefore, Tenhumberg et al. (2009) found a large discrepancy between the mean 

Acyrthosiphon pisum (pea aphid) population derived from a single adult when modelled on the 

basis of temperature (531) and the empirical population (2394). However, Hughes (1962 – full 
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methodology details are given by Hughes, 1976) explored the possibilities of developing a time-

specific rather than an age-specific form of population analysis of a crop aphid. His life table was 

based on the concept of an ‘instar period’, taken as a constant if measured on the physiological 

time scale of day degrees above the threshold temperature for development. His analysis was 

based on ‘twin samples’ taken one instar period apart (Fig.12.1). On the first sampling occasion, 

leaves were collected and the aphids in the different instars counted. A second batch of leaves 

was taken with predators, mummies and diseased aphids removed and kept in the laboratory, so 

that the number of new mummies and diseased aphids appearing in one instar period was known. 

The potential rate of increase (new first instar aphids) during the instar period was calculated 

from the relative number of aphids in the first, second and third instars, on the assumption that 

these formed a geometric series (tested by chi-square). Thus the actual population in the second 

sample could be compared with an ‘expected’ population assuming no mortality. Once the 

measured subtractive factors had been taken into account, any gap remaining (‘residual 

mortality’) was regarded as the maximum mortality attributable to predation. The technique has 

been criticised by Carter et al. (1978) on the basis that stable geometric series of the first three 

instars will rarely occur in the field. It is also true that, since chi-square is scale dependent, the 

instar series will need to be based on large numbers to give the test adequate discrimination.  

Hughes’s method has not been widely used, but probably more because of the labour 

involved in instar identification than for statistical reservations.  The concept that an increasing 

proportion of younger aphids in a population indicates a high potential increase rate is reasonable, 

and Hughes’s calculation is one approach. The evidence is that it gives estimates of residual 

mortality that are within the range of predation impact that can be expected, certainly in contrast 

with residual mortalities obtained when laboratory data are applied to the field. During the 

International Biological Programme of 1964-1974, the biological control of M. persicae on 

potatoes was studied in 10 countries in 1970-71 (Mackauer and Way, 1976). The Hughes 

technique was used by 8 workers in 5 countries, producing 34 twin-sample data. Only 4 produced 

measurable negative residual mortalities, and in every case these data were taken at very low 

population levels. Even then, chi-square showed a significant deviation of numbers in instars I-III 

from a geometric series. Aalbersberg et al. (1988) found the technique worked well for D. noxia 

except during the population crash at the end of the season, when negative residual mortalities 

could be found. 

 

 

Factors causing numerical change 
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Initial reproductive rates vary considerably between species. Aphid pests of perennial crops such 

as Aphis spiraecola (green citrus aphid) on citrus have a rapid population increase in the spring, 

originating from the initial immigrant alates then supplemented by alates from other host plants 

nearby (Zehavi and Rosen, 1987; Lebbal and Laamari, 2015). On annual crops, aphid populations 

are characterized by a typical logistic curve (Chapter 13, this volume), with initially low levels of 

reproduction. Infestations of D. noxia that disappear early in wheat (before the appearance of the 

first node) do not cause any economic yield loss (Kriel et al., 1986).  Predators may rapidly 

follow aphid pests from adjacent native vegetation into the crop (Macfadyen et al., 2015), but at 

the start of the infestation predation rates are typically insufficiently high to counter new aphid 

immigrants and populations inevitably begin to rise (Costamagna et al., 2013a).  

 

 

Abiotic factors 

 

Changes in aphid populations are affected by weather with temperature and rainfall the most 

important factors. Developmental time, reproductive capacity, longevity and mean generation 

time are all positively correlated with increasing temperature up to a threshold level which differs 

from species to species (Slosser et al., 1989; Chapter 13. this volume). Up to 90% of variation in 

population change of D. noxia is explained by accumulated ‘heat units’ and rainfall (Legg and 

Brewer, 1995). High temperatures become detrimental, e.g. temperatures above 25°C are 

detrimental to A. pisum population growth (Campbell and Mackauer, 1977). In the summer of 

1976, temperatures in southern England caused a collapse of cereal aphid populations, and adult 

syrphids and coccinellids searching for food became highly apparent to the public; there were 

many reports of coccinellids biting people (H. F. van Emden, unpublished).  

