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Abstract 

Gain characterisation of a laser device is of fundamental importance to assist in the physical 

understanding of laser materials. Not only does it determine important parameters such as 

threshold, material loss and transparency current density, but is also a vital source of 

information regarding the evolution of states as a function of current density and temperature. 

The differential gain (dg/dn) is of key importance in determining the dynamic performance of 

a laser. Hence, the important role of gain characterisation has driven researchers to devise 

improved techniques for spectral gain measurement. 

This thesis discusses the gain characterisation of 1.3µm quantum dot, commercial Innolume 

material and bi-layer laser devices. Initially, different gain measurement techniques are 

reviewed. High resolution spectroscopy and variable stripe length methods are analysed and 

compared in detail. A technical review is presented for the first time for the commonly used 

Hakki and Paoli, segmented contact and a new “integrated mode filter” method for gain 

measurement. 

Then the Hakki and Paoli method is used to perform high current density analysis of the gain 

spectrum of 1.3µm Innolume, quantum dot laser material under continuous wave drive 

conditions. The device is characterised with and without self-heating effects. The elimination 

of self-heating effects is achieved by using a longitudinal mode as a junction temperature 

monitor to keep the junction temperature constant. This allowed an unambiguous study of the 

continuous wave gain spectrum at average dot occupancy levels up to ~8 e-h pairs per 

quantum dot. A negative differential gain is observed in both cases. This is shown to be 

predominantly due to the free carrier effects. As a result, free-carrier related negative 

differential gain is observed for the first time.  

A variant to the segmented contact method, which utilises an integrated amplifier and mode 

filter is demonstrated for the first time. The measurement of the gain/absorption spectrum is 
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critically compared under identical data acquisition conditions as for the integrated mode 

filter and segmented contact methods. By driving the amplifier section, it is possible to 

achieve ~3-dB of signal amplification. As a result the measurement of the gain spectrum is 

achieved over a broader spectral range. Further, it is shown that the integrated amplifier 

method enables gain measurements at lower current densities as compared to the standard 

technique.  

Lastly, the effect of inhomogeneous line width on the lasing line width of ~ 1.3µm quantum 

dot lasers is studied, as the line width of the transmitter is one of the key factors to determine 

the dispersion limit for optical communication systems. Two samples, with different 

inhomogeneous line width are compared under conditions where it is hoped that the effects of 

homogeneous line width and spectral hole burning are maintained at a constant level. This 

allows the effects of inhomogeneous line width alone to be studied. A ~30% reduction in 

inhomogeneous line width is shown to have a significant impact in reducing the lasing line 

width. 
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Chapter 1 
Historical Perspective of Semiconductor 

Quantum Dot Lasers 

1.1: Introduction 

In this chapter, firstly the evolution of the hetero-structure and the idea of carrier confinement 

in the active region is discussed. Then, the change in the density of states with respect to 

bulk, well, wire and quantum dot systems is shown. The molecular beam epitaxy method for 

the growth of quantum dots is then discussed. This is then followed by a historical overview 

of quantum dot lasers. The transition processes in a laser device, and their influence over gain 

is also detailed. Lastly the gain of a Fabry-Pérot laser device, its significance and the thesis 

summary is presented.  

1.2: Evolution of Double Hetero-structures  

The evolution of modern hetero-structures began with the concept of the semiconductor laser 

introduced by Bosov in 1961[1.1].The first GaAs based pn homo-structure was demonstrated 

by Dr R. N. Hall [1.2] in 1962. These lasers could operate only at cryogenic temperatures and 

had a high threshold current density due to low carrier and optical mode confinement. To 

improve upon this Kroemer et al. were the first to come up with the idea of using hetero-

structures instead of homo-structures, to obtain high efficiency, [1.3] due to a higher degree 

of carrier confinement. On the same lines, further improvements were made by Alferov and 

Adreev in 1969 as they realized a double hetero-structure. These were comparatively low 

threshold, room temperature operating lasers [1.4].  
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1.2.1: Double Hetero-structures 

A double hetero-structure is made up of more than one kind of semiconductor material. 

Usually a lower band gap material is sandwiched between higher band materials for efficient 

optical and electrical confinement in the growth direction. 

In order to achieve an optical confinement in the lateral direction, mainly two types of hetero-

structures are fabricated. In these the lateral variation of refractive index causes either gain- 

guiding or index-guiding. As an example, gain-guided edge emitting [1.5] and index-guided 

buried hetero-structure [1.6] lasers are shown in Figures 1.1, 1.2.  

  

 

 

 

 

Figure 1.1: Gain guided edge emitting double hetero-structure[1.5]. 

 

 

 

 

  Figure 1.2: Index guided edge emitting double hetero-structure [1.6]. 

z (growth direction) 

y 
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In this thesis the gain charcterisation of laser materials is performed via the fabrication of 

ridge lasers. These are a type of index-guided (weakly index-guided) [1.7] hetero-structures. 

The epitaxy and fabrication processes mainly involve a successive growth of the epitaxial 

layers which are then etched according to a required ridge width and depth. Figure 1.3 shows 

the schematic of an index-guided laser structure used for the analysis in this thesis. The 

fabrication details of the laser device are given in the later part of the thesis (chapter: 3). In 

this case a refractive index step between GaAs (~3.5)  and the dielectric SiO2 (~1.5) provided 

the lateral index guiding. This type of design (narrow ridge) is generally employed to achieve 

single lateral mode operation in addition to inhibiting lateral carrier spreading. 

 

 

 

    

 

1.2.2: Active Region Engineering 

In an attempt to improve the performance of hetero-structure lasers, it was  proposed that 

carrier confinement in the active layer could be exploited further. This would result in the 

improvement of various important laser parameters such as threshold, gain, temperature 

insensitivity (characteristic temperature To), and wavelength tunability. The following section 

details how the application of the concept of carrier confinement in the active region in 

various spatial directions can lead to the achievement of these proposed advantages.  

 

 

Figure 1.3: A narrow ridge (weakly index-guided) multi-section device, grown by Innolume 

GmBh (described in chapter: 3). 
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1.2.3: Density of States 

Figure 1.4 is a schematic diagram which highlights the change in the density of states as a 

function of the degree of carrier confinement in the active layer. The density of states being 

the density of available energy states where the carriers can reside.    

For a 3-D system (Bulk) a continuum of states is available in all three dimensions. At the 

band edge (Eg) the density of states is zero which then gradually increases as (E)
1/2

. To 

achieve lasing threshold at a required energy level, high current densities would be required 

due to the carriers being used to fill the unused low energy states.  

A 2-D quantum well system restricts the carrier movement in only one direction (z-direction 

Figure 1.1). Growing a very thin active layer (usually ≤ 10nm) leads to the quantisation of 

states in the direction of growth. The carriers are trapped (confined) in these states but are 

free to move in the plane of the well with the same probability of transition for each state. 

Therefore for the state being near to the band edge (lowest energy state), each of the injected 

carrier is available for inter band transition which leads to the possibility of achieving the 

same gain but with much lower current density in comparison to the bulk system The density 

of states is reduced compared to bulk and akin to a step like function. Therefore, the threshold 

condition is achieved at a lower current density in comparison to bulk semiconductors.  

In the case of a 1-D quantum wire system (developed with the idea of lateral confinement in 

quantum well systems) the carrier movement is allowed only in one direction. The density of 

states is reduced compared to the quantum well system and varies as (E)
-1/2

, which leads to an 

even lower threshold current density. 

In the case of the 0-D quantum dot system (zero-dimensional system) the carrier movements 

are restricted in all three directions and the carriers within quantum dots are fully localised. 
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The density of states resembles a delta (δ) function and is the least of the other systems. 

Therefore the smallest comparative current density is required to achieve threshold.  

It can be concluded from the above that by restricting carrier movement from 3-D to 0-D, the 

density of states is reduced. However, the carriers reside in a narrower energy range near the 

band gap edges (from 3-D to 0-D) which results in a correspondingly reduced threshold 

current density and hence gain is enhanced.  

 

  

 

 

Figure 1.4: The density of states depending upon the degree of confinement in different systems. 

 

Figure 1.5[1.8] plots the calculated modal gain as a function of current density for different 

systems depending on the carrier confinement. It can be clearly observed that the lowest 

threshold current density and highest material gain is possible in the quantum dot (Box) 

system. It is attributable to its highest degree of carrier confinement. 
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Figure 1.5: Calculated gain as a function of current density for different systems [1.8]. 100A
o 
(10nm) 

is the quantum confinement dimension to observe the quantisation effects in each type of the system. 

 

In this thesis, I shall only discuss the quantum dot system. The basic constituent of the system 

is a quantum dot/box which resembles an artificial atom with very small dimensions (≤ 

~10nm) to exhibit quantum confinement effects. High differential efficiency, high gain [1.8], 

lowest threshold current density and high temperature insensitivity [1.9] are theoretically 

predicted for the quantum dot system. However, practically due to the size variation among 

quantum dots we observe broad spectra. The dot densities are not very high ~ 10
9-11

/cm
2
 and 

the confinement potentials are not infinite. All these issues tend to deteriorate the expected 

performance of the quantum dot laser system. 
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1.3: Molecular Beam Epitaxy  

One of the main advancements towards the improvement of the optical properties of 

semiconductor devices is the possibility of device engineering via precise growth techniques. 

