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Abstract: A new semi-blind adaptive beamforming scheme is proposed for multi-input multi-output (MIMO) induced and space-

division multiple-access based wireless systems that employ high order phase shift keying signaling. A minimum number of training

symbols, very close to the number of receiver antenna elements, are used to provide a rough initial least squares estimate of the

beamformer′s weight vector. A novel cost function combining the constant modulus criterion with decision-directed adaptation is

adopted to adapt the beamformer weight vector. This cost function can be approximated as a quadratic form with a closed-form

solution, based on which we then derive the recursive least squares (RLS) semi-blind adaptive beamforming algorithm. This semi-blind

adaptive beamforming scheme is capable of converging fast to the minimum mean-square-error beamforming solution, as demonstrated

in our simulation study. Our proposed semi-blind RLS beamforming algorithm therefore provides an efficient detection scheme for the

future generation of MIMO aided mobile communication systems.

Keywords: Multi-input multi-output (MIMO), space-division multiple-access, beamforming, semi-blind adaptive algorithm, constant

modulus criterion, decision-directed adaption.

1 Introduction

Mobile communication technology has gone through four

generations of development, and currently the industry is

actively developing the beyond fourth generation (B4G) or

fifth generation (5G) system. A quick review of the evo-

lution of mobile communication systems will serve the mo-

tivation for our current study. The first generation (1G)

and second generation (2G) mobile networks were based on

orthogonal channel access, and they offered limited user ca-

pacity because of the limited frequency-time resources. In

order to better utilize the available frequency-time resources

and to support broadband applications, starting from the

third generation (3G) system and especially in the current

fourth generation (4G) system, a fundamental paradigm

shift was occurred to allow non-orthogonal access. The

rapid development of mobile communication technology in

turns fuels ever-increasing new applications, including mo-

bile internet, social networks and social media, demanding

higher and higher data rates. According to [1], the global

mobile data traffic has reached 3.7 exabytes per month in

2015 and it is expected to reach 30.6 exabytes per month by

2020 (1 exabyte equals to 1018 bytes). Drastic new mobile

communication techniques are needed quickly in order to

meet this explosively increasing demands, and multi-input

multi-output (MIMO) technology[2−14] is a promising com-
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ponent for the future 5G system.

The demand for increasing the capacity of mobile com-

munication systems has thus motivated the development

of new communication technologies, in particular, the so-

called space-division multiple-access (SDMA) technology,

in order to further improve the efficiency of spectral util-

isation. Equipped with multiple antennas, a base station

(BS) becomes capable of serving multiple users with the

same frequency-time resource block by exploiting the spa-

tial dimension, and this effectively offers the potentially un-

limited communication resources. In the resulting SDMA

induced MIMO system, the adaptive beamforming receiver

provides the effective means of uplink data detection at the

BS[15−19], while the transmit beamforming or precoding of-

fers the effective way of downlink data transmission[20−24].

Both uplink detection and downlink precoding require the

knowledge of the MIMO channel state information (CSI).

Therefore, the performance of a MIMO communication sys-

tem heavily relies on the accuracy of the MIMO channel

matrix estimation[25]. This paper considers the uplink data

detection for MIMO systems. The classical beamforming

receiver design is the minimum mean square error (MMSE)

solution, which can be realized using various training-based

adaptive algorithms[25−28]. However, pure training-based

schemes require a high training overhead, thus consider-

ably reducing the achievable system throughput. Pure blind

beamforming[29−33] does not reduce the achievable system

throughput at the expense of high computational complex-

ity and slow convergence. Moreover, blind beamforming re-
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sults in unavoidable estimation and decision ambiguities[34].

An effective means of resolving the estimation and deci-

sion ambiguities inherent in pure blind schemes is to employ

only a few training symbols to provide a rough initial esti-

mate and then to switch to a blind adaptive scheme or a

decision-directed (DD) adaptive algorithm, which leads to

various semi-blind schemes[35−39]. In particular, Chen et

al.[40] proposed a concurrent constant modulus (CM) algo-

rithm which is combined with soft DD scheme to adapt the

beamforming receiver. The initialization of [40] relies on the

least squares (LS) estimate using only a minimum number

of training symbols (which is equal to the number of the re-

ceiver antenna elements). More specifically, after the initial

training, the weight updating formula of the combined blind

CM adaptation and soft DD adaptation is based on the

combined stochastic constant modulus algorithm (CMA)

and a stochastic gradient ascent of the local maximum like-

lihood of the beamformer output[40]. However, it is well

known that stochastic gradient methods are quite sensitive

to the selected step size and have a slow convergence rate.

