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Key Points  

 The relationship between global satellite land surface temperature (LST) and ground-

based air temperature (T2m) over land is characterised. 

 Geographical location, land cover type, vegetation fraction and elevation strongly 

influence the LST-T2m relationship. 

 Correlation between the global time series of LST and T2m anomalies is 0.9 and 90% 

of the LST anomalies fall within the T2m uncertainties. 
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Abstract  

The relationship between satellite land surface temperature (LST) and ground-based 

observations of 2m air temperature (T2m) is characterised in space and time using >17 years 

of data.  The analysis uses a new monthly LST climate data record (CDR) based on the 

Along-Track Scanning Radiometer (ATSR) series, which has been produced within the 

European  Space Agency GlobTemperature project (http://www.globtemperature.info/).  

Global LST-T2m differences are analysed with respect to location, land cover, vegetation 

fraction and elevation, all of which are found to be important influencing factors.  LSTnight 

(~10 pm local solar time, clear-sky only) is found to be closely coupled with minimum T2m 

(Tmin, all-sky) and the two temperatures generally consistent to within ±5 °C (global median 

LSTnight- Tmin= 1.8 °C, interquartile range = 3.8 °C).  The LSTday (~10 am local solar time, 

clear-sky only)-maximum T2m (Tmax, all-sky) variability is higher (global median LSTday-

Tmax= -0.1°C, interquartile range = 8.1 °C) because LST is strongly influenced by insolation 

and surface regime.  Correlations for both temperature pairs are typically >0.9 outside of the 

tropics.  The monthly global and regional anomaly time series of LST and T2m – which are 

completely independent data sets - compare remarkably well.  The correlation between the 

data sets is 0.9 for the globe with 90% of the CDR anomalies falling within the T2m 95% 

confidence limits.  The results presented in this study present a justification for increasing use 

of satellite LST data in climate and weather science, both as an independent variable, and to 

augment T2m data acquired at meteorological stations.  

Index Terms  

0350 Pressure, density, and temperature 

3322  Land/atmosphere interactions (1218, 1631, 1843, 4301) 

http://www.globtemperature.info/
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Plain Language Summary 

 

Surface temperatures over land have traditionally been measured at weather stations.  There 

are many parts of the globe where there are very few stations, for example across much of 

Africa and Antarctica, leading to gaps in surface temperature datasets, affecting our 

understanding of how surface temperatures are changing, and the impacts of extreme events 

(e.g. heat waves). Satellites can provide temperature observations across the globe.  However, 

satellites measure how hot the land surface temperature (LST; including the uppermost parts 

of e.g. trees, buildings) are to touch, whereas weather stations measure the air temperature 

just above the surface (T2m). Additionally, satellite LST data may only be available in cloud-

free conditions. This paper describes a comparison between T2m and a new 17-year LST 

dataset.  It demonstrates that LST and T2m are often strongly related, particularly at night, 

but the exact relationship depends on location, land surface type, vegetation and elevation.  A 

time-series analysis shows that the change in LST and T2m with time is remarkably similar; 

giving confidence in the T2m trends reported elsewhere in the climate change literature, as 

these datasets are independent.  The results of this study demonstrate that LST can usefully 

augment T2m observations in climate and weather science. 
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1. Introduction 

Land surface temperature (LST) - the temperature of the land surface rather than that of the 

near-surface air - is a key surface parameter in driving boundary layer processes and has 

recently been proposed in the 2016 Global Climate Observing System Implementation Plan 

as a new essential climate variable [GCOS, 2016].  LST observations are most readily 

available from space-borne radiometers that operate at infrared (IR) or microwave (MW) 

wavelengths offering complete global coverage at spatial scales ranging from a few tens of 

metres (IR) to a few tens of kilometres (MW), with a temporal frequency of around twice per 

month to once every 15 minutes.  

Applications for satellite-derived LST are now widely reported in the literature.   Examples 

include using LST to evaluate land surface models [Koch et al., 2016], improve the 

performance of numerical weather prediction models [Singh et al., 2016], diagnose surface 

response to dry spells [Folwell et al., 2016], assess drought [Karnieli et al., 2010; 

Mühlbauer et al., 2016], characterise urban heat islands [Azevedo et al., 2016; De Ridder et 

al., 2012; Dousset et al., 2011; Hu & Brunsell, 2013], and to estimate near-surface air 

temperature in the absence of meteorological stations [Chen et al., 2014; Good, 2015; 

Kilibarda et al., 2014].  Operational LST data sets are now available from several sensors, 

some of which extend for more than a decade in length.  This includes LST datasets from the 

widely-used MODerate Imaging Spectroradiometer (MODIS) on board the polar-orbiting 

Terra (2000-present) and Aqua (2002-present) platforms [Wan, 2013; Wan 2016], and the 

Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the geostationary 

Meteosat Second Generation (MSG) platforms (2005-present) [Trigo et al., 2008; Freitas et 

al., 2010, Freitas et al., 2013].    

http://www.wmo.int/web/gcos/gcoshome.html
mailto:stefan.muehlb@yahoo.de
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Use of satellite LST within the climate community, however, has not yet become widespread, 

and there are very few examples in the literature where LST has been used to investigate 

climatic temperature change [Jiménez-Muñoz et al., 2013; Jin, 2004; Oku et al., 2006].  One 

of the main obstacles to this has been the absence of long-term, high quality, stable LST 

climate data records (CDRs).  Another barrier has been a lack of understanding of what 

satellite LSTs represent and how this relates to the near-surface air temperature measured at 

weather stations (T2m), which has traditionally been the variable of choice over land in 

assessing surface temperature response to climate change [Caesar et al., 2006; Hansen et al., 

2010; Jones et al., 2012; Smith et al., 2008] and evaluating climate models [Box and Rinke, 

2003; Kiktev et al., 2003; Kharin et al., 2005].  However, in contrast, the use of satellite 

observations of sea surface temperature (SST) – which are similar in principle to satellite 

LST observations - in climate science is well established (e.g. Good et al. [2007], Høyer and 

Karagali [2016], Rayner et al. [2003], Reynolds et al. [2002]) and SST CDRs already exist 

for some sensors [Casey et al., 2010; Merchant et al., 2012; Merchant et al., 2014].  

Following the success of satellite SST CDRs, increasing user interest in satellite LST data 

sets, lengthening satellite records, and improvements to LST retrieval techniques, LST data 

providers have naturally started to look towards generating CDRs.  One such initiative 

includes creating the first multi-decadal LST CDR from the Meteosat first and second 

generation geostationary satellite series, which has provided reliable thermal IR observations 

over Europe, Africa and parts of S. America since the early 1980s [Duguay-Tetzlaff et al., 

2015].  There has also been movement towards creating a long-term MW LST record, which 

could provide LSTs back to 1987 using data from the Special Sensor Microwave/Imagers 

(SSM/I) [Prigent et al., 2016].  MW LSTs have the benefit of providing LST observations in 

all non-precipitating conditions, whereas IR LSTs are limited to cloud-free scenes.  However, 

http://onlinelibrary.wiley.com/doi/10.1002/2014JD022438/full#jgrd52038-bib-0042
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the accuracy and spatial resolution of IR LSTs is superior to MW LSTs, making them more 

suitable for many applications. 

The most accurate satellite LST data sets are derived from sensors that have two or more 

thermal IR channels; these channels typically include the ‘split-window’ channels, which are 

located at approximately 11 and 12 micrometres (µm).  This enables an improved 

atmospheric correction to be made compared with single-channel IR retrievals, as 

atmospheric attenuation varies with wavelength [Dash et al., 2002; Li et al., 2013].  One such 

sensor that provided this capability is the Along-Track Scanning Radiometer (ATSR), which 

had unprecedented radiometric accuracy and stability (section 2.1.1) and a record length that 

exceeds 20 years.  Together with a very stable orbit with little temporal drift (per sensor), 

these factors make the ATSR series a desirable target for generation of an LST CDR.  The 

first ATSR LST CDR has been produced within the framework of the European Space 

Agency’s (ESA) GlobTemperature project (http://www.globtemperature.info/) and it is 

version 1.0 of this data set that is analysed in this study.   

The analyses presented here comprise two aspects.  Firstly the worldwide LST-T2m 

differences are characterised by comparing the ATSR CDR with in situ T2m observations, in 

both point-station and in gridded form.  Several studies now exist in the literature where the 

LST-T2m relationship is explored through the analysis of satellite LST observations and 

coincident ground-based observations of T2m  [e.g. Hachem et al., 2012; Mildrexler et al., 

2011; Sohrabinia et al., 2014; Urban et al., 2013; Vancutsem et al., 2010].  A few studies 

also examine this relationship using ground-based observations of both LST and T2m [e.g. 

Gallo et al., 2011; Good, 2016].   However, these studies have tended to be focused, for 

example on specific geographical regions [Hachem et al., 2012; Sohrabinia et al., 2014; 

Urban et al., 2013; Vancutsem et al., 2010] or stations [Gallo et al., 2011; Good, 2016,], or a 

particular aspect of the LST-T2m relationship.  For example, Mildrexler et al. [2011] present 

http://www.globtemperature.info/
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an analysis of the global relationship between the annual maximum LST and T2m  using seven 

years of data from MODIS/Aqua, which has a local solar overpass time of ~1:30 pm.  More 

recently, Lian et al., [2017] used 12 years of MODIS/Aqua data to analyse the global 

relationship between maximum monthly T2m (Tmax) and monthly maximum LST.   

This study complements previous studies by providing new information on the relationship 

between data sets for LST and T2m – including the relationship between night time LST 

(LSTnight) and Tmin - on a global scale as a function of land cover type, vegetation fraction and 

elevation.  This study is based on ~17 years of data from the ATSR, which has not yet been 

used to study the LST-T2m relationship in detail. 