Molecular beam epitaxy (MBE) and metal organic vapour phase epitaxy (MOVPE) are the 

two major growth techniques by which complex compound semiconductor structures can be 

grown with precision and purity. For the growth of quantum dot nano-structures used for the 

characterisation in this thesis the MBE method is employed. It is usually preferred, as it has 

extensive in-situ monitoring tools. This technique was introduced by Alfred Y. Cho and J.R. 

Arthur in Bell Telephone Laboratories in the late 1960s [1.10]. 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: Schematic of molecular beam epitaxy (MBE) reactor [1.11]. 
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The main chamber for molecular beam epitaxial growth with its essential constituent parts is 

shown schematically in Figure1.6 [1.11]. A high vacuum of ~10
-8

 Pascal is maintained inside 

the chamber to minimise any contamination. The effusion cells contain the metals: Al, Ga, In 

and As etc. and the dopants: Si and Be. By heating the desired materials to evaporate and 

letting the shutters open (speed:< 1 sec) of the corresponding effusion cells the atomic beams 

are directed towards a slowly rotating substrate (controlled via continuous azimuthal rotation 

(CAR)) assembly to ensure a uniform layer of atomic deposition. These beams of the 

corresponding elements do not interact.  The substrate, usually GaAs, InP, Ge or Si is 

maintained at a high temperature, dependent upon the type of material to be deposited. The 

growth rate is usually around one monolayer per second. The opening and closing of the 

mechanical shutters before the effusion cells operates at a higher rate in comparison to the 

growth rate to ensure the exact deposition thickness. A Beam flux monitor (BFM) is used to 

monitor the atomic beam flux.  Cryopanels are used to cool down the parts of MBE reactor 

other than the effusion cells. Reflection high energy electron diffraction (RHEED) assembly 

[1.12] is used to monitor the thickness of the deposition and the structure of the grown layer 

via electron beam diffraction pattern obtained on a screen. It is also used to maintain the 

substrate temperature at a constant value via feedback mechanism used for temperature 

calibration. All these features make MBE a preferable growth technique over MOVPE for the 

purpose of growing the dots with precision.     

The quantum dots grown by MBE method are usually grown by the Stranski-Krastanov 

growth mode by which growth transforms from two dimensional to three dimensional (two 

dimensional wetting layer to quantum dots). The lattice constant for InAs is approximately 

7% more than GaAs. In the case of growing InAs quantum dots on a GaAs substrate, a thin 

layer of InAs material is deposited upon the GaAs. Due to the lattice mismatch between the 

materials, a strain is developed in the InAs layer. However after the growth of the critical 
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thickness (usually ~1.5 mono-layers, known as a wetting layer) the InAs starts clustering 

together via a self assembly process in an attempt to relax the developed strain[1.13]. If the 

material is grown beyond the critical thickness then dislocations may be formed.  However by 

achieving the critical thickness the 3-dimensional islands (quantum dots) are formed which 

can be pyramids, cones, or lenses. A quantum dot is usually made up of 10
4
 to 10

5
 atoms and 

exhibits atom  like properties with its ground and excited state resembling s and p orbitals. 

The achievable densities up till now are ~10 
9-11

/cm
2
. The energy spacing between the 

confined levels may be greater than 70meV, avoiding possible thermalisation, as at room 

temperature the thermal energy is 25meV(kT). 

1.4: Historical Review of Quantum Dot Lasers 

In1982 the theory of quantum dot lasers was described [1.8, 1.9] by which an improvement in 

overall characteristics such as material gain, differential gain, characteristic temperature and 

threshold current density of the laser was suggested. My work in this thesis is the gain 

characterisation of 1.3µm quantum dot laser devices. Therefore, the practical historical 

evolution of laser devices in terms of their threshold current density, beginning from homo-

structure to quantum dot laser devices are shown in Figure 1.7 [1.14]. Kirstaedter et al. 

[1.15]in 1994, employed MBE to grow self-organized quantum dots and achieved room 

temperature lasing at a threshold current density of 950A/cm
2
 from a single quantum dot 

layer. In 1996, Alferov et al. via 3 layer stacking managed to further reduce the threshold 

current density to 680A/cm
2
 at room temperature and attempted to overcome the issue of gain 

saturation [1.16]. Ledentsov et al. in 1996 achieved a very low threshold current density of 90 

A/cm
2
 at room temperature via 10 layer vertical stacking [1.17]. Subsequently Iluaiig et al. 

[1.18] achieved a continuous wave room temperature threshold value of 24A/cm
2
. A lower 

threshold current density of the order of 7A/cm
2
 per quantum dot layer was achieved by 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Xiaodong%20Huang.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Xiaodong%20Huang.QT.&newsearch=partialPref
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Bimberg et al. [1.19]. The 10.4A/cm
2
, a further lower threshold current density has been 

reported for broad area laser with the cavity length of 1.6cm [1.20]. 

 

 

 

 

 

 

Figure 1.7: The improvement in threshold current density from homo-structure to quantum dot laser 

devices [1.14] (1960- 2010).  

My work in this thesis is based on the empirical analysis of the static performance of 1.3µm 

AlInGaAs/GaAs quantum dot lasers via gain characterisation. The aim is to optimise the 

characterisation of quantum dot lasers for better understanding of the physical mechanisms 

behind their operation. This will enable the further evolution of quantum dots for FTTH 

telecommunications as transmitters where they are set to disrupt the dominance of InP 

quantum well lasers. Further applications are amplifiers [1.21] and in medical imaging for 

optical coherence tomography [1.22]. The gain characterisation of the laser devices 

performed in this thesis can not only be used in accessing the static, but also the dynamic 

performance of a laser device. It can be used for design optimisation and hence for device 

engineering purposes. 
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1.5: Transition Processes in Laser Device 

In this section three main transition processes, common for all laser types are detailed: 

1) Absorption 

2) Spontaneous emission  

3) Stimulated emission  

Absorption: Figure 1.8 shows the process of absorption; an incoming photon is annihilated 

and its energy is transferred to an electron in the valence band. In this case, two situations 

may occur i.e. Eph ≥ Eg or Eph< Eg, where Eph is the incoming photon energy and Eg is the 

band gap energy.  

In the first situation if the energy of the photon is equal or greater than the band gap energy 

then upon annihilation the electron is promoted to the conduction band, leaving a hole behind. 

If the energy of the photon is more than the band gap energy then not only would it promote 

the electron but also impart to it some kinetic energy. 

In the second case, if the photon energy is less than the band gap energy then ideally it would 

pass through the material without interaction in the absence of non-linear effects (e.g. two 

photon absorption). The rate of the absorption process essentially depends upon the number of 

empty conduction band states, the number of filled valence band states and the incoming 

photon density. If fc and fv are the occupation probabilities in the conduction and valence 

bands respectively, then the condition of absorption can be expressed in the form of eq. 1.1:       

                     1.1cvvc f1fdensityphotonAabsorption of Rate   
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Avc  is the Einstien‟s coeffiecient for absorption. 

 

 

 

 

 

Spontaneous Emission: As shown in Figure 1.9 a free electron from the conduction band 

may combine with a hole in the valence band producing a photon, released with a random 

phase in a random direction. From the recombination of many electron–hole pairs incoherent 

light is generated. The condition of spontaneous emission is given in eq. 1.2: 

                  2.1vccv f1fBemissionus spontaneoof Rate                             

Bcv is the Einstein‟s coefficient of spontaneous emission. 

 

 

 

 

Figure 1.9: The schematic of the spontaneous emission process. 

 

Stimulated Emission: During this process a photon interacts with an electron and hole, 

stimulating recombination. After recombination as shown in Figure 1.10 a second photon is 

Photon (Eph) Eg

Eg
Photon (Eph=Eg) 

Figure 1.8: A schematic of the absorption process. 
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generated. It has exactly the same energy, phase and momentum as of the stimulating photon. 

The process depends upon the number of full conduction band states, number of empty 

valence band states and the incoming photon density. The condition of stimulated emission is 

given in eq. 1.3: 

              3.11 vccv ffsitydenPhotonAmissioned stimulateof Rate                   

Acv is the Einstein‟s coefficient for stimulated emission. 

 

 

 

 

Figure 1.10: The schematic of the stimulated emission process. 

 

1.5.1: Gain of a Fabry-Pérot Laser  

Until now we have discussed hetero-structures which allowed us to understand how carrier 

and optical mode confinement is achieved in these structures. Combined with the 

understanding of transition processes occurring in a laser device, in the following section I 

shall discuss how population inversion is achieved in a Fabry-Pérot laser device.  

1.5.2: Population Inversion 

In a laser device at low injection levels photons are emitted through radiative recombination. 

However due to the low carrier concentration the rate of photon absorption is greater than that 

for stimulated recombination. Resultantly, absorption dominates and gain is not observed. In 

Eg

Photon (Eph=Eg) 

Photon (Eph) 
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the absence of any cavity loss, by increasing the current density transparency is achieved 

when the number of electrons in the conduction band equals the electron population in the 

valence band. Then by a further increase in the current density, the electron density in the 

conduction band exceeds that of the valence band‟s and population inversion is achieved. 