In comparison to stochastic gradient methods, the recur-

sive least squares (RLS) algorithm converges much faster.

In [41], a blind RLS based CM algorithm, referred to as the

RLS+CMA, was proposed for CM signals by approximat-

ing the CM cost function as a quadratic form, thus enabling

direct application of the well-known RLS algorithm.

Against this background, we propose a novel cost func-

tion combining the CM criterion with the DD adaptation

for adaptive estimation of the beamformer weight vector

for SDMA induced MIMO wireless communication systems

that employ phase shift keying (PSK) signaling. More

specifically, the optimization cost function is the sum of

the CM cost function and the LS error based on the pre-

viously detected hard symbols. We adopt the idea of [41]

to approximate the CM part of the proposed cost func-

tion as a quadratic function. For this composite cost func-

tion, we show that there exists a closed-form optimal LS

solution. This enables us to derive the proposed RLS semi-

blind adaptive beamforming algorithm. In the present semi-

blind beamforming application with a minimum number of

training pilot symbols, we demonstrate that the proposed

RLS+DD+CM algorithm converges very fast and is capa-

ble of approaching the performance of the MMSE beam-

forming solution associated with the perfect MIMO CSI.

Moreover, the simulation results show that the proposed

semi-blind RLS+DD+CM algorithm significantly outper-

forms the semi-blind RLS+CMA for high-order PSK sig-

nals, in terms of convergence rate and achievable system′s
symbol error rate (SER).

The remainder of this paper is organized as follows.

In Section 2, we briefly introduce the beamforming re-

ceiver model for SDMA induced MIMO communication

systems, while Section 3 is devoted to our proposed RLS

semi-blind algorithm. Our simulation results are presented

in Section 4, and our concluding remarks are offered in

Section 5.

Throughout this contribution, we adopt the following no-

tational conventions. The complex number field is denoted

by C. Boldface capitals and lower case letters stand for ma-

trices and vectors, respectively, while Ip stands for the p×p

identity matrix and 1p denotes an all-one vector of length p.

Additionally, (·)T and (·)H represent the transpose and Her-

mitian operators, respectively, while ‖ · ‖ and | · | denote the

norm and magnitude operators, respectively. Furthermore,

(·)∗ denotes the complex conjugate operation and j =
√−1

represents the imaginary axis, while E[·] denotes the expec-

tation operator and diag{a1, a2, · · · , ap} represents the di-

agonal matrix with the diagonal elements of a1, a2, · · · , ap.

2 Beamforming receiver model

We consider the coherent MIMO communication system

that supports nT users on the same frequency-time resource

block, where each user is equipped with a single antenna

and transmits an M -PSK signal on the same angular car-

rier frequency of ω. In order to achieve user separation

in the angular domain, the BS receiver is equipped with a

uniformly spaced linear antenna array (ULA) consisting of

nR antenna elements. We further assume that the commu-

nication is over flat fading channels. Then, at the symbol

index k, the system is described by the following well-known

MIMO model

x(k) = Hs(k) + ε(k) (1)

where x(k) =
[
x1(k) x2(k) · · ·xnR(k)

]T ∈ CnR×1 is the re-

ceived signal vector and ε(k) =
[
ε1(k) ε2(k) · · · εnR(k)

]T ∈
CnR×1 is the system′s additive Gaussian white noise

(AWGN) vector having E
[
ε(k)εH(k)

]
= 2σ2

εInR , while

s(k) =
[
s1(k) s2(k) · · · snT (k)

]T ∈ CnT×1 is the trans-

mitted symbol vector of the nT users with the symbol en-

ergy given by E
[|sm(k)|2] = σ2

s for 1 ≤ m ≤ nT , and

H ∈ CnR×nT is the nR × nT MIMO channel matrix.

Algorithm 1. RLS+DD+CM semi-blind algorithm.

