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H I G H L I G H T S

• A novel multi-agent Building Energy Management Systems is developed.

• The model meets dual-objectives of thermal comfort and energy efficiency of the HVAC systems.

• The Epistemic-Deontic-Axiologic (EDA) agent model is applied to develop rational agents.

• E-component, D-component and A-component based multi-agent framework is described in details.

• The method could enhance the capacity of energy efficient intelligent control of the HVAC system.
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A B S T R A C T

In the UK, buildings contribute about one third of the energy-related greenhouse gas emissions. Space heating
and cooling systems are among the biggest energy consumers in buildings. This research aims to develop a novel
Building Energy Management System (BEMS) to reduce the energy consumption of the heating, ventilation and
air-conditioning (HVAC) system while fulfilling each occupant’ thermal comfort requirement. This paper pre-
sents a newly developed novel method, Epistemic-Deontic-Axiologic (EDA) Agent-based solution to support the
Energy Management System meeting the dual targets of occupant thermal comfort and energy efficiency. The
multi-agent solutions are applied to the BEMS. The problem decomposition method is used to define the ar-
chitecture of the system. The Epistemic-Deontic-Axiologic (EDA) agent model is applied to develop the rational
local and personal agents inside the system. These EDA-based agents select their optimal action plan by con-
sidering the occupants’ thermal sensations, their behavioural adaptations and the energy consumption of the
HVAC system. The Newly-developed personal thermal sensation models and group-of-people-based thermal
sensation models generated by support vector machine (SVM) based algorithms are applied to evaluate the
occupants’ thermal sensations. These models are developed from the data collected in a real built environment.
Simulation results prove that the newly-developed BEMS can help the HVAC system reduce the energy con-
sumption by up to 10% while fulfilling the occupants’ thermal comfort requirements.

1. Introduction

Buildings have been regarded as one of the major carbon emission
sources due to their high levels of energy consumption. It has been
reported that, globally, more than 30% of total energy is consumed by
buildings [1]. Among that, the heating, ventilation and air-conditioning
(HVAC) system contributes around 50% energy consumption in non-
domestic buildings [2]. Therefore, increasing the energy efficiency of
HVAC systems is vital to reduce the carbon emission. The Building
Energy Management System (BEMS) is regarded as an essential way in

operations to achieve energy efficiency while maintaining occupants’
thermal comfort [3].

Traditional BEMSs for the operation of heating and cooling systems
are based on the designed or fixed range of thermal comfort in ac-
cordance with the recommendations by standards such as ANSI/
ASHRAE 55 and ISO7730 [4–8], which is based on the Predicted Mean
Vote-Predicted Percentage of Dissatisfied (PMV-PPD) method from a
large population based studies in the laboratory by Fanger [9]. Such
building energy management systems are usually not available for oc-
cupants to adjust the temperature range. However, the PMV/PPD index
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may not accurately reflect the occupants’ actual thermal sensations in a
certain air-conditioned environments [10–12]. Moreover, due to the
diversity of the occupants’ thermal comfort demands, the index could
not represent each individual’s actual need [13,14]. An appropriate
temperature setting point is also important for the BEMS in terms of
energy efficient. For example, it is revealed that decreasing the indoor
air temperature setting-point by 1 °C may lead to 10% heating energy in
a HVAC systems [15]. Therefore it remains an open question how the
energy operation system can satisfy occupants’ diverse thermal comfort
demand and behaviour adaptation at the meantime time to achieve
energy efficiency.

The traditional BEMS based on the pre-fixed setting temperature has
little capacities of interactions with occupants; thus not be capable to
handle real situations of diverse demands and behaviours of thermal
comfort from individuals in an open office. It poses growing challenges
to solve the dual problems of (1) meeting onsite occupants’ thermal
comfort; and (2) energy efficiency of the energy systems.

Responding to this question, Yao and Zheng [16] proposed an ad-
vance BEMS called SMODIC (Smart Sensor, optimum Control and In-
telligent Control) which aimed to close the gap of mismatching occu-
pants’ demand of thermal comfort and the energy supply of a HVAC
system by intelligent control. Such advanced BEMS system is expected
to have the function to predict occupants’ real-time thermal sensations
in order to perform dynamic control of the HVAC system. Furthermore
such system is also expected being able to provide action advice or
saying feedbacks to individuals in order to compromise with other oc-
cupants’ needs as well as the limit set by the building standard when the
conflict exists.

This is a complex system because it requires (1) knowledge of in-
dividuals’ needs; (2) function of the interaction between occupants and
the energy system; (3) function of feedback to individuals with con-
sideration of the group occupants’ needs and the thermal regulation
requirement; and (4) function of dynamite real-time control.

The multi-agent system has been recognised as an effective ap-
proach to solve such complex problem, which the traditional single
controller method could not solve [17]. The aim of this research is to
invent a novel BEMS to tackle the challenges of the complexity of the
sophisticated BEMS system by integrating four specific functions spe-
cified above that the traditional BEMS cannot solve. The research in-
novatively developed a combination of the problem decomposition
method with the Epistemic, Deontic and Axiologic (EDA) agent model
to form a holistic solution of multi-agent system design. In this research,
the method of using EDA agent model to develop all the rational agents
within the BEMS system is fully explored in the first time, which could
enhance the capacity of energy efficient intelligent control of the HVAC
system in the light of closely responding occupants’ thermal comfort
needs.