Under this condition, as the photons travel through the waveguide stimulated emission 

dominates and we obtain gain. However, taking into consideration the optical loss (αi), the 

device needs to be operated at a higher level of inversion (electron densities) to achieve a net 

modal gain. The condition of net modal gain can be given by eq. 1.4: 

            
 4.1absorptionEmissionStimulatedGainModalNet 

  

Therefore by eqs. 1.1 and 1.3: 

                                5.1vc ffModalGainNet   

  With fc-fv= 1, the highest net modal gain is achieved. For fc=fv the material is transparent 

and in case of fc-fv < 1 the material would be absorbing. 

1.5.3: Threshold Gain 

A Fabry-Pérot laser device (an optical resonator) can be thought of as involving a medium of 

length (L) which provides gain. It is cleaved along its crystallographic axis to provide two 

parallel facets on either of its sides to achieve the necessary optical feedback. The ~3.5 times 

higher refractive index of GaAs (the semiconductor material used to fabricate the laser in this 

thesis) than air, provides ~ 30% reflectivity. To achieve threshold, the modal gain:                 

G (increase in photon density (cm
-1

)) must equal the losses which occurs due to absorption 

(e.g. free carrier), scattering due to defects and roughness (side walls), and mirror loss: αm 
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(due to the laser facets) during a round trip. All losses except mirror loss are referred as 

optical loss.  

The round-trip gain (cm
-1

) is given by eq. 1.6. It can be further used to calculate the 

incremental gain as the optical mode travels through the waveguide. 

                                             )6.1()2(exp GLgaintripRound   

Where „G‟ is the material gain and „L‟ is the length of the laser device. The factor of 2 

accounts for the round trip between both facets.  

The round-trip optical loss/photon loss (cm
-1

) due to the laser cavity material and facets is 

given as: 

                                      )7.1()2(exp21 LRRlosstripRound i  

Where „αi‟ is internal loss, R1and R2 are the mirror reflectivities.  

According to the condition of threshold:  

                                        1 gaintripRoundlosstripRound  

At threshold G = Gth. Then by eqs. (1.6, 1.7) at threshold:
  

                         
     8.112exp2exp21  LLGRR ith         

                           9.112exp21  ithGLRR   

By rearranging the eq. 1.9 the threshold modal gain is given by eq. 1.10:
      

                             
 10.1

1
ln

2

1

21

miith
RRL

G  
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Where 
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1.6: Significance of Gain Measurement  

Gain measurement is of vital importance to assist in the understanding of the underlying 

physical behaviour of materials and hetero-structures. The spectral gain measurement is 

usually performed as a function of current density or as a function of the temperature to assist 

in the determination of various static (g (J,T)) and dynamic characteristics(dg/dJ (J, T)) of a 

laser device, dictating its performance. The analysis can be performed under two modes of 

operation either pulsed or continuous wave. To avoid self heating effects (thermal effects) as 

they usually mask the actual physical properties of the laser material, the devices are operated 

in pulsed mode. However, during pulsed mode operation the gating time is inversely 

proportional to the integration time so very long data acquisition times are expected. As a 

result, continuous wave operation may be used under the condition that a constant junction 

temperature is maintained. In the later part of this thesis, (Chapter: 3) a method to fix the 

junction temperature is discussed in detail.  

1.7: Thesis Outline 

Chapter 2: Presents a historical review of gain measurement techniques broadly 

subdivided into two types: high resolution spectroscopy and variable injection/stripe length. 

Then a technical review is presented. The theory, device requirements, resolution fidelity, 

experimental set ups and low power limitations of Hakki and Paoli [1.23], segmented contact 

[1.24] and integrated mode filter [1.25] techniques are analysed and compared for the first 

time. Self heating issues are also discussed.  The suitability and comparison of the said 
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techniques for high current density measurement (with/without constant-junction 

temperature) and low current density analysis is also presented.  

Chapter 3: This chapter explores the origin of negative differential gain in the case of 

1.3µm ground state quantum dot laser devices. For this purpose an empirical analysis of the 

net modal gain spectra of quantum dot laser material at high carrier densities (~ 8 e-h) is 

presented. The spectral analysis was performed under constant heat-sink and constant-junction 

temperature conditions.  The junction temperature was kept fixed by using a Fabry-Pérot 

mode as a temperature gauge. Therefore, by eliminating the self-heating effects entirely, the 

observation of free carrier effects was made possible. At excitation levels of up to ~8 e-h pairs 

per quantum dot for both constant heat-sink and constant-junction temperature conditions a 

very similar reduction in peak ground-state gain was observed. The results are attributed to 

free carrier effects, where increasing dephasing effects combined with saturated gain resulted 

in spectral broadening and hence a reduction in the peak gain.   

Chapter 4: Quantum dot lasers exhibit a broad band emission, low threshold current 

density and lower transparency current density accompanied by a lower net modal gain. 

Therefore, the techniques which can be used at lower current densities to measure a wider 

spectral range are important to the characterisation of quantum dot devices. In this chapter the 

segmented contact method due to its better signal to noise ratio has been selected to perform 

low current density measurements (~0.04 e-h pairs/dot). A modified gain measurement 

technique, the integrated amplifier method is employed for the analysis by using the output 

sections of a multi-section device as an integrated optical amplifier and mode filter. The 

resultant enhancement to the spectral range over which the gain can be determined is 

discussed in detail. This technique is shown to be particularly advantageous for the 



 
 

18 
 

measurement of the absorption/gain spectrum at low carrier densities where the waveguide is 

operating in loss. 

Chapter 5: The lasing line width of a laser transmitter is one of the key factors which 

determine the dispersion limit of an optical communication system. QD lasers are currently 

being commercialized for fibre-to-the-home (FTTH) optical communication systems. In this 

chapter the effect of inhomogeneous linewidth on the lasing linewidth of QD lasers is 

studied. Two samples, with different inhomogeneous linewidth are compared under 

conditions where it is hoped that the effects of homogeneous linewidth and spectral hole 

burning are maintained at a constant level, allowing the effects of inhomogeneous linewidth 

alone to be studied. 
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CHAPTER 2 
Review of Gain Measurement Techniques 

2.1: Introduction 

GaAs based quantum dot (QD) devices are an area of interest owing to their low cost and 

applications in laser displays, pointers, telecommunication and medical fields. In the 

telecommunication sector some of the important features include mode-locking [2.1], direct 

modulation for optical communications [2.2], temperature insensitive threshold current 

density [2.3], [2.4] and small line width enhancement factor [2.5]. In terms of their mode 

locking application in telecommunications, due to their inherent broad band and ultrafast 

carrier dynamics QD lasers are capable of producing ultra short pulses at high repetition rates 

(more than 1 THz) [2.1]. The line width enhancement factor being a ratio of real and 

imaginary parts of the refractive index as a function of carrier density has a very small value 

in case of QD [2.5] laser devices due to the symmetric shape of the gain spectra at high 

current densities. Therefore a lower chirp and correspondingly higher bit rates are expected. 

In medicine, due to their inherent broad spectral bandwidth they find application for 

biomedical imaging purposes (optical coherence tomography)
 
to provide high resolution 

imaging [2.6]  

Due to the applications discussed earlier, in addition to new emerging fields, there is a need 

for the analysing the static and dynamic performance of QD devices to improve and optimize 

their efficiency and to obtain required characteristics through careful device engineering. To 

this end, an understanding of the spectral gain-current relationship is required which can be 

obtained via gain spectral analysis as a function of increased current. A number of techniques 

for spectral gain measurement are available, but are rarely compared as they often require 

bespoke fabricated device structures to allow the analysis. 
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2.2: Chapter Outline  

This chapter presents a historical review of gain measurement techniques. Particularly, 

technical reviews are presented for high resolution spectroscopy (Hakki and Paoli method) 

[2.7], [2.8], variable stripe length methods (segmented contact method) [2.9], and integrated 

mode filter method [2.10], [2.15]. A direct comparison of device requirements, experimental 

setups and issues regarding high/low current density measurements via high resolution 

spectroscopy (Hakki and Paoli method) [2.7],[2.8] and variable stripe length methods 

(segmented contact method [2.9] and Integrated mode filter method [2.10]) are discussed. A 

method to achieve a constant-junction temperature for the Hakki-Paoli technique is 

introduced and its advantage at high current density is discussed. 

 2.3: History of Gain Measurement Techniques 

Gain measurement is of vital importance to assist in the understanding of the physical 

behaviour of the materials and hetero-structures. Various static and dynamic /modulation 

characteristics (differential gain, linewidth enhancement factor) can be analysed via gain 

spectral measurements. The available techniques can be broadly categorised into two types: 

1) High Resolution Spectroscopy 

- Hakki and Paoli [2.7], [2.8] 

- Cassidy and modified Cassidy methods [2.11, 2.12] 

2) Variable Stripe Length Techniques 

 - Shaklee and Leheney [2.13] 

- Variable stripe length [2.14] 
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- Segmented contact method [2.9] 

- Integrated mode filter method [2.10], [2.15] 

These methods are rarely compared as some require bespoke devices to be fabricated and may 

require different drive techniques as well. Here, a brief introduction of each of the above 

techniques is presented, along with experimental data, comparing Hakki-Paoli, segmented 

contact and integrated mode filter methods. To the best of my knowledge, this is the first 

comparative analysis of these different gain spectrum measurement techniques. 

