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cAMP Cylclic adenosine-3‘,5‘-monophophate 
DMSO  Dimethylsulphoxide 
DTT  Dithiothreitol 
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INTRODUCTION 

Overall about one third of proteins translated in humans are phosphorylated at 
some point in their lifetime (Cohen, 2001). In cells phosphorylation is often 
utilized as mechanism for signal transduction, but it can also determine protein 
localization in different cell compartments, its activity and degradation timing. 
Addition of phosphoryl groups to proteins is made by enzymes called protein 
kinases, and one of the most widely studied member of this superfamily of 
enzymes is cAMP-dependent protein kinase (PKA) (Taylor et al., 2004). This 
kinase is present in all eukaryotic organisms studied so far, and it consists of 
two subunits: regulatory (PKAr) and catalytic (PKAc). As its catalytic subunit 
is a monomeric water-soluble protein in its active state, it has been a convenient 
tool to study regulatory phosphorylation mechanisms in general.  

The regulatory phosphorylation reaction consists of transfer of the γ-phos-
phoryl group from ATP to the phosphorylatable protein or peptide. The phos-
phoryl group forms a covalent bond with a protein or peptide using its serine, 
threonine or tyrosine side chains. The phosphorylation reaction is catalyzed by 
protein kinases, which simultaneously bind both ATP and substrate protein or 
peptide, and this complex formation requires the presence of distinct binding 
sites on the surface of the kinase molecule. These binding sites are conven-
tionally named as “nucleotide binding site”, which is responsible for binding of 
ATP and its analogs, and “peptide binding site”, responsible for interaction with 
the phosphorylatable of inhibitory peptide (Roskoski Jr., 2015).  

Formation of the ternary complex, consisting of protein, ATP and the 
phosphorylatable peptide/protein allows direct transfer of ATP γ-phosphoryl to 
the acceptor hydroxyl group. Each substrate binding site has its characteristic 
selectivity and affinity (Taylor et al., 2004). Today it is also known that there 
can exist a kind of crosstalk between these binding sites as ligand binding to 
one of these sites can affect binding effectiveness of the other substrate. This 
phenomenon is called allosteric regulation or more simply allostery (Tsai and 
Nussinov, 2014).  

Ligand binding effectiveness is determined by a network of weak non-
covalent bonds between the ligand molecule and its binding site, formed in the 
process of complex formation and making up the enthalpy component of the 
binding free energy. The entropy component of this free energy change reflects 
changes of solvation and conformational freedom in the same process. These 
interactions and changes are well documented in the case of many kinases, and 
perhaps in the most detailed way in the case of PKAc (Masterson et al., 2010, 
2011a).  

The relatively simple structure of PKAc has allowed investigation of ligand 
binding with the free enzyme using fluorescence spectroscopy approach, where 
a fluorescent probe is covalently attached to the protein. As fluorescence of this 
probe is very sensitive to changes to its microenvironment, it can be used for 
monitoring processes, which change enzyme structure and concurrently the 
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positioning of this probe. Initially there were attempts to use this fluorescence 
probing to follow protein structural changes, which accompany ligand binding 
to PKAc. However, these changes of fluorescence were rather small, and no 
influence of peptide substrates binding on probe emission was observed (Lew et 
al., 1997a). Therefore, we modified this approach and studied ligand binding by 
measuring the stability of the enzyme, as denaturation of the protein was very 
clearly seen in the fluorescence spectrum of the label and rate of this process 
was sensitive to ligand binding. Interestingly, similar principles have been 
recently used in other denaturation assay methods, proposed for high-through-
put screening of ligand binding effectiveness.  

In this study, the acrylodan-labelled enzyme was prepared and used for 
analysis of protein denaturation mechanism, thermodynamic aspects of allostery 
in ligand binding, and the influence of peptide structure on allosteric phenomena.   
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LITERATURE OVERVIEW 

1.1. Cyclic adenosine monophosphate  
dependent protein kinase 

Protein kinases play a central role in various cellular functions (Manning et al., 
2002). Together with phosphatases they form molecular switches which can 
control different aspects of protein functions, e.g. localization (Liku et al., 2005), 
activity (Ducommun et al., 1991) or degradation timing (Kõivomägi et al., 2011). 
Errors in protein regulation can have serious consequences for cells, which can 
express in different ways, for example through cell death or uncontrolled 
proliferation leading to formation of different tumors. This is the reason a lot of 
effort has been put into researching different signal transduction pathways and 
its components. 

cAMP dependent protein kinase (PKA) is one of the 518 protein kinases in 
humans (Manning et al., 2002). So far, all sequenced eukaryotic organisms 
encode at least one copy of PKA in their genomes. PKA was discovered in 1968 
by Walsh, Krebs and Perkins as a member in cAMP mediated signaling 
pathway (Walsh et al., 1968). In its inactive state PKA is a heterotetramer, 
consisting of 2 regulatory (PKAr) and 2 catalytic (PKAc) subunits (Corbin et 
al., 1978). Activation of PKA is mediated by an increase of cAMP concen-
tration when 4 of these molecules bind to regulatory subunits. This will lead to 
the inactive tetramer dissociation and formation of 1 regulatory homodimer and 
2 active catalytic monomers.  

 
PKAr2PKAc2 + 4 cAMP → PKAr2(cAMP)4 + 2 PKAc 

 
PKA heterotetramers can bind to A kinase associated proteins (AKAPs) trough 
PKAr subunits. AKAPs act as a scaffold to facilitate optimum signal trans-
duction by localizing PKA and other signaling enzymes with their substrates 
(Esseltine and Scott, 2013). There are 4 different PKAr and 3 different PKAc 
subunits in humans. As there is only one gene of PKAc, these isoforms arise 
through alternative splicing (Taylor et al., 2012a).  

PKAc catalyzes the transfer of γ-phosphoryl group from ATP to a serine or 
threonine sidechain of a substrate protein.  

 
 

1.2. Structure of PKAc 

PKAc from M. musculus is a monomeric protein with molecular mass around 
42 kDa. Crystal structure of PKAc was published in 1991 (Knighton et al., 
1991a, 1991b), revealing, that it consist of small aminoterminal and large 
carboxyterminal lobes connected by a flexible hinge region. Catalytic cleft of 
PKAc is located between the lobes, where ATP binds to the ATP-binding 
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pocket. Small lobe is the main actor in ATP positioning: adenine ring forms 
hydrophobic interactions with small N-terminal lobe and flexible glycin-rich 
loop together with a lysin 72 sidechain positions ATP-phosphoryl tail in the 
correct position for phosphorylation reaction (Taylor et al., 2012b). A Mg2+ ion 
is also needed for the correct positioning of ATP phosphoryl tail. Protein 
substrate docking interface is on the large lobe.  

Structure of PKAc is highly dynamic (Johnson et al., 2001). Crystallographic 
data have revealed 3 different conformations: 1) apo, where no ligands are 
bound to the protein, 2) secondary, where ATP is bound and 3) ternary, where 
both ATP and a peptide form a complex with PKAc (Taylor et al., 2004). In its 
apo form, where no ligands are bound to the protein, PKAc is in its „open“ 
state, which means the small and large lobes are separated enough for the ATP 
or its analogues to bind to the ATP-binding pocket. After ATP binding to 
PKAc, the lobes approach each other and new inter- and intramolecular hydro-
phobic and polar interactions make the protein structure more compact and 
rigid. Protein substrate or inhibitor binding to the docking interface doesn’t 
have as large stabilizing effect to the PKAc structure as ATP or its analogue 
inhibitors (Masterson et al., 2010).  
 
 

1.3. Phosphorylation reaction 

Enzymatic transfer of γ-phosphoryl group from ATP to a protein was 
discovered in 1954 when it was determined that a fraction of mitochondria from 
rat liver can phosphorylate casein (Burnett and Kennedy, 1954). Currently it is 
known that all kinases, exept pseudokinases, catalyze chemical reactions where 
a phosphoryl group from ATP is transferred to a substrate protein, where serine, 
threonine or tyrosine sidechain OH groups are phosphorylated:  
 

MgATP1– + protein – O:H → protein – O:PO3
2– + MgADP + H+ 

 
For the catalysis reaction, both substrates need to be bound to the enzyme. In 
the case of PKAc, ATP is positioned in ATP-binding pocket so that the  
γ-phosphate protrudes to the surface in the way that lets it react with the protein 
substrate serine or threonine sidechain hydroxyl group (Knighton et al., 1991a).  
 
 

1.4 Allosteric effects in binding and catalysis 

Allostery can be described as a communication between ligand binding sites. 
Following this definition, binding of one ligand affects the binding of another 
ligand at a different binding site. This phenomenon is of fundamental impor-
tance in regulation and signaling events on a molecular level. Allostery can 
arise also through post-translational modification, most commonly through 
phosphorylation (Nussinov and Tsai, 2013). 
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The crosstalk between distinct ligand binding sites was first described in the 
case of binding of O2 molecules to hemoglobin by Christian Bohr in 1903. The 
first plausible model for this phenomenon was given over 60 year later (Monod 
et al., 1965). A term “cooperative binding” was used in this context. Later, 
similar phenomena were observed with different ligands and that is reflected in 
term “allostery”, pointing to structural differences of ligands. Finally, the 
presence of allosteric effects was recognized in single-subunit proteins, like 
PKAc. 