The second part of this paper looks at the temporal evolution of the global mean LST 

compared to the equivalent T2m time series, which has not been addressed in the existing 

literature.  Previous studies analysing LST time series are scarce and tend to be limited to 

specific geographical regions and focus only on LST.  For example, Jiménez-Muñoz et al., 

[2013] analyse 13 years of LST data from MODIS and ERA-Interim skin temperatures over 

the Amazon, while Oku et al. [2006] analyse seven years of LST acquisitions from the 

Geostationary Meteorological Satellite 5 (GMS-5) over the Tibetan Plateau.   

LST is a challenging parameter to estimate from satellite observations, owing to the variation 

and uncertainty in surface emissivity and atmospheric attenuation, which must be known 

precisely to retrieve LST accurately [Dash et al., 2002; Li et al., 2013].  The accuracy of 

current operational IR-based data sets is typically 1-3 °C [Duguay-Tetzlaff et al., 2015; 

Freitas et al., 2013; Trigo et al., 2008; Wan, 2014], which is considerably lower than for IR 

SST retrievals that can achieve accuracies of close to  0.1 °C [Embury et al., 2012].  The 

spatial heterogeneity of LST and land T2m is high, particularly during the day owing to 

differential solar heating, vegetation transpiration and surface turbulence.  As a result, 
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variations of several °C between neighbouring stations and across single satellite pixels are 

observed [Good, 2015; Yan et al., 2010].  These are important factors to consider when 

comparing satellite LSTs with station-based T2m estimates, as they will lead to inherent 

differences of up to a few °C. 

Previous studies show that LST and T2m are generally well coupled, with correlation 

coefficients that usually exceed 0.6 and very often 0.8.  LST and T2m are most tightly coupled 

over highly vegetated surfaces and when insolation is low, for example under full cloud 

cover, at night or at high latitudes during winter, spring and autumn months.  In these cases, 

LST and T2m may differ by only 1-2 degrees Celsius (°C).  In contrast, LST can exceed T2m 

by several °C when insolation is high and vegetation cover is low-to-moderate [Good, 2016; 

Hachem et al., 2012; Mildrexler et al., 2011; Sohrabinia et al., 2014; Urban et al., 2013; 

Vancutsem et al., 2010].  In extreme conditions, for example under clear skies during the 

middle part of the day at low latitudes over non-vegetated surfaces, the LST-T2m temperature 

difference may approach or even exceed 20 °C [Good, 2016; Mildrexler et al., 2011].  Even 

in these cases, LST and T2m remain coupled albeit with much greater changes in LST for a 

given change in T2m.  It is this coupled relationship that has led to the recent abundance of 

studies that attempt to use satellite LSTs to help infill gaps in current T2m data sets [Benali et 

al., 2012; Chen et al., 2014; Good, 2015; Kilibarda et al., 2014; Janatian et al., 2016; Oyler 

et al., 2015; Parmentier et al., 2015; Zhang et al., 2011].   

The focus of this study is on the spatial and temporal relationship between LST and T2m on a 

global scale.  The analysis of a >17-year satellite LST record presented here will demonstrate 

the potential for using LST in climate science, particularly in augmenting information from 

traditional meteorological T2m observations.  (Data from the first four years of the ATSR 

record are not analysed here owing to ongoing calibration issues.) Section 2 introduces the 

data sets used in the study, while section 3 summarises the methods used in analysing the 
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data.  The results of the study are presented in sections 4 to 6, and their implications 

discussed in section 7.  The main conclusions of the study are summarised in section 8.      

2. Data  

A summary of the data sets used in this study is provided in Table 1.  Further details are 

presented in the following sub-sections.   

2.1 GlobTemperature CDR 

The GlobTemperature CDR comprises observations from the Along-Track Scanning 

Radiometer (ATSR) series [Llewellyn-Jones et al., 2001; Smith et al., 2012].  The ATSR was 

designed to make accurate observations of Sea Surface Temperature (SST) with channels 

located within the visible to infrared part of the electromagnetic spectrum, including the split-

window channels at approximately 11 and 12 µm for surface temperature retrieval.   The 

instrument design benefits from an exceptionally stable on-board calibration system with two 

onboard black body targets, and Stirling-cycle cooled detectors, enabling radiometric 

accuracy of its infrared channels of better than 0.05 °C [Smith et al., 2012].  The ATSR was 

equipped with dual-viewing capability allowing nominally the same point on the Earth’s 

surface to be viewed through two different atmospheric path lengths albeit with slightly 

differing spatial footprints.  For SST retrieval, this is used to improve the correction for 

atmospheric effects [Zavody et al., 1995].  The ATSR had a swath width of approximately 

500 km, achieving all-sky global coverage in three days.   

ATSR-1 was launched onboard the European Space Agency’s first Earth Remote Sensing 

(ERS-1) satellite in July 1991, with ATSR-2 following onboard ERS-2 in April 1995.  The 

third ATSR, the Advanced ATSR (AATSR), was launched in March 2002 onboard ESA’s 

Envisat satellite, which unfortunately ceased communications on 8 April 2012, bringing an 
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end to the ATSR mission.  The AATSR is succeeded by the Sea and Land Surface 

Temperature Radiometer (SLSTR), which was launched onboard ESA’s Sentinel-3 satellite 

in February 2016.  The overpass time of the ATSR series was approximately 10:00 am/pm 

(AATSR) to 10:30 am/pm (ATSR-1; ATSR-2) local solar time.  SLSTR also has a local 

overpass time of 10:00 am/pm. 

An operational LST retrieval scheme was first introduced for the AATSR and is described by 

Prata [2002] and references therein.  The operational algorithm is a nadir-only split-window 

retrieval.  The forward view (at ~55° from nadir) is not usually used for LST owing to 

difficulties in accounting for emissivity dependency on view angle, and LST anisotropy (the 

observed LST for some surfaces depends on zenith and azimuth observation angles), as well 

as the collocation issues arising from the spatial mis-match between the forward and nadir 

footprints noted earlier .  A modified version of this algorithm, described in Ghent [2012], 

with improved retrieval coefficients and auxiliary data sets, enhanced cloud masking, and full 

uncertainty budget has been implemented within ESA’s GlobTemperature project to create a 

long-term LST data set based on the latter two ATSR instruments 

(http://www.globtemperature.info/).  The CDR is a homogenised version of this data set, 

providing monthly average global fields of clear-sky LSTday and LSTnight in which a 

consistent algorithm and cloud detection method is applied to observations from both sensors. 

Version 1 of the CDR includes only ATSR-2 and AATSR, owing to ongoing calibration 

issues with parts of the ATSR-1 record.  Uncertainty information is provided within the CDR 

at 0.05 degree resolution, accounting for instrument noise, systematic retrieval uncertainties, 

and surface related components.  Surface parameters in the LST retrieval are constrained 

using the Cooperative Institute for Meteorological Satellite Studies (CIMSS) emissivity 

dataset [Hulley et al., 2015], with coefficient fitting to an extended GlobCover land cover 

classification [Arino et al., 2007].  The uncertainty in the coefficient fitting due to emissivity 

http://www.globtemperature.info/


 

 
© 2017 American Geophysical Union. All rights reserved. 

is 0.01 °C, with an additional surface uncertainty component related to fractional vegetation 

auxiliary data.  Emissivity and land cover classification monthly composites are compiled 

from high resolution satellite data at 100-300m resolution, providing global coverage, 

maximising the information on surface spatial variability whilst minimising data gaps due to 

persistent cloud.   

Owing to the 30-min difference in overpass time between ATSR-2 and AATSR, ATSR-2 

LSTs in the CDR are adjusted to account for this difference, as LST can change substantially 

in 30 minutes, particularly when insolation is high.  For LSTday, this is essentially a cooling 

correction for ATSR-2, while for LSTnight, the correction will usually have a small warming 

effect.  The corrections are derived empirically from the LST differences during ATSR-

2/AATSR overlap period (June 2002 to May 2003 inclusive) on a monthly basis for both 

LSTday and LSTnight on the output 0.05° grid.  For 0.05° cells where this LST difference 

cannot be estimated directly (e.g. due to cloud), and there is a gap in the output grid, the 

correction is derived from cells with the same land cover within a 10° x 10° tile.  The errors 

associated with implementing this correction are likely to be larger for day time (~0.5 °C) 

compared with night time (~0.2 °C) owing to the strong dependency of LST on insolation. 

AATSR is used in preference to ATSR-2 in this study where records from both sensors are 

present due to the lower radiometric noise levels associated with AATSR brightness 

temperature (BTs) compared with those of ATSR-2 [Smith et al., 2012]. 

An example month of the GlobTemperature ATSR CDR (August 2003) is shown in Figure 1.  

It is notable in this example that there are no daytime LSTs over Antarctica and no night time 

LSTs at northern high latitudes.  This is because day and night time observations are 

distinguished in the CDR by solar zenith angle (SZA) and not overpass time, whereas in other 

satellite LST data sets daytime and night-time at polar latitudes are distinguished by time of 

day alone (and not sunlight).  This results in no daytime LST field for Antarctica for months 
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where it is dark at 10 am, for example.  Incompletely observed months within the ATSR 

record are excluded from the CDR, which includes June and July 1995 (end of 

commissioning period), January- June 1996 (scan mirror failure), January-June 2001 (gyro 

failure) and April 2012 (8 April: end of mission).   