2.4: High Resolution Spectroscopy 

2.4.1: Hakki and Paoli Method 

This method was introduced by Hakki and Paoli in 1975 [2.7] and as of the time of writing 

this paper has been cited 555 times. It is usually preferred as a special fabrication run is not 

required, as long as a single-mode laser is already made. It is a round trip method and is 

usually applied to single mode, short length Fabry-Pérot devices. This method is based on 

high resolution spectroscopy which requires the length of the cavity to be small enough to 

allow the full resolution of the electroluminescence spectrum in terms of individual Fabry-

Pérot modes. It calculates net modal gain below threshold depending on the modulation depth 

of the resolved peaks and valleys of an electroluminescence spectrum. The difference in 

electroluminescence between the peaks and the troughs, where gain is constructive and 

destructive, allows gain and spontaneous emission to be determined. In Figure 2.1 an 

example electroluminescence spectrum is shown.  
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The modulation depth is given by eq. 2.1:                       
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Where Pi , Pi+1 are the intensities of the two consecutive peaks and Vi is the intensity of the 

valley in between them. The net modal gain is calculated in the case of the Hakki and Paoli 

method by eq.2.2:  
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Facet reflectivities (R1, R2), modulation depth (γi) and the length of the device (L) are the 

main factors, required in determining the net modal gain value. This method also allows the 

calculation of the spontaneous emission by eq. 2.3. In this case the same electroluminescence 

spectrum is used as is for the net modal gain evaluation [2.8].  
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Figure 2.1: Febry–Pérot resonances of an electroluminescence spectrum indicating the peaks, 

valley and modulation depth. 
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2.4.2: Cassidy and Improved Cassidy Methods 

The Cassidy method [2.10] was introduced as an improvement to the Hakki and Paoli method 

in 1984 and has been cited 91 times. It is used for the case when low S/N ratio is a major 

issue. In this case it was claimed that the gain could be determined via the contrast of the 

average mode intensity of a Fabry-Pérot mode instead of its maxima to its minima. The 

measurement would therefore be less sensitive to noise. It was further proposed that if 

additional averaging is performed over a spectral range around the minima of each mode then 

the measurements becomes even less sensitive to noise.  

V. Jordan in 1994 proposed a method known as the “Modified Cassidy method” [2.12] which 

is cited 16 times, is an additional averaging method. The author analysed the Cassidy method 

and proposed that if additional averaging is not done around the minima of the mode then the 

Cassidy method becomes more sensitive to noise than the Hakki and Paoli method. In this 

case averaging is to be done over an additional wavelength interval which would give some 

percentage error in gain measurement. 

2.4.3: Modal Spacing & Resolution 

The separation between resolved longitudinal modes, ∆λ, in an electroluminescence spectrum 

is determined by eq. 2.4 [2.16]: 

                                    4.2
2

2

nL


   

Where λ is emission wavelength, n is modal refractive index and L is the length of the device 

cavity. Device length determines the modal spacing which must be fully resolved to allow the 

correct determination of the net modal gain. A short cavity length is desirable as wider mode 

separation is obtained, making the resolution of modes easier. Furthermore, the threshold gain 
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increases, allowing the measurement of the gain spectrum to higher current densities (higher 

gain).  Eq.2. 4 can, also be used to identify any additional modes other than the fundamental 

mode, if present in the cavity. It is not always recommended to go for the highest spectral 

resolution adjustment as with the increase in resolution of the optical spectrum analyser the 

signal to noise ratio of the optical signal is reduced. 

The presence of additional lateral modes would render the gain measurements incorrect. It is 

theoretically possible to consider ultra-high resolution spectroscopy and the deduction of the 

gain spectrum by careful selection of the correct peaks and valleys. However, a practical 

method to avoid additional lateral modes is to spatially adjust the fibre used for light 

collection, or use a spatial filter ( lens and the pinhole arrangement) to collect only the 

fundamental mode.   

2.4.4: Device Requirements 

As discussed previously, single mode Fabry-Pérot devices of a short length are preferable. To 

ensure a single mode device the selection of a narrow ridge device is more promising as the 

side walls of the device cavity provide a lossy medium for higher order lateral modes and high 

current densities may be accessed.  

I do not consider the „Modified Cassidy method‟ in my thesis. The high resolution 

spectroscopy gain measurements are performed by Hakki and Paoli method. In this chapter a 

detailed analysis of Hakki-Paoli method is presented regarding its power limitation, 

experimental apparatus and resolution requirements to perform the gain measurements.  

2.4.1.1: Technical Review: Hakki and Paoli Method 

Here, a single mode, 1300nm quantum dot Innolume laser device with the dimensions of 

450µm x 3µm, fabricated by B.J.Stevens was selected. Light-current density and 
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electroluminescence vs. wavelength characteristics are shown in Figure 2.2 and in the inset, 

respectively.  The device exhibited lasing after 1.8kAcm
-2

.  

Hakki and Paoli analysis could be made up to the lasing threshold. Whilst it would be very 

interesting to measure the gain spectrum above threshold, to investigate non-ideal gain 

clamping, it was found that this was not practical. Stray, scattered lasing light within the 

optical spectrum analyser modulates the measured Fabry-Pérot spectrum resulting in 

erroneous gain measurements. Inspection of the mode structure (as shown in the inset) is 

performed over a wide range of wavelengths to check for modulations on a wider range than 

the Fabry-Pérot mode-spacing to confirm there are no additional lateral modes. 

 

 

 

 

 

    

 

 

 

 

 

2.4.1.2: Apparatus 

The experimental set up used for the Hakki and Paoli technique is shown in Figure 2.3.To 

fulfil the high resolution measurement requirement, an optical spectrum analyser with spectral 

resolution of 10pm was used (Advantest Q8384). In order to maintain constant, and high 
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Figure 2.2(a): Light-Current density characteristics of 450x3µm, Innolume laser device used for 

Hakki and Paoli analysis, (Inset) Electroluminescence as a function of wavelength for 1.1kAcm
-2 

exhibiting the single mode characteristics for the device. 
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coupling efficiencies, a set up consisting of optical splitter and piezoelectric actuator was 

used. The optical splitter was used to split the output optical power from the device in the 

ratio of 99:1. 99% percent of the optical power is coupled to the optical spectrum analyser and 

the remaining 1% is fed to a power meter. This allows positional feedback to the piezoelectric 

actuator to maintain highly stable experimental conditions which allowed a lensed fibre to be 

positioned dynamically, for maximum coupling. 

 

 

 

 

 

 

 

 

2.4.1.3: Experimental Issues: Trade-offs with Resolution 

The selection of a suitable spectroscopic resolution is vital. In order to fully resolve the 

Fabry-Pérot peaks and valleys a reduced throughput reduces the signal to noise of the data. 

As a consequence, the spectral resolution should not be over-specified. In order to optimize 

this, a series of spectra were obtained at different resolution settings for the same Innolume 

device as described in section 2.4.1.1. The gain was then calculated using eq.2.2. It was 

observed that the effect of insufficient resolution was an underestimation of the valley depth, 
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Figure 2.3: Experimental set up for Hakki and Paoli gain measurement. 
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leading to an underestimation of the gain. As a result, the optimum spectroscopic resolution 

was determined at the point just before the onset of this reduction in calculated gain, 

corresponding to the maximum in light throughput and hence the maximum signal to noise 

ratio.    

2.4.1.4: Experimental Issues: Fidelity of Gain Spectrum for Low Signals  

Here, I describe an investigation into the effects of small signal powers on the gain spectra 

obtained via the Hakki and Paoli technique. In this case, the same Innolume device, as 

described in section 2.4.1.1 was used. While maintaining a constant current density the lensed 

fibre is misaligned (drawn back along the same axis of the device). This allows us to observe 

how the electroluminescence spectra would look at both limiting values of highest and lowest 

coupled optical powers, to explore how the Hakki and Paoli method fails. In an ideal case, 

calculation of the gain should result in identical results. However S/N ratio reduction will 

manifest itself in changes to the calculated spectrum. Figure 2.4 plots the electroluminescence 

spectra with the highest (722nW) and lowest coupled power (20nW), respectively. The noise 

floor of the measurement system is retrieved by not allowing any light to enter the optical 

spectrum analyser. From the spectra as shown in the Figure 2.4 it is possible to predict the 

spectral ranges over which gain can be deduced. Inspection of their corresponding valleys 

touching the noise floor indicates where gain measurement fidelity is lost. 
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Figure 2.5 plots the net modal gain spectra calculated from eq.2.2 using spectral data similar 

to that shown in Figure 2.4 for a range of coupled powers. It can be observed that with a 

reduction in coupled power random noise is added to the calculated gain spectrum. Also 

some parts of the spectrum (at longer wavelengths) are elevated due to the valleys of the 

electroluminescence approaching the system noise floor. As a result the gain may be 

significantly over-estimated. Due to this the spectral range over which gain can be measured 

is reduced. However, the peak net modal gain as function of coupled power shows the 

variation within the limits of ±1 cm
-1

, even at the lowest coupled power used here.  

The increase in calculated gain at the edges of the spectrum is a tell-tale sign that the 

measurement is failing. As the gain calculations are based upon the measurement of the 

modulation depth, which in this case would be wrong due to valleys being over estimated. 