There are several viewpoints how the phenomenon of allostery could be 
explained at the molecular level. The structural view of allostery tries to explain 
the modulation of substrate binding affinities by changes in protein structure, 
describing the exact networks of interactions between amino acids that form 
after ligand binding and affect binding properties of the other binding site (Tsai 
and Nussinov, 2014). This view agrees with the principles of “induced fit”, 
stating that ligand binding alters protein structure and adjusts binding site pro-
perties by changing protein structure.  

 

 
 

Figure 1. Example for thermodynamic view of allostery (Tsai and Nussinov, 2014). In 
this example there are two conformational populations present in the free-energy land-
scape of a protein: active (R*) and inactive (R). Free energy landscape in case of apo 
protein favors inactive population to be majorly populated (green line). When a ligand 
binds to the protein, free energy landscape is altered and active species population is 
energetically favorable (orange line) and therefore more populated. 
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Thermodynamic view of allostery postulates that allosteric effect arises through 
population shift towards protein states, which have better ligand binding pro-
perties, and these shifts are illustrated by change of the free energy landscape 
after the first ligand has bound to the enzyme. This conformational selection 
model is based on the fact that several structural protein isoforms, having 
different ligand binding properties, populate the free-energy landscape. 
Allosteric effect arises when the ratio between different populations shifts 
towards species, which bind the ligand with higher affinity.  

 
 

1.5. Allosteric effects in PKAc 

In this thesis, allosteric effect of PKAc is described in the context of binding of 
ligands that are involved in the phosphorylation reaction. Ligand binding and 
catalytic activity of PKAc can be taken together with the following scheme (1): 
   

 
 

Scheme 1 

 
where E is apo-PKAc, EA and EB are ligand bound PKAc, EAB is PKAc 
bound with both ligands, Ka and Kb are dissociation constants for ligands A and 
B respectively, α is an interaction factor. If α < 1, then ligand binding is better 
in the case of pre-loaded complex and this means that we have positive 
allosteric effect. If α > 1, then ligand binding with the complex is weaker and 
we have negative allostery. If α = 1, then no allosteric modulation of binding 
effectiveness takes place. 

Allosteric effects in PKAc reactions and ligand binding equilibria have been 
described by various groups over time. The first observation of PKAc ligand 
affinity modulation was noted in the study of the determination of kinetic 
mechanism of PKAc (Whitehouse and Walsh, 1983; Whitehouse et al., 1983), 
where the inhibition constant of inhibitor protein PKI varied depending on ATP 
presence up to 3 orders of magnitude. This result has later been tested and 
confirmed by other groups (Lew et al., 1997a). A more thorough view on PKAc 
allosteric properties was formulated in studies, where NMR spectroscopy was 
used for direct determination of binding effectiveness of ATP analog inhibitor 
and peptide with different protein ligand complexes (Masterson et al., 2008, 
2011a, 2011b). 

These results were in good agreement with earlier data, obtained by x-ray 
analysis of PKAc structure (Knighton et al., 1991a, 1991b; Taylor et al., 2004). 
These papers shed light on how ligands bind to PKAc and how different parts of 
PKAc interact with each other at different stages of ligand binding and 
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catalysis. The crystallographic and spectroscopic data have revealed, that PKAc 
has 3 main conformational states: apo or open state, where no ligands have 
bound to the protein; binary or intermediate state, where typically one ligand is 
bound to PKAc; and ternary or closed state, where both ligands are bound to the 
protein and which lobes are tightly pressed together. As these structual changes 
between different states are relatively large, it was proposed that allosteric com-
munication between small and large lobes arise through hydrophobic networks 
(R and C spines) buried inside PKAc and that these intramolecular networks 
allosterically modulate ligand or inhibitor binding and subsequent catalysis 
(Kornev et al., 2008). 

Using calorimetric methods, binding of phosphorylatable ligand and inhibitor 
were compared in terms of thermodynamics (Masterson et al., 2011a). In case 
of apo-PKAc, it revealed that for the peptide substrate PLN(1–20) (Kd=49 ± 
8 µM) binding was entropy driven, as for the inhibitor peptide PKI[5–24] (Kd= 
1.8 ± 0.4 µM), binding was enthalpy driven. It was also shown that binding of 
these peptides in the presence of ADP was enhanced by the factor of 5 and 40, 
respectively.  

A detailed study of allosteric effects based of enzyme kinetics has been per-
formed by Kuznetsov and Järv (Kuznetsov and Järv, 2008a). They quantified 
allosteric effect between ATP and different peptides and the principle „Better 
binding, stronger allostery“ was coined. This means that the better binders the 
ligands are, the stronger the allosteric effect between them becomes.  

An interesting take on the allosteric cooperativity of PKAc was published 
recently, where inhibitor peptide PKI[5–24] binding to PKAc in presence of 
ATP analogues was studied using NMR (Kim et al., 2016). Modulation of 
PKI[5–24] affinity in presence of different ATP analogues is presented in 
Table 1. It was proposed that the allosteric effect depends on the openness of 
enzyme active site cleft. The more the lobes are in closed conformation, the 
larger the allosteric effect is. It was revealed, that the oxygen between β and γ 
phosphates of ATP plays a central role in allosteric network formation.  
 
Table 1. PKI[5–24] affinities towards PKAc in presence of different ATP analogues. 

Ligand Kd (µM) Cooperativity factor 

Apo PKAc 6.4 ± 0.56 1 

ATPγC 6.1 ± 0.27 1.0 

AMP 5.7 ± 0.18 1.1 

Adenine 1.5 ± 0.03 4.3 

Adenosine 0.53 ± 0.02 12 

ADP 0.23 ± 0.0097 29 

AMPPNP 0.12 ± 0.0050 53 

ATP 0.016 ± 0.0019 400 
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1.6 Acrylodan labelled proteins in ligand binding studies 

Acrylodan (6-acryloyl-2- dimethylaminonaphthalene) is a fluorophore that is 
sensitive to its environmental properties (Prendergast et al., 1983). Namely, in 
polar solvents its fluorescence is quenched and emission maximum shifts 
towards longer wavelengths. In nonpolar environment, the fluorescence quantum 
yield improves and the emission maximum shifts toward shorter wavelengths. 
For example, if acrylodan is exited at 390 nm, the fluorescence emission maxi-
mum in 1,4-dioxane is at 435 nm, in acetonitrile at 468 nm, in ethanol at 
502 nm, in methanol at 513 nm and in water at 540 nm. This property makes 
acrylodan a useful probe to study protein conformational changes, as the 
structural alterations are mirrored by change of fluorescence when the 
environment around the probe changes.  

Acrylodan can have different emission spectra depending on the environ-
ment of the covalently bound dye in protein structure. For example, if acrylodan 
is bound to papain, its emission maximum is at 491 nm. In the case of tro-
ponin C, the emission maximum of acrylodan is at 510 nm, pointing to different 
microenvironment of the fluorescent dye in these proteins (Prendergast et al., 
1983).  

If a ligand binds to a protein, structural changes of its amino acid backbone 
and/or side chains can take place. If these structural movements, which change 
its surrounding environment, take place near acrylodan the fluorescence 
emission spectrum of the dye changes. For example, in titration of troponin C 
with Ca2+, fluorescence emission maximum of this dye shifted from 510 nm to 
517 nm (Prendergast et al., 1983).  

Due to the micro-environment sensitivity, acrylodan has been used in dif-
ferent protein-binding assays as a versatile tool to probe structural changes in 
vitro. Recently it was used in a high-throughput assay of small molecules, 
which inhibit p38α (Simard et al., 2009). In this study, acrylodan was covalently 
bound to p38α activation loop, which controls its catalytic activity. This modi-
fied protein was then used to scan about 36000 small-molecule inhibitors to find 
specific inhibitors that bind to a catalytically inactive p38α species. Acrylodan 
has also been utilized as a sensor linked to a protein for detecting glutamic acid 
concentration (Wada et al., 2003). 
 
 

1.7. Studies with acrylodan-labelled PKAc 

Acrylodan-labelled PKAc was used to study ligand binding with the protein and 
to characterize mutual effect of peptides and nucleotide analogs on effectiveness 
of their binding (Lew et al., 1997a). The effects observed were named “syn-
ergistic ligand binding”. In this study, PKAc was modified in position 326 by 
change of asparagine to cysteine. This position is situated in the linker region 
near ATP-binding pocket, and the introduced cysteine was used to label PKAc 
with acrylodan. The mutated and labelled PKAc, further denoted as PKAc-acr, 
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was catalytically active and possessed similar ligand binding properties as the 
wild type protein. Fluorescence measurements revealed that, when excited at 
395 nm, the emission maximum of the dye appeared at 498 nm. When titrated 
with different ligands that bind to the ATP-binding pocket, the emission maxi-
mum shifted towards longer wavelengths, and these shifts had maximal effect 
with ATP. At the same time the emission shift was accompanied with 
quenching of emission intensity. These findings indicated that binding of a ligand 
to the ATP-binding pocket induced structural changes and pushed acrylodan 
molecule partially out from its hydrophobic environment inside the protein 
interior. Therefore, this approach was used to describe nucleotide binding with 
the free enzyme and its complexes with nucleotides. Summary of these data is 
given in Table 2.  

At the same time, if PKAc-acr was titrated with ligands targeting the peptide 
binding site on the protein surface, no changes in fluorescence were observed 
(Lew et al., 1997a). Consequently, peptides do not cause structural changes that 
would affect the local environment around acrylodan molecule. Therefore, 
effect of peptides on the enzyme conformation and allostery was not studied by 
these authors more thoroughly, and these investigations were one of the 
objectives of this dissertation, as the introduced method has universal appli-
cability to study protein-ligand interactions. 
 