1) Initialize w(0) according to (7) and set P0 =(
XKXH

K

)−1

based on the training data set {XK , sK}.
2) for time step k = 1, 2, · · · , do

3) Calculate





ŷ(k|k − 1) = wH(k − 1)x(k)

ŝ1(k) =

{
s1(k), if k ≤ K

dec
(
ŷ(k|k − 1)

)
, if k > K

αk =
∣∣ŷ(k|k − 1)

∣∣2 + 1

βk = ŝ∗1(k)−
∣∣ŷ(k|k − 1)

∣∣2ŷ∗(k|k − 1)

Pk =
1

λ

(
Pk−1 − αkPk−1x(k)xH(k)Pk−1

λ + αkxH(k)Pk−1x(k)

)

w(k) = w(k − 1) + βkPkx(k)

4) end for

More specifically, the MIMO channel matrix H =
[
hl,m

]
,

where 1 ≤ l ≤ nR and 1 ≤ m ≤ nT , is defined by

H =
[
h1 h2 · · ·hnT

]
=

[
A1η1 A2η2 · · ·AnT ηnT

]
(2)

in which Am denotes the non-dispersive channel coefficient

for user m and the steering vector for user m is given by

ηm =
[
ejωt1(θm) ejωt2(θm) · · · ejωtnR

(θm)
]T

∈ CnR×1 (3)
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where θm is the angle of arrival for user m, which is as-

sumed to be uniformly distributed in [0, 2π), and tl(θm) is

the relative time delay at array element l for user m. The

fading is assumed to be sufficiently slow, so that during the

time period of a transmission block or frame, all the related

entries hl,m in H are deemed unchanged. From frame to

frame, hl,m are assumed to be uncorrelated complex-valued

Gaussian processes with zero mean and E[|hl,m|2] = 1.

The transmitted data symbols sm(k), 1 ≤ m ≤ nT , take

the values from the M -PSK symbol set defined by

S ,
{
s(l) = e

j2πl
M , 1 ≤ l ≤ M

}
(4)

where M takes the value of 2, 4, 8, 16, and so on, which

correspond to 1 bit per symbol, 2 bits per symbol, 3 bits

per symbol, 4 bits per symbol, etc. The system′s signal-to-

noise ratio (SNR) is defined by SNR =
nT σ2

s(
2σ2

ε

) = nT(
2σ2

ε

) , as

σ2
s = 1. The 8PSK symbol set is illustrated in Fig. 1.

Fig. 1 Grey encoded 8PSK constellation diagram with 3 bits

per symbol.

Without loss of generality, user one is assumed to be the

desired user and the rest of the users are interfering ones.

A beamforming receiver[18], specified by

y(k) = wHx(k) (5)

is used to detect the transmitted symbols s1(k), where

w ∈ CnR×1 is the nR × 1 complex-valued weight vector of

the beamformer. With the perfect MIMO CSI, the MMSE

solution that minimizes the mean squares error criterion

E[|s1(k)− y(k)|2] is given by

wMMSE =
(
HHH +

2σ2
ε

σ2
s

InR

)−1

h1. (6)

3 Proposed recursive least squares

semi-blind algorithm

Given the training data XK = [x(1) x(2) · · ·x(K)] ∈
CnR×K and sK =

[
s1(1) s1(2) · · · s1(K)

]T ∈ CK×1, the LS

estimate of the beamformer′s weight vector is readily given

as

w(0) =
(
XKXH

K

)−1

XKs∗K . (7)

In order to maintain the achievable system throughput, the

number of training symbols K should be as small as pos-

sible. But to ensure that XKXH
K has a full rank of nR,

it must be K ≥ nR. We will choose K close to the mini-

mum number of training symbols, i.e., K = nR or nR + 1.

Given the initial weight vector w(0), “blind” adaptation

then takes place online, i.e., the beamformer weight vector

is computed recursively in time, so that w(k) at time k is

given as a modification of w(k− 1), upon the arrival of the

new received data {x(k)}.
The widely adopted DD adaption minimizes the cost

function given by

JDD = E
[∣∣ŝ1(n)− y(n)

∣∣2] (8)

where ŝ1(n) is the hard decision for s1(n) based on the

current beamformer output ŷ(n|n − 1) = wH(n − 1)x(n),

denoted by ŝ1(n) = dec
(
ŷ(n|n − 1)

)
. Because the training

data are insufficient, the initial LS weight vector (7) with

K ≈ nR may not be sufficiently accurate to open the eye.