Referring back to the Figure 2.4, the signal approaches the noise floor at ~1300nm, in good 

agreement with the wavelength at which the gain spectrum calculation fails in Figure 2.5.  
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Figure 2.4: Electroluminescence as a function of wavelength for maximum and minimum power 

being coupled via lensed single mode fibre having 5µm core diameter to explore power limits of 

Hakki and Paoli method.  
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2.4.1.5: Maintaining a Constant Junction Temperature  

In later chapter (Chapter 3) I present data which shows that the shift of Fabry-Pérot modes as 

a function of current density is predominantly due to self heating. By utilizing the wavelength 

shift of a single Fabry-Pérot mode it is therefore possible to maintain a constant junction 

temperature. This is shown to be a significant advantage of the Hakki and Paoli method. 

2.5: Variable Stripe Length Techniques 

These techniques employ single pass measurement schemes for gain measurement and 

optical feed back is avoided. 

2.5.1: Shaklee and Leheney Method   

 

This method [2.13] was introduced by Shaklee and Leheney in 1971. It is a 

photoluminescence measurement technique to determine the gain spectrum of the material. In 
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Figure 2.5: Hakki and Paoli net modal gain spectra for the Innolume device (section :2.4.1.1)as a 

function of wavelength for the increase in distance between the fibre and the device showing a 

corresponding decrease in coupled power and its effect on overall gain spectra.  
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this case, before fabrication, different lengths of the crystal are optically excited using a 

cylindrical lens and a spatial filter. The single pass amplified spontaneous emission is 

measured from the edge of the wafer, allowing the gain spectrum to be calculated. Whilst this 

method provides a rapid feed back to epitaxy on the potential of the material to make a laser, 

the carrier/current density within the laser is unknown. It is therefore of less use in the 

engineering of practical devices. 

2.5.2: Variable Stripe Length Method     
 

This method [2.14] of electrical excitation of laser material was given by A. Oster, G. Erbert 

and H. Wenzel in 1997. For the sake of current confinement, the cladding layer is etched as 

shown in Figure 2.6 and metal stripes are deposited. It is ensured via long passive lengths, and 

anti reflection coatings on both facets that feedback is avoided. This then allows single pass 

gain measurements by measuring the amplified spontaneous emission in a similar manner to 

the Shaklee-Leheney method. In this case though, the current density is a well-defined 

quantity. 

 

 

 

 

2.5.3: Segmented Contact Method 

The segmented contact method [2.9] (cited 80 times), regarded as an improvement to the 

“Oster” method of variable metal stripe lengths, the modal gain can be obtained by a single 

multi-section device. The advantage mainly is; the same proportion of the light is collected for 

 

Figure 2.6: Electrically excited variable stripe length method [2.14] 
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each of the lengths and no realignment is required. A further advantage is the choice of driven 

and passive lengths. However, this method requires bespoke devices to be fabricated in order 

to avoid reflections from the device facets, to inhibit lasing, and to ensure single pass gain 

measurement. Therefore for gain measurement, long multi-section devices with an absorber 

[2.17] at one end and a tilted facet on the other end are generally used [2.18]. To suppress 

round trip amplification the rear sections are often reverse biased [2.19] and single pass gain 

can be successfully achieved.  

The segmented contact method can be used to determine net modal gain for both multimode 

as well as single mode devices. The unguided spontaneous emission and higher order modes 

can be eliminated either by using an external spatial filter [2.9] or by leaving the waveguide at 

the front of the device unpumped [2.10]. A multimode fibre having a ~ 62.5µm diameter is 

generally used to couple light from the device to an optical spectrum analyser.This method 

allows the length of an electrically driven multi-section device to be varied in order to 

perform the measurement of gain at each wavelength. The device geometry used is shown 

schematically in Figure 2.7.  

   

 

 

 

 

 

 

The first section of length L is pumped with a desired current density and then the section of 

length 2L is pumped with the same current density. The corresponding amplified spontaneous 
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Figure: 2.7: The device geometry used for segmented contact method. 
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emission Imeasured L and Imeasured 2L is then recorded in each case by an optical spectrum 

analyser. Then a ratio of the two allows for the derivation of net modal gain for the device 

under test given by eq.2.5.  

                        5.21ln
1 2
















measuredL

Lmeasured

I

I

L
gainmodalNet  

Where, L is the length of a single section of the multi-section device, I measured L and I measured 2L 

are the amplified spontaneous emissions from section lengths L and 2L respectively driven at 

same current density. Longer individual sections provide the means to improve the signal to 

noise ratio in this case. 

The spontaneous emission spectrum can also be derived using eq.2.6 [2.8]. The spectra 

obtained can also be used to estimate the radiative efficiency of the material under test by 

measuring the integrated power. 
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This technique usually requires a special fabrication run to fabricate the devices but the major 

advantage of this technique is that it allows a high S/N ratio to be achieved due to longer 

section lengths and low resolution requirements. The measurement cannot be performed in 

two cases; either when the electroluminescence signal approaches the noise floor of the 

measurement system, or signals from the two section lengths L and 2L are so noisy that they 

become indistinguishable from each other.  

2.5.3.1: Technical Review: Segmented Contact Method 

For the gain measurement via the segmented contact method, a 10mm long multi-section 

Innolume device was used. Individual section lengths were fabricated as 250 or 500µm in 
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length. The device was fabricated into a 3µm wide ridge with electrically isolated contacts 

5µm apart. The device operated via a single lateral mode. The schematic of the device is 

shown in Figure 2.8. For the analysis, each section length was selected to be 500µm. 

 

 

 

 

 

The gain measurement for this technique is based upon the selection of the device with two 

front sections for the same turn on and voltage-current (differential resistance) characteristics. 

An identical voltage-current characteristic is assumed to result in identical optical power- 

current characteristics. The voltage-current characteristics for individual sections are shown in 

Figures 2.9 (a). As these are essentially identical (differential resistance ~ 4Ω), it is assumed 

that amplified spontaneous emission from both sections is the same. The optical power-

current density (L-J) characteristics for 1st section and 2nd section are shown in Figure 2.9(b) 

which shows the reduction in power for the 2
nd

 section is due to absorption in the 1
st
 section. 

A constant attenuation (same ratio of optical powers i.e. P1/P2 ~ 2 at each current density) is 

observed which suggests that the individual sections have the same response at each current 

density, given a constant attenuation in the front section. 

 

  

 

 

Figure 2.8(1.3): The schematic of the multisection device. 
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2.5.3.2: Apparatus 

The experimental set up for the segmented contact measurement is shown in the Figure 2.10.  

Spatial fibre alignment is necessary to avoid any reflections due to the air and glass (fiber) 

interface modulating the amplified spontaneous emission.  

 

 

 

 

 

 

In order to ensure the maximum coupling efficiency and to avoid the use of piezo-electric 

actuators, a multimode fibre is used. 

 

 

Figure 2.10: Experimental set up for segmented contact measurement method. 
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Figure 2.9: (a) Voltage - current characteristics, (b) Optical power - current density characteristics of 1
st
 

and the 2
nd

 section (each section length: 500µm) of a multi section Innolume device.  
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2.5.3.3: Experimental Issues: Trade-offs with Resolution 

The optical spectrum analyser plays the main role in retrieving the electroluminescence 

spectrum from the device under test to perform various analyses to understand the behavior 

of the laser material. Therefore, the accuracy of the measurement depends upon precise 

adjustment of its parameters for the acquisition of the electroluminescence spectra.  

In the case of the segmented contact method a comparatively low spectral resolution is 

required. Typically, spectral features in the gain spectrum require a ~ 5 to 10 nm resolution. 

Long device section lengths may be used and the coupling efficiency is generally high due to 

the use of a multimode fibre.  

2.5.3.4: Experimental Issues: Fidelity of Gain Spectrum for Low Signals  

To explore the minimum power limits of this measurement method, the distance between the 

device (Innolume multi section: section 2.5.3.1) and the fibre is increased, reducing the 

coupling efficiency and so the collected signal. The net modal gain is evaluated for each of 

the corresponding spectra to explore how the failure of the measurement manifests itself. 

Figure 2.11 plots the calculated net modal gain as a function of wavelength by moving the 

fibre back along the axis of the device until the optical signal becomes close enough to the 

noise floor to render the gain measurement erroneous. It is observed that the spectral shape 

does not change significantly, but that the noise level increases in the calculated gain 

spectrum as the collected signal power reduces. It can be observed (e.g. Pink trace in Figure 

2.11) that the noise is lower in the spectral regions of high intensity, such as at the peak gain. 
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The amplified spontaneous emission spectra from sections L and 2L are plotted as a function 

of wavelength for a current density of 1.1kA/cm
2
 in the Figure 2.12. In this case the regions 

where gain cannot be measured can be identified as being <1225nm and >1400nm as 

electroluminescence spectra either approach the noise floor or become indistinguishable from 

each other.  
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Figure 2.12: Electroluminescence spectra as a function of wavelength for same value of current 

density from sections L and 2L (Innolume multi section: section 2.5.3.1). The noise floor (green) of 

the measurement system is also shown. 
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Figure 2.11: Net modal gain spectra as function of wavelength for a range of coupled power 

corresponding to change in distance between fibre and the device (Innolume multi section: 2.5.3.1). 
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2.5.4: Integrated Mode Filter Technique 

This method by Xin et al. [2.10], [2.15] was introduced to overcome the need for an external 

spatial mode filter to eliminate unguided spontaneous emission in the segmented contact 

method. It was suggested that the front section of a multi-section device could be used as a 

spatial mode filter (biasing at 0V). 