2. Literatures

2.1. Multi-agent architecture

The ‘agent’ concept originates from artificial intelligence research
[18]. An agent is ‘a computer system that is situated in some environ-
ment and that is capable of autonomous action in this environment in
order to meet its delegated objectives’ [19]. The multi-agent system has
been recognised with capabilities to solve complex problem in the
building management. For example, research from the MIT intelligent
room project employed different agents to realise different targets in the
built environment [20]. With the help of the agents, the intelligent
room gains abilities such as speech recognition and machine-occupant
interaction in the room. Sharples et al. [21] developed individual room
agent to provide assistance to elderly and disabled people. Room agents
are connected each other and share information such as occupancy
information and fire alarm information. Liu et al. [22] proposed the
Multi-agent System for Building Control (MASBO). In this system,

personal agents has the function of representing occupants; the local
agent has the function of control the environment parameters and the
central agent has the function such as configuring the whole system.
Wu and Noy [23] suggested a multi-agent based system to reconcile the
occupants’ well-being and energy consumption in domestic buildings.
The proposed prototype system model is integrated with a wireless
sensor actuator network (WSAN) to collect environmental information.
Personal agents are recognised playing an important role in helping the
system to fulfil individual requirements. Rogers et al. [24] proposed a
home energy management agent to optimise the use of the heating
system on behalf of the householder. The agent considers the comfort,
carbon emissions and cost of energy to make control decisions. Feed-
backs from the system sent to the occupants contains the cost and
carbon emission information. Yang and Wang [25] developed a multi-
agent system for building energy management also including the per-
sonal agents, the local agents and the central agents. The agents are
arranged in a hierarchical way with multiple local agents connected to
one central agent while a local agent is serving more than one personal
agent. The current multi-agent-based energy management model are
suggested to be grouped into different levels such as master agents and
slave agents [26]. The master agents respond to energy efficiency and
comfort issues in the building while slave agents negotiating to each
other to avoid conflicts among controllers. A number of research pro-
jects have attempted to further extend the ability of multi-agent based
building energy management systems by introducing energy resource
side management into the function list of the system [27–30]. The
multi-agent energy management system is considered to work with a
smart grid [28]. It is demonstrated that the electronic grid can be
controlled by an electronic agent working with heating/cooling agents
and comfort agents [27]. Alternatively, other renewable sources of
power can be managed by a source agent [29,30].

It can be concluded from the literatures that very few systems tend
to provide advisory information on the building energy management
system. In some, the users’ profiles and comfort models are developed
to support the agents’ decision making process. But the accuracy of such
profiles and models needs to be verified and improved. Few researchers
have tried to involve the behavioural adaptations in the decision
making process as effective ways of changing the thermal condition for
individuals. In this research a novel system featuring four abilities de-
picted in the introduction section is an original contribution to enhance
the intelligent control of HVAC systems. Furthermore, in previous re-
search, different multi-agent architectures were applied in BEMSs but
there was no clear method to define the architecture, decide the func-
tions of the agents within the system then develop these agents to
realise their functions. To solve this problem, the ‘problem decom-
position’ method is popularly used to define architecture of a multi-
agent BEMS [31,17]. The process of this research can be described as:
firstly to decompose main complex problem into sub-problems, sec-
ondly agents are assigned to allocate the sub-problems. The logics
among the sub-problems and the logics between sub-problems and the
main problem define the architecture of the multi-agent system. The
function of an agent depends on the nature of the sub-problem/sub-
problems being faced. Once an agent’s function is defined, the Epis-
temic, Deontic and Axiologic (EDA) agent models can be applied to
build the agents.

2.2. EDA agent model

In the agent-based system, the agents are expected to be ‘in-
telligent’. A ‘rational agent’ in the BEMS is expected to be able to realise
the best possible solutions in a given situation’ [17]. The ‘rational agent’
is described as ‘that acts so as to achieve the best outcome or, when
there is uncertainty, the best expected outcome’ [18]. Filipe and Fred
[32] theoretically explain that, the EDA agent model can guarantee the
development of the ‘rational agents’. The EDA (Epistemic, Deontic,
Axiologic) agent model has been recognised as an effective method to
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develop the agents, in the BEMS [33].
The original definitions of EDA are ‘Axiologic - to be disposed in

favour or against something in value terms; ‘Epistemic’ – to adopt a
degree of belief or disbelief; ‘Deontic’ – to be disposed to act in some
way’ [34]. It is assumed that all the software and hardware of the BEMS
use the same data format, so the input and output information of the
agent does not need to be interpreted. Therefore, the perceptive inter-
preting and output interpreting components are not discussed in the
agent structure. In the MASBO, an EDA agent model is used to define
the structure of an agents [35,36]. The focuses are mainly on the de-
velopment of the D-component in an agent that defines the plans and
the goals of the agent. It remains unclear the realisation of integrity
functions of the E-component, D-component and A-component using
software and hardware resources from the BEMS.

2.3. Thermal sensation model

As stated in the Introduction section, one of the expected function of
the advanced BEMS is the prediction of an individual’s real-time
thermal sensation. Recently, the ‘machine learning’-based methods are
popularly used in modelling single or group people’s thermal sensation.
For example, the Extreme Learning Machine (ELM) is used to develop
models to predict the thermal sensations of outdoor subjects [37]. The
Artificial Neural Network (ANN) was used to develop people’s thermal
sensations in the naturally-ventilated buildings [38]. The ANN and
support vector regression (SVR) methods have been applied to mod-
erate the PMV values to reflect the true thermal sensations at the real-
time. [39–41]. It has been proved that C-Support Vector Classification
(C-SVC) can successfully generate thermal sensation model for an oc-
cupant [42]. As the PMV/PPD-based thermal comfort model could not
reflect the onsite occupants’ real-time thermal sensations, it is not ideal
to be used in the advanced BEMS. In this case, SVR and C-SVC methods
are chosen to generate thermal sensation models here.