Therefore, the DD adaptation is generally unsafe. Alterna-

tively, the well-known CMA penalizes the deviation of the

beamformer output from a constant modulus, and the CM

cost function is defined by

JCM = E
[(|y(n)|2 − 1

)2]
. (9)

To utilize both the advantages of the DD adaptation and

the CMA, we consider the combined cost function

J = E
[(|y(n)|2 − 1

)2]
+ E

[∣∣ŝ1(n)− y(n)
∣∣2]. (10)

Replacing the statistical expectation operator in (10)

with an exponentially weighted time average sum yields

J≈
k∑

n=1

λk−n
((|wHx(n)|2 − 1

)2
+ |ŝ1(n)−wHx(n)|2

)
(11)

where λ is a forgetting factor that is slightly less than 1, e.g.,

0.99 to 0.95. Note that the first term in J is not quadratic,

and we use the idea given in [41] to approximate it as

∣∣wHx(n)
∣∣2 ≈ wHz(n) (12)

where

z(n) = x(n)xH(n)w(k − 1) ∈ CnR×1. (13)

With this approximation, we have

J≈
k∑

n=1

λk−n
((

wHz(n)− 1
)2

+ |ŝ1(n)−wHx(n)|2
)
. (14)

The approximation (12) is reasonable since the difference

between wH(k)x(n) and wH(k − 1)x(n) is usually small

when n is close to k, whereas when n is much less than

k, the difference will be “forgotten” or attenuated by the

factor λk−n.
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Let ŝ1(k) =
[
ŝ1(1) ŝ1(2) · · · ŝ1(k)

]T ∈ Ck×1 and Λk =

diag{λk−1, · · · , λ, 1} ∈ Ck×k. Further, denote Xk =[
Xk−1 x(k)

] ∈ CnR×k and Zk =
[
Zk−1 z(k)

] ∈ CnR×k

with Z1 = z(1) and X1 = x(1).

The cost function (11) can be equivalently expressed as

J ≈(
1k − ZH

k w
)H

Λk

(
1k − ZH

k w
)
+

(
ŝ∗1(k)−XH

k w
)H

Λk

(
ŝ∗1(k)−XH

k w
)
. (15)

The minimizer of J is given as

w(k) = Pk

(
ZkΛk1k + XkΛkŝ∗1(k)

)
(16)

where Pk =
(
ZkΛkZH

k + XkΛkXH
k

)−1

∈ CnR×nR .

At the time index (k−1), the weight vector (16) is in the

form of

w(k − 1) = Pk−1

(
Zk−1Λk−11k−1+Xk−1Λk−1ŝ

∗
1(k − 1)

)
.

(17)

Using (13), it is easy to verify that

P−1
k =λP−1

k−1 + x(k)xH(k) + z(k)zH(k) =

λP−1
k−1 + αkx(k)xH(k) (18)

with αk =
∣∣ŷ(k|k − 1)

∣∣2 + 1, where ŷ(k|k − 1) = wH(k −
1)x(k). Using the famous matrix inversion lemma, we can

recursively calculate Pk according to

Pk =
1

λ

(
Pk−1 − αkPk−1x(k)xH(k)Pk−1

λ + αkxH(k)Pk−1x(k)

)
. (19)

Similarly, using (13) and (18), we have

ZkΛk1k + XkΛkŝ∗1(k) = λ
(
Zk−1Λk−11k−1+

Xk−1Λk−1ŝ
∗
1(k − 1)

)
+ z(k) + x(k)ŝ∗1(k) =

λP−1
k−1w(k − 1) + z(k) + x(k)ŝ∗1(k) =

P−1
k w(k − 1) + βkx(k) (20)

where βk = ŝ∗1(k)− ∣∣ŷ(k|k − 1)
∣∣2ŷ∗(k|k − 1).

Substituting (20) into (16) leads to the recursive formula

for updating the beamformer weight vector as

w(k) = w(k − 1) + βkPkx(k). (21)

We summarize the proposed RLS semi-blind beamform-

ing algorithm using the combined DD adaptation and CM

criterion, referred to as the RLS+DD+CM, in Algorithm 1.

Like standard RLS, the proposed algorithm has a compu-

tational complexity of the order O(n2
R), mainly due to cal-

culating Pk.