Table 2. Dissociation constants of ATP-site targeted ligands in absence or presence of 
peptide inhibitors (µM). Data from (Lew et al., 1997a).  

 PKAc-acr PKAc-acr + 
PKI[14–22] 

PKAc-acr +  
PKI[5–24] 

PKAc-acr +  
PKI 

ATP  25 ± 1.3  3.9 ± 0.7 0.0073 ± 0.0014  0.013 ± 0.0026 

AMPPNP  182 ± 15  40 ± 7 3.4 ± 0.3  5.4 ± 0.6 

ADP  24 ± 1.3  1.3 ± 0.4 Not determined  1.2 ± 0.14 

  
Significant synergistic effects can be seen in Table 2, where ATP binding is 
enhanced in the presence of PKI by 19,000 times. For other combinations, the 
synergistic effects are smaller. These results were later analyzed and discussed 
as allosteric effects by Kuznetsov et al (Kuznetsov and Järv, 2008a, 2008b).  

PKAc-acr has also been used in stopped-flow experiments to study catalytic 
mechanism of PKAc (Lew et al., 1997b). 
 
 

1.8. Denaturation assays for protein-ligand binding study 

Protein-ligand complex dissociation constants, which are commonly used for 
quantitative characterization of these complexes, can be calculated from the 
complex concentration versus ligand concentration plots, or by using similar 
dependences for some other parameters, which are proportional to the complex 
concentration and can be detected experimentally. For example, these calculations 
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can be made, using NMR data by measuring chemical shifts of certain protein 
or ligand atoms in the absence and presence of different ligands (Li and Kang, 
2017). In case of isothermal titration calorimetry (ITC), ligand binding can be 
characterized by measuring heat that is released in the binding event. Surface 
plasmon resonance (SPR) can be used to detect binding to ligands that are 
attached to a surface. Various spectroscopic methods have been developed to 
determine ligand binding by detecting changes in protein structure that affect 
some fluorescent property of the ligand-protein complex (Fang, 2012). In case 
of enzymes, protein-ligand complexes can also be characterized by using kinetic 
data from equilibrium or pre-equlibrium stages of reaction. 

In recent years, however, denaturation assay has become more popular as 
this methodology can be implemented for different analytical purposes. This 
approach is based on the fact that ligand binding stabilizes protein structure and 
slows down its denaturation, induced in the presence of some denaturing agent 
or by increase of temperature. This means that a protein, when bound to a 
ligand, has higher melting temperature or that it loses its structure at higher 
denaturant concentrations. In both of these cases it is assumed that the folding-
unfolding transition is reversible (Senisterra et al., 2011; Vedadi et al., 2006). 

Protein denaturation is usually detected by change of intrinsic 
(Mahendrarajah et al., 2011) or extrinsic fluorescence. Intrinsic fluorescence is 
emitted by amino acid residues encoded into protein structure. Extrinsic 
fluorescence can be emitted by fluorescent dye bound covalently to a protein or 
a free probe present in the reaction solution (de Araujo et al., 2017). These 
probes are sensitive to changes to their microenvironment and when a protein is 
denatured, the dyes penetrate towards now accessible hydrophobic cores which 
in turn change the emitted fluorescence that can be detected. 

An important aspect of these methods is their universal nature, as there are 
no requirements about specific ligand properties, i.e. the presence of radioactive 
label, chromophores or fluorophores etc.  

In this study, the kinetic version of the thermal ligand binding assay was 
developed. Following this procedure, kinetics of protein denaturation is 
measured in the absence and presence of different ligands and the ratio of 
denaturation rates versus ligand concentration plots are used for calculation of 
the ligand-protein dissociation constants.   
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OBJECTIVES OF DISSERTATION 

The main objectives of this dissertation were: 
 
1. Finding experimental method for monitoring interaction of ligands with the 

free PKAc, and application of this method for quantitative characterization 
of ligand binding equilibria. 

 
2. Preparation of acrylodan-labelled PKAc and application of this adduct for 

ligand-protein interaction assay by studying kinetics of protein denaturation.  
 
3. Investigation into mechanism of PKAc denaturation by chemical denaturants 

and computational modelling of this process. 
 
4. Examination of influence of ligand structure on allosteric effect of ATP on 

peptide binding with PKAc. 
 
5. Characterization of thermodynamic aspects of allosteric interactions in 

nucleotide and peptide binding with PKAc. 
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METHODS 

3.1. Chemicals 

Chemicals were obtained from Sigma-Aldrich, USA (ATP, BSA, H3PO4, TRIS-
HCl, NaCl, MgCl2, GndHCl, urea) and from Applichem, Germany (MES, 
MOPS). Peptides LRRASLG, RRYSV and PKI[5–24] were purchased from 
Biochem Ltd., China. Other peptides used for the study were synthesized using 
Fmoc solid-phase peptide synthesis strategy in Tartu. Acrylodan was from 
Anaspec, USA. γ–32P was purchased from Amersham, UK. Phosphocellulose 
paper P81 and ion-exchange medium P11 were from Whatman, UK. All other 
chemicals used for the study were of the highest grade available. Buffers were 
made using Milli-Q water and filtered with 40µm filter. PCR and mutagenesis 
primers were from Microsynth, Switzerland.  
 
 

3.2. Expression and purification PKAc and N326C PKAc 

Detailed description of PKAc expression plasmid construction, protein expres-
sion and purification procedures can be found in our paper (Kivi et al., 2013). 
Shortly, using PCR, PKAc DNA sequence from M. musculus (Ensemble ID 
ENSMUST00000005606) was cloned from pET15b (SS Taylor, Add Gene, 
USA) into pET28a expression plasmid. Mutation N326C, necessary for protein 
labelling, was introduced by site-directed mutagenesis via ssDNA method. 
PKAc wild type (WT) and PKAc N326 C plasmids were transformed into 
E. coli Bl21DE. Protein expression was induced with 0.5 mM IPTG in 1 litre of 
2xYT OD=0.6 at 18 °C for overnight on shaker. Cells were harvested by 
centrifugation for 5 minutes at 6000g at 4 °C. PKAc was purified using ion-
exchange chromatography. Cells were lysed using French press at 15000 psi 
and centrifuged at 4 °C 43000g for 10 min. Phosphocellulose P11 from 
Whatman was added and left stirring overnight and subsequently packed into 
1x15 column. Protein was eluted in 30 mM MES pH 6.5, 1 mM EDTA, 5 mM 
β–mercaptoethanol with 0–0.5 M KPO4 linear gradient on Äkta Purifier system. 
PKAc WT fractions with significant A280 absorbance were checked with SDS-
PAGE and fractions with protein bands sized about 45 kDA were selected and 
pooled for dialysis against 20 mM TRIS pH 7.5, 50 mM NaCl, 0.5 mM DTT, 
1 mM EDTA, 20% glycerol. N326C mutant was also pooled and dialyzed as 
with PKAc WT or labelled with acrylodan. Purified protein was aliquoted and 
stored at –80 °C. 
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3.3. PKAc N326C labelling with acrylodan 

PKAc N326C buffer was exchanged to 50 mM MOPS pH 8.0, 50 mM NaCl 
using PD10 column (GE Healthcare) gel chromatography. 1 mM ATP and 
10 mM MgCl2 was added and mixture was incubated for 1 h at 4 °C. Acrylodan 
was added to the reaction mixture with 5:1 molar excess compared to PKAc 
N326C and mixture was incubated overnight at 4 °C in the dark. Free label was 
removed using PD-10 columns equilibrated with 50 mM MOPS pH 7.0, 50 mM 
NaCl, 10% glycerol. Success of labelling reaction was assessed with SDS-
PAGE under UV light and MS analysis (Thermo LTQ-Orbitrap).  
 
 

3.4. Comparison of PKAc WT, PKAc N324C and PKAc-Acr 
activity in kemptide phosphorylation reaction 

Kemptide (peptide LRRASLG) phosphorylation assay by PKAc was performed 
at 30 °C in 50 mM TRIS pH 7.5, 10 mM MgCl2, 0.2 mg/ml BSA, 1000 µM 
ATP (with γ–32P), peptide concentrations varied from 5 to 1000 µM. Reaction 
was started with the addition of PKAc. To assess initial rate of phosphorylation, 
10 µL aliquots of reaction mixture were taken on to phosphocellulose paper 
discs and immersed in cold 25 mM H3PO4 at 5 different time points. The paper 
discs were washed 4 times in 25 mM H3PO4 and dried at 56 °C for 30 minutes. 
Radiation from aliquots was quantified using PhosphorImager Typhoon Trio 
system and ImageQuant software (GE Healthcare, USA). Values for initial 
Kemptide phosphorylation rate by PKAc was calculated from the slopes of the 
product concentration versus time plots.  
 
 

3.5. Spectrofluorimetric measurements 

Fluorescence measurements were performed either with a SLM 4800 Spectro-
fluorimeter (SLM Instruments) or Horiba Scientific Fluoromax-4 spectrophoto-
meter in 600 to 1200 µL quartz cuvettes. Fluorescence excitation wavelength 
was set to 395 nm, emission was monitored from 420 to 600 nm. Before data 
processing, a weak Raman band at 365 nm was subtracted from fluorescence 
emission data. Reaction mixture for denaturation assay consist of 50 mM 
MOPS pH 7.0, 10 mM MgCl2, 50 mM NaCl, substrate and 50 nM PKAc-ACR. 
Measurements were started by the addition of PKAc to the reaction mixture and 
monitored as long as the protein denaturation process took place. 
 