2.5.4.1: Technical Review 

The device geometry used for the integrated mode filter method is schematically as shown in 

Figure 2.13. This measurement uses the front three section of a multi-section device. For the 

analysis purpose, a bi-layer multi section device was used which will be discussed in detail in 

the forthcoming chapters (chapter 4, section: 4.3, chapter 5, section 5.8). In this case each 

section length is 1mm and electrical contacts are 5µm apart. The first section of length L is 

driven with a current density JA, then the other the two sections are pumped with the same 

current density J, which is varied. It is noted that JA and hence IA may be zero, and in previous 

work [2.15] JA has not been sufficient to give gain in the front section.                                                
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Figure 2.13: Device geometry used for integrated mode filter method using multi section bi-layer 

device. 
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The corresponding amplified spontaneous emission I A, IL+ I A and I2L+ I A are then recorded as 

shown in Figure 2.14, by the optical spectrum analyser and with the same experimental set up 

as used for the segmented contact method..The intensity from the mode filter section is then 

subtracted from the other intensities. 

 

 

 

 

 

 

 

 

 

 

Then the net modal gain for the device under test is given by eq.2.7 [2.9]. 
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Here IA, IL+ IA and I2L+IA are amplified spontaneous emissions from amplifier section (length 

L), the section lengths L, and 2L and amplifier section respectively. 

Here, the waveguide of the first section is used as a mode filter, eliminating unguided 

amplified spontaneous emission generated in sections 2 and 3. Therefore this method has the 

advantage of simplifying the experimental setup in terms of optics, compared to the standard 

segmented contact technique.   
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Figure 2.14: Amplified spontaneous emission spectra as a function of wavelength by driving mode 

filter section, L & 2L with same current density for multisection bi-layer device with each section 

length: 1mm. 
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2.6: Self Heating Issues 

At high current densities it is a usual observation that the net modal gain spectrum obtained 

under continuous wave conditions exhibits a red shift caused mainly by device self heating 

(Joule heating). In the case of variable stripe length methods it is not possible to easily avoid 

or mitigate these effects.  

2.7: Comparison of Gain Measurement Methods 

I now compare the key features of the gain measurement techniques discussed earlier in this 

chapter. In the case of the Hakki and Paoli method, narrow ridge single mode devices of short 

length are required. The presence of additional lateral modes would result in erroneous gain 

measurements. The first requirement of data acquisition is high resolution spectroscopy to 

resolve the electroluminescence spectrum which leads to a reduced signal to noise ratio of the 

optical signal. An anti reflection (AR) coated single-mode lensed fibre is used to couple the 

optical signal from the device to the optical spectrum analyser. Its diameter is usually 

comparable with the ridge width of the device. Therefore a complex experimental set up with 

piezoelectric stages is required through which the fibre continuously spatially self aligns to 

the device under test to dynamically couple the maximum power. All these data acquisition 

requirements lead to long measurement times, complex experimental set up requirements, 

and a low S/N ratio of the gain spectra. 

However, the ability to maintain a constant junction temperature for the Hakki and Paoli 

method is explained in chapter 3. The advantage is two fold. Firstly, the device does not need 

to be operated in pulsed mode. This would require a complex setup for impedance matching 

and requires time gated signal detection, resulting in long data acquisition times. Secondly, 

the constant junction temperature gain measurements by the Hakki and Paoli method can be 
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used in the characterization of a device where self heating effects are removed. In this case 

free carrier effects alone can be analyzed in detail. Therefore, the Hakki and Paoli method 

can used to compare the behaviour and physics of laser material at both constant heat sink 

and constant junction temperature conditions, allowing a comparison of free carrier and 

thermal effects. 

For the case of the segmented contact/integrated mode filter methods the devices can be 

narrow ridge or broad area i.e. these methods are applicable to single mode as well as 

multimode devices. To avoid higher order modes a spatial mode filter or the device‟s own 

waveguide can be used as a filter. A multimode fibre is used to channel the optical signal 

from the device to the optical spectrum analyser. Therefore, the coupling efficiency is high 

and dynamic adjustment of the coupling is not a requirement. The electroluminescence 

spectrum does not require high resolution spectroscopy. The optical signal measurement 

requirements are less stringent due to a reduced complexity of the measurement setup, lower 

resolution, and lower sensitivity requirements. These factors lead to reduced data acquisition 

times and higher S/N ratio, compared to the Hakki and Paoli method. Due to a high signal to 

noise ratio lower current densities can be readily accessed. However, self heating is a critical 

issue for variable stripe length techniques under continuous wave measurement conditions 

which cannot be easily avoided.  

Based on this analysis, the segmented contact techniques lend themselves to low current 

density measurements, whilst the Hakki and Paoli technique is better suited to high current 

densities. The Hakki and Paoli technique may therefore allow a comparative study of thermal 

effects and free carrier effects. 
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2.8: Summary 

In this chapter firstly a review of high resolution spectroscopy and variable stripe length gain 

measurement techniques was presented. Then the theory, device requirements, resolution 

fidelity, experimental apparatus and low optical power limitations of the Hakki and Paoli and 

segmented contact were explored. A method to maintain a constant junction temperature for 

the Hakki and Paoli method was mentioned (see chapter 3). An improvement to the 

segmented contact method: the integrated mode filter method was discussed. Self heating 

issues related to variable stripe length methods were mentioned.  The suitability of the said 

techniques for high current density measurement (with/ without constant junction 

temperature) and low current density analysis was presented.  
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Chapter3 
Free Carrier Effects in 1.3µm Quantum Dot 

Lasers 

3.1: Introduction  

The measurement and prediction of the evolution of the gain spectrum with temperature and 

current density is key to describing the operation of a semiconductor laser. The free carrier 

theory assumes that the inter carrier interactions are more dominant than the carrier field 

interactions which allow them to settle into their respective bands according to respective 

quasi-fermi levels. The many body effects however, are due to the interaction between the 

carriers which result in coulomb enhancement (increased inter band transitions) and band gap 

renormalization. As a consequence of the coulomb enhancement the peak gain increases, blue 

shifts and reshaping the gain spectra is observed. The band gap renormalisation occurs due to 

the screening effects at high current densities which causes the inter carrier distance to get 

reduced and increased collision between them results in reduction of carrier life time. Due to 

that the band edge experiences a red shift and reshaping of gain spectra takes place. Band-gap 

renormalization, broadening due to intra-band scattering, and Coulomb enhancement of the 

optical transition brought about at high carrier densities make many body effects [3.1], an 

important factor in laser engineering. Of late, quantum dot (QD) lasers have been 

commercialized, due in part to the prediction [3.2], and demonstration of temperature 

insensitive operation at 1300 nm [3.3- 3.4]. However, there are few reports on many body 

effects in such devices.  

Modelling of an ensemble of quantum dots at room temperature using screened Hartree-Fock 

theory to describe Coulomb interactions between carriers localized in quantum dots and the 

wetting layer predicted up to 20 meV red shifts of the quantum dot gain peak with ~15 e-h 
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pairs per quantum dot [3.5]. Modelling of the low temperature photoluminescence (PL) 

spectra of single quantum dots predicts similar band-gap renormalization shifts and 

highlighted the possibility for significant broadening of the optical transitions at high 

quantum dot occupancy due to intra-band Auger scattering [3.6]. Low temperature PL of a 

quantum dot ensemble as a function of excitation intensity showed a broadening of the 

optical transitions and band-gap renormalization induced shifts of the quantum dot ground-

state [3.7]. In addition, a reduction in luminescence efficiency with significant excited state 

population was noted by the same group [3.7]. Photoluminescence of single quantum dots as 

a function of excitation density at room temperature has shown that the onset of both 

broadening and band-gap renormalization occur simultaneously [3.8]. Intra-quantum dot 

Auger scattering via Coulomb scattering was highlighted as the probable source of the 

broadening. Dephasing has been recognized as an important factor in the description of gain 

and lasing spectra of quantum dot lasers [3.9]. Of particular interest is the recent prediction of 

negative differential gain in quantum dot lasers at excitation levels beyond ground-state gain 

saturation [3.10]. This is expected due to gain saturation, yet a non-saturable increase in 

dephasing due to increased carrier density in higher lying states (excited states of quantum 

dots and 2D states). Most recently, many body effects on the gain spectrum were studied 

experimentally up to dot occupancy levels of ~2 e-h pairs per quantum dot and a red-shift of 

the peak gain from its modelled position of up to 8 meV was observed [3.11]. Significantly 

this report studied the quantum dot ensemble below ground-state gain saturation. 