3. Research methodology

3.1. Research design

The research problem is defined to solve the complex BEMS with
dual objectives of achieving thermal comfort and energy efficiency of
the indoor environment and energy system. The research problem de-
fines the multi-agent system.

Firstly, the problem-decomposition method is used to design the
architecture of the multi-agent system and define the functions of the
agents; Secondly, the agents in the system are developed using the EDA
agent model to generate the E-component, D-component, and A-com-
ponent. The ‘C-SVC’ and SVR machine learning method is used to
generate the thermal sensation models of the onsite occupants (personal
and group) respectively that is used by the agents. The development
process of the novel multi-agent-based BEMS at both the system and
agent levels is illustrated in Fig. 1. Finally, performance of the appli-
cation of the multi-agent BEMS are tested.

3.2. Problem decomposition

There are two steps to define the architecture of the multi-agent
system and the functions of the agents [17,31].

Step 1: Decomposing the main problem into several sub-problems;
Step 2: Allocating agents to solve sub-problems.

Once the main problem is decomposed into sub-problems, the logics
among the sub-problems and logics between the sub-problem and main
problem can be identified. These logics are thus used to form the ar-
chitecture of the multi-agent system, as each sub-problem related to a
particular agent. All solutions of the sub-problems are then aggregated

to generate the solution of the main problem. When the function of an
agent is determined, the agent can be developed following the EDA
agent model.

3.3. EDA agent model

The EDA model provides the theoretical framework of the compo-
nents in an intelligent agent. The research [36] attempts to interpret the
framework of components in the EDA model in the BEMS context as
follows:

• The E-component represents the facts or knowledge the agent be-
lieves, including the regulations and occupants’ preferences.

• The D-component contains the set of available plans and goals.

• The A-component is an evaluating component. It evaluates the plans
in the D-component and chooses the appropriate plan based on the
knowledge in the E-component.

As illustrated in the introduction section, this research focuses on
making the BEMS understand occupants’ thermal comfort needs. These
knowledges are generated and stored in the E-component in the agents.
The methods used to generate these knowledge are introduced in
Sections 3.4 and 3.5.

The BEMS system also requires the knowledge of the energy con-
sumption of the HVAC system to be stored in the E-component in the
certain agents. All the agents in the system need decision-making al-
gorithms in their A-component and action plans in their D-components.
Examples of them will be showed when the agents are built and tested
in Section 4.

3.4. C-SVC based personal thermal sensation model

The personal thermal sensation is the essential knowledge of the E-
component. The C-SVC algorithm has been used to develop personal
thermal sensation models. The developed model can realistically reflect
an individual occupant’s thermal sensation and expectation. The onsite
occupants’ personal thermal sensation predicted by the modelling
method using C-SVC algorithm is more realistic than that by the PMV
method. Therefore the C-SVC algorithm is embedded in the E-compo-
nent to obtain the personal thermal sensation. The detailed modelling
method of development of personal thermal sensation is introduced in
reference [42].

3.5. SVR group-of-people-based thermal sensation model

The SVR is a modelling method from machine learning. Differing
from the C-SVC method, it is a regression algorithm based on the sup-
port vector machine, which has been used for developing regression
models by a number of researchers [43–45]. The SVR algorithm is
based on the ∊-insensitive loss function ∊Lf , which can be expressed
according to Vapnik [46]:

= ⎧
⎨⎩

− −∊ − ⩾ ∊
∊L y z

y z when y z
otherwise

( , )
| | , | |
0,f

(1)

where y is desired output and the z is the model’s prediction. The re-
lationship between −y z and ∊Lf is depicted in Fig. 2.

Assuming the total number of data sets is N, the input-output pairs
can be expressed as (u ,yi i); = …i N1,2, .

MLet be the total number of training samples.
The input vector ui contains environmental parameters and personal

factors.
The targeted output yi only contains one element, which is the

thermal sensation value under the particular circumstance, which is
defined by ui.

Let zi represent the output value of the developed regression model
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when the input vector is ui.
The relationship between the output and the input pair can be ex-

pressed as:

= ∅ +z ω u b( )i
T

i (2)

where ω is weights and b is bias. and ∅ u( )i is defined in the kernel
function:

= ∅ ∅K u u u u( , ) ( ) ( )i j i
T

j (3)

In order to obtain the regression algorithms (SVR), the ER
(Empirical Risk) need to be minimised. It is a constraint optimisation
problem.