 

3.6 Analysis of fluorescence spectra 

The experimental spectra were quantitatively analyzed by using a log-normal 
function proposed by Siano and Metzler (Siano and Metzler, 1969), and used 
for analysis of fluorescence of acrylodan adducts with the model peptide  



22 

Lys-Cys-Phe and some proteins (Emel’ianenko et al., 2000). Details of this 
procedure are described in (Kivi and Järv, 2016).  

The calculations were based a log-normal function: 
(ߥ)݂  = ௠݂௔௫ exp ቈ− ݈݊2lnଶ(ߩ) ݈݊ଶ ൬ ߙ − ߙߥ − ௠௔௫൰቉ߥ , ݂݅ ߥ < ߙ  

 Eq. 1 ݂(ߥ) = 0, ݂݅ ߥ ≥ ߙ
 

where f(v) is the emission intensity at wave number v, fmax is the maximum 
intensity at the emission peak at vmax, ρ and α are empirical parameters 
characterizing asymmetry of the band shape (skewness), depending on the 
positions of the two half-maximal intensity limits at v+ and v– values on both 
sides of the vmax value. So, ߩ = ௠௔௫ߥ) − ାߥ)/(ିߥ  − (௠௔௫ߥ   and ߙ  = ௠௔௫ߥ +ఘ(ఔశି ఔష)ఘమି ଵ  . The physical meaning of the parameters α and ρ was discussed 

thoroughly in literature (Bacalum et al., 2013; Emel’ianenko et al., 2000), and in 
this study these variables were parameterized for acrylodan bound to distinct 
states of the acrylodan-labelled PKAc, and used as constraints for resolving 
emission spectra into overlapping bands.  

This analysis was done by assuming that the overall fluorescence intensity at 
any v value consists additively of contribution of each distinct emitting state, 
characterized by different fmax and vmax values. Therefore the combination of the 
log-normal function (1) was used for estimation of the fmax values for each 
emitting state of the protein, using the separately determined νmax, α and ρ values. 
Assuming that the amplitude of the fluorescence band was proportional to the 
concentration of the emitting state, and considering different emission yields, 
kinetic and equilibrium parameters of the system were calculated from these 
spectral data.  

 
 

3.7. Data processing 

Data processing was performed with Microsoft Excel for Mac (version 14.0.0) 
and GraphPad Prism 5.0 (GraphPad Software Inc., USA) software packages. 
Standard errors for fitted curve parameters were listed.  
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RESULTS AND DISCUSSION 

4.1. Acrylodan labelled PKAc 

To assess ligand binding to PKAc in the absence of catalytic reaction, we 
decided to use an acrylodan-labelled protein, where the fluorescence of the dye 
is sensitive to its microenvironment (Lew et al., 1997a). This approach was first 
used to study PKAc interaction with nucleotide ligands, while titration of the 
labelled enzyme with peptide ligands caused no change in the fluorescence 
spectrum (Lew et al., 1997a). Therefore, peptide binding studies were not made 
by using this method. The same conclusion was drawn on the basis of our 
preliminary studies.   

To overcome this shortcut, a new method for assaying ligand binding to 
PKAc, was proposed in this work, based on denaturation kinetic measurements 
of protein in the absence and presence of ligands. Shortly, alteration of protein 
conformation was assayed by monitoring the reporter ligand fluorescence 
spectrum, which changed due to its movement from polar to apolar environment 
in the protein denaturation process. This approach was found to be an universal 
method for ligand binding assay in the case of PKAc, which may have impli-
cations for development of kinetic version of high throughput screening of 
drugs targeted at protein kinase active center. 
 
 

4.1.1 Effect of mutation N326C and acrylodan labelling on PKAc 
catalytic properties 

For preparation of the acrylodan-PKAc adduct, N326C mutant was expressed in 
E. coli and purified using ion-exchange chromatography. It was shown that 
catalytic and substrate binding properties of this protein as well as its acrylodan-
labelled derivative were similar to the wild type enzyme. It was also demon-
strated that mutation N326C allowed specific labelling of this protein with 
acrylodan (Figure 2), as only 4% of the label was bound at the native cysteine 
199 and no unspecific labelling was detected at position 343. These results were 
in agreement with the data published before (Lew et al., 1997a). 

Structure of the labelled PKAc was computationally simulated and the results 
of this analysis are shown in Figure 2. It can be seen that the dye molecule is 
located on the surface of the protein molecule that explains sensitivity of its 
fluorescence on conformational status of the protein. 
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To assess whether the introduced mutation N326C or its labelling with arcylodan 
affected catalytic properties of PKAc, we studied kinetics of phosphorylation of 
specific peptide substrate Kemptide (sequence LRRASLG) by the wild type 
enzyme, its mutant N326C and by the acrylodan-PKAc adduct. This study was 
done using conventional kinetic analysis and data were processed by the 
Michaelis-Menten rate equation v=Vmax*[S]/(Km+[S]), where [S] is kemptide 
concentration and Michaelis constant Km and maximum velocity Vmax are 
obtained from the plotted data (Figure 3). 
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0.00
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Figure 3. Kinetics of kemptide phos-
phorylation by wild-type PKAc (○), 
PKAc N326C (●) and PKAc N326C 
labelled with acrylodan (■). v/V 
marks relative reaction rate when 
compared to Vmax. The similarity of 
kinetic parameters suggested that the 
mutation as well as acrylodan 
labelling did not alter the catalytic 
properties of the enzyme.   
 

 
As seen from Table 3, PKAc wildtype, N326C mutant and N326C mutant 
labelled with acrylodan had similar Km in all cases, leading to the conclusion 
that the mutation and subsequent labelling of PKAc did not change catalytic 
properties of the enzyme.  
 

Figure 2. Illustration of PKAc la-
belled with acrylodan (black). ATP is 
colored green, peptide inhibitor 
PKI[5–24] colored brown. As can be 
seen from the computer simulation, 
acrylodan is bound to the surface of 
PKAc near the ATP-binding pocket. 
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Table 3. Km of Kemptide for different PKAc constructs. 

PKAc Km, µM 

Wildtype 27 ± 6 

N326C 29 ± 5 

N326C-acrylodan 26 ± 6 

 
 

4.1.2 Fluorescence properties of acrylodan-PKAc adduct  

When PKAc-acr was excited at 395 nm, emission spectrum with λmax= 496 nm 
was observed (Figure 4A). This emission spectrum was significantly shifted 
when compared with λmax= 540 nm of the acrylodan-thiol adduct in water. On 
the other hand, in 1,4-dioxane (and other organic solvents) the λmax value of the 
emission spectrum of the acrylodan-thiol adduct was 435 nm (Prendergast et al., 
1983). Therefore, it was suggested that in the case of acrylodan-labelled PKAc, 
the fluorophore molecule is positioned on the surface of the protein, and is 
partially shielded from interaction with water molecules. This suggestion agreed 
with our results of computational modeling of acrylodan-PKAc adduct structure, 
shown in Figure 2. 

Structure of the cAMP-dependent protein kinase catalytic subunit, where 
asparagine residue 326 was replaced with acrylodan-cysteine conjugate to 
implement this fluorescence reporter group into the enzyme, was modeled using 
molecular dynamics (MD) method and the positioning of the dye molecule in 
protein structure was characterized at temperatures 300 K, 500 K and 700 K. It 
was found that the acrylodan moiety, which fluorescence is very sensitive to 
solvating properties of its microenvironment, was located on the surface of the 
native protein at 300 K that enabled its partial solvation with water. At high 
temperature, the protein structure significantly changed, as the secondary and 
tertiary structure elements were unfolded and these changes were sensitively 
reflected in positioning of the dye molecule. At 700 K complete unfolding of 
the protein occurred and the reporter group was entirely expelled into water. 
However, at 500 K an intermediate of the protein unfolding process was 
formed, where the fluorescence reporter group was directed towards the protein 
interior and buried in the core of the formed molten globule state. This different 
positioning of the reporter group was in agreement with the two different shifts 
of emission spectrum of the covalently bound acrylodan, observed in the 
unfolding process of the protein. 

Interestingly, if acrylodan-PKAc adduct was heated at 100 °C for 5min, its 
fluorescence spectrum shifted towards shorter wavelengths (λmax= 467 nm) and 
its intensity increased (Figure 4A). This change indicated that the dye molecule 
was shifted into less polar medium that is similar to organic solvents. Therefore, 
it was suggested that short thermal treatment of PKAc altered its structure and 
allowed acrylodan to penetrate inside the protein interior, where it is protected 
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from water. The computational modeling of denaturation process was in 
agreement with the in vitro experiments. 

When acrylodan-PKAc complex was titrated with ATP or its analogues, red-
shift in fluorescence spectrum was detected, as has been described before (Lew 
et al., 1997a). This red-shift of emission spectrum points to alteration of acrylodan 
microenvironment that accompanied ligand binding and subsequent changes in 
protein structure. It could be argued that these conformational changes partially 
expelled the dye molecule from the more hydrophobic environment around the 
ATP-binding pocket. In the case of peptide substrates, no change in fluorescence 
was detected under the same experimental conditions. 