2.2  CRU TS Monthly Gridded T2m 

The Climatic Research Unit Time Series (CRU TS; v3.23) is a gridded station data set 

[Harris et al., 2014].  It consists of monthly time series of a number of variables, including 

monthly mean (Tmean), minimum (Tmin) and maximum (Tmax) temperatures at a spatial 

resolution of 0.5 degrees latitude/longitude.  While CRU TS includes many homogenised 

station records from National Meteorological Services, it is not ‘specifically homogeneous’ 

and should therefore be treated with caution in time series analysis [Harris et al., 2014].  For 

this reason, CRU TS is only used for quantifying the spatial and seasonal relationship 

between LST and T2m in this study.  Unlike the CDR, the CRU TS data are ‘all-sky’ and 

include T2m observations under both cloud and clear-sky. 
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2.3  GHCN-Monthly Station T2m 

CRU TS is the primary data set used in this study to characterise the spatial and seasonal 

LST-T2m relationship.  However, this is an interpolated data set with larger uncertainties 

where station density is low (Figure 2).  To verify the analysis, station observations from the 

Global Historical Climate Network Monthly (GHCN-M) v3.3.0.20160130.qca data set are 

also used.  GHCN-M is a collection of 7280 monthly station records produced by the 

National Centers for Environmental Information (NCEI) in the United States.  Version 3 of 

the ‘QCA’ (quality controlled adjusted) data set is used in this study, which has undergone 

quality control and includes homogeneity adjustments to correct for non-climatic changes in 

the station time series [Lawrimore et al., 2011].  No additional screening of the data is carried 

out in this study since any data that have failed quality checks or have too many 

inhomogeneities in the record are replaced by missing-data indicators in the GHCN-M data 

records.  GHCN-M includes monthly all-sky Tmean, Tmin and Tmax, and has been used by the 

Intergovernmental Panel on Climate Change (IPCC) to quantify global land air temperature 

change [Hartman et al., 2013]. 

2.3  CRUTEM4 Monthly Temperature Anomalies 

CRUTEM4 (V4.4.0.0) is a monthly gridded temperature anomaly data set based on global all-

sky station observations [Jones et al., 2012].  The data set is produced through a collaborative 

effort between the Climatic Research Unit (CRU) at the University of East Anglia (UEA) and 

the Met Office, both in the United Kingdom.  Like GHCN-M, CRUTEM4 has been used by 

the IPCC to assess global land air temperature changes [Hartman et al., 2013].  It is an 

anomaly data set and represents a time series of mean monthly temperature anomalies with 

respect to the 1961-1990 baseline period at a spatial resolution of 5 degrees 

latitude/longitude.  CRUTEM4 data are used in the time series analysis presented in the 
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second part of this study.  The global time series of CRUTEM4 anomalies, which is also used 

in this part of the study, includes the 95% confidence intervals for uncertainty components 

that account for station and grid box sampling, coverage and bias uncertainties 

(http://www.metoffice.gov.uk/hadobs/crutem4/data/diagnostics/time-series.html).   

2.5 Other data sets used in the study 

The LST-T2m relationship is characterised with respect to land use, vegetation and elevation.  

Land use classifications are sourced from the ESA Land Cover Climate Change Initiative 

(CCI) project version 1.6 data set (http://www.esa-landcover-cci.org/), which provides global 

maps at 300 m spatial resolution for three five-year epochs: 1998-2002, 2003-2007 and 2008-

2012 [Bontemps et al., 2012; Poulter et al., 2015].  The second epoch (2003-2007) was 

selected for this analysis to represent the mean land cover type over the analysis period 

(1995-2012).   The CCI land cover types are given in Table 2. 

For elevation, the Shuttle Radar Topography Mission (v1) data set was used [Farr and 

Kobrick, 2000; Rodriguez et al., 2005].  This provides near-global land elevation at 30 m 

spatial resolution.   

Fraction of vegetation data were sourced from the Copernicus Global land service (FCOVER 

v1.0), which provides near-global 10-day composites at 1/112° latitude/longitude [Baret et 

al., 2013; Camacho et al., [2013].   

Two additional LST data sets were used to verify the time series analysis in the second part 

of this study: MODIS monthly LST day and LST night fields at 0.05 degrees 

latitude/longitude [Wan, 2013, 2014] and 6-hourly ‘skin’ temperatures from the European 

Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-Interim) 

[Dee et al., 2011]. 

http://www.metoffice.gov.uk/hadobs/crutem4/data/diagnostics/time-series.html
http://www.esa-landcover-cci.org/
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3. Methods 

3.1  Analysis of the LST-T2m variability  

The variability in the global LST-T2m relationship is assessed by comparing the ATSR CDR 

with T2m data from CRU TS and GHCN-M.  CRU TS is used in preference to CRUTEM4 

owing to its higher spatial resolution (recall the ATSR CDR has spatial resolution of 0.05°) 

and availability of monthly averages of daily extreme temperatures (Tmin and Tmax).  For the 

CRU TS comparisons, the CDR is re-projected onto a regular 0.5 degree grid separately for 

day time and night time LSTs.  For the GHCN-M comparisons, the CDR 0.05° cell nominally 

containing the station location is used.  In both cases, LSTday is compared directly with Tmax, 

and LSTnight with Tmin.  

Both the elevation and land use data sets are also re-sampled to 0.05 and 0.5 degrees 

latitude/longitude.  For elevation, the mean cell elevation is used.  For land use, the dominant 

land cover class within each grid cell is assigned to the cell.  Comparisons between the CDR 

and CRU TS are only performed for 0.5° cells where the percentage of LC CCI pixels within 

the cell matching the dominant land cover class is ≥80% and the fraction of water in the cell 

is ≤20%.  Similarly, comparisons between the CDR and GHCN-M are only performed for 

0.05° cells that also meet these criteria, and additionally, where the LC CCI classification of 

the GHCN-M station matches that of the CDR 0.05° cell.  This is to ensure that the analysis 

is only carried out for cells and stations that truly represent the assigned land classification. 

3.2  Comparison of LST and T2m time series  

The comparison between LST and T2m time series is performed using the CRUTEM4 data 

set, which is widely used to study temporal changes in global T2m.  CRUTEM4 is a 5 degree 

latitude/longitude monthly mean anomaly data set referenced to the 1961-1990 baseline 



 

 
© 2017 American Geophysical Union. All rights reserved. 

period, which is before the beginning of the ATSR CDR.  To facilitate like-with-like 

comparison, the ATSR CDR is first re-projected onto a 5-degree latitude/longitude grid 

before calculating a monthly mean LST from the average of the monthly LSTday and LSTnight 

fields.  This is then converted to a time series of monthly anomalies by subtracting a monthly 

mean LST climatology calculated over the August 1995-March 2012 baseline period 

(excluding incomplete months in the CDR: see section 2.1).  Monthly climatology values are 

only calculated for cells with at least 10 years of data.  Since the mean T2m has changed 

substantially between the two reference periods (1961-1990 and August 1995-March 2012) 

[Hartman et al., 2013], an ‘adjusted’ version of the CRUTEM4 anomalies is also calculated 

by subtracting a monthly mean T2m climatology of CRUTEM4 anomalies using the same 

ATSR CDR baseline period.  The result is a time series of both ATSR CDR monthly mean 

LST anomalies and CRUTEM4 monthly mean T2m anomalies, both referenced to the August 

1995 to March 2012 baseline period. 

The global mean time series for each 5° anomaly data set is calculated to be consistent with 

the averaging in CRUTEM4 time series presented by Jones et al., [2012].  Spatial averages 

are calculated separately for the northern (NH) and southern hemispheres (SH) by weighting 

each grid box by the cosine of its latitude [Jones, 1994].  The global mean value is then 

determined from (2NH+SH)/3, which approximates for the higher proportion of land in the 

NH [Jones et al., 2012].  Two sets of comparisons are presented: a global time series where 

all available data from each data set are used, and a version that uses space-time cells where 

both data sets are present (‘spatially-matched’).  The spatially-matched version is included 

because both data sets contain gaps, which may introduce uncertainty into the comparison. 

The CRUTEM4 uncertainties (section 2.3) are included in the time series comparisons to 

indicate the likely range of monthly anomalies for this data set.  The equivalent uncertainty 

envelope for the CDR is not presented as this cannot be determined from the uncertainty 
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information provided in the version 1.0 data files.  Retrieval uncertainties are propagated 

from the 1 km pixels through to the 0.05° CDR product, but further scaling is required to 

facilitate like-with-like comparison to CRUTEM4.  Provision of independent uncertainty 

estimates in surface temperature retrieval from satellite data is subject of active research 

[Bulgin et al., 2016] and as such, a rigorous methodology for propagating these uncertainties 

to provide an uncertainty envelope equivalent to CRUTEM4 is presently unavailable. 

3.3  Statistical parameters 

The relationship between LST and T2m is often explored in this study through the use of 

Ordinary Least Squares (OLS) regression.  For example, T2m (y-axis) is plotted against LST 

(x-axis) – a scatter plot – and the gradient of the linear regression line fitted to the data is 

reported in this study as the ‘slope’.  A slope of unity signifies that a 1 °C change in T2m 

equates to a 1 °C change in LST, which would indicate that the two temperatures are 

perfectly coupled.  The response of the LST-T2m difference (y-axis) with other parameters, 

e.g. vegetation fraction (x-axis), is explored in the same way.  Here, the reported ‘slope’ is 

the gradient of the linear regression line fitted to these data.  P-values for reported 

correlations and slopes are calculated using a two-tailed student T-test with p-values above 

0.05 considered here to indicate a result that is likely to have occurred by chance, and is 

therefore insignificant.   