∑= ⎛

⎝
⎜

⎞

⎠
⎟

=
∊ER L z M(y , ) /f i

i 1

M

i
(4)

⩽ω eSubject to: || || (5)

where e is a constant value.
By introducing positive slack variables, the ∊-insensitive loss func-

tion defined in Eq. (1) can be reformed as (reference to Xi et al. [48]):

= + ′
⎧

⎨
⎪

⎩⎪

= − > ′ = − > ∊
′ = − > ′ = − > ∊

= ′ =
∊L y z ξ ξ

ξ ξ when
ξ ξ when
otherwise ξ ξ

( , ) ;
z y 0; 0; z y
y z 0; 0; y z

0
f i i

i i

i i

i i

i i i i

i i i i

(6)

Then the constraint optimisation problem can be converted into:

∑ ∑′ = + + ′
= =

ξ ξT ω ω ω ξ ξ( , , ) 1
2

· C Ci i
T

i 1

M

i 1

M

(7)

where C is a positive regularization parameter;
Subject to the constrains of:

∅ + − ⩽ ∊ +ω u b ξ( ) yT
i ii (8)

− ∅ − ⩾ ∊ + ′ω u b ξy ( )T
i ii (9)

⩾ = …ξ i M0; 1,2, ,i (10)

′ ⩾ = …ξ i M0; 1,2, ,i (11)

Accordingly, Lagrangian function can be defined as [39,49]:

∑ ∑ ∑ ∑− − ′ − ′ −∊ + ′ + − ′
′

= = = =

l l l l K u u l l l lmax 1
2

( )( ) ( , ) ( ) y ( )
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M
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M
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i

M
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i

M

i i
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i

(12)

Subject to the constraints of:

∑ − ′ =
=

l l( ) 0
i

M

i i
1 (13)

⩽ ⩽ = …l C i M0 , 1,2,i (14)

⩽ ′ ⩽ = …l C i M0 , 1,2,i (15)

where li and ′lj are Lagrangian multipliers.
Finally, the regress algorithm can be expressed as:

∑= − + ′ +
=

H u l l K u u b( ) ( ( , )
i

M

io io i o
1 (16)

where lio ′lio and bo are optimised coefficients.
In this research, the ∊ -support vector regression (∊-SVR) tool, which

is provided by the LibSVM library for Matlab software [50], is used to
realise the SVR algorithm described above. The more detailed in-
troduction of the basic principle of the SVR can be found in Vapnik [46]
and Haykin [47].

4. Multi-agent BEMS

4.1. The architecture of the multi-agent system

The dual-objective problem is solved by the problem decomposition
method and the EDA agent model. By applying the method, the original
problem can be divided into two sub-problems of (1) how to avoid the
energy wastage of the HVAC system; (2) how to enable each occupant
to acquire a thermally comfortable feeling. Applying the multi-agent
model, the sub-problems can be solved by assigning two types of agents
of (1) the local agent and (2) the personal agent.

The architecture of the multi-agent system is illustrated in Fig. 3.
Assuming there are n number of occupants in the open plan office, n
number of personal agents are assigned. From the figure we can see that
the local agent and the personal agents work together in the BEMS.

Fig. 1. The development process of the EDA agent-based
BEMS.

Fig. 2. ∊-insensitive loss function [47].
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Personal agent is responsible for the dialogues with the occupants and
the Local agent. Each personal agent communicates with its designated
occupant namely Occupant 1, Occupant 2, … , Occupant n. It provides
personalised advice to its occupants in terms of actions of regulating
their thermal comfort. Their communications are realised through the
human-machine interface and the sensors placed in the indoor en-
vironment. Technologies affecting the human-machine interfaces,
sensor network and data storage are not discussed in detail in this
paper. The local agent is responsible for the operation of the HVAC
system. It provides signals of optimal temperature setting point to the
actuator of the HVAC system.

4.2. Development of the local agent and personal agent

4.2.1. Local agent
As the agents are expected to be rational, the EDA agent model are

used to develop the theoretical framework of the rational agents in the
BEMS. The functions of each EDA components in both personal and
local agents need to be specified in the context of the BEMS, which is
not fully realised within the existing literature. The key logic of the
EDA-based agent is described here as: The agent makes decisions in the
A-component applying decision-making method, which uses the action
plans in the D-component and knowledge provided by the E-compo-
nent.

The local agent is expected to have the ability of providing the
optimal temperature setting point to the actuator in the HVAC system.
The structure of the Local agent developed by the EDA model is illu-
strated in Fig. 4. The specification of functions of the E-, D-, and A-
components in the Local agent is described in details here.

• The D-component needs to provide the plans regarding the different
settings of the HVAC.

• The E-component contains (1) the models which evaluate group
occupants’ thermal comfort and the energy consumption; (2) the
algorithms of generating models or the data of the actual energy
consumption in practice; (3) the real-time environmental informa-
tion from the sensor network and personal information from per-
sonal agents.

• The A-component contains decision-making algorithm to choose the
appropriate settings from the set of available HVAC settings in the
D-component based on the knowledge in the E-component.

4.2.2. Personal agent
The personal agent is expected to have the ability of providing the

optimal suggestions on the behavioural adaptations to the occupant
based on the pooled factors of the setting point of the HVAC system, the
personal thermal sensation, environmental information and personal
factors such as the clothing insulation level (Clo) and the activity level
(MET). The structure of the personal agent developed by the EDA model
is illustrated in Fig. 5. The specification of functions of the EDA com-
ponents in the Personal agent is described in details here.

• The D-component provides the adaptive action plans.

• The E-component contains the model and the algorithm which
evaluate the occupants’ personal thermal comfort. It also contains
the environmental information acquired from the sensor network,
the personal factors from the human/machine interface and the
HVAC setting point from the local agent, the energy consumption
model or the data reflecting the actual energy consumption in real
practice.

• The A-component contains decision making algorithm to provide
suggestions on adaptive behavioural actions based on the action
plans stored in the D-component and the knowledge in the E com-
ponent.

Here, the personal agents not only play an assistant role of col-
lecting, storing and transforming information in the multi-agent-based
energy management system, but also make rational decision on any
necessary actions to suggest to the occupants.