 Increasing temperature (up to an optimum) of course increases the rate of reproduction of 

predators as well as that of aphids, and different rates of such change with temperature in 

predators and aphids have the potential for improving the impact of predators at different, 

especially lower, temperatures (van Emden, 1966 – using data of Dunn, 1952). Low temperatures 

can be beneficial to aphid populations in delaying the colonization of the crop by natural enemies 

(Nakata, 1994).  

 Bouts of heavy rainfall can knock aphids off plants, resulting in sudden and sometimes 

dramatic reductions in aphid populations, especially when in combination with high winds 

(Walker et al., 1984; Atsebeha et al., 2009).  Some aphids, e.g. S. avenae in the crevices between 

the ear kernels (Watt, 1979), have behaviour which renders them less susceptible to being 

knocked off the plant. High levels of rainfall can create suitable conditions for fungal infection of 
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aphids, although aphids which are found in more humid microhabitats (e.g. Metopolophium 

dirhodum (rose–grain aphid) and D. noxia as contrasted with S. avenae) are less affected (Feng et 

al., 1991).  

 Humidity can also be important for some aphid species. Aphis spiraecola requires high 

levels of humidity (~40%RH) for population growth with humidity lower than this leading to 

population decline (Dubey and Singh, 2011). 

 

 

Natural enemies  

 

Other chapters in this volume (Chapters 11 and 20 respectively) review the natural enemies of 

aphids and their practical use in biological control of aphids.  Here we limit ourselves to naturally 

occurring natural enemies as drivers of population change in the field. 

Natural enemies have variable impacts on aphid populations on the crop. Different 

predator groups respond differently to aphid presence and population levels. Whether natural 

enemies can control aphid pests seems to vary with species of aphid, and often with year for the 

same aphid species. Much predation of aphids in winter wheat occurs at night and involves 

ground-dwelling staphylinids (Holmes, 1984) and spiders, which are not included in estimates of 

predator numbers made during the houra of daylight.  When plant conditions are favourable (see 

later) predators or parasitoids rarely have a major impact at the early logarithmic phase of aphid 

population growth (Tomanović et al., 2008; Lozzia et al., 2013; Ullah et al., 2014). However, 

when crops are grown in structurally complex landscapes they are colonized by natural enemies 

earlier, which may result in more effective control of aphids during this phase of population 

growth (Raymond et al., 2015).  Specialist predators such as coccinellids often closely track 

population changes in aphid crop pests so that highest predator densities are found at the aphid 

peak in the crop (Hutchinson and Hogg, 1985; Idris and Roff, 2002; Soni et al., 2013). Thus 

densities of syrphids also track changes in A. pisum populations throughout the season, as do 

rates of parasitization (Nakashima and Akashi, 2005). Such correlations are indicative of a 

positive density-dependent numerical response, and there is often no impact on the aphid 

population.  This indicates that, in contrast to the numerical response, functional responses are 

often negatively density-dependent; i.e. in the exponential phase of aphid population growth, the 

time taken by predators to find and consume prey is too long for them to be able to keep up with 

the increase rate of their prey (Costamagna et al., 2013a). On soybean, however, the aphids 

located on the upper nodes have the highest reproductive potential and, because the predators 

concentrate there, A. glycines is controlled effectively (Costamagna et al., 2013b). The peak of 
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predator abundance is usually later than the aphid peak, again indicating that effective control by 

natural enemies is not occurring. For example, both M. persicae and Aphis gossypii (melon or 

cotton aphid) peaked on vegetable crops three weeks before the predator; the aphids were not 

effectively controlled in these crops (Vuong et al., 2001).  