In the second part of this study, differences in the rate of change in LST and T2m over the 

1995-2012 period are assessed by calculating the trend in the LST-T2m difference time 

series.  For this analysis, the median of pairwise slopes (Sen, 1968) is used to calculate the 

trend; the 95% confidence interval on the trend is also given.  Where this interval does not 

encompass zero, it is assumed there is high confidence that the calculated trend is non-zero. 
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4. Results Part 1: Assessment of the LST-T2m variability 

4.1 Spatial variation in the relationship between LST and T2m 

Figures 3 and 4 show global maps of the mean monthly temperatures for CRU TS and the 

CDR averaged over all occurrences of December/January/February (DJF), March/April/May 

(MAM), June/July/August (JJA) and September/October/November (SON) from August 

1995 through March 2012.  Figure 3shows the side-by-side comparisons for Tmin and 

LSTnight, while Figure 4 shows Tmax and LSTday.  The CDR minus CRU TS differences are 

shown in Figure 5.  Figure 6 presents the normalised frequency distributions of the 

temperature differences, based on the full time series of data.  

In general, the spatial patterns exhibited by both sets of data are very similar, with CRU TS 

and the CDR showing the same dominant features.  LSTnight and Tmin are generally within ±5 

°C, although LSTnight is typically warmer than Tmin, with median difference for the globe for 

all seasons of 1.8 °C (Figure 6a).   This is expected because the nominal night observation 

time for the CDR is 10:00 pm when LST would still be warmer than Tmin, which typically 

occurs close to sunrise [Edwards et al., 2011; Good, 2016; Jin et al., 1997].  However, there 

are notable situations where LSTnight is cooler than Tmin, for example, in Europe and Russia in 

DJF and SON (Figure 5, left).  For the mid-high latitude winter, colder LSTnight could be due 

to snow cover [Good, 2016], or the clear-sky sampling bias of LSTnight on cold, clear winter 

nights when surface is cooling more efficiently compared with cloudy nights.  LSTnight and 

Tmin are most similar over tropical vegetated regions – the role of vegetation is explored 

further in the following sections.  

The differences between LSTday and Tmax are larger in magnitude with a high degree of 

spatial variability, although the median global LSTday-Tmax difference for all seasons is -0.1 

°C (Figure 6b).  LSTday is typically cooler than Tmax at very high latitudes, over some 
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equatorial regions in all seasons, and at middle latitudes during winter (Figure 5, right). These 

spatial patterns are very similar to those reported by Lian et al. [2017] who analysed 

differences between MODIS/Aqua maximum monthly LSTs and Tmax from CRU-TS.   The 

tendency of LSTday to fall below Tmax at high latitudes and during winter months can be 

explained by the lower insolation in these regimes resulting in cold LSTs, whereas T2m is 

higher because the air has passed over warmer SSTs.  LSTs that are colder than T2m may also 

occur over snow-covered surfaces.   Negative LST-T2m differences over equatorial regions 

have been reported previously by Jin et al. [1997] who analyse modelled LST and T2m; this is 

discussed further in section 4.2.  Jin et al. [1997] also observed cooler LSTs compared with 

T2m in winter at middle-to-high latitudes in their simulations. 

By contrast, LSTday tends to be warmer than Tmax over the dry tropics in all seasons and at 

middle latitudes during the summer months.  This positive difference occurs because at the 

10:00 am nominal observation time of the CDR, the clear-sky insolation in these regimes is 

high enough to elevate LST above T2m by several degrees, and even above Tmax [Edwards et 

al., 2011; Good, 2016; Jin et al., 1997].  The results for the same analysis using GHCN-M 

station data illustrate the same general features (not shown). 

The distributions of differences shown in Figure 6 include comparisons between the CDR 

LSTs and Tmean.   This indicates that in both cases, closer agreement in magnitude is obtained 

between LSTnight and Tmin, and LSTday and Tmax, than the equivalent comparisons with Tmean.   

Both the LSTnight-Tmin and LSTnight-Tmean distributions are approximately Gaussian. 

Figure 7 shows the CRU TS versus CDR linear regression slopes (see section 3.3) and 

correlation coefficients for each 0.5° cell, for the complete >17-year time series.  Slopes close 

to unity indicate situations where a 1 °C change in LST corresponds to a 1 °C change in T2m.  

Thus areas where both the correlation and slope are close to unity correspond to where LST 
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and T2m are generally well coupled.  This is observed for LSTnight/Tmin for much of the 

middle-to-high latitudes, and for LSTday/Tmax in parts of north-east Asia.    Elsewhere, slopes 

are generally <0.8 although correlation coefficients still nearly always exceed 0.9 outside of 

the tropics.  This indicates that LST becomes increasingly warmer than T2m with increasing 

temperature.  For both LSTnight/Tmin and LSTday/Tmax, the correlations and slopes are 

substantially lower over the equatorial regions, with a marked latitudinal gradient in 

correlation towards the equator in both hemispheres.  This is consistent with the results of Jin 

et al. [1997] who also found lower LST-T2m correlations in model simulations at lower 

latitudes compared with middle-to-high latitudes. 

Both the Tmin versus LSTnight and Tmax versus LSTday slopes tend to be less than unity, 

indicating that the LST-T2m difference becomes more positive with increasing temperatures.   

This pattern has been noted previously by Mildrexler et al. [2011], who reported an 

increasing difference between annual maximum LST and T2m with increasing temperature.  

While the deviation from unity for Tmin/LSTnight in this study is reasonably small (usually 

within the range 0.8 – 1.1), the Tmax/ LSTday slope is typically less than 0.7.  This is consistent 

with the more extreme range of LSTday-Tmax differences observed in Figure 5.    

4.2 Variability in LST-T2m differences by land cover classification 

Figure 8 shows the characteristics of the CDR-CRUT TS relationship as a function of land 

cover classification.  The positive LSTnight-Tmin difference and slope of slightly less than unity 

reported in section 4.1 seems reasonably consistent across all surface types (Figure 8a, b).  

The proximity of the slopes to unity – all but one are between 0.88 and 1.1 - and high 

correlation coefficients (Figure 8c) indicate a close coupling between LSTnight and Tmin for 

most land cover types, which is consistent with the maps in section 4.1 and with findings 
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reported in previous studies examining the LST-T2m relationship (e.g. Good, [2016], Zhang et 

al., [2011]). 

As inferred from Figures 4-7, the relationship between LSTday and Tmax is more complex and 

dependent on surface regime.  The variability in LSTday-Tmax, both within and between 

surface types, is much higher than for LSTnight-Tmin (Figure 8a), also indicated by the slightly 

lower correlation coefficients (Figure 8c).  The slope of the Tmax versus LSTday relationship is 

lower than for Tmin versus LSTnight (Figure 8b), reflecting the dependence of LST on 

insolation, increasing the LSTday- Tmax difference at higher solar elevations, and therefore at 

higher surface temperatures.  A notable feature of Figure 8 is that the LSTday-Tmax difference 

tends to be negative over the forested land cover types (classes 50-80), which by definition 

represent some of the more vegetated surfaces.  Healthy vegetation actively transpires, losing 

surface heat to the overlying atmosphere [Sun et al., 2015], thus reducing LST relative to T2m.  

Greater surface roughness over vegetation also increases turbulent mixing, which also aids 

transfer of heat from the surface to the overlying air.  Cooler LSTs are generally associated 

with increased vegetation density, and LST and T2m are often close in areas of dense 

vegetation [Jin and Dickinson, 2010; Mildrexler et al., 2011].  Negative LSTday-Tmax 

differences are also characteristic of the lichens and mosses and permanent snow and ice 

classes, which occur at high latitudes and therefore lower solar elevation and colder LSTs.  

Positive LSTday-Tmax differences, on the other hand, occur over shrubland, grassland and bare 

area classes.  The bare area class in particular is associated with low latitudes, where the high 

insolation and lack of vegetation can result in extremely high LSTs that are well above Tmax, 

even at 10 am local time (e.g. see Good [2016] Figure 1).   

The same analysis using GHCN-M stations in place of CRU TS presents very similar results 

(not shown), although the number of land cover types represented is lower.  Usefully, this 

finer-scale analysis enables the comparison of LST and T2m over urban areas, which was not 
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possible at the 0.5° spatial scale of CRU TS.  For this surface type, based on 394 stations, a 

median difference of 2.1 °C (interquartile range: 4.1 °C) for LSTnight minus Tmin, and 3.0 °C 

(interquartile range: 6.7 °C) for LSTday minus Tmax is obtained.  The nature of the relationship 

over this surface, and its similarity to some of the less vegetated classes, is expected given 

that urban areas are often very sparsely vegetated.  However, it should be noted that turbulent 

fluxes are likely to be more efficient coupling T2m and LST over urban areas owing to 

increased surface roughness in this regime compared with sparsely-vegetated surfaces [Stull, 

2015, pg 700].  There is a weak dependence of the urban LST-T2m relationship with latitude 

(not shown), where the sign of the differences becomes slightly more negative, and the 

variability increases towards the higher latitudes, probably reflecting the variation in 

insolation with latitude.    

Both the GHCN-M and CRU TS analyses suggest substantially lower correlations and slopes 

between LST and T2m over the broadleaved evergreen tree cover class (class 50).  This class 

represents the equatorial forests and is spatially consistent with the low-correlation/low-slope 

regions evident in Figure 7.  Although LST and T2m tend to be close in these areas (Figure 5 

and also see Mildrexler et al. [2011]), the temperatures are poorly correlated because the 

diurnal range of both LSTs and T2m is typically small with little seasonality [Good, 2016; Jin 

and Dickinson, 2010].   The influence of vegetation on the LST-T2m relationship is discussed 

further in the following section. 

4.3 Variability in LST-T2m differences with vegetation fraction 

Figure 9 shows the variation in LST-T2m difference with vegetation fraction for different 

ranges of SZA at solar noon.  While the presentation of the results approximates high-to-low 

latitude from top-to-bottom, SZA was used to partition the results so that seasonal variability 

is also taken into account.   
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The general pattern of results is consistent with e.g. Mildrexler et al. [2011], indicating that 

LST and T2m become increasingly close with increasing fractional vegetation cover (FVC).  