3.2: Outline 

 In this chapter the Hakki and Paoli method [3.12] is used to perform high current density 

analysis of the gain spectrum of 1300nm quantum dot laser material under continuous wave 

conditions. The device is characterised with and without self-heating effects. The elimination 

of self-heating effects is achieved by using a longitudinal mode as a junction temperature 
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monitor to keep the junction temperature constant. This allows an unambiguous study of the 

continuous wave gain spectrum at average dot occupancy levels up to ~8 e-h pairs per 

quantum dot. A negative differential gain is observed in both cases. This is shown to be 

predominantly due to the free carrier effects. As a result, free-carrier related negative 

differential gain is observed for the first time [3.13].  

3.3: Device Epitaxy & Fabrication 

The quantum dot laser structure studied [3.14] was grown by Innolume GmbH by molecular 

beam epitaxy (chapter 1: section 1.6). The epitaxial and device structures are shown in 

Figures 3.1 and 3.2 respectively. Initially a 1.5 μm Al0.35Ga0.65As n-cladding was grown, on 

top of which 10 repeats of 33nm GaAs, InAs quantum dots and 5 nm. In0.15Ga0.85As strain 

reducing layer were grown on each quantum dot layer. A 1.5 μm Al0.35Ga0.65As p-cladding 

was then grown and finished by a 200 nm heavily doped p+ GaAs contact layer. The wafer 

was processed into 3 μm wide deep etched (2.2µm) ridge lasers (By Dr. B. J. Stevens) to 

achieve strong electrical and optical confinement and to eliminate high order lateral modes. 

The laser ridge had 250μm long contacts which were electrically isolated by a 5µm wide gap 

in the metal contact, and n
+ 

GaAs contact-layer etch. Bars of 450 um and 300 um cavity 

length were cleaved and mounted on aluminium oxide tiles, subsequently mounted on copper 

heat-sinks for testing.  

 

 

 

 

 

 

 



 
 

49 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3µm

300µm

2.2µm

 

 

Figure 3.2: Schematic of laser device structure. 
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Figure 3.1: Schematic of the device. 
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3.4: Apparatus 

The experimental set up used for Hakki and Paoli method is already described in detail in 

Chapter 2(section: 2.4.1). In order to resolve the individual Fabry- Pérot modes an optical 

spectrum analyser (Advantest 8384) with spectral resolution of 10 pm was used. The heat- 

sink temperature was regulated and monitored via a thermoelectric cooler and thermistor. The 

analysis was performed under continuous wave operation. Initially the device was 

characterised at a constant heat-sink temperature (17
o
C) and then at a fixed-junction 

temperature (30
o
C) by using the shift of individual Fabry-Pérot mode as a measure of the 

change in temperature due to the Joule (I
2
R) heating which was subsequently compensated 

for by adjusting the heat-sink temperature.   

3.5: Device Characteristics 

Light-current density (L-J) characteristics of the 300µmx3µm and 450µmx3µm devices are 

shown in Figure 3.3(a) and (b) respectively. For the 450µmx3µm device lasing characteristics 

are observed at ~ 2Acm
-2

 (with external differential efficiency of 20%). The lasing is 

observed from the excited state of the quantum dot ensemble at around 1190nm.  However, 

the 300µmx3µm laser device exhibits non lasing characteristics. This is further confirmed by 

their electroluminescence spectrum at 5kAcm
-2

 as shown in the Figure 3.4 (a), (b). The offset 

in electroluminescence spectra for both devices at ~ 1250nm is a stitching error. This 

produces a single erroneous data point in the calculation of gain which is removed. A peak in 

the electroluminescence spectrum of the 450µmx3µm is quite obvious around 1250µm. It is 

attributed to reflection of the light inside the optical spectrum analyser after lasing 

introducing „ghost‟ images in the electroluminescence spectrum. Due to this the gain 

measurement were not performed after lasing.  
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The inset to Figure 3.4 confirms the single mode behaviour of the laser devices. Here, I have 

used the spectral peaks in the region of the quantum dot ground state to predict the Fabry- 

Pérot mode positions at ~1160nm. These predicted Fabry- Pérot mode positions are plotted as 

dots in the inset spectra. These are in excellent agreement with measurement. The non-lasing 

characteristics (due to the short cavity length) of the 300µmx3µm device allowed it to be 

used for high current/carrier density analysis whilst 450µmx3µm device could be used only 

up to 2kAcm
-2

. This allows the quantum dot ground state to be studied under strong gain 

saturation conditions 
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Figure 3.3: (a) Light- Current density characteristics (a) 300µm x 3µm (b) 450µm x 3µm laser 

devices. 
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Figure 3.4: (a) The electroluminescence spectrum as a function of wavelength for (a) 300µm x 

3µm (b) 450µm x 3µm laser devices at 5kAcm
-2

. 
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3.6: Establishing a Constant-Junction Temperature  

Figure 3.5 shows the wavelength of an individual Fabry- Pérot mode as a function of current 

density in the region of the peak in ground state gain at a constant heat-sink temperature of 

30
o
C.  The devices were as-cleaved with cavities of length 450µm and 300µm. For the device 

with 300 µm cavity length, laser oscillation was not observed over these current densities, 

and a quadratic shift of Fabry-Pérot modes is observed with increasing current density. For 

the 450 µm cavity length lasing occurred at ~2 kAcm
-2

 and the Fabry-Pérot peak position of 

the mode is plotted as a function of current density above lasing threshold.  

 

 

 

 

 

 

 

 

 

 

 

 

The essentially identical shifts for both lasing and non-lasing cases (where carrier densities 

can be expected to be very different) indicate that the shift in lasing wavelength is dominated 

by thermal expansion of the cavity and thermal change in refractive index, rather than a 

change in refractive index due to free carriers. This observation allows the wavelength of an 

individual Fabry-Pérot mode in the case of the 300µm x 3µm device to be used as a measure 
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Figure 3.5: Wavelength of individual Fabry-Pérot mode in the region of the peak in ground state 

gain as a function of carrier density at a constant heat-sink temperature of 30
o
 C for 300µm x 

3µm and 450µm x 3µm laser devices. 
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of junction- temperature. This allows the effects of Joule heating (self–heating) to be 

removed by reducing the heat-sink temperature during the course of continuous wave 

operation, to maintain a constant Fabry-Pérot mode wavelength (hence constant junction 

temperature).  

3.7: Constant Heat-sink Temperature Gain Measurement 

The net modal gain spectra were obtained via the Hakki and Paoli technique at a constant 

heat- sink temperature (17
o
C) in the current density range of  0.5kAcm

-2
 to 5.5kAcm

-2
. This 

allowed the analysis of the spectral evolution of the net modal gain due to the combined 

effects of free carriers and self heating. The results are shown in Figure 3.6. 
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Figure 3.6: Net modal gain spectra for as a function of wavelength for 300µm x 3µm, for a current 

density range of 0.5kAcm
-2

 to 5.5kAcm
-2 

at constant heat-sink temperature of 17
o
C. 
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3.7.1: Analysis and Discussion 

Over these current densities the quantum dot  ground state shows a red shift which continues 

with increasing current density. The peak ground state gain saturates at 2.2kAcm
-2

. The 

measured saturated net modal gain value was ~ 22cm
-1

. Towards higher current densities, in 

addition to this red shift, an asymmetric broadening and decrease in peak net modal gain i.e. 

negative differential gain is observed.  This behaviour is attributable to the combined effects 

of increasing self heating and free carrier effects. 

The excited state peak experiences a blue shift up to 2.2kAcm
-2

 attributed to state filling 

effects.  However from current densities of ~2.2kAcm
-2

 to 4.4kAcm
-2

 the excited-state peak 

wavelength remains almost static.  The double degeneracy of the excited state is suggestive 

of ~ 46cm
-1

 excited state net modal gain [3.14] but the experimental results show a value 

close to 32cm
-1

.  The difference in the predicted and experimental value may be due to self 

heating effects at high current densities at constant heat-sink temperature leading to the 

thermalisation of carriers out of the dot and lost via non radiative recombination.  

The internal loss may be determined from the net modal gain measurement at long 

wavelengths. For a constant heat-sink temperature of 17
o
C at various current densities i.e. 

below, at, and after ground state saturation in this case is measured to be ~ 1.5cm
-1

.  

The reduction in ground state gain at high current densities which leads to negative 

differential gain may be thermally generated. So in order to determine whether the dominant 

effect is Joule heating, the junction temperature is fixed so as to allow the observation of free 

carrier effects on their own.  
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3.8: Maintaining a Constant-Junction Temperature 

The method to fix the junction temperature for the 300µm x 3µm device is detailed in the 

following section. In Figure 3.8 (a) the wavelength of a Fabry-Pérot mode as a function of 

heat- sink temperature from 17.5
o
C to 22

o
C at a constant current density of 1.1kAcm

-2
 is 

plotted. The inset shows a plot of the Fabry-Pérot peak position as a function of heat- sink 

temperature. It is observed that there exists a linear relationship between temperature increase 

and Fabry-Pérot peak wavelength and this shift is attributed to crystal expansion and the 

change in refractive index of the cavity material
 
[3.15] due to thermal effects. The slope of the 

linear fit, 
T


is measured to be 0.1nm/

o
C. 