The impact of parasitoids is often increasingly reduced after the first generation by 

hyperparasitoids (Summy and Gilstrap, 1983; Walker et al., 1984); hyperparasitization not 

infrequently approaches 100% by the end of the season.  Only when parasitization levels surpass 

30% do A. gossypii populations start to decline (Slosser et al., 1989), and aphid populations in 

wheat collapse when parasitization rates reach 50% (Abdel-Rahman et al., 2000).   Parasitization 

rates quoted are usually much lower than this; the < 9% recorded by Hutchinson and Hogg 

(1985) is perhaps more typical. However, estimates of parasitization based on mummies are 

probably considerable underestimates, since many parasitized aphids leave the plant to mummify 

on the ground (Gowling and van Emden, 1994).  Summy and Gilstrap (1983) regard the removal 

of numbers of immature primary parasites in alate Schizaphis graminum (greenbug) as 

significant. Estimates of both parasitization and predation usually ignore such ‘non-consumptive’ 

mortality; the activity of natural enemies causes a significant proportion of aphids to be lost after 

falling off the plant (Fig. 23.4 – Gowling and van Emden, 1994). On the other hand there may 

also be some overestimation of parasitization, particularly when aphid numbers are declining, 

since unemerged mummies have greater ‘longevity’ on the crop than unparasitized aphids.  

Aphid pathogens rarely seem to cause significant reductions in aphid numbers during the 

season, though Deguine et al. (2007) regarded them as primarily responsible for a mid-season 

decline in the population of  A. gossypii in cotton (see later). However, pathogens can be 

important mortality factors in the end-of-season decline from peak numbers; Plantegenest et al. 

(2008) attributed 75% of the decline in S. avenae numbers in winter wheat to this cause. 

 

 

Host plant condition 

 

Plant growth stage has a strong influence on aphid population changes, as this will often 

determine the soluble nitrogen concentration of the phloem sap, which for aphids is often the 

limiting factor on reproductive rate (Dixon, 1973). Young, growing crop plants where nitrogen is 

being mobilized in the phloem are often where aphid population growth is most rapid. Within-

year changes in aphid numbers on trees regularly show spring and autumn peaks with a long 

intervening period of lower populations; Kindlmann et al. (2007) attributed this pattern to 
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changes in host plant quality, with amino acids being translocated to the young leaves in the 

spring and being exported from senescing leaves in the autumn. 

Variation in tissue condition within plants can have large effects with younger leaves 

more attractive to aphids, supporting higher rates of population increase (van Emden and 

Bashford, 1969; Costamagna et al., 2013b). Some aphid species, for example B. brassicae (van 

Emden, 1965) and A. glycines in soybeans (Tilmon et al., 2011) largely remain on the leaves they 

colonize, and so the amino acid status of their substrate changes as the season progresses. 

Sitobion avenae and M. dirhodum are both common cereal pests but respond differently to plant 

condition, mainly due to their preference for different parts of the plant. The reproductive rate of 

S. avenae on young cereal ears is far higher than on leaves, whereas that for M. dirhodum is 

highest on the leaves and the aphid is rarely found on the ear (Watt, 1979).    

As pointed out earlier, photoperiod is an important driver of plant phenology and 

therefore plant condition. Since the arrival of aphids on a crop is more related to abiotic factors 

such as temperature, the amino acid status of the crop when the aphids colonize will not be 

predictable. Aphis spiraecola and Macrosiphoniella millefolii populations increase rapidly when 

photoperiod reaches 14 hours because this triggers stem elongation of commercial yarrow 

(Achillea collina) (Lozzia et al., 2013) and A. gossyppii populations on cotton begin to increase 

shortly after the onset of the bloom (O’Brien et al., 1993) which is a photoperiod-timed event 

with major increases in amino acid transport.  

Variation in the condition of plant tissues can have large effects, with younger leaves 

most attractive to aphids and supporting highest rates of population increase. Both M. persicae 

and A. fabae have higher rates of increase on younger flowering soybean plants than when these 

are at or past the full pod stage, with most aphids and the highest rate of increase on the young 

upper nodes (Costamagna et al., 2013b). Early in the season, A. glycines is found on newly 

expanding trifoliate soybean leaves. As the season progresses it is found lower in the canopy, 

further from the terminal bud. This reflects changes in the distribution of nitrogen in the plant 

phloem (Tilmon et al., 2011).  