Over full vegetation cover (FVC = 1) the difference between them tends to be a degree or so 

above zero for LSTnight/Tmin except at SZAs ≥65° and a few degrees below zero for 

LSTday/Tmax.  (The y-intercept for full vegetation cover is simply the sum of the intercept and 

10 x slope since the maximum value of FVC is 1.)  For both temperature pairs, the intercept 

becomes increasingly positive and the slope becomes increasingly negative (except for 

LSTnight/Tmin for SZA ≥65°) with decreasing SZA.  This is more marked for the LSTday/Tmax 

analysis compared with LSTnight/Tmin, again indicating the dependency of LST on insolation.  

The results suggest that for well-vegetated surfaces (e.g. FVC>0.8), LSTnight/LSTday may 

provide a reasonable proxy for Tmin/Tmax for all ranges of SZA for some applications.  For 

regimes where the SZA is above 45°, Tmin/Tmax is reasonably well approximated by LSTnight/ 

LSTday except for sparsely-vegetated and bare surfaces (e.g. FVC<0.2).   

4.4 Variability in LST-T2m differences by elevation 

Figure 10 illustrates the variation in LST-T2m relationship with elevation, which has received 

little attention in previous studies.  LSTnight-Tmin differences appear to be quite stable, while 

LSTday-Tmax differences have a general tendency to increase with increasing elevation.  For 

both temperature comparisons, there is a clear decrease in both the slope and correlation 

coefficient with increasing elevation indicating a de-coupling of the LST-T2m relationship at 

altitude.  The effect is more marked for the LSTday-Tmax comparison.  This may, at least in 

part, be due to the fact that all-sky T2m are being compared with clear-sky LSTs.  However, at 

high altitude, it is possible for LST to be elevated by heat from the sun, while T2m may be 

cooler because of the temperature lapse rate and exchange with the surrounding free air.  This 

was also noted by Good [2016], who analysed ground-based observations of all-sky LST and 

T2m at 19 of the Atmospheric Radiation Measurement (ARM) program sites, including two at 
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high-elevations.  The equivalent analysis using GHCN-D stations demonstrates very similar 

results (not shown), although the drop-off in correlation with increasing elevation is perhaps 

slightly less apparent, which probably reflects the lack of very high-altitude stations. 

5. Results Part 2: Comparison of LST and T2m time series 

5.1 Spatially-averaged time series comparisons 

The time series of CDR monthly mean anomalies is shown in Figure 11a, together with the 

equivalent time series from CRUTEM4.  The CRUTEM4 global time series is provided with 

lower and upper 95% confidence intervals, which are displayed as shading on the plot.  The 

CDR and CRUTEM4 time series show remarkable agreement, with the ATSR CDR 

providing useful independent verification of the CRUTEM global monthly T2m anomaly time 

series.  The correlation between the adjusted CRUTEM4 time series (i.e. referenced to 

August 1995 to March 2012 baseline) and the CDR is 0.76 (p<0.01), with 166 of the 188 

CDR data points (88 %) falling within the CRUTEM4 uncertainties (blue shading in Figure 

11).   

Both data sets suffer from spatial gaps.  For example, much of Africa and Antarctica are 

regularly missing from CRUTEM4, while the ATSR data set does not provide monthly 

observations under persistent cloud.  With this in mind, Figure 11b shows the same time 

series but for global averages using only cells where both data sets have observations in that 

month.  The correlation increases to 0.87 (p<0.01) for this spatially-matched time series. 

The difference between the time series of anomalies is shown in Figure 11c.  The linear trend 

of this differenced time series is negative (e.g. -0.17°C/decade for the spatially matched 

comparison, 95% confidence range -0.22 to -0.11) implying that the two data sets may not 

exhibit the same rate of temperature change with time.  While this apparent difference might 
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seem surprising, it should be regarded with caution given the short time series (<18 years).  

This analysis uses version 1.0 of the ATSR CDR and part of the motivation of this study is to 

assess the temporal consistency of the time series, particularly as there may be residual 

inhomogeneities caused by the transition from ATSR-2 to AATSR, for example due to the 

change in overpass time of the sensors (as discussed in later sections). 

5.1.1 Analysis of the CDR-CRUTEM4 differenced time series  

Figure 11 suggests that the ATSR-2 portion of the time series, which ends in April 2002, is 

noisier and the CDR-CRUTEM4 differences more positive compared with those of the 

AATSR (from May 2002).  Figure 12 shows the median CDR minus CRUTEM4 anomaly 

differences, for the whole time series, by season and by sensor.  Results are shown for the 

globe and for different geographical regions (Table 3).  For nearly all regions, the CDR-

CRUTEM4 differences are clearly more positive for ATSR-2 compared with AATSR; for the 

globe (spatially matched cells), the median CDR minus CRUTEM4 difference is 0.07 °C for 

ATSR-2 and -0.10 °C for AATSR.  This could account for the overall negative trend in the 

CDR-CRUTEM4 time series, since ATSR-2 preceded AATSR.  The median difference for 

the whole series for most regions is slightly negative, reflecting the longer AATSR record.  

There is some seasonal variation in the median differences, although no clear pattern is 

evident, other than perhaps an increased clustering of the differences around zero in DJF and 

SON. 

Figure 13 shows similar graphics but for the trends of the CDR minus CRUTEM4 time 

series; in this case, trends that are not statistically different from zero (see Section 3.3) are 

indicated by an unfilled symbol.  Table 3 provides the numerical values of the trends for the 

whole time series, together with the correlation coefficients between the CDR and 

CRUTEM4 time series for each region.  For the spatially-matched comparisons, all regions 
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with significant trends (i.e. not statistically different from zero) for mean LST are negative 

although the magnitude is variable, ranging between -0.43 (S. Asia) to -0.17 (Globe) 

°C/decade.  When considering the sensor-partitioned results, there are some small differences 

between the trends, with the ATSR-2 time series trends tending to be slightly more negative 

than AATSR.  However the confidence in these results is lower than for the full time series 

given the even shorter record length (<10 years), as emphasised by the large number of 

regional trends that are not statistically different from zero (unfilled symbols in Figure 13).  

The evidence presented in Figures 11-13 suggests there may be some discrepancy between 

the ATSR-2 and AATSR portions of the CDR.  A likely source of this discrepancy is in the 

overpass time correction that is applied to the ATSR-2 CDR LSTs to align them with the 

AATSR overpass, which is 30 minutes earlier (section 2.1).  LST can change by several °C in 

30 minutes particularly around the 10 am nominal overpass time of the CDR [Good, 2016; 

Jin and Dickenson, 2010], thus this correction is likely to introduce errors into the ATSR-2 

LSTs.  These errors could be the cause of the variation in the median CDR-CRUTEM4 

anomaly difference between ATSR-2 and AATSR (Figure 12), and the apparently higher 

noise in the ATSR-2 portion of the time series (Figure 11c).    

The uncertainty in the ATSR-2 CDR LST temporal correction will naturally be larger where 

insolation is higher, especially where vegetation cover is low, as this is where LST changes 

most rapidly.  While there was no clear pattern in the seasonal median differences (Figure 

12), there does appear to be a tendency of the JJA trends in the NH regions to be slightly 

more negative (Figure 13a-c).   For the lower-latitude NH regions (Figure 13c), this tendency 

also appears in MAM.  If these more negative trends correspond to more warm-biased 

ATSR-2 anomalies, this would support the hypothesis that the ATSR-2 LST temporal 

correction is at least partly responsible for the relative lack of warming in the CDR compared 
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with CRUTEM4, as this is also consistent with regimes with higher insolation, and therefore 

potentially larger errors in the LST temporal correction.  

To verify that the negative CDR minus CRUTEM4 trends are a result of inhomogeneities in 

the ATSR CDR rather than an actual difference in rate of temperature change in the two data 

sets, the analysis presented in Figures 12 and 13 has been repeated using ERA-Interim 

reanalysis skin temperatures in place of CRUTEM4.  ERA-Interim does not assimilate 

satellite LST data so the CDR and ERA-Interim are independent.  To do this, the ERA-

Interim data were aggregated from 6-hourly instantaneous skin temperatures to monthly 

mean anomalies, relative to the same baseline period (August 1995-March 2012).  The results 

are remarkably similar to the analysis using CRUTEM4 (not shown).  The correlation 

between the CDR and ERA-Interim anomalies is high (r=0.81, p<0.01), with a median 

difference across the whole time series of -0.01 °C and a root-mean square difference 

(RMSD) of 0.20 °C.  The median global anomaly difference is positive for the ATSR-2 

portion of the CDR (0.03°C) and negative for the AATSR portion (-0.06°C), while the linear 

trend of the CDR minus ERA Interim time series is -0.11 °C/decade (confidence interval:  

-0.16 to -0.06).  The trend for the global ATSR-2 CDR minus ERA Interim difference is  

-0.30 (confidence interval: -1.25 to -0.80), while for the AATSR CDR-ERA Interim, no 

significant trend is detected (0.06 °C/decade, confidence interval: -0.05 to 0.17).    

The similarity between the of the CDR-CRUTEM4 and CDR-ERA-Interim comparisons 

strongly suggest that, while the month-to-month variability in anomalies between the three 

data sets is in remarkably close agreement, the CDR v1.0 contains some non-climatic 

artefacts.  Performing the same analysis using MODIS-Terra LSTs is less informative 

regarding the stability of the ATSR-2/AATSR transition (not shown) because this 

comparison includes only 21 months of ATSR-2 data from the CDR.  For the global analysis, 

none of the mean monthly CDR minus MODIS trends are statistically different from zero, 
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which suggests that the CDR (mostly AATSR) and MODIS generally agree on the rate of 

change of LST between February 2000 and March 2012.  