Once the HVAC temperature setting points are confirmed, it is to be
transformed to the actuator for operation.

4.3. Experimental study

In order to fully develop the thermal sensation models in the E-
component in the novel personal agent and local agent, experimental
studies were carried out in an open plan offices. The experiment col-
lected the information of subjects’ personal factors including clothing
insulation levels and activity levels, subjects’ sensations in the ambient
environment and their reactions to the environment.

The experimental building is a four-storey building accommodating
classroom, office and meeting rooms, which is located in the
Whiteknights campus, University of Reading. The major experimental
area is located in the ground floor of the building. The occupants of this
area are administration staff, academic staff and PhD students. Three
open plan office areas equipped with air conditioning system were se-
lected. The air conditioning system operates at the fixed temperature
setting point of 23 degrees centigrade from 9:00 to 17:00 all year
around except at weekends and university closure days.

The experiment and data collection in the air-conditioned en-
vironment took place from October 2014 to August 2015. The ques-
tionnaire survey was conducted throughout the experimental period.
The questionnaire design followed the current international standards:
[4,5] and referred to previous research [12,38,51,52] consulted with
the psychologist.

Letters were sent to all the potential candidates working in the
studied area which explains the purpose and scope of the experiment.
All the occupant in the open-plan office were volunteers who were
ordinary healthy people. Consent forms were signed by all the subjects
to meet the ethics requirement. Functions of the sensors and contents of
the questionnaires were explained in detail to all of the subjects and
other occupants who were not involved in the experimental area.
Questionnaire surveys were conducted twice a day, two days a week in
each zone. While the subjects were filling in the questionnaires, their
ambient environmental parameters including air temperature, relative
humidity and air velocity were recorded by sensors. Globe temperature
and the air velocity values were measured by two hand-held instru-
ments. The mean radiant temperature was derived by measured globe

Fig. 3. The architecture of the multi-agent system.
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temperature. The specifications of the sensors and instruments are il-
lustrated in Table 1. All of the sensors and instruments were new and
calibrated by the manufacturers.

The sensor measuring points were set at 0.6 m (at waist level) above

the ground close to the occupants. The method of data collection fol-
lowed the specification of the class II data defined in Brager and de Dear
[53], which is suitable to analyse the subjects’ comfort influenced by
the environment as well as their behavioural responses. Six volunteers

Fig. 4. Structure of the local agent.

Fig. 5. Structure of the personal agent.

Table 1
The specification of the instruments and data loggers.

Instruments/sensor Collected data Valid range Accuracy Vendor

EL-GFX-2+ Air Temperature and Humidity Data −30 °C to +80 °C ± 0.2 °C LASCAR electronics
0–100% RH ±1.8%

Tinytag ULTRA2 Air Temperature and Humidity Data −25 °C to +85 °C ± 0.35 °C Gemini Data Loggers
0–95% RH ±3.0% RH at 25 °C

HT30 Globe Temperature Data 0 °C to +80 °C ± 2 °C EXTECH Instruments
Testo 405 V1 Air Velocity Data 0 m/s to 5 m/s ± 0.1 m/s Testo
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were recruited and completed the whole survey process throughout a
whole year. A total number of 247 effective samples were collected.
Fig. 6 shows the total number of effective samples collected from each
subject. AC1, AC2, AC3, AC4, AC5 and AC6 represent fix subjects
participated in the experiment.

4.4. Personal thermal comfort model

By applying the C-SVC algorithm, personal thermal sensation
models for subjects AC1, AC2, AC3 AC4 and AC5 are developed ap-
plying the developed C-SVC algorithm. As subjects are not sensitive to
warm or hot environment, a simplified version of the thermal sensation
models is developed for AC2, AC4 and AC5. Based on the structure of
the selected data, the simplified version aims to categorise the thermal
sensation into two types: the first type of sensation is feeling ‘slightly
cold’ or colder, which is represented by ‘−1’; the second type is feeling
‘neutral’ or warmer, which is represented by ‘0’. As these models are
able to decide boundary between the feeling ‘neutral’ and ‘slightly cold’,
they are sufficient to be applied in the BEMS in an environment con-
dition similar to the experimental condition. The situation for subject
AC6 is special. During the whole experiment period, the reported
thermal sensations from the subject are always ‘neutral’. It indicates
that this subject always satisfied with the thermal environment during
the period, so it is not necessary to develop a personal thermal sensation
model for AC6. These target output subjects AC1 and AC3 follows the
ASHRAE seven-point thermal sensation scale.

Because of the limit of the total sample size, the leave-one-out cross-
validation (LOOCV) method is used to verify the performance of the
developed models [54], which is shown in Fig. 7 separately. In these
figures, the X axis presents the number of the experiment while The Y
axis shows the thermal sensation vote (TSV) values. The crosses in the
figure are the TSV values predicted by C-SVC-based personal thermal
sensation models, and the circles represent the actual TSV data col-
lected from the subjects. The cross covering the circle means the model
makes a correct prediction. The developed personal thermal sensation
model is represented by Fp and it is expressed in function (17). Where,
the MET and the Clo values are the occupant’s personal activity and
clothing insulation level.