 Declines in aphid populations can also be attributed in part to changes in nutritional status 

of plant tissues. Macrosiphum euphorbiae (potato aphid) populations feeding on potato plants 

consistently decline once potato tubers have started filling (Parker et al., 2000); fecundity then 

drops by 25-45% as the amino acid composition in the phloem of the potato plants changes 

(Karley et al., 2003). In most crops, maturation is important in reducing reproductive rates of 

aphids, but mycoses and natural enemies have rated as important in driving the decline (Feng et 

al., 1991; Soni et al., 2013). However, the decline is probably primarily due to plant condition 

with natural enemies merely accelerating its rate.  
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The importance of crop plant condition for aphid population development is reflected in 

the approaches to reducing levels of crop damage by using aphid-resistant crop varieties (Chapter 

22, this volume) and cultural measures (Chapter 21, this volume). 

 

 

Emigration 

 

The departure from the crop of alatae represents a local loss of individuals. Since it is triggered 

primarily by crowding and maturation/deterioration of the host plant, its main effect on 

population size is at the end of the season, and is discussed later. 

 

 

The development of populations on crops 

 

Numerical changes in aphid populations on crops follow a relatively consistent pattern in 

different aphid species and crops, although patterns may change unpredictably from year to year 

because of the importance of photoperiod on the amino acid status of the crop when the aphids 

colonize (see earlier).The main phase of population growth often follows a sigmoidal pattern (e.g. 

Fig. 12.2 and Chapter 13, this volume) with a rapid initial increase followed by a slowdown 

leading up to a peak in population before a rapid decline (often called the ‘crash’). Of course 

there is variation in the amplitude and phase of the rate of increase and the size of the peak 

population. A sigmoidal rise to a peak, though found at some time during the season in most 

species, does not always start with the arrival of aphids on the crop.  

van Emden’s (1965) study of B. brassicae on marked cabbage leaves showed a small 

initial peak of reproduction following immigration until predation became a significant factor, but 

as leaves started to senesce from late August onwards, the aphid population rocketed in spite of 

greatly increased mortality from aphid predators. 

This pattern could be illustrated three-dimensionally (van Emden, 1966) by plotting the 

number of aphids on different sample dates and the number of predators in the sample (as a kind 

of ‘predator index’) on the two horizontal axes and the percent predation in the re-visited colonies 

on the vertical axis (Fig. 12.3). This shows a double-peak pattern of aphid density, with the 

numbers kept low for most of July by increasing predation. However, even increased predatory 

pressure in August failed to prevent an explosion of aphid numbers into the autumn. The double-

peaked pattern reported for aphids on woodland trees (Kindlmann et al., 2007) and citrus (Lebbel 

and Laamari, 2013) (Fig. 12.4), and attributed by Kindlmann et al. to changes in amino acid 
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status, was therefore also seen with the brassica crop, and the autumn peak dramatically shows 

that the increase in amino acids later in the season accelerates aphid reproduction beyond the 

control capacity of the mortality factors. Similarly Hutchinson and Hogg (1985) recorded that 

mortality of A. pisum attributable to predation on alfalfa ranged from zero to about 30%, but that 

even at the highest predator densities A. pisum populations increased exponentially. 

 Predation, however, clearly does determine the duration and level of the trough in aphid 

density between the two peaks. Parajulee et al. (1997) successfully increased predator numbers in 

cotton by relay-intercropping it in strips with a variety of spring and summer crops, and found 

that this not only reduced A. gossypii numbers but also caused the population to show two peaks 

in contrast to the single peak in non-intercropped cotton (Fig. 12.5). The pattern of a trough 

between two peaks, caused by unfavourable plant condition but with its depth determined by 

natural enemy activity, is frequently found in annual crops (e.g. in Theriophis trifolii maculata 

(spotted alfalfa aphid) on lucerne (Tambe and Kadam, 2015); Fig. 27.2 in the IPM Case Histories 

and Fig. 12.6). An increase in the movement of amino acids in the phloem also occurs during the 

development of inflorescences. This often precedes autumn leaf and/or plant senescence in 

annual crops, but in crops such as brassicas which flower in the following year if not harvested, 

dense aphid colonies appear on the flowering stems. This would result in a third population peak 

after the depression of the population during the winter. 