The results reported above analyse the mean monthly CDR LST, which is calculated from an 

average of LSTday and LSTnight.  A comparison with GHCN-M, which provides temporally-

homogeneous station-based observations of Tmin and Tmax (section 2.3), enables a separate 

assessment of the stability of the CDR LSTday and LSTnight.  The time series at each station is 

compared directly with the CDR time series for the 0.05° cell nominally containing the 

station location.  The mean LSTnight-Tmin trend is found to be -0.05 °C/decade (n=2122 

stations), while the mean LSTday-Tmax trend is -0.36 °C/decade (n=2200 stations).  The more 

strongly negative trend for the LSTday-Tmax result indicates that most of the discrepancy 

between the CDR and other temperature time series is due to LSTday.  This is evidence that 

further supports the hypothesis that the overpass correction is introducing errors into the 

ATSR-2 CDR LSTs, since such errors would be more prevalent during the day, because of 

the dependency of LST on insolation. 

Figure 14 shows the CDR and CRUTEM4 time series, but this time excluding LSTday from 

the analysis (i.e. CRUTEM4 mean monthly temperature anomalies compared with monthly 

CDR LSTnight anomalies).  This time series is notably more stable and less noisy than the 

equivalent time series in Figure 11, which is based on the mean monthly LST and therefore 

includes LSTday.  The percentage of CDR anomalies that fall within the CRUTEM4 

uncertainties for the adjusted time series has risen to 90 %.  A linear trend in the differenced 

time series (Figure 14c) is now undetectable using all data (-0.02 °C/decade, confidence 

interval: -0.06 to 0.02), and a much smaller negative trend is present only in the spatially-

matched data (-0.08 °C/decade, confidence interval: -0.11 to -0.04).  The anomaly 

correlations with the CRUTEM4 adjusted time series have also increased to 0.83 and 0.90 for 

‘all’ and ‘spatially-matched’ data, respectively.   Table 3, which provides the correlation 
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coefficients and differenced time series results for different geographical regions, indicates 

that the improved agreement between CRUTEM4 and LSTnight anomalies persists in all 

regions.  Other than in the Arctic, the trends of the difference time series become less 

negative and/or not statistically different from zero, indicating that the agreement between the 

CDR and CRUTEM4 is stronger when LSTday is not included in the analysis. 

5.2   Analysis of grid-cell time series 

Figure 15 shows the relationship between the CRUTEM4 and CDR LSTnight time series for 

each 5-degree grid cell.  LSTday has been excluded from this analysis given the results 

presented in Section 5.1.  For most of the globe, the cell-based trends of the differenced time 

series (CDR minus CRUTEM4) are not statistically different from zero (indicated with an 

‘X’ in Figure 15a).  Cells with both positive and negative tendencies are present, reflecting 

the lack of any clear linear trend in the global differenced time series shown in Figure 14.   

Figure 15b implies there may be some regional variation in the median CDR minus 

CRUTEM4 anomalies.  For example, the CDR anomalies tend to be warmer in Australia, 

while for much of Asia and North America, the CDR anomalies are cooler.  However, the 

pattern is again generally heterogeneous. 

A more consistent pattern is observed in the CRUTEM4 versus CDR slopes (Figure 15c) and 

correlation coefficients (Figure 15d) that reassuringly bear close resemblance to Figure 7, 

which shows the equivalent comparisons with CRU TS.  Both correlations and slopes 

approach unity at mid-to-high latitudes, and are significantly less than one over the tropics.  

The correlation coefficients are slightly lower for the CRUTEM4 comparison.  This is 

expected, as the data presented in Figure 15 are anomalies rather than actual temperatures 

(CRU TS: Figure 7), so they have a smaller range and are therefore more sensitive to small 

variations (noise).   Nevertheless, the strength of the correlations and proximity of the slopes 
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to unity outside of the tropics suggest that both LST actual temperatures and anomalies are 

well aligned with T2m in these regions. 

6. Case Study: Europe in August 2003  

Figure 16 shows the temperature anomalies from the CDR and CRU TS data sets during 

August 2003; the first half of this month is characterised by an extreme heat wave that 

affected much of Europe.  The CRU TS data have been used in preference to CRUTEM4 

here owing to its higher spatial resolution and availability of Tmin and Tmax data, which can be 

compared directly with the LSTnight and LSTday, respectively.  It should be noted that since 

only monthly data are analysed here, the results are not intended to provide full 

characterisation of the August 2003 heat wave event. 

The two data sets share many similar features.  Both data sets show warm anomalies over 

much of Europe, which are particularly strong for LSTday/Tmax; the presence of elevated 

daytime and nighttime temperatures in this month is consistent with previous studies on the 

August 2003 heat wave event [Dousset et al., 2011; García-Herrera et al., 2010]. The 

magnitude of the anomalies is more extreme for LST than for T2m.  For LSTday this is likely 

to reflect the clear-sky-only data acquisition.  For the LSTnight/Tmin comparison, this is 

expected because LSTnight is acquired at ~10 pm local solar time, when temperatures are still 

influenced by day time heating, whereas Tmin typically occurs just before dawn.  Therefore, as 

evident in Figure 16, the LSTnight anomaly pattern shares features with both the Tmin and Tmax 

anomaly patterns. 

The bottom two panels in Figure 16 show the CDR-CRU TS anomaly difference maps, with 

the locations of the CRU TS stations overlaid as black filled circles.  CRU TS has larger 

uncertainties where station density is low, therefore one might anticipate larger CDR-CRU 

TS differences in these areas.  While the general pattern does not fully support this, most of 
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the largest CDR-CRU TS differences do occur in station voids, for example, South-West 

France (LSTnight-Tmin only), eastern France, Central Germany (LSTday-Tmax only) and 

northern Scandinavia/North-West Russia (Murmansk province).  It is also notable from 

Figure 16 that the satellite data present a great deal more spatial structure and detail in the 

temperature variability than CRU TS.   

7. Discussion: Using satellite LSTs to augment T2m observations 

LST observed at IR wavelengths represents the temperature of the top few micrometres of the 

earth surface.  From space, this corresponds to an ‘ensemble directional radiometric 

temperature’, which is the aggregate of all radiometric surface temperatures within the 

satellite field of view in the direction of observation   [Dash et al., 2002; Norman & Becker, 

1995; Li et al., 2013].  Over dense vegetation, a satellite-observed LST may approximate to 

the canopy temperature.  This is not the same as the ambient air temperature measured at 

weather stations at ~2m above the Earth’s surface, which has traditionally been used in 

climate and weather applications.  In addition to this geophysical difference, satellite IR LST 

data are also limited to cloud-free scenes, whereas station-based T2m estimates are all-sky.  

The clear-sky bias of satellite IR data is known to affect long-term observations of upper 

tropospheric humidity, for example [John et al., 2011], so it is natural to anticipate this may 

also be an issue for IR LST. 

Despite these fundamental differences, the results presented here and in other studies 

demonstrate that satellite LST and T2m are strongly related, with LST and T2m closest at night, 

or under cloud [Gallo et al., 2011; Good, 2015; Good, 2016; Mildrexler et al. [2011]; 

Sohrabinia et al., 2014].  The relationship between LSTnight and Tmin – which are usually 

observed when solar heating is absent - should be less affected but not completely free from 

clear-sky bias because the surface cools more efficiently at night under clear skies compared 
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with cloudy skies, leading to higher sampling of colder LSTs occurring in these conditions.  

The results presented in this study support this and show that the monthly CDR LSTnight data 

are particularly well aligned with monthly Tmin and even Tmean, both in actual temperatures 

and anomalies.  For applications that can tolerate an uncertainty of up to 5 °C, LSTnight could 

provide a reasonable proxy for Tmin for locations without ground-based observations.  Where 

more accurate Tmin data are required, estimates may be obtained through simple models that 

predict Tmin from satellite data and other parameters, such as those proposed by Benali et al., 

[2012], Good [2015], etc.  

The comparison between LSTday and Tmax presented in this study suggests LSTday may also 

provide useful new temperature data.  In areas of very dense vegetation, LSTday and Tmax can 

be close (within a few °C).  Over more sparsely vegetated and bare surfaces LSTday can 

exceed Tmax by much more than this (up to >10 °C), such that LSTday may not be a viable 

direct proxy for Tmax.  Satellite T2m models can also play a role here to provide more accurate 

estimates of Tmax.  LSTday may also be biased by the clear-sky sampling, implied by the more 

extreme anomalies present during the August 2003 European case study introduced in section 

6.  However, the time series analysis of anomalies over different regions discussed in section 

5.1 does not seem to show any clear-sky bias effects, which suggests that spatial averaging of 

anomalies may reduce the problem.  However, the dependency of LSTday on insolation 

clearly causes problems in generating a temporally homogeneous LST product from sensors 

with different overpass times. 

Given that IR satellite data offer near-complete global coverage, particularly if composited in 

time, there is a clear role for the use of LST data in climate and weather applications.  A 

further benefit of satellite data over ground-based T2m observations is in instrumental and 

methodological consistency: a single instrument with a single retrieval methodology can 

potentially provide a globally consistent product, whereas in situ data are collected using 
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different instruments at each site using different practices (e.g. observation times).  A satellite 

data archive can also be reprocessed – for example, using an improved retrieval or calibration 

technique - in a consistent way, whereas in situ data often come with missing or erroneous 

metadata, so that applying retrospective corrections or improvements can be problematic.  