= T T V RH MET CloTSV Fp ( , , , , , )a r a (17)

4.5. Group-of-people-based thermal sensation model

The SVR algorithm is used to develop the group-of-people-based
thermal sensation model. The LOOCV method is used again here to
verify the performance of the model developed using the entire data set.
The linear kernel is selected when using LibSVM. The modelling process
based on the SVR algorithm is illustrated in Fig. 8. The inputs of the
modelling algorithm are environmental factors, personal factors and

occupants’ thermal sensation votes collected from the field study. The
developed software program will automatically collect the input data
from the database and input them into the modelling algorithm, then
save the developed thermal sensation models. When making predic-
tions, the ‘Input Attributes’ are input into the developed in the devel-
oped model and the predict target of the model is the actual mean vote
(AMV) of these group of people.

As the predicted target is the AMV, the bin method is applied here to
calculate the value of the actual mean thermal sensation vote. The
method is used for similar purposes in previous research [55,56]. The
method here is realised by the average of the predicted values and the
corresponding real sensation values in a range of 0.5 of an ASHRAE
scale unit. The fitting between the average predicted thermal sensation
values and the AMVs is illustrated in Fig. 9, which indicate high degree
of linear fitting between these values. The developed group-of-people-
based Thermal Sensation Model is represented by Fg and it is expressed
in function (18). Where, the MET and the Clo values are the group of
people’s average activity and clothing insulation level.

= T T V RH MET CloAMV Fg ( , , , , , )a r a (18)

4.6. The heating and cooling energy

In the real practice of the application of BEMS, the actual energy
consumption of a HVAC system could be stored in its E-component.
Alternatively, in the simulated case studies, the energy consumption
could be calculated using simulations. In this research, the main pur-
pose is to test and evaluate the impact of the agent-based BEMS on
energy saving comparing to the system without BEMS. Herein a simple
energy load calculation algorithms is embedded in the E-component.
The value of the total heat losses from the building are estimated by the
‘Average Value Method’ introduced in Brumbaugh [57] and Ansari
et al. [58]. The basic factors considered include the indoor and outdoor
temperatures, factors of wall, contents and glazing. Let the length,
width and height of the room be represented by the symbols L Wr, and
H . The symbolsWw and Hw denote the width and height of the window
respectively. The area of the wall exposed to the outside environment is

∗Wr H . The area of the window on the wall is ∗Ww Hw. Let DT present
the indoor and outdoor air temperature difference, then:

= −DT t t( )o i (19)

Where

to is the outdoor temperature;
ti is the indoor temperature.

The values of the factors used in the calculation of the sensible
cooling loads are listed in Table 2. The factor selection is based on the
physical properties of the experimental built environment. The

Fig. 6. Number of samples collected from each subject.
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dimensional parameters of the environment are given in Table 3.
Cooling load values calculated using the factors listed in Table 2 are

expressed as Eqs. (20)–(25):

= ∗ ∗ ∗Lds W HwFds ( ) 0.85w (20)

= ∗ ∗Lws Ww HwFwt ( ) (21)

= ∗ ∗ − ∗Lwa Wr H Ww HwFwa ( ) (22)

= ∗ ∗Lce L WrFce ( ) (23)

The total cooling load of the sensible heat Ls of the room is:

= + + +Ls Lds Lws Lwa Lce (24)

The latent heat allowance Lls is given by:

= ∗Lls Ls 0.3 (25)

The total heat for the four factors is:

Fig. 7. Model-predicted thermal sensation level vs. subjects’ actual TSV.
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= +Las Ls Lls (26)

It is noted that the table in Ansari et al. [58] did not give the factor
for people, lights and equipment. The factor values for these three items
in Table 2 are referenced from [59–62].

Let np represent the number of people in the room,
Then the heating is shown as:

= ∗Lp Fp np (27)

= ∗ ∗Ll L WrFl ( ) (28)

= ∗ ∗Lf L WrFf ( ) (29)

The total heating load is calculated by:

= + + +L Las Lp Ll Lf (30)

The cooling load can be calculated by a load estimation form pro-
vided by the Air-Conditioning and Refrigeration Institute (ARI), and the
calculation method is also called the ARI method [57]. The values of the
three factors are defined in Table 4.

When the HVAC system is assumed to be working under the heating
mode, the indoor and outdoor temperature difference is expressed as
−t ti o. The heat loss through the glass HLG can be expressed as function
(31):

= ∗ ∗ ∗ −HLG Gf Ww Hw t t( ) ( )i o (31)

where ∗Ww Hw is the total area of the glass.
The heat loss of the wall HLW is given by:

= ∗ ∗ − ∗ ∗ −HLW Wf Wr H Ww Hw t t( ) ( )i o (32)

where ∗W H is the total area of the wall.
The heat loss caused by the contents of the space HLC is then:

= ∗ ∗ ∗ ∗ −HLC Cf L Wr H t t( ) ( )i o (33)

where ∗ ∗L Wr H is the volume of the indoor space.
Then the total estimated heating load HL is as:

= + +HL HLG HLW HLC (34)

4.7. The decision-making algorithm and the action plans

Both the local and the personal agent need the decision-making
algorithms in their A-component to make rational decisions. In a local
agent, the decision-making algorithms is to decide the optimal setting

Fig. 8. The modelling process based on the SVR algorithm.

Fig. 9. The fitting between AMV and Model-predicted values.

Table 2
The factors used to calculate the cooling load (sensible heat only).

Factor name Factor
symbol

Factor value Symbol of the
relevant cooling
load

Direct solar
radiation

Fds 158 Lds

Window
transmission

Fwt 0.46241 + 3.025756 * DT Lws

Walls Fwa 8.3932 + 1.21465 * DT Lwa
ceiling Fce 2.82 + 1.144611 * DT Lce

Table 3
Dimensional parameters of the environment.