At the other extreme, aphids such as S. avenae show an exponential rise to a single peak 

followed by a crash in the population as the plants mature and senesce.  However, this 

exponential rise is delayed for some time after aphids have arrived on the crop (Fig.12.2B). The 

general importance of amino acid status leads suggests that the trigger for the rise is the switch 

from vegetative to reproductive growth.  

 Quite commonly with cereal aphids, there is a brief ‘hiccup’ in the exponential phase 

(Fig. 12.6). This can even take the form of a very temporary reduction in the size of the 

population on the plant, with sample points otherwise strictly on an exponential curve changing 

to one below and the next above; the exponential rise to the peak is then continued. Such 

‘hiccups’ are often ignored in drawing the curve; that this phenomenon occurs later for S. avenae 

than for M. dirhodum, which feeds lower down on the wheat (Fig. 12.7), suggests a host plant 

change is probably again involved.  Similar ‘hiccups’ are seen with A. spiraecola and S. avenae 

in Fig. 12.2 and with Rhopalosiphum maidis in Fig. 12.6A. 

Although aphid reproductive rate and temperature are closely correlated in the laboratory, 

the over-riding importance of host plant quality is clearly shown in Fig. 12.3 by reference to the 

four time periods and the contemporaneous predatory activity.  In period 1, with a negligible 

increase in the aphid population, mean daily temperature was 16.5oC (range 14.0–17.0). When 
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aphid numbers increased sharply between 19th and 23rd August, mean temperature was a little 

lower in period 2 at 16oC (range 13.5–17.0), and even lower in period 3 (mean 13.5oC, range 

12.50–14.50).  At the time of a later surge in aphid numbers (period 4), mean temperature was 

down to 10.5oC (range 7.0–12.0). Diuraphis noxia populations in Orange Free State, South 

Africa, show a striking double peak (Fig. 12.8) which appears quite unrelated to weather 

conditions (Kriel et al., 1986). 

Many of the phenomena described above reflect the main conclusions from the 

international study of M. persicae on potatoes (Mackauer and Way, 1976 – see earlier): 

1) Parasitoids, even in the absence of hyperparasitoids, had little impact on the 

aphid population.  

2) Fungal attack was only sporadic, and there were no signs early in the season, 

even where humidity conditions were favourable. 

3) Predation (residual mortality) was heavy surprisingly often, but even so only 

induced a decline in the M. persicae population after the crash or at other times when aphids were 

increasing at well below their maximum rate, even on a relatively poor host (potato). As an 

example, a twin sample in Italy (where the potential increase rate was only 1.24) can be 

contrasted with one in Scotland (where PIR was 1.99). At the former site 17.6% predation was 

accompanied by an 8.6% aphid population decline whereas at the latter an 8.8% increase in the 

population occurred although predation was much higher (43.7%). 

4) There was a low and steady rate of emigration, and natural enemies were 

removing potential migrants even well after the population peak. 

 

 

Emigration at the End of the Season 

 

Crop maturation (see above), crowding, plant deterioration due to aphid damage as well as 

unfavourable weather, cause a crash in the aphid populations at the end of the crop season.This 

crash can be very rapid; Basky (1993) found that a peak D. noxia population of nearly 4000 per 

wheat plant on 3rd July had completely vanished by 20th. As mentioned above, part of this crash 

is a consequence of host plant condition reducing aphid reproductive rate (Karley et al., 2003), 

accelerated by natural enemies including pathogens (Plantegenest et al., 2008). Feng et al. (1991) 

considered that parasitoids and pathogens were more important than crop maturation in causing 

the post-peak decline of cereal aphids. This is in contrast to most other studies; e.g. Karley et al. 

(2003) were consistently able to associate the crash in aphid numbers on potato with changes in 
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the phloem amino acid composition of the potato leaves. However, another aspect of the crash is 

the effect of plant deterioration in switching reproduction from apterae to alatae (Wiktelius, 1984; 

Parker et al., 2000; Chapter 4, this volume), which emigrate from the crop to alternative habitats 

(usually trees or wild herbaceous plants). This phenomenon does not appear to be triggered in 

response to predation but by the impacts of crowding (Costamagna et al., 2013b).   