Lastly, satellite data are often available in very-near real time, which enables a quick 

response time to monitoring events.  For example, LST from SEVIRI is provided 

operationally by EUMETSAT within two hours of acquisition.  Some international station 

T2m data, on the other hand, can take several days to weeks to be received by data producers, 

delaying the output of gridded data sets for monitoring.  A major limitation of satellite LST 

data – particularly polar-orbiting - is that they provide clear-sky ‘snapshots’ in time.  For the 

ATSR CDR, this time is at 10:00 am/pm, which is a limiting factor for studies that require 

knowledge of maximum and minimum surface temperatures that usually occur at other times 

of the day.  Nevertheless, this study suggests that the ATSR data can still provide useful 

information, particularly where the station network is sparse.  It is highly unlikely that 

satellite LST data will ever replace conventional T2m observations.  However, the benefits of 

a synergistic approach seem clear, using multivariate station measurements as a 

complementary observing array that is essential to ensure adequate understanding of 

uncertainties in LST. 

8. Conclusions and outlook 

This paper presents a comparison between a new >17-year, monthly satellite LST data set 

derived from the ATSR series and ground-based observations of T2m.  The LST-T2m 

difference is characterised in space, by season, land cover type, vegetation fraction and 

elevation.  (Note: some of these influencing factors may co-vary but this is not addressed here 

and each influence is considered separately in this study.)  LSTnight is typically warmer than 
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Tmin (global median = 1.8 °C), as expected given the ~10 pm local solar time satellite 

overpass and typical near-dawn timing of Tmin.  LSTnight is highly correlated (>0.9) and has a 

near one-to-one relationship with Tmin outside of the tropics.  The LSTnight-Tmin interquartile 

range is 3.8 °C, indicating that LSTnight is often close in magnitude.  This strong coupling 

means that for some applications, LSTnight may provide a reasonable proxy for Tmin.  The 

LSTday-Tmax variability is higher (median = -0.1 °C, interquartile range = 8.1 °C) and more 

extreme: LSTday tends to be higher than Tmax when insolation is higher but can also be cooler, 

e.g. at high latitudes during winter months, or over snow or ice.  LSTday and Tmax are not as 

well coupled as LSTnight/Tmin, but actual temperature correlations are still typically >0.9 at 

mid-to-high latitudes.   

The LST-T2m difference depends strongly on vegetation fraction and land cover type, 

particularly for LSTday/Tmax.  The largest positive LST-T2m differences occur over bare 

surfaces: both LSTnight and LSTday tend to be warmer than Tmin and Tmax, respectively, and the 

difference increases with decreasing solar zenith angle (higher insolation).  LST-T2m 

differences approach zero with increasing vegetation fraction.  LSTday is typically cooler than 

Tmax over fully vegetated surfaces owing to surface cooling by evapotranspiration, with 

negative LSTday-Tmax differences observed frequently for the forested land cover types.  In 

contrast, LSTnight tends to be slightly warmer than Tmin for nearly all surface types – again, 

this is attributed to the 10 pm local solar time overpass of the ATSR. 

LSTnight-Tmin differences are stable with varying elevation.  However, the LST-T2m coupling 

weakens with increasing elevation, evidenced by lower correlation coefficients and 

regression slopes (T2m versus LST).  This is particularly apparent for LSTday- Tmax. 

The CDR global time series shows remarkable agreement with CRUTEM4, with a correlation 

between the anomaly data sets of up to 0.9 for the globe, with up to 90% of the CDR 
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anomalies falling within the CRUTEM4 T2m uncertainties.  This gives useful verification of 

the CRUTEM4 monthly anomalies since the CDR is a completely independent data set.  

However, the time series analysis presented here suggests that the CDR is not free from 

errors arising from non-climatic effects and there is a discrepancy between the ATSR-2 and 

AATSR portions of the CDR, resulting in an inhomogeneous time series.  This is attributed to 

the overpass time correction applied by the data set providers to align the ATSR-2 data with 

the AATSR overpass time, which is 30 minutes earlier.  The LSTnight time series appears 

more stable than the LSTday time series, which is expected given the dependency of LST on 

insolation. 

LST anomalies appear to be surprisingly well connected to T2m anomalies in space and time.  

Grid-box (5 ° lat/lon) correlations between the CDR and CRUTEM time series are typically 

>0.7 and very often >0.8 outside of the tropics.  Analysis of the August 2003 European 

anomaly maps show that LST anomalies quite closely resemble the equivalent T2m and may 

add information where in situ observations are sparse.  The LST maps also show more detail 

and structure, which will be useful where high resolution information is needed. 

Although the ATSR ceased operations in 2012, the analysis presented here is relevant to the 

ATSR successor, SLSTR, which was launched in 2016, and other IR imagers such as MODIS 

and SEVIRI.  It is hoped that this study will provide some of the foundation for use of LST 

data in climate applications.  The results of this study suggest that the ATSR CDR LSTnight 

may be useful for time series analysis of LST, but that LSTday is not temporally stable enough 

for this application, at least prior to the AATSR.  However, the ATSR CDR LSTday data are 

still useful for other applications where temporal stability is less critical, for example, where a 

climatology of LST is required for knowledge of the ‘typical’ (background) surface 

temperature for a particular scene, for informing gridded estimates of T2m, or the study of 

surface fluxes through the analysis LST-T2m differences. The next release of the ATSR CDR 
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will include the uncertainties associated with the temporal correction applied to the ATSR-2 

LSTs to account for the difference in ATSR-2/AATSR observation time, which should 

enable users to make better use of these data.  It is implausible that LST will replace T2m as 

the surface temperature variable of choice over land for many applications, since it represents 

a different physical quantity and has a comparatively short record length.  However, it seems 

clear that it offers benefits both where LST is the relevant variable and in augmenting T2m 

data from meteorological stations, particularly in data-sparse regions or where a high level of 

spatial detail is required.  
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Table 1: Data sets used in this study.    

Data Set  

(version 

number) 

Coverage Data type Spatial  

Resolution 

Temporal 

Resolution 

Record  

start 

Record  

stop 

Variables Citation 

ATSR CDR (v1) Global land and ice 

(clear sky only) 

Satellite  0.05° Monthly August 

1995* 

March 

2012* 

LST Day 

LST Night 

Ghent [2012] 

CRUTEM4 

(V4.4.0.0) 

Global (incomplete) Station 5.0° Monthly Jan 1856 ongoing Tmean 

anomaly 

Jones et al. [2012] 

CRU TS (v3.23) Global land (except 

Antarctica) 

Station 0.5° Monthly Jan 1901 Dec 

2014 

Tmean Tmax 

Tmin 

Harris et al. [2014] 

GHCN-M  

(v 

3.3.0.20160130.q

ca) 

Global (station time 

series) 

Station Point Monthly Jan 1730 ongoing Tmean Tmax 

Tmin 

Lawrimore et al. 

[2011] 

MODIS  

(MOD11C3, v6) 

Global land and ice 

(clear sky only) 

Satellite 0.05° Monthly Feb 

2000 

ongoing LST Day 

LST night 

Wan [2013, 2014] 

ERA-Interim Global (all surfaces) Reanalysis ~80 km 6-hourly Jan 1979 Ongoing Instantaneous 

skin 

temperature 

Dee et al., [2011] 

Copernicus/Geola

nd-2 Fractional 

Vegetation Cover 

(v1.0) 

Global (clear-sky land 

only) 

Satellite 1/112° 10-day 

composite 

Jan 1999 Dec 

2012 

Fractional 

vegetation 

cover  

Baret et al. [2013]; 

Camacho et al. 

[2013] 

LC CCI (v1.6) Global land and ice. Satellite 300m N/A Jan 1998 Dec 

2012 

Landcover 

type 

Bontemps et al., 

[2012]; Poulter et 

al., [2015] 

SRTM (v1) Global Satellite 30 m N/A 2000 2000 Elevation Farr & Kobrick 

[2000]; Rodriguez 

et al. [2005] 

* January-June 1996 and January-June 2001 are not included in the analysis as these are incomplete months in the CDR (see text).  
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Table 2: Land Cover CCI surface types (see 

http://maps.elie.ucl.ac.be/CCI/viewer/index.php).  ‘Legend abbreviation’ refers to the x-

axis labelling in Figure 8. 

Class Legend abbreviation Description 

10 Crops (rain) Cropland, rainfed 

20 Crops (irr.) Cropland, irrigated/post flooding 

30 Mos. Crop (>50%) Mosaic cropland (>50%) / natural vegetation 

(tree, shrub, herbaceous) 

40 Mosaic nat.veg (>50%) Mosaic natural vegetation (tree, shrub, 

herbaceous cover) (>50%) 

50 Broad. ever. Tree cover, broadleaved, evergreen, closed to 

open (>15%) 

60 Broad. decid. Tree cover, broadleaved, deciduous, closed to 

open (>15%) 

70 Need. ever. Tree cover, needleleaved, evergreen, closed to 

open (>15%) 

80 Need. decid. Tree cover, needleleaved, deciduous, closed to 

open (>15%) 

90 Mixed tree Tree cover, mixed leaf type (broadleaved and 

needleleaved) 

100 Mos. tree/shrub (>50%) Mosaic tree and shrub (>50%) / herbaceous 

cover (<50%) 

110 Mos. herb. (>50%) Mosaic herbaceous cover (>50%) / tree and 

shrub (<50%) 

120 Shrubland Shrubland 

130 Grassland Grassland 

140 Lich./mosses Lichens and mosses 

150 Sparse veg. Sparse vegetation (tree, shrub, herbaceous cover) 

(<15%) 

160 Tree, flood-fresh/brack. Tree cover, flooded, fresh or brackish water 

170 Tree, flood-saline Tree cover, flooded, saline water 

180 Shrub/herb. Flood. Shrub or herbaceous cover, flooded, 

fresh/saline/brackish water 

190 Urban Urban areas 

200 Bare areas Bare areas 

210 Water Water bodies 

220 Perm. snow/ice Permanent snow and ice 
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Table 3: Relationships between time series of anomalies from CRUTEM4 (adjusted to 1995-2012 baseline) and the CDR.  R is the 

correlation coefficient.  ‘Trend’ indicates the trend of the differenced time series (CDR minus CRUTEM4) with time.  Results are for 

spatially-averaged time series using all grid cells available for each data set (‘all data’) and only grid cells that are available in both data 

sets (‘spatially matched’), and separately using the mean LST time series (‘Mean’), and LSTnight only (‘Night’).  Results in brackets 

indicate trends that are not statistically different from zero (see Section 3.3).  Antarctica is excluded from the analysis owing to the very 

small number of data points in this region. 