Remarks. The proposed approach is very different from

[40]. Firstly, the previous work[40] is based on stochastic

gradient type algorithms, which have a much slower con-

vergence rate than RLS (it takes tens of thousands of sam-

ples to converge). Secondly, the previous work[40] is based

on the combined blind CM adaptation and soft DD adap-

tation by maximizing a local approximation of marginal

probability density function, while the proposed approach

is based on the combined blind CM adaptation and hard

DD adaptation using a composite least squares error cost

function. Soft DD is probabilistic model based and it fits

well stochastic gradient type algorithms but there is no ob-

vious way of implementing the soft DD adaption with RLS

framework. Hence, the hard DD adaptation is adopted in

the proposed approach.

4 Simulation study

4.1 Stationary system

A ULA with nR = 4 elements and a half-wavelength ele-

ment spacing was employed to support nT = 4PSK users.

The quadrature PSK (QPSK), 8PSK and 16 PSK signal-

ings were considered. The angles of arrival for the four

users were 10◦, 40◦, −15◦ and −45◦, respectively. The sim-

ulated stationary channels were Am = 1, 1 ≤ m ≤ nT . The

number of training symbols for a semi-blind scheme was

K = nR = 4.

The convergence performance of the proposed semi-blind

RLS+DD+CM algorithm was first investigated. Figs. 2

to 4 plot the learning curves in terms of desired user-1

SER, averaged over 200 runs, in comparison to those of

the semi-blind RLS+CMA[41], for the three scenarios of

SNR = 12dB and QPSK, SNR = 15 dB and 8PSK, as

well as SNR = 20dB and 16PSK, respectively, where the

SERs of the beamforming receiver based on only 4 train-

ing symbols and the MMSE beamforming receiver based

on the perfect CSI are also depicted as the benchmarks.

We set λ = 0.99 for both the semi-blind RLS+CMA and

proposed RLS+DD+CM. Clearly, with only 4 training sym-

bols, the existing semi-blind RLS+CMA[41] only works rea-

sonably well in the case of QPSK, as can be seen from Fig. 2,

but it fails for the systems employing 8PSK and 16PSK, as

can be observed from Figs. 3 and 4. By contrast, our pro-

posed semi-blind RLS+DD+CM algorithm is able to con-

verge rapidly towards the optimal MMSE solutions for all

the three systems, adopting QPSK, 8PSK and 16PSK, re-

spectively.

Fig. 2 Learning curves, in terms of desired user-1 SER, averaged

over 200 runs for the stationary system of the four-element ULA

supporting four users under the scenario of SNR = 12dB and

QPSK modulation scheme
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Fig. 3 Learning curves, in terms of desired user-1 SER, averaged

over 200 runs for the stationary system of the four-element ULA

supporting four users under the scenario of SNR = 15 dB and

8PSK modulation scheme

Fig. 4 Learning curves, in terms of desired user-1 SER, averaged

over 200 runs for the stationary system of the four-element ULA

supporting four users under the scenario of SNR = 20 dB and

16PSK modulation scheme

Figs. 5 to 7 depict the SER performance of the proposed

semi-blind RLS+DD+CM algorithm and the existing

semi-blind RLS+CMA[41], both given K = 4 training

symbols, for the three systems employing 8PSK and

16PSK, respectively, where the beamformers′ weight

vectors used for SER calculation are those obtained at time

index k = 500. For comparison purpose, the SERs of the

training based beamforming receiver with various training

overheads as well as the optimal MMSE solution are also

shown in Figs. 5 to 7. It can be seen from Figs. 5 to 7 that

with only four training symbols, our proposed semi-blind

RLS+DD+CM algorithm approaches the optimal MMSE

solution associated with the perfect MIMO CSI for all

the three systems adopting QPSK, 8 PSK and 16PSK,

respectively. By contrast, with four training symbols,

the existing semi-blind RLS+CMA[41] performs poorly.

Specifically, for the QPSK system, after the adaptation of

500 samples of blind RLS+CMA, its SER is only close to

the SER based on 8 training symbols, while for the 8 PSK

and 16QPSK systems, after the adaptation of 500 samples

of blind RLS+CMA, its SER is actually worse than the

initial SER based on 4 training symbols. We point out

that since the basic difference between RLS+DD+CM and

Fig. 5 Performance comparison of desired user-1 SER for the

stationary system of the four-element ULA supporting four

users employing signaling of QPSK. The proposed semi-blind

RLS+DD+CM algorithm given K = 4 training symbols is com-

pared with the semi-blind RLS+CMA[41] given the same K = 4

training symbols, the training based beamforming given different

numbers of training symbols, and the optimal MMSE beamform-

ing given perfect CSI.