Models have estimated that emigrants suffer high levels of mortality as autumn 

approaches, with less than 5% of alate emigrants surviving more than 10 days after landing on a 

new host (Fabre et al., 2010). In the end, only 0.6% of R. padi successfully find their winter host 

(Ward et al., 1998). Variability in alata production and emigrant survival as well as predation of 

emigrants on their off-season hosts are probably the reasons why autumn egg numbers change 

dramatically from one year to the next on the same overwintering sites (Welsman et al., 2007).     

 

 

Longer Term Regulation of Aphid Populations 

 

At the start of this chapter, we pointed out that aphids were unsuitable subjects for building age-

specific life tables as a basis for understanding their population dynamics. Nevertheless, 

Mackauer and Way (1976) carried out the first age-specific analysis made with field data of 

aphids (M. persicae). They got round the problems aphids present by using a whole year as their 

age-specific time division; in this way their census datum (the ‘population index’ published by 

Broadbent and Heathcote (1961) from trapping records in potato fields for the years 1942-1959) 

could be used as the ‘one discrete generation’ in their analysis. When the log. difference from the 

previous year is plotted against the population index and the points are joined in chronological 

order, a clockwise spiral results (Fig. 12.9). This is characteristic of an efficient mechanism of 

population stability, but one in which the density-dependence is delayed and which 

overcompensates for large deviations from the equilibrium (Varley and Gradwell, 1968). The 

most likely mechanism suggested was aphids leaving the summer hosts when moving to and 

between weed hosts and predation by natural enemies in the spring.  Davis et al. (2014) have 

used a 17-year time series of three cereal aphid species (R. padi, M. dirhodum and D. noxia) 

compiled from a trapping network spanning the northwestern USA, and found that the 

abundances of all three species were consistent with the operation of delayed density-

dependence. Alyokhim et al. (2005) used a graphical method, similar to that used by Mackauer 

and Way (1976), with peak numbers of Aphis nasturtii (buckthorn aphid), Macrosiphum 

euphorbiae and Myzus persicae on potato from 1949-2003. They found strong evidence of direct 
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density-dependent regulation of the populations of all three species. There was also evidence of 

delayed density-dependence for M. euphorbiae. The periodicity of population fluctuations for A. 

nasturtii and M. persicae was 6.1 years and 3.9 years, respectively. Effects of density-

independent weather factors were relatively minor compared to density-dependent regulation. 

Thacker et al. (1997) found apparent delayed density-dependence in A. fabae egg counts between 

1980 and 1992 at Rostock, Germany. They concluded that this was an artefact of unusual cyclical 

weather in this 12-year period; however, it seems unlikely that such unusual weather cycles could 

be the explanation for the density-dependence shown for aphids by the other authors cited 

above.Way and Banks (1968) had previously pointed to the frequent alternation of high and low 

years of A. fabae on bean crops. They suggested that immigration was affected by predation on 

spindle trees in a biennial pattern since, after high aphid numbers in the summer, many predators 

would overwinter and reduce the population the following year.  The resulting low A. fabae 

summer population would produce a low overwintering predator population, thus a high number 

of aphids would arrive on crops the following spring. A similar mechanism leading to a biennial 

pattern was recorded for A. pisum in Serbia (Tomanović et al., 1996). High autumn parasitization 

leads to more parasitoids emerging in the spring, leading to a reduction in the aphid population 

and therefore low parasitoid numbers in the autumn. 

In suction-trap catches, D. platanoidis also has a 2-year cycle of abundance. The total 

number of D. platanoidis on a tree is relatively constant from year to year, in spite of this cycle. 

This paradox results from what Kindlmann and Dixon (1992) refer to as the “seesaw effect”, 

describing an inverse relationship between the spring peak and the increase in numbers in autumn 

culminating in long-distance migration. Again the changes are density-dependent, strongly 

increasing numbers at low densities but more weakly at high densities (Jarošík and Dixon, 1999). 

The stronger density-dependent changes at low densities relate to the reduced intrapecific 

competition for space that then prevails, since the unexploited carrying capacity of the tree is 

high.  