Region 

Name 

Min 

Lat 

Max 

Lat 

Min 

Lon 

Max 

Lon 

R  

(all data) 

R  

(spatially 

matched) 

Trend  

(all data) 

(°C/decade) 

Trend  

(spatially matched) 

(°C/decade) 

     Mean Night Mean Night Mean Night Mean Night 

Globe -90 90 -180 180 0.76 0.83 0.87 0.90 -0.15 (-0.02) -0.17 -0.08 

Europe 30 70 -15 40 0.95 0.95 0.95 0.96 -0.10 -0.06 (-0.08) (-0.05) 

N. America 50 70 -170 -50 0.94 0.94 0.94 0.94 (-0.12) (-0.08) -0.17 (-0.11) 

USA 30 50 -130 -50 0.93 0.93 0.93 0.93 (-0.04) (-0.06) (-0.05) (-0.05) 

C. America 10 30 -130 -60 0.69 0.82 0.71 0.83 -0.27 -0.10 -0.25 -0.09 

S. America -60 10 -85 -30 0.76 0.85 0.77 0.86 -0.10 (0.01) (-0.05) (0.00) 

N. Africa 0 30 -20 60 0.78 0.88 0.77 0.89 -0.26 -0.15 -0.24 -0.14 

S. Africa -40 0 -20 60 0.58 0.77 0.58 0.76 -0.34 -0.08 -0.32 (-0.04) 

Australasia -50 -10 110 180 0.76 0.80 0.78 0.85 -0.15 (-0.03) (-0.10) (0.01) 

S. Asia -15 30 60 155 0.56 0.81 0.70 0.87 -0.49 -0.14 -0.43 -0.12 

C. Asia 30 50 40 145 0.93 0.95 0.93 0.95 -0.25 -0.12 -0.22 -0.11 

N. Asia 50 70 40 180 0.94 0.95 0.95 0.96 (0.06) (0.03) (0.03) (0.03) 

Arctic 70 90 -180 180 0.82 0.84 0.90 0.93 (-0.22) (-0.18) (-0.14) -0.24 
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Figure 1: An example of the ATSR CDR for August 2003.  Panels (a) and (c) show LST 

night and panels (b) and (d) show LST day.  Some striping is evident in the data where 

different orbits have contributed to the monthly average.  In panel (c) the striping is in a 

top-left to bottom-right direction corresponding to the ascending node of the ATSR 

overpass.  In panel (d) the direction is top-right to bottom-left, corresponding to the 

descending node. 
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Figure 2: Map of CRU TS stations for the 1995-2012 period. 
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Figure 3: Seasonal mean temperatures from the CRU TS v3.23 Tmin (left) and the CDR 

LST night (right) for December/January/February (DJF), March/April/May (MAM), 

June/July/August (JJA) and September/October/November (SON).  Seasonal means are 

calculated from data acquired August 1995 through March 2012 (excluding January-

June 1996 and January-June 2001, which are incomplete months in the CDR; see text). 
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Figure 4: As for Figure 3 but for the CRU TS v3.23 Tmax (left) and the CDR LST day 

(right). 
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Figure 5: CDR LST night minus CRU TS v3.23 Tmin differences (left) and CDR LST 

day minus CRU TS v3.23 Tmax differences (right) for December/January/February 

(DJF), March/April/May (MAM), June/July/August (JJA) and 

September/October/November (SON).  Seasonal means are calculated from data 

acquired August 1995 through March 2012.   
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Figure 6: Normalised distributions of the CDR minus CRU TS differences for (a) 

LSTnight-Tmin (solid line) and LSTnight-Tmean (dotted line) and (b) LSTday-Tmax (solid line) 

and LSTday-Tmean (dotted line).  The histograms are calculated from data acquired 

August 1995 through March 2012.  The 5
th

 (C05), 25
th

 (C25), 50
th

 (C50), 75
th

 (C75) and 

95
th

 (C95) centiles of the LSTnight-Tmin (a) and LSTday-Tmax (b) differences are shown on 

each panel. 
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Figure 7: Maps showing spatial variability in the LST-T2m relationship.  The left-hand 

panels correspond to the Tmin versus LST night relationship and the right-hand panels 

are for Tmax versus LST day.  The slopes (top; regression of T2m as a function of LST) 

and correlation coefficients (bottom) are plotted for each 0.5° grid cell.  

Correlations/slopes where the pvalue is >0.05 are excluded from the maps (grey).  There 

are no negative slopes/correlation coefficients.   
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Figure 8: Characteristics of the differences between temporally and spatially collocated 

CDR and CRU TS observations by land cover type, where the dominant land cover 

class is present in ≥80% of the grid cell.  The x-axis indicates the land cover class (Table 

2).  Panel (a) shows the 5/95
th

 centiles (whiskers), 25/75
th

 centiles (box) and median 

(horizontal line within the box) CDR-CRU TS difference, (b) shows the slope of the 

CRU vs CDR relationship, (c) shows the correlation coefficient and (d) shows the 

number of grid cells analysed.  Matchups whe re the fraction of water in the grid cell 

is >20% have been excluded from the analysis.  All correlations/slopes have a p value 

≤0.05.  Note that the number of stations for the permanent snow or ice land cover class 

has been reduced by a scaling factor of 10 (multiply bar by 10 for correct number). 
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Figure 9: Variation in CDR minus CRU TS differences with vegetation fraction, for (a) 

LSTnight-Tmin and (b) LSTday-Tmax for SZA>65° (i.e. high latitudes), (c) LSTnight-Tmin 

and (d) LSTday- Tmax for 45°≥SZA<65°, (e) LSTnight-Tmin and (f) LSTday-Tmax for 

20°≥SZA<45°, (g) LSTnight-Tmin and (h) LSTday-Tmax for SZA<20° (i.e. low latitudes).  

‘SZA’ refers to the SZA value at solar noon – see text. 
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Figure 10: As Figure 8 except showing the variation in the LST-T2m relationship with 

elevation.   The x-axis shows the elevation range of the data plotted (in m).  
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Figure 11: Time series of globally-averaged monthly anomalies (°C) for the CDR and 

CRUTEM4 data set.  The results for the ‘unadjusted’ CRUTEM4 data correspond to 

the original CRUTEM4 anomalies (baseline 1961-1990).  The ‘adjusted’ CRUTEM4 

data are the anomalies re-referenced to the August 1995- March 2012 baseline period.  

The CDR anomalies are also referenced to this period.  Panel (a) shows averages using 

all available data points for each data set, while (b) indicates averages using only cells 

where both data sets are present.  Panel (c) shows the respective CDR minus 

CRUTEM4 differences where ‘All’ corresponds to the data shown in (a) and ‘Match’ to 

the data shown in (b).  The 95% confidence interval (CI) for the difference trends are 

indicated on the plot.  Shading represents the total uncertainties associated with the 

CRUTEM4 time series (sourced from 

http://www.metoffice.gov.uk/hadobs/crutem4/data/diagnostics/index.html).  

 

  

http://www.metoffice.gov.uk/hadobs/crutem4/data/diagnostics/index.html
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Figure 12: Summary of the median CDR minus CRUTEM4 anomaly differences for 

regions with central latitude (a) 60-90 °N, (b) 30-60 °N, (c) 0-30 °N, (d) -30 to 0 °N.  

Results are shown for all seasons and sensors (‘All’), by season (DJF/MAM/JJA/SON) 

and by sensor (ATSR2, AATSR).  The results are for spatially-matched grids only.   

Antarctica is excluded from the analysis owing to the very small number of data points 

in this region. 
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Figure 13: As for Figure 12 but showing the trend of the CDR minus CRUTEM4 time 

series.  Results denoted by an unfilled symbol indicate where trends are not statistically 

different from zero.  

  



 

 
© 2017 American Geophysical Union. All rights reserved. 

 

Figure 14: As for Figure 11 but excluding LSTday data from the CDR time series (i.e. 

using only LSTnight). 
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Figure 15: Maps showing the temporal relationship between (adjusted) CRUTEM4 and 

the CDR LSTnight anomalies (both referenced to the 1995-2012 baseline period).  Panel 

(a) shows the grid box trends of the CDR-CRUTEM4 anomaly differences, (b) shows 

the median difference in anomalies, (c) shows the slopes of the CDR vs CRUTEM 

anomalies, (d) shows the CDR vs CRUTEM4 anomaly correlations and (e) shows the 

number of matched data points in each grid cell.  Cells where the trends are not 

statistically different from zero in (a) and slopes with p>0.05 in (c) are overlaid with an 

‘X’.   
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Figure 16: Temperature anomalies (°C) for the August 2003 European heave wave for 

LST night/Tmin (left) and LST day/Tmax (right).  Both the CDR (top) and CRU TS 

(middle) anomalies are referenced to the August 1995-March 2012 baseline period – 

both are shown at a spatial resolution of 0.5°.  The bottom row shows the difference 

between the two, with the location of the CRU TS stations overlaid (filled black circles). 