     Figure 4. Influence of thermal denaturation in 50 mM TRIS-HCl (panel A) and 
chemical denaturation in 20 mM MOPS buffer (panel B) on fluorescence spectra of 
acrylodan-labelled PKAc. Spectra shown in panel A (left) were recorded at 25 °C 
before (1) and after temperature treatment (2) of the protein sample as described in text. 
Spectra shown in panel B were recorded in MOPS buffer at 25 °C at the following time 
points (starting from the lowest curve): 1, 5, 11, 21, 36, 45 min.   
 
 

4.1.3. Denaturation kinetics of PKAc-acr adduct 

We noticed that when PKAc-acr was incubated in MOPS buffer at around room 
temperature, the fluorescence of the protein changed over time (Figure 4B). 
Namely, its λmax shifted from 496 nm to 467 nm, which was also accompanied 
by increase of fluorescence intensity, and this change was reproducible. By 
combining this phenomenon with the prior observation that thermal denaturation 
shifted λmax to 467 nm, it was concluded that denaturation of PKAc takes place 
in 20 mM MOPS buffer. Additionally, when different ligands of PKAc were 
added to the reaction mixture, the rate of fluorescence change decreased (Figure 
5) when compared to apo-PKAc denaturation. 
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When fluorescence values, monitored at different wavelengths, were 
integrated and plotted against time, it was possible to describe the process by the 
following rate equation: 

௧ܨ  = ଴ܨ  + ௠௔௫ܨ∆ (1 − ݁ି௞౥ౘ౩௧) 
 

 
Eq. 2 

where Ft is integrated fluorescence value at time t, F0 is fluorescence value at t0, 
ΔFmax is maximum fluorescence change amplitude, kobs is observed reaction 
rate, t is time. 
 

Figure 5. Time-course of fluorescence 
increase of 50 nM acrylodan labelled 
PKAc in 20 mM MOPS buffer at 
pH=7.0 and 25 oC (●, fitted curve A), 
and in the presence of 250 μM (▲, 
fitted curve C) or 2.5 mM (▼, fitted 
curve D) of ATP, or 1 μΜ (■, fitted 
curve B) of peptide inhibitor PKI[5–
24], or the mixture of 250 μM ATP and 
1 μM PKI[5–24] (○, fitted curve E). 

 
 
 
When PKAc is in the reaction mixture without any ligands, protein denaturation 
can be presented by the following reaction scheme: 
 

Eq. 3 

 
where N denotes active enzyme, D is denatured protein and kd is denaturation 
rate constant. If there are ligands present in the assay mixture, the overall 
denaturation rate depends on ligand concentration and its affinity, and this 
influence can be summarized by the following reaction scheme: 
 

Eq. 4 

    
where N is active enzyme, D is denatured enzyme, NL is enzyme-ligand 
complex, KL is ligand dissociation constant, kd is denaturation rate constant. If 
the equilibrium between NL and N is reached relatively fast when compared to 
denaturation process, the overall apparent denaturation rate should follow the 
first-order rate equation (Eq. 2), and the apparent rate constant kobs should 
depend on ligand concentration and its affinity KL (Eq. 5): 
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݇obs = ݇d1 + ሾܮሿܭ௅   
Eq. 5 

 
It can be seen that the dependence of kobs vs ligand concentration allows calcu-
lation of the KL value, and this can be done by using the linear transformation of 
the rate equation (Eq. 5) in coordinates of kd/kobs and 1+[L]/KL. To test the 
validity of the assumptions made about PKAc denaturation, we measured its 
denaturation rates in presence of ligands with known dissociation constants 
(Figure 6). As can be seen from this figure, there was a good agreement 
between literature data and our results. 
 

Figure 6. The dose-dependent stabili-
zation of the acrylodan-labelled PKAc 
by: 1 μM PKI[5–24] (a) with KL= 0.4 μM 
(Zheng et al., 1993); 250 μM (b) and 
2.5 mM (e) ATP with KL= 48 μM (Lew 
et al., 1997a); 20 μM (c) and 50 μM (d) 
peptide substrate RRYSV with KL= 
2.0 μM (Kuznetsov and Järv, 2008b). 
Experiments were made in 20 mM 
MOPS buffer at pH 7.0 and 25 °C, 
except data for RRYSV which were 
obtained at 30 °C. 

 
 
 
These results confirm that the proposed kinetic version of the denaturation assay 
of binding properties can be used to determine ligand dissociation constants in 
this system, and more importantly, binding effectiveness of both nucleotide and 
peptide analogs can be determined.  
 
 

4.2. Mechanism of PKAc-acr adduct denaturation 

To strengthen the conclusion stated above and to extend our understanding of 
the processes which causes alteration of fluorescence spectra of acrylodan-
PKAc adduct, a series of experiments were made with urea and guanidine 
hydrochloride, which are classical denaturing agents. These experiments were 
performed in Tris buffer (50 mM TRIS pH 7.4, 10 mM MgCl2, 50 mM NaCl), 
where the protein was stable and no spectral shifts of fluorescence were 
observed during several hours. This state was denoted as native enzyme and 
marked by N in reaction Eq. 3 and 4.  
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At moderate denaturant concentrations, which were up to 1 M for guanidine 
hydrochloride and up to 2.5 M urea, fluorescence maximum of the dye shifted 
to 467 nm, and this shift was accompanied by increase in fluorescence intensity. 
The same result was observed in MOPS buffer, where the fluorescence 
maximum shifted to shorter wavelengths and increase in fluorescence intensity 
was observed. This change of fluorescence suggested that the fluorophore moved 
into more hydrophobic environment, possibly penetrating towards the protein 
hydrophobic core. As above, this state was denoted as denatured enzyme and 
labelled by D in Eq. 3 and 4.  

If urea or guanidine hydrochloride concentration was increased, fluorescence 
of the acrylodan-PKAc adduct shifted towards longer wavelengths with 
maximum at 516 nm at the higher denaturant concentrations. This shift was 
accompanied by decrease of fluorescence intensity. These changes indicate that 
the acrylodan residue was moved into a more hydrophilic environment, if 
compared with native or denatured states. These changes could be explained by 
loss of protein structure at high denaturant concentrations and exposure of the 
dye molecule to water environment. Therefore, this state was denoted as 
unfolded protein and marked by U in reaction schemes.  

Proceeding from the understanding that the acrylodan-PKAc adduct can 
have three distinct states, the fluorescence spectra were decomposed into three 
components and this analysis allowed quantification of these three protein 
states, N, D and U, respectively. Using this method, the fluorescence spectra 
were decomposed into these three constituent parts, and dependence of 
population of these states at different denaturant concentrations was obtained, as 
shown in Figure 7. 

 

Figure 7. Fractional distribution of acrylodan-labelled PKAc conformations at different 
concentrations of guanidine hydrochloride (left) and urea (right). Fractions of natural 
(active) state (■), denatured state (●) and unfolded state (▲) were shown. 
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Interestingly, the process observed in 20 mM MOPS solution ended with for-
mation of the state D. Therefore, this buffer can be regarded as a chemical 
denaturant, which acts at rather low concentration, and leads to formation of the 
protein state D at the used concentration, while for unfolding of the protein 
probably much higher MOPS concentrations are needed. This means that 
application of MOPS buffer was a good choice for our kinetic denaturation 
assay, as experiments could be made at different temperatures, including the 
interval of low temperatures, and at rather low denaturant concentrations.  

All the above-mentioned conclusions about structural changes of acrylodan-
PKAc adduct during the denaturation and unfolding processes were confirmed 
by computational modelling of this protein structure. These calculations were 
made by A.Kuznetsov and details of these calculations are described in paper 
III. Shortly, structure of the acrylodan-PKAc adduct was modelled by using 
MD methods and calculations were made at temperatures 300 K, 500 K and 700 
K. In the first case, the structure of the native enzyme was modelled, as shown 
in Figure 8A. At 700 K complete loss of the protein structure was observed, that 
exposed the fluorophore in external water medium (Figure 8C). This state is the 
unfolded protein U, which formation was experimentally documented in this 
work by the red shift of the fluorescence spectrum of acrylodan, observed at 
high concentration of chemical denaturants.   
   
A B C 

 
 

Figure 8. Computer MD modelling of PKAc-acr at 300 K, 500 K and 700 K. A MD 
simulation at 300 K revealed that the structure of PKAc-acr stays intact at this 
temperature and acrylodan is positioned away from ATP-binding pocket, but is 
moderately buried in the protein interior and shielded from water molecules. B At 500 
K structure of PKAc-acr is mostly denatured with few β-sheets still intact. Acrylodan is 
buried inside the protein interior and shielded from water. C At 700 K structure of 
PKAc-acr is almost fully unfolded, revealing acrylodan to water. 
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Calculations made at 500 K yielded a protein model, where the main elements 
of its secondary structure and the hydrophobic core region were still present 
(Figure 8B). Interestingly, the acrylodan moiety, which is hydrophobic, had 
shifted towards the hydrophobic core of the protein, in agreement with the blue-
shift of its fluorescence spectrum observed in experiments. Following the 
contemporary models of protein unfolding mechanism, this state could be the 
“molten globule”, which formation is commonly suggested on the protein 
unfolding path (Baldwin et al., 2010; Malhotra and Udgaonkar, 2016).  

However, the results of this study do not allow explicit positioning of this 
“molten globule” on PKAc unfolding path, as the present experiments do not 
exclude its formation in parallel with the unfolding step. However, this 
uncertainty of the molecular mechanism of PKAc denaturation did not hamper 
application of the denaturation method for ligand binding assay, as under the 
used conditions only the transfer from N to D state is observed.   
 