Room length
(L)

Room width
(Rw)

Room height
(H)

Window width
(Ww)

Window height
(Hw)

5.5 m 10 m 2.5 m 8 m 1.85 m

Table 4
The factors used to calculate the heat loss.

Wall factor (Wf) 0.32 Btu/(ft2 h °F) 1.82 W/(m2 K)
Glass factor (Gf) 1 Btu/(ft2 h °F) 5.68 W/(m2 K)
Contents factor (Cf) 0.02 Btu/(ft3 h °F) 0.37 W/(m3 K)
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point of temperature based on the onsite occupants’ thermal comfort
and energy efficiency requirements. The decision is based on the dual-
objective of thermal comfort and energy efficiency. The constraint
method is suggested to be an effective way to convert a dual-objective
decision-making problem into a single objective problem [14]. This
method converts all but one of the objectives into constraints and then
solves the constrained single-objective problem to obtain the solution to
the original problem. The basic idea of the constraint method is leaving
one of the objective functions and converting the rest of the objectives
into constraints [63]. The boundaries of the constraints can be defined
by the user. Assuming that the two objectives in a dual-objective are
presented as objective function xf ( )a and xf ( )b respectively, then the
constraint method can be expressed as function (35) [64]:

⩽ = … ≠
⩾ = …

= = …

∈
x

x
x

x

f

f b k k
g j m

h i n

minimize ( )

Subject to ( ) 1,2, , and a
( ) 0 1,2,

( ) 0 1,2, ,

x S a

b b

j

i (35)

In function (35), it can be found that object function xf ( )b is used as
the constraint and fa as the optimisation object.

Herein, the action plans for the HVAC system are the set points of
the system, which are stored in the D-component in the local agent.
When the local agent making decisions, the heating or cooling load
illustrated in Eqs. (30) and (34) is used as objective function xf ( )a and
the group-of-people-based Thermal Sensation Model, which is ex-
pressed in Eq. (18) is chosen as objective function xf ( )b . Once the dual-
objective problem is covered, the xf ( )b will be transferred into con-
strains, which means it selects all the possible set points that fit the
thermal comfort requirements, then the A-components find the optimal
set point giving the minimum value of the main objective function xf ( )a
from the points selected by xf ( )b .

In the D-component in personal agents, the action plan includes the
occupants’ clothing insulation levels, which are also represented by
discrete numbers. If the occupant is unsatisfied with the set tempera-
ture, the decision making algorithm decides the best clothing insulation
level for a single occupant based on the selected set temperature and
the occupants’ personal thermal preference. The decision making logic
of the personal agent is described as following: The personal thermal
sensation model expressed in Eq. (17) is the only objective function
considered by the algorithm and the Clo is one of the function’s input.
The algorithm then selects the Clo value which can guarantee the
comfort condition for the occupant and meantime feedbacks such in-
formation to the occupant. If more than one value can be chosen, the
algorithm will select the one which is closest to the current clothing

level.
In operation, the local agent requests the information of occupants’

Clo and MET values from the personal agents. The personal agents need
the local agent to provide the current set point of HVAC system to make
decision. The energy consumption data can also be transformed from
the local agent to the personal agent so that the occupants will un-
derstand the current environmental conditions as well as the HVAC
system’s energy consumption.

5. Performance of the developed BEMS

The MATLAB software is used to realise the agents including mod-
elling methods and the decision-making algorithm introduced in
Section 4. The developed thermal sensation models are integrated into
the personal agent and local agent to build up the proposed BEMS. As
the agents with E- D-A- components are fully developed and the multi-
agent BEMS is constructed, the performance of the system is tested and
illustrated in this section.

The testing process is arranged into two steps. In the first step, the
test focuses on the performance of each agent. The operation of E-
component, D-component and A- component in all agents are ex-
amined. It is assumed that the outside temperature is 10 °C and the
initial clothing insulation level is 1.0 Clo. The occupants’ activity levels
values equals to 1 MET. The indoor air velocity is 0.08 m/s and the
relative humidity is 40%. All these knowledges are stored in the E-
components of the agents. In order to illustrate the effect of the thermal
comfort model, three comfort temperature modes are proposed for the
E-component in the local agent: the PMV model, the group-of-people-
based thermal sensation model generated in Section 4.5 and a fixed set
temperature at 23 °C. The energy consumptions of the HVAC system
guided by the local agents equipped with in these three modes are
compared. In the D-component of the local agent, the range of the
HVAC system’s setting points of temperature is between 18 °C and 27 °C
within 0.5 °C intervals. The assumption is that the personal agents
cannot change the settings of the HVAC but they can advise the occu-
pants to adjust their clothing insulation level at 0.25 interval, which are
integrated in the D-component in the personal agents.

Based on the knowledge in the E-component and the action plans in
the D-component, the decision-making process in A-component in the
local agent based on the PMV model are illustrated in Fig. 10. When the
A-component in the local agent makes decisions following the guide-
lines provided by the ASHRAE standard and PMV index, the optimi-
sation target for the thermal environment is to maintain the average
value of the thermal sensation votes at between −0.5 and +0.5. Based

Fig. 10. Decision-making Outcomes in an Open Plan Office (PMV Model-Based BEMS).
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on the constraint method, the thermal comfort goal is converted into
the constraints of the energy consumption goal. In Fig. 10a, the area
marked by the diamonds is the range that fits the thermal comfort re-
quirement. The area defines constrains of the search area when con-
sidering the energy consumption in Fig. 10b. The final decision made by
the local agent is highlighted with the red1 star in the figure. It can be
found that the lowest possible set point predicted by the PMV is 22 °C.
The heating load required to reach this setting is 6298.3 W.