Fig. 6 Performance comparison of desired user-1 SER for the

stationary system of the four-element ULA supporting four

users employing signaling of 8PSK. The proposed semi-blind

RLS+DD+CM algorithm given K = 4 training symbols is com-

pared with the semi-blind RLS+CMA[41] given the same K = 4

training symbols, the training based beamforming given different

numbers of training symbols, and the optimal MMSE beamform-

ing given perfect CSI.
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RLS+CMA algorithms is to introduce the combined cost

function using DD, it can be concluded from the results that

this novel cost function combining the constant modulus

criterion with decision-directed adaptation has helped.

Fig. 7 Performance comparison of desired user-1 SER for the

stationary system of the four-element ULA supporting four

users employing signaling of 16PSK. The proposed semi-blind

RLS+DD+CM algorithm given K = 4 training symbols is com-

pared with the semi-blind RLS+CMA[41] given the same K = 4

training symbols, the training based beamforming given different

numbers of training symbols, and the optimal MMSE beamform-

ing given perfect CSI.

4.2 Flat fading system

A beamforming receiver assisted communication system

with nT = 4, nR = 5 and 8PSK signaling was simu-

lated. The system′s channel impulse response taps hl,m

for 1 ≤ l ≤ 5 and 1 ≤ m ≤ 4 were the uncorrelated

complex-valued Gaussian processes with zero mean and

E
[∣∣hl,m

∣∣2] = 1. One hundred random MIMO channel ma-

trices were generated and for each random MIMO channel

matrix, the performance was averaged over 100 system re-

alisations.

The average SER performance of our proposed semi-blind

RLS+DD+CM algorithm with the aid of K = nR + 1 = 6

symbols is shown in Fig. 8 in comparison with other bench-

marks, including those of the purely training based scheme

with 6, 16 and 32 training symbols, the existing semi-blind

RLS+CMA algorithm[41] also initialized by 6 training sym-

bols, as well as the achievable performance of the MMSE

beamforming receiver solution given the perfect MIMO CSI.

Similar to the previous stationary example, λ = 0.99 was

set for both the semi-blind beamforming receiver schemes,

and the beamformers′ weight vectors used for SER calcu-

lation are those obtained at time index k = 500. It can be

observed from Fig. 8 that in order to achieve a similar per-

formance as the proposed semi-blind beamforming scheme,

the purely training based scheme requires 32 training sym-

bols, and our proposed semi-blind scheme converges to the

optimal MMSE solution associated with the perfect MIMO

CSI when the system′s SNR is sufficiently high. By con-

trast, the existing semi-blind RLS+CMA algorithm[41] fails

to work and exhibits a high SER floor, as can be seen clearly

from Fig. 8.

Fig. 8 Desired user-1 average SER performance of the proposed

semi-blind RLS+DD+CM algorithm given K = 6 training sym-

bols, the RLS+CMA given the same K = 6 training symbols,

the training based beamforming given different number of train-

ing symbols, and the MMSE beamforming given perfect CSI, for

the flat fading 5× 4 8PSK beamforming system.

5 Conclusions

In this paper, we have introduced a novel semi-blind

adaptive beamforming receiver scheme for SDMA induced

MIMO communication systems that employ high-order

PSK signaling. To resolve the unavoidable estimation and

decision ambiguities associated with pure blind adaptive

schemes, we have only used a minimum number of training

symbols to provide a rough initial least squares estimate of

the beamformer′s weight vector, which is equal to the num-

ber of receiver antennas. The beamforming receiver weight

vector is obtained by minimizing a composite cost func-

tion based on the constant modulus criterion and decision-

directed adaptation. The proposed scheme is a type of RLS

algorithm since this cost function can be approximated as

a quadratic form with a closed-form solution. This semi-

blind adaptive beamforming receiver scheme is capable of

converging fast to the optimal MMSE beamforming solution

associated with the perfect MIMO CSI. The simulation re-

sults have also demonstrated that our proposed semi-blind

RLS+DD+CM algorithm significantly outperforms the ex-

isting semi-blind RLS+CMA algorithm, in terms of both

convergence rate and achievable SER performance.
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