 

4.3. Allostery in PKAc interaction with peptides and 
nucleotides  

4.3.1. Quantification of the allosteric effect 

Following the reaction scheme (1), the allosteric effect α can be quantified for 
any pair of ligands A and B, if the Ka and αKa or Kb and αKb values are known. 
In this work A stands for ATP or any ligand binding in the nucleotide binding site 
of PKAc, and B is peptide substrate or inhibitor, interacting with the peptide 
binding site of the enzyme. As seen from the reaction scheme (1), allosteric factor 
α affects ligand binding regardless of the order the ligands bind to their corres-
ponding binding sites. 

For practical determination of α values, interaction of ligands A and B should 
be studied with the free enzyme E, as well as with the complexes EB and EA, 
respectively. The experimental method of thermal inactivation kinetic assay, 
developed in this study, can be used in both cases.  

Preliminary experiments, described above, allowed characterization of the 
enzyme-ligand complex dissociation constants for ATP and peptide inhibitor 
PKI[5–24], and revealed that simultaneous presence of both ligands resulted in 
a very strong enhancement of binding effectiveness (Figure 5). This result was 
in agreement with data, published later by Kim et al (2016), and resulted in the 
value of the allosteric effect α = 0.0025 for this pair of ligands. On the other hand, 
analysis of other experimental data in literature revealed (Kuznetsov et al., 
2009) that α value depends on ligand structure. To specify the nature of this 
dependence, interaction of a systematic series of peptides with the enzyme was 
studied (Table 4) and the allosteric effect of ATP was determined. Example of 
the kinetic assay procedure is shown in Figures 9 and 10. 
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Figure 9. Time course of the fluo-
rescence intensity of the protein-
coupled acrylodan, presented as a 
relative value ௙೟ି ௙బ   ∆௙೘ೌೣ , where ௧݂  is 

fluorescence intensity at time t, ଴݂ 
is the fluorescence intensity at t=0, ∆ ௠݂௔௫  is the maximal change 
(span) of the fluorescence intensity, 
in the absence and presence of 
inhibitory peptide TGRRNAI-NH2 

at 0 μM (●), 50 μM (▲), 100 μM 
(■) and 300 μM (♦) concentrations. 

 
 

Figure 10. Influence of inhibitory 
peptide TGRRNAI-NH2 concent-
ration on rate of PKAc denatu-
ration in 20 mM MOPS buffer (pH 
7.0, 10 mM MgCl2, 50 mM NaCl 
at 25 °C). Enzyme concentration 
50 nM. 

 
 
 

4.3.2 Influence of peptide structure on allosteric effect of ATP  

The proposed method was used to quantify the interaction of series of peptides 
with the enzyme. These dissociation constants (Kb in Scheme 1) were compared 
to the Ki values found in literature (Glass et al., 1989), which characterize inter-
action of these inhibitory peptides with the PKAc – ATP complex (parameters 
αKb in Scheme 1). Ratio of these parameters yields the allostery factor α. The 
results of these experiments are listed in Table 4.  
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Table 4. Dissociation and inhibitory constants and allosteric factor values for a series of 
peptides derived from PKI[5–24] 

Notation Peptide structure KB, μΜ Ki, nM 
(Glass et al., 1989) 

103 α 

I TGRRNAI-NH2  167 ± 39 1900* 8.9 

II GRTLRRNAI-NH2  85 ± 11 390 4.6 

III DFIASGRTGRRNAI-NH2  35 ± 9 97 2.8 

IV GRTGRRNAI-NH2  23 ± 5 36 1.6 

V YADFIASGRTGRRNAI-NH2  19 ± 4 28 1.5 

VI TTYADFIASGRTGRRNAI-NH2  8 ± 2 3.1 0.4 

* Estimated value from Ki =1250 nM for peptide TGRRNAIHN-NH2 (Glass et al., 1989) 
 
The allosteric effect depends significantly on peptide structure, and the specificity 
pattern of peptide recognition by PKAc is similar in the case of the free enzyme 
and the enzyme-ATP complex. This can be demonstrated by a linear similarity 
plot comparing the pKi and pKb values, as shown in Figure 11. This linear plot 
includes data points for PKI, which is the parent compound of the studied 
peptide series and is characterized by the pKi value of 9.5 (Ashby and Walsh, 
1973) and pKL value of 5.6 (Herberg and Taylor, 1993), and the peptide 
fragment of this inhibitor protein, denoted as PKI(5–24), which is characterized 
by the pKi value 9.7 (Cheng et al., 1985) and pKL value 5.7 (Masterson et al., 
2011a). The latter peptide is a non-amidated analogue of peptide VI in Table 4 
except the missing 2 amino acid residues in C-terminal end.  
 

Figure 11. Similarity plot for peptide 
binding effectiveness with the free 
enzyme PKAc (pKL) and its complex 
with ATP (pKi). Peptide structures are 
denoted as in Table 1. Data for PKI and 
PKI(5–24) were taken from literature. 
For PKI: pKi= 9.5 and pKb= 5.6. For 
PKI(5–24): pKi= 9.7 and pKb= 5.7. 
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Besides this similar specificity pattern, it can be observed that the allosteric 
effect changes in parallel with peptide affinity, characterized by the Kb values, 
and this trend can be presented by a linear-free-energy relationship between the 
pKb and pα values: 
ߙ݌   = ܥ + ܵ ௕ܭ݌ Eq. 6 
 
where C and S stand for the intercept and slope of a linear similarity plot, as 
shown in Figure 11. In the case of inhibitory peptides I–VI, C = –1.4 ± 0.6 and 
S = 0.9 ± 0.2. The negative logarithm of the allosteric factor α (pα) was used in 
this similarity plot to emphasize the analogy of this parameter with the 
traditional pKb values and to stress the fact that the allosteric effect is presented 
in the free energy scale.  

This similarity plot demonstrates that the same primary structural elements 
of the peptide sequence govern both the recognition of these ligands in the 
binding step and the allosteric enhancement of the binding effectiveness, 
induced by ATP in the present case, and denoted by the pα value. Interestingly, 
the same kind of similarity plot can also be created for peptide substrates, but it 
has a different slope (S = 0.42 ± 0.04) (Kuznetsov, Järv, 2008). Therefore, the 
principle “better binding – stronger allostery” (Kuznetsov and Järv, 2008) holds 
in the case of peptide inhibitors. Moreover, the same principle is valid also in 
the case of ATP and its structural analogues such as ADP, adenosine and 
AMPPNP, which increased the effectiveness of peptide binding with PKAc 
(Kuznetsov and Järv, 2009), and this increase is again correlated with the 
binding effectiveness of ligands. Thus, binding effectiveness at both sites is 
enhanced, and this effect is similar, as the same α value stands in the reaction 
scheme (1). Moreover, these results demonstrate that interaction between 
allosterically linked binding sites has no direction, i.e. ligand binding in either 
one of these sites changes ligand binding effectiveness in the second site and 
vice versa.  
 
 

4.3.3 Effect of temperature on ligand binding and allostery 

In the following part of this study the kinetic denaturation assay was used to 
study thermodynamic aspects of the allosteric effect as the assay procedure is 
applicable for characterization of ligand binding equilibria at different 
temperatures. Thermodynamic parameters were calculated under conditions 
where kinetics of the denaturation process could be measured. The results listed 
in Table 5 for ATP and PKI(5–24), demonstrate that the increase of temperature 
accelerated overall denaturation rate in all cases, while in the presence of 
ligands the denaturation rate was slower and the most stable complex was the 
ternary complex of PKAc, ATP and PKI(5–24). However, this fact did not 
hinder the analysis, as higher temperatures were used to assay the denaturation 
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process and the results were presented in coordinates ln kobs vs 1/T, according 
with the Arrhenius equation:  
                       ln(݇) = ln ܣ −  ௔ܴܶ Eq. 7ܧ

 
It can be seen in Figure 12 that the ln kobs vs 1/T plots were well described by 
linear interrelationships that allowed estimation of the activation parameters lnA 
and Ea.  
 
Table 5. Dependence of denaturation rate constants of acrylodan labelled PKAc on 
temperature in 20 mM MOPS buffer, pH 7.0, 50 mM NaCl, 10 mM MgCl2. 
Experiments were made in absence or presence of ATP and/or peptide inhibitor PKI[5–
24] in the assay medium. 

 
Tempera- 
ture, °C  

kobs, min–1 

50 nM acr-
PKAc  

50 nM acr-
PKAc 250 μM 

ATP  

50 nM acr-PKAc 
1 μM PKI[5–24] 

50 nM acr-PKAc 
250 μM ATP  

1 μM PKI[5–24]  

5 0.010 ± 0.003 nd nd nd 

15 0.090 ± 0.015 0.004 ± 0.001 0.010 ± 0.002 nd 

25 0.30 ± 0.04 0.028 ± 0.002 0.06 ± 0.01 nd 

30 0.90 ± 0.15 0.12 ± 0.01 0.19 ± 0.02 nd 

35 nd 0.37 ± 0.03 0.60 ± 0.06 0.0020 ± 0.0003 

40 nd nd nd 0.015 ± 0.002 

45 nd nd nd 0.14 ± 0.01 

50 nd nd nd 0.67 ± 0.06 

 

Figure 12. Arrhenius plots for acr-
PKAc denaturing. A – 50 nM acr-
PKAc, B – 50 nM acr-PKAc + 1 µM 
PKI[5–24], C – 50 nM acr-PKAc + 
250 µM ATP, D – 50 nM acr-PKAc + 
250 µM ATP + 1 µM PKI[5–24]. 
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Interestingly, in Figure 12 all the ln(kobs) vs 1/T plots revealed a common inter-
section point, formally corresponding to the isokinetic temperature of the 
denaturation reaction. As the existence of this temperature has been debated 
(Liu and Guo, 2001), it is still hard to connect this phenomenon with some 
physical process. On the other hand, it is the first time this phenomenon is 
observed in the case of ligand binding equilibria with enzymes and allosteric 
interactions between ligand binding sites.  