 

 

Conclusion 

 

Although attempts over the years to understand the causes of population change of aphids on 

crops from field-collected data have provided good evidence for what underlies the one-, two- or 

three-peak cycles, all the methodologies can be criticized and validation of the interpretations by 
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experiment has proved difficult or impossible. The time-specific life table approach has emerged 

as the best way to analyse population change, and it should perhaps now be revisited.  

Hutchinson and Hogg (1985) sought to improve Hughes’s (1962) method in their studies 

with A. pisum, replacing the calculation of ‘potential increase rate’ based on instar frequencies 

with the intrinsic rate of increase (r m) estimated on a day-degree scale under field conditions in 

clip cages (i.e. in the absence of natural enemies). They found this gave a reliable estimate of the 

potential population growth rate. 

One of the most important innovations of Hughes’s method was to analyse population 

changes in ‘instar period’ units.  The power of computers to model changes almost continuously 

(by small fractions of an instar period) is a substantial step forward, at least to the point where the 

likely ‘what if?’ outcomes of possible pest management interventions can be reliably predicted. 

This approach is explored in the chapter which follows. 
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Table 12. 1  Overwintering mortality of eggs of six aphid species in the field (modified from 

Leather, 1993, which includes the full references). 

  

Aphid species  % mortality 

Acyrthosiphon pisum 67.0-70.0 

83.0 

72.0 
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Aphis fabae 40.0 

 

Metopolophium dirhodum 66.0 

59.0-62.0 

 

Myzus persicae 30.0-60.0 

 

Rhopalosiphum padi 70.0 

70.0 

80.0 

48.1-87.5 

 

Sitobion avenae 50.0-99.0 

23.0-62.0 
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Legends for figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12.1. Example of a time-specific age analysis from twin sample data for Myzus persicae in 

potatoes from the International Biological Programme (see text). I-V, aphid instars; apt, apterous; 

PIR, potential increase rate calculated from proportions of aphids in the first three instars; S, 

measurable subtractive processes; R, residual mortality (modified from Mackauer and Way, 

1976). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12.2.  A, Seasonal population build up of Aphis spiraecola on Cosmos bipinnatus during 

2006 (simplified from Dubey and Singh, 2011); B, Population growth of Sitobion avenae 

(aphids/shoot) on wheat in 2002 (from Winder et al., 2014, with permission). 
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Fig. 12.3.  A graphical representation of the effectiveness of aphid predators, showing good 

control of Brevicoryne brassicae on cabbages early in the season (from van Emden, 1966).  For 

symbols -, see text. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12.4.   Monthly fluctuations of the mean no. aphids per 5 shoots on clementine in a citrus 

orchard in 2012 (simplified from Lebbal and Laamari, 2015). 
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Fig. 12.5.   Abundance of cotton aphids in strip-intercropped  (------) and isolated (––––) cotton 

averaged over three years (from Parajulee et al., 1997, with permission). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12.6.  A, Abundance of Rhopalosiphum maidis on grain sorghum in 1989 (modified from       

Michels and Burd, 2007);  B, Stylized representation of the dynamics of Aphis gossypii on cotton 

(from Deguine et al., 2007). 

 

 

 

 

 

 

 

 

 

 

Fig. 12.7.  Abundance of Sitobion avenae (black line and diamonds) and Metopolophium 

dirhodum (purple line and squares) on wheat.  Arrows indicate the ‘hiccups’ mentioned in the 

text (data courtesy of J. M. Holland). 
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Fig. 12.8. Abundance of Diuraphis noxia in relation to climatic conditions and wheat growth 

stage at two sites in 1982. , mean number of aphids per plant;  , mean maximum 

temperature; , mean temperature, ,mean minimum temperature (redrawn from Kriel et al., 

1986). Note that the first peak was already in steady decline before the heavy rain in early 

September. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12.9. Changes in Myzus persicae abundance from year to year plotted against abundance in 

the earlier year. The population data have been taken from Broadbent and Heathcote’s (1961) 

trapping data for1942-1959 (from Mackauer and Way, 1976). Points for 1942-1950 have been 

joined in sequence as an example of a clockwise spiral pattern (see text).  