Fig. 11 illustrates the decision-making outcomes of the local agent
equipped with the newly-developed group-of-people-based thermal
sensation model. The optimisation target for the thermal environment
is also to maintain the average value of the thermal sensation votes at
between −0.5 and +0.5. The acceptable range of indoor temperature
is marked with blue diamonds in Fig. 11a. By considering the energy
consumption, the final decision of the local agent is 21.5 °C in Fig. 11b,
which is 0.5 degrees lower than the PMV prediction. In consequence,
the required heating load is 6035.9 W. The decision based on the

developed model has a heating load 256 W smaller than its counterpart.
If the HVAC system is working under a fixed schedule policy with a

23 °C set point, as observed in the field study, the system needs to cover
a 6823.2 W heating load. In this case, the decision made by the group
thermal sensation model requires a heating load 10% less than that
required by the fixed schedule method required in the field study.

When the setting temperature is 21.5 °C, the personal agents find
that AC1, AC3 and AC4 will feel slightly cool. Based on the integrated
personal thermal sensation models, the personal agents suggest AC1,
AC3 and AC4 to increase his/her clothing level to 1.25 Clo, 1.5 Clo and
1.25 Clo respectively via a human machine interface. The test step one
proves that the operation of the local and personal agents in according
with their design purposes. The test also practically proved that the
EDA agent model is an effective way to generate the agents needed by
the BEMS, which is not revealed before.

In the second step, the BEMS is tested by using a set of real outdoor
climate data. The data is the hourly average outdoor temperature data
from 9:00 am until 17:00 pm in March 2015. The data were collected
by a meteorological station at the University of Reading. More details of
the data collection can be referred to Brugge [65]. The indoor air

Fig. 11. Decision-making Outcomes in an Open Plan Office (group-of-people-based thermal sensation model -based BEMS).

Fig. 12. Hourly heating or cooling loads.

1 For interpretation of color in Figs. 10 and 11, the reader is referred to the web version
of this article.
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velocity is 0.08 m/s. The relative humidity is 40%. For all the occu-
pants, the default clothing level is 0.75 Clo and the activity level value
is 1 MET. The knowledge on thermal comfort in the E-component and
the action plans stored in the D-component in both the local agent and
the personal agent are remain the same as they are in the step one. The
hourly energy consumption of the HVAC system also guided by the
local agent with the group-of-people-based model, the local agent with
the PMV model and the fixed schedule are illustrated in Fig. 12. The
decided set temperature and the monthly summary of the required
heating and cooling energy is shown in Fig. 13 and in Table 5. It can be
found that compared to the BEMS based on the PMV model and the
fixed schedule, the BEMS with the developed thermal sensation model
saves 7% and 3.5% of energy respectively compare to the system with
the PMV and the fixed set temperature. For the personal agents, based
on the set temperature decided by the group-of-people-based they
suggest AC1, AC3 and AC5 to adjust their clothing insulation level into
1 Clo, 1.25 Clo and 1 Clo. The other occupants are satisfied with the set
point.

6. Conclusion

This paper presents a newly developed novel multi-agent BEMS
which aimed to meet dual-objects of reducing energy consumption of a
HVAC system and in the meantime to satisfy occupants’ thermal com-
fort. The methodology of the development of E-component, D-compo-
nent and A-component based multi-agent framework is described in
detail. The architecture of the BEMS is composed of two types of agents
namely the local and the personal agents using the problem-decom-
position method. The expected abilities of the agents are specifically
defined. The function of the agents are specified using EDA component
model.

The novel BEMS is intelligent as it contains rational local and per-
sonal agents who perform the designated roles and communicates
among them within the multi-agent system. Personal agents gather the
knowledge of individual’s needs by learning the information collected
from the human-machine dialogues system and they also provide

feedbacks to individuals with consideration of the group occupants’
needs and the thermal regulation requirement. The local agent com-
municates with personal agents to gain the knowledge provided form
the local agents so to provide control signals to the actuator of the
HVAC system performing dynamite real-time operation. The novelty of
such BEMS is that the system overcomes the mismatching of thermal
comfort and energy demand due to the lack of interaction of the actual
occupants and the energy system. It solves the problem that the tradi-
tional single pre-set temperature control method could not solve, i.e.
excessive heating and cooling supply causes overheating or over-
cooling. The advanced agent system can provide advice of adaptive
behavioural actions for occupants and appropriate set temperature for
HVAC system as the personal agent and the local agent contains the
knowledge in the E-component learnt from the occupant and gathered
form the best practice. The occupants’ thermal sensation model and
comfort requirement are established through the advanced machine
learning SVR and C-SVC algorithm which is embedded in the BEMS
which enhance the capacity of energy efficient intelligent control of the
HVAC system.

The abilities of the developed multi-agent BEMS are verified by si-
mulated case studies. The testing results demonstrate that the HVAC
systems managed by the developed EDA agent model based multi-agent
BEMS can save 3.5–10% energy comparing with that consumed by the
pre-set control systems in the simulated built environments.

Future work includes the development of a web-based human-ma-
chine application or the mobile apps porotype BEMS and testing in real
buildings for energy management.

Furthermore, the E-, D- and A-components in the local and personal
agents can be further extended to meet more requirements relating to
the occupant wellbeing such as humidity, air velocity, acoustic, lighting
and air quality.
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