Data from Table 5 was used to calculate KL and α values for different ligands 
at different temperatures. Furthermore Van’t Hoff equation was applied on 
those values to calculate the enthalpy and entropy components ΔH and ΔS of 
the binding process: 
௅ܭ ݈݊  = ܴܶܪ∆ − ∆ܴܵ

 (Eq. 8) 

 
In this equation KL denotes the ligand-protein complex dissociation constant, 
and ΔH and ΔS are enthalpy and entropy terms, which characterize the ligand-
protein interaction, respectively, R is the universal gas constant and T is 
temperature in Kelvins. Since allostery affects dissociation constants of ligands, 
we propose that the allosteric factor α can be analyzed by using the same 
equation (Figure 13B).  

 

Figure 13. A. Van’t Hoff plots for ATP and PKI[5–24] interaction with the acr-PKAc 
(panel A) and for the allosteric interaction between binding sites of these ligands 
characterized by α (panel B). 
 
 
It can be seen from Figure 13A that Van’t Hoff equation holds in the case of ATP 
and inhibitory peptide PKI[5–24] binding, and also, in the case of allostery factor 
α (Figure 13B). From these plots, thermodynamic parameters characterizing 

A B 
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ligand binding with PKAc were calculated. For ATP ΔH = –49 ± 9 kJ mol–1 and 
ΔS = –78 ± 19 J K–1 mol–1, for PKI[5–24] ΔH = –37 ± 5 kJ mol–1 and ΔS = 5 ± 
9 J K–1 mol–1 and for allosteric factor α ΔH = –122 ± 17 kJ mol–1 and ΔS = –359 ± 
41 J K–1 mol–1. 

These results demonstrate that the allosteric interaction between binding 
sites is characterized by bigger enthalpy and entropy effects when compared to 
ligand binding steps. All of these interactions can be presented by a common 
ΔH vs ΔS plot (Figure 14), pointing to the possibility that ligand binding and 
allostery are controlled by similar interaction mechanisms. In other words, the 
same interactions, which govern peptide and nucleotide binding with the protein 
binding site, are responsible for interaction between these two binding sites. On 
the other hand, as allosteric effect depends on ligand structure, as demonstrated 
before, and changes gradually, intensity factors of these interactions should be 
determined by binding properties of interacting ligands.  

 

Figure 14. Enthalpy – entropy com-
pensation effect in acr-PKAc inter-
action with ATP, PKI[5–24] and in 
allosteric interaction between binding 
sites for these ligands, quantified by 
the factor α. 

 
 
 

4.3.4 Possible mechanism of the allosteric effect 

The results of this study can be used to discuss the thermodynamic aspects of 
the allosteric effect. It was found that the parameters ∆121– = ܪ kJ mol–1 and ∆ܵ= –359 J K–1 mol–1 for the allosteric factor α were significantly larger than the 
entropy and enthalpy changes observed in the case of dissociation of the binary 
complexes with either ATP or peptide. The negative ∆ܪ value could be linked 
to formation of new non-covalent bonds in the system, and following the 
meaning of the parameter α, these interactions should intensify when the ternary 
complex is formed. The results also indicate that the bonding network changes 
are accompanied with a large negative entropy change, implying a significant 
decrease of flexibility of the structure of the ternary complex EAB. It is 
interesting that there was practically no entropy change during the binary 
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complex formation with the peptide while the entropy change accompanying 
ATP binding to PKAc is linked to the enzyme conformational change from 
open to closed formation (Masterson et al., 2010; Taylor et al., 2004). For 
binding of PKI[5–24] to PKAc, similar thermodynamic behavior has been 
reported before (Masterson et al., 2011a). This asymmetric behavior of the 
enzyme binding sites for nucleotide and peptide ligands may well serve as an 
additional mechanism, used by the enzyme for amplification of sensitivity of 
the molecular recognition of peptides via the allosteric effect. If we to take into 
consideration that in cellular environment average concentration of ATP varies 
from 1 to 10 mM (Albe et al., 1990), almost all PKAc molecules should be 
loaded with the nucleotide, as Kd of ATP is around 25 µM. However, for further 
exploring of this option additional thermodynamic data are needed about 
interaction of different peptides with the enzyme.  

Interestingly, by analogy with the binary complex dissociation, the above-
mentioned enthalpy-entropy compensation effect was also observed in the case 
of the allostery factor, as the negative ΔS and ΔH values compensated each 
other in calculation of the lnK value by means of the Van’t Hoff equation (6). 
Therefore, further comparison of the binary and ternary complexes was made in 
Figure 14, using the ΔS vs ΔH plot. Although the validity of this type of 
analysis has been discussed from different points of view (Liu and Guo, 2001), 
it is accepted that the linear interrelationship between the ΔS and ΔH values for 
different processes could still implicate the presence of a common (or dominant) 
mechanism within this group of processes. In this case the correlated processes 
were the binary complex dissociation on the one hand, and the allosteric 
interaction between the two binding sites on the other hand. The linear-free-
energy relationship between the binding effectiveness of peptide substrates 
(pKB) and the allosteric effect (pα), leading to formulation of the principle “better 
binding – stronger allostery” (Kuznetsov and Järv, 2008a), can be taken as a 
good example of this type of inter-relationship.  

Moreover, the conclusion that the allosteric effect and ligand binding 
effectiveness could be governed by similar mechanism, and therefore, depend 
on structure of both peptide and nucleotide ligands, is a clear indication that the 
allosteric interaction between the two binding sites cannot be explained 
proceeding from the existence of some fixed network of interactions between 
certain components of the protein structure. Most probably, these interactions 
could be explained by formation of conformational ensembles, which take into 
consideration the specific features of the binding site as well as structure of the 
ligand, and enable in this way the amplification of the enzyme specificity.  

The linear interrelationship between the pKb and pα values (and also between 
pKA and pα values in Scheme 1) demonstrates that the same specificity factors 
govern binding effectiveness and the allosteric effect in the case of the same 
ligand. This means that allostery does not add new interatomic interactions 
between the ligand and its binding site, but rather changes the intensity (or 
“firmness”) of the existing interactions. In the case of the studied peptide 
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inhibitors, the increase in binding energy is rather significant, altering the 
dissociation constant by up to 4 orders of magnitude. 

To explain these phenomena, it is important to understand that the effective-
ness of ligand binding is governed by the ratio of its off-rate and on-rate 
constants, and that alteration of one of these parameters is sufficient to change 
the dissociation constant of the ligand-protein complex and the free energy of 
the binding process. If ligand association with a protein can be considered as a 
diffusion-controlled process, where the protein molecule has a negligible role 
(Shoup and Szabo, 1982), attention should be focused on the ligand off-rate and 
the interrelationship between the ligand-protein complex dissociation rate and 
ligand binding affinity.  

Ligand binding effectiveness is governed by interactions between this 
molecule and the amino acid residues in the protein ligand binding site, and 
these interactions are the main driving force of molecular recognition. However, 
kinetic studies have revealed that the off-rate (or ligand residence time in the 
binding site) can be modulated by the intrinsic dynamics of the protein, as its 
movements are important for ligand “roll out” from the binding site (Carroll et 
al, 2012). This means that the “opening rate” of the binding site could 
significantly govern the release of the protein-bound ligand, and the ligand off-
rate, as well as affinity should be similarly modulated by the intrinsic dynamics 
of protein structure. For PKAc, the limiting step in catalysis is the release of 
ADP from the nucleotide binding pocket (Zhou and Adams, 1997). There are 
plenty of evidence that protein dynamics is changed by ligand binding, and that 
these changes affect a rather large proportion, if not the whole protein molecule 
(Henzler-Wildman and Kern, 2007; Masterson et al., 2008, 2011a). The same 
phenomenon explains the well-known fact that proteins are stabilized in the 
presence of specific ligands, which has been used for the development of the 
denaturation assay of ligand-protein complex formation and is the basis for the 
experiments made in this study.  

These two well-known facts – the regulation of the ligand off-rate by protein 
intrinsic dynamics, and the alteration of the protein’s intrinsic dynamics by 
ligand binding – may be the key elements of the operational mechanism of 
allostery. Following this hypothesis, the allosteric regulation of enzyme affinity 
may be caused by alteration of the ligand off-rate from the binding site, 
governed by the dynamic properties of the protein. On the other hand, protein 
dynamics are governed by the binding of specific ligand(s). If the extent of the 
change in dynamics is correlated with the overall energy of ligand binding, this 
mechanism explains the cumulative effect of different ligands on allostery (pα), 
and also justifies the principle “better binding – stronger allostery”. Furthermore, 
the interatomic forces between the ligand molecule and amino acid residues in 
its binding site are still responsible for ligand recognition and manifestation of 
the classical specificity pattern.  

The effect of protein stabilization on ligand binding effectiveness cannot be 
experimentally revealed in the case of binding of a single molecule, but if this 
binding can be studied in the absence and in the presence of another ligand, 
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which also affects protein dynamics, this effect can be easily quantified, as was 
done in the present study. 

The fact that ligand binding effectiveness (or the residence time in its 
binding site) could be governed by protein intrinsic dynamics, and that this 
protein property may govern binding of other ligands in distinct binding sites, 
may have a crucial influence on our understanding of regulation phenomena in 
various biological processes. The most exciting aspect of this explanation is that 
there is no need for specific “relay” structures for transmission of allosteric 
effects between two related sites, but the alteration of binding effectiveness, 
described in terms of allostery, may be triggered by the binding of a ligand in a 
remote binding site, where it can still affect the dynamic state of the protein 
molecule, as was theoretically modeled by Cooper and Dryden in 1984 (Cooper 
and Dryden, 1984). This principle expands our understandings about allosteric 
regulation and could lead to discovery of alternative possibilities for the design 
of allosterically interacting drugs.  
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CONCLUSIONS 

1. Mutation of PKAc at position N326 to C and subsequent labelling of the 
protein with acrylodan, which is a fluorophore that is sensitive to its micro-
environment, proved to be a useful tool to study ligand binding using a novel 
method that utilizes fluorescence change that accompanies protein de-
naturation in time dependent manner.   

2. The sensitive dependence of fluorescence change rate on ligand concent-
ration allowed to assess binding affinities for both ATP-binding pocket and 
peptide binding site targeting molecules. To assess ligand binding affinity, a 
measurement of PKAc-acr denaturation in the absence and presence of ligand 
were performed and the ratio between denaturation rates was calculated. This 
ratio is proportional to the ratio of ligand concentration and its binding affinity. 
As only two measurements have to be performed in absence and presence of 
a ligand, it could potentially be a useful method to be used in high-
throughput ligand binding assays.  

3. Experiments, where urea or guanidine hydrochloride were used as denaturants, 
revealed 3 different structural states for PKAc-acr: 1) native (or active) 2) de-
natured and 3) unfolded. As these different structural states had different 
fluorescence characteristics, it was concluded that acrylodan moiety changed 
its relative position in the protein structure and this was reflected in changes 
to its microenvironment. This hypothesis was confirmed by computer 
modelling of PKAc-acr unfolding at different temperatures. 

4. Thermodynamic parameters, which characterize binding of ATP and peptide 
inhibitor PKI(5–24) with the enzyme and also the allosteric interaction 
between these binding sites, revealed that ligand binding and allosteric effect 
are probably governed by similar interaction mechanisms. It was also revealed 
that nucleotide and inhibitory peptide binding have different enthalpic and 
entropic contributions, pointing to different influence that these ligands have 
on protein structure after binding. While peptide inhibitor binding is governed 
mainly by enthalpy and therefore formation of novel non-covalent bonds 
between peptide and protein binding site can be expected, ATP binding had 
both enthalpic and entropic components in its binding, pointing to formation 
of novel non-covalent bonds and reduction of PKAc backbone flexibility. 
Thermodynamic parameters for allosteric effect revealed that both enthalpy 
and entropy had larger influence on for allosteric effect when compared to 
ligand binding parameters. It can be concluded, that the interplay between 
ligand binding sites have much greater effect to the protein structure than 
binding of both ligands separately.  

5. Allosteric effect of ATP on binding of series of congeneric inhibitory peptides 
with PKAc depends on peptide structure and comparison of these data with 
effectiveness of peptide binding with the free enzyme revealed that both 
phenomena are governed by the same specificity determining factors. There-
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fore, the principle “better binding – stronger allostery” can be observed in the 
case of this series of peptide inhibitors.     

6. The influence of ligand binding on intrinsic dynamics of the protein molecule 
may be responsible for allosteric phenomena, observed in the case of 
simultaneous binding of two ligands with one protein, while the observed 
effect of allostery is governed cumulatively by binding effectiveness of both 
molecules. 
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SUMMARY 

In this work, the acrylodan labelled N326C PKAc was prepared and its 
fluorescence properties were studied in the presence of different chemical 
denaturants. As fluorescence of this dye is sensitive to the conformational 
changes of the protein, this phenomenon was used to develop a denaturation 
kinetics assay for detection of ligand binding to PKAc. This assay procedure is 
universal and does not depend on type of ligand. The proposed assay was 
applied for quantification of allosteric effect of ligands, which interact with 
either nucleotide or peptide binding site of the enzyme, and also for analysis of 
the thermodynamic and extra-thermodynamic aspects of this interaction. 

The fluorescence spectra of PKAc-acr adduct were also analyzed to study 
the kinetic mechanism of unfolding of this protein in the presence of chemical 
denaturants (urea, guanidine hydrochloride and MOPS). These studies revealed 
that three different states of the protein can be differentiated by fluorescence 
measurements, defined as native, denatured and unfolded structures. It was 
suggested that the denatured state corresponds to the molten globule structure of 
the protein. These conclusions were confirmed by results of computational 
modelling of the protein-dye adduct structure. 

Equilibria of protein-ligand complex formation were studied at different 
temperatures and thermodynamic parameters ΔH and ΔS were determined for 
PKAc interaction with ATP and peptide inhibitor PKI(5–24), as well as for 
allosteric enhancement of binding effectiveness of these ligands in the ternary 
complex. It was concluded that binding effectiveness and allosteric effect are 
governed by similar interactions, and in the case of allosteric effect significant 
change of entropy is observed. The latter fact points to the possibility that in the 
presence of two ligands the intrinsic dynamics of the protein molecule is 
strongly reduced that may play an important role in allosteric enhancement of 
ligand binding effectiveness.  

Allosteric effect of ATP was studied on binding of a series of peptide 
inhibitors with the enzyme. The results of this analysis revealed that this effect 
depends on peptide structure and it is governed by the same specificity factors 
as the peptide binding effectiveness. This phenomenon follows the principle 
„better binding – stronger allostery“, and is in agreement with the possibility 
that allosteric enhancement of binding effectiveness is not caused by formation 
of additional interactions between the binding site and ligand molecule, but 
rather reflects gradual modulation of interactions, which are responsible for 
molecular recognition of the ligand molecule in the binding site of the free 
enzyme.  
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SUMMARY IN ESTONIAN 

cAMP-sõltuva proteiinkinaasi katalüütilise alaühiku allosteerika 

Antud doktoritöö käigus valmistati akrülodaniga märgistatud PKAc N326C ja 
uuriti selle fluorestsentsi omadusi erinevate keemiliste denaturantide juures-
olekul. Kuna selle värvaine fluorestsents on tundlik valgu konformatsiooniliste 
muutuste suhtes, kasutati seda nähtust, et välja töötada denatureeriva kineetika 
meetod ligandi sidumise määramiseks PKAc-ga. See analüüsimeetod on univer-
saalne ja ei sõltu ligandi tüübist. Meetodit kasutati nukleotiidsete või peptiid-
ligandide allosteerilise efekti kvantifitseerimiseks ning nende interaktsioonide 
termodünaamiliste ja ekstra-termodünaamiliste aspektide analüüsimiseks. 

Analüüsiti ka akrülodaaniga seotud PKAc fluorestsentspektreid, et uurida selle 
valgu denatureerimise kineetilisi mehhanisme keemiliste denaturantide (uurea, 
guanidiinvesinikkloriid ja MOPS) juuresolekul. Need uuringud näitasid, et fluo-
restsentsmõõtmiste abil saab valgul eristada kolme erinevat seisundit: natiivne 
ehk aktiivne, denatureerunud ja struktuuritu. Katsete tulemusena jõuti järel-
dusele, et denatureeritud olek vastab valgu sulaglobuli struktuurile. Neid järeldusi 
kinnitas märgistatud valgu fluorestsentsspektrite arvutuslik modelleerimine. 

Erinevatel temperatuuridel määrati PKAc – ATP ja PKAc – peptiidinhibiito-
riga PKI[5–24] valk-ligandi komplekside moodustamise tasakaalulised väärtu-
sed ja arvutati nende nähtuste termodünaamilised parameetrid ΔH ja ΔS. Leiti, 
et nii ligandi sidumise kui ka allosteerilise efekti tekkemehhanism põhineb 
samadel alustel. Allosteerilise efekti korral täheldatakse märkimisväärset ent-
roopia vähenemist. Viimane asjaolu viitab võimalusele, et kahe ligandi juures-
olekul on valgumolekuli dünaamika tugevalt vähenenud, mis võib mängida olu-
list rolli ligandi siduvuse efektiivsuse allosteerilises parandamises. 

ATP allosteerilist toimet uuriti ensüümiga sidumisel koosmõjus rea peptiid-
sete inhibiitoritega. Mõõtmistulemused näitasid, et allosteeriline toime sõltub 
peptiidi struktuurist ja et seda reguleerivad samad spetsiifilisusfaktorid nagu 
peptiidi sidumiselgi. Allosteerika nähtus järgib põhimõtet “mida parem ligandi 
siduvus, seda tugevam allosteerika” ning on kooskõlas võimalusega, et sidumis-
võime allosteeriline võimendamine ei ole tingitud seondumiskoha ja ligandi 
molekuli vahelistest täiendavatest interaktsioonidest, vaid peegeldab vastastik-
mõju järkjärgulist modulatsiooni, mis vastutavad vaba ensüümi seondumis-
kohas ligandi molekulaarse äratundmise eest. 
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