Figure 3.8 (b) plots the Fabry-Pérot mode wavelength as a function of current density for a 

heat- sink temperature of 17
o
C. A quadratic shift in Fabry-Pérot mode peak position is 

observed indicating that the dominant effect is Joule heating of the device (being proportional 

to I
2
). With this assumption this modal shift is converted to an increase in cavity temperature 

(inset Figure 3.8 (b)).It is then possible to adjust the heat- sink temperature for any increase in 

current through the device to negate the effects of self-heating in the chip, maintaining a 

constant junction temperature.  
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Figure 3.8: (a) A Fabry-Pérot modal shift with temperature. Inset plots Fabry-Pérot peak position 

shift as a function of temperature. (b) Fabry- Pérot modal shift with carrier density at 17
o
C 

constant heat- sink temperature. Inset shows cavity temperature rise as a function of carrier 

density. 
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3.9: Constant-Junction Temperature Gain Measurement 

Figure 3.9(a) shows gain spectra obtained via the Hakki and Paoli technique at a constant- 

junction temperature of 30
o
 C as a function of current density. It is carried out over the same 

current densities and spectral range as was selected for the constant heat-sink condition. 

Figure 3.9(b) plots the same data for the ensemble of quantum dot ground states alone, over 

the spectral range 1250 nm to 1350 nm. Being at a fixed junction temperature, the free carrier 

effects alone can be determined up to an injection level of ~8 e-h pairs per quantum dot.   
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Figure 3.9: (a) Net modal gain spectra as a function of wavelength obtained for 300 μm x 3µm 

laser device at a constant-junction temperature of 30
o
C.  (b) Net modal gain as a function of 

wavelength for the same device in the region of the ensemble of quantum dot ground states.   
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3.9.1: Analysis and Discussion 

For this analysis the junction temperature was maintained at 30
o
C. This particular 

temperature was selected as at ~ 5kAcm
-2

 the self heating effects in Figure 3.9(a) gave a 

junction temperature of 30
o
C. For the ground state in the case of a constant-junction 

temperature, very similar trends are observed as for the constant heat-sink temperature case 

i.e. a continuous red shift, asymmetric broadening and a reduction in net modal gain 

(negative differential gain) after saturation. The net modal gain spectra show approximately 

the same red shift after saturation as before.  A slightly more asymmetric broadening towards 

longer wavelengths is observed in comparison to the constant heat-sink temperature 

condition. The broadening of the ground-state gain peak at high current densities in this case 

is attributed to increasing dephasing effects due to free carriers in the quantum dots causing 

an increase in homogeneous linewidth.  

In Figure 3.9(b) the excited state exhibits a similar blue shift up to 2.2kAcm
-2

 as was the case 

for a constant heat-sink temperature. By contrast to the case for a constant heat-sink 

temperature, the excited state continues to increase in gain up to the highest current density of 

5.5kAcm
-2

.  A higher value of net modal gain (~ 38cm
-1

), closer to that expected, considering 

the increased degeneracy (i.e. 2x ground state Gsat) is observed. All these observations point 

towards self-heating effects playing a strong role in the behaviour of the excited state gain in 

the case of a constant heat-sink temperature. 
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 3.9.2: Internal Loss 

The Figure 3.10 plots the net modal gain in the spectral region 1300 nm to 1360 nm below, at 

and above ground state saturation. At long wavelengths (beyond 1340nm) all traces converge 

on the same internal loss of ~1.5±0.5cm
-1

 as was in the case of constant heat-sink temperature 

condition. Measurements do not show any indication of a significant increase in internal loss 

(i.e. within the 0.5cm
-1 

error) with increase in drive current density in the case of a constant-

junction temperature.  
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Figure 3.10: The net modal gain spectra at various current densities at long wavelengths where the 

internal loss can be deduced. 

αi = 1.5±0.5 cm-1 
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3.10: Comparison Constant Heat-sink and Constant-Junction 

Temperature Conditions 

The peak gain wavelength as a function of current density for the quantum dot ground state 

and excited state is shown in Figure 3.11(a) at constant heat-sink (RT = 17°C) and constant 

junction temperature (30°C).  The peak gain is similarly plotted in Figure 3.11(b).  As has 

been noted, self heating at ~ 4.5kAcm
-2 

results in the same junction temperature in the two 

cases.  As expected, the peak wavelength and gain values are very similar at this point.   

For the QD ground-state, the peak gain is essentially identical for the two cases, indicating 

that the origin of the observed negative differential gain is free-carrier related, rather than 

being related to self-heating effects.  Interestingly, a difference in peak gain between the two 

temperature regimes is observed for the excited state.  Here, higher values of excited state 

gain are observed.  This is consistent with an increased carrier lifetime at higher 

temperatures, due to a reduction in Auger recombination [3.16].  The differences in peak 

wavelength at low J (~8nm) are in line with a difference in temperature of ~13°C.   
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3.11: Empirical Fitting 

A full model of to account for the free carrier effects in QD gain is outside the scope of my 

PhD.  However, an empirical model can be built up using various elements of the literature.  

Figure 3.11: (a) Peak wavelength for ground state and excited state at constant heat- sink (17
o
) and 

constant-junction temperature (30
o
).  (b) Peak net modal gain for ground state and excited state at 

constant heat- sink (17
o
) and constant-junction temperature (30

o
),  
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Key elements in our model are the shift of band-gap energy with increasing carrier occupancy 

[3.6, 3.5] with in the dot and we did not take into account the shift due to the carriers 

dynamics in the wetting layer (2-D states) , QD emission broadening with increasing carrier 

occupancy [3.8], and the Poisson distribution of carriers in the QDs [3.17].   

Figure 3.12 plots two reports in the literature which highlight the predicted band-gap shift 

with increasing QD carrier occupancy.  Both reports use different calculation techniques and 

are focussed on slightly different experiments and temperatures.  However, a reduction of 

emission energy of ~1meV per e-h pair is predicted in both cases.   

 

 

 

 

 

 

 

 

Figure 3.12 Plots of band-gap reduction for QDs from theoretical calculations in the literature.  (a) 

Single QD PL at low temperature [3.6], (b) room temperature gain [3.5].   

 

Figure 3.13 plots data from a paper by Matsuda et al. [3.8] where single QD micro PL was 

studied as a function of excitation density at room temperature.  They observed  a 

homogeneous linewidth of the QDs of 7-10 meV, which broadened as carrier occupancy was 

increased.  Analysis of their results suggests shifts of ~1meV per carrier (in agreement with 

theory), and broadening of ~2meV per carrier.   

 

 

(a) (b) 



 
 

64 
 

 

 

 

 

 

 

 

 

Figure 3.13: (a) Energy shift as function of excitation density for the three electronic transitions, (b) 

homogeneous line width of the dots of three different sizes(10-40nm) as a function of excitation 

density [3.8]. 

 

The random population of QDs plays a significant role in the evolution of QD gain and 

spontaneous, and the presence or absence of this at room temperature is currently being 

discussed in the literature.  My results are suggestive of a random population with free carrier 

effects playing a strong role in modifying the gain spectrum (this chapter and chapter 4).  

Figure 3.14 plots the probability of a given QD occupancy, given a particular average dot 

occupancy.  If we now consider a ~1meV/e-h pair shift in emission, and ~2 meV/e-h pair 

broadening as higher occupancies are obtained, we can begin to see the origin of the negative 

differential gain.   
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Figure 3.14: Poisson carrier distribution as a function of mean dot occupancy 

Figure 3.15 plots the gain spectra obtained by applying all these elements.  Here a Gaussian 

gain profile is assumed for both ground-state and excited state.  To this, a Lorentzian 

broadening and shift are applied, in line with the work of Matsuda et al.  A Poisson carrier 

distribution is assumed, which determines the gain spectrum.  A reasonable qualitative fit to 

our experiment is obtained, with the blueshift of gain at low current density, broadening, shift 

and reduction in peak gain of the excited state at high current density. The broadening of 

spontaneous emission and gain due to the time-averaging of QD occupancies is termed 

Poisson broadening). 

 

 

 

 

 

 

 

Figure 3.15: Gain spectra calculated using an empirical model as described in the text 

(Courtesy RA Hogg).   
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3.12:  Summary 

This chapter detailed the analysis of net modal gain spectra of quantum dot laser materials at 

high carrier densities. The analysis was performed at constant heat-sink temperature and 

constant-junction temperature obtained by using a Fabry-Pérot mode as a temperature gauge. 

Then, self-heating effects were entirely removed to allow the observation of many-body 

effects alone. At excitation levels up to 8 e-h pairs per quantum dot a reduction in peak 

ground-state gain was observed.  We find that the negative differential gain we observed for 

the ensemble of quantum dot ground-states was mainly due to free carrier effects, where 

increasing dephasing effects, combined with saturated gain result in spectral broadening and a 

reduction in the peak gain.  However at higher current densities the excited state gain was 

significantly lower in the case of a constant heat-sink temperature. This suggested that self-

heating effects were more significant than free carrier effects in the case of excited state.  

Finally, the origin of the negative differential gain is briefly discussed in terms of an empirical 

model. 

3.13: Future Work 

To the best of my knowledge, a negative differential gain has not been observed in any other 

semiconductor laser. An initial step is in a more thorough and systematic fitting of theoretical 

models.  

This observation opens up new considerations which must be made in how the ground-state 

lasing is quenched in dual state lasing [3.18], the operation of SLDs [3.19] and amplifiers 

[3.20].  In the case of dual-state lasers, the prospect that gain reduces from the saturated gain 

value has not been made.  Experiments which combine the observation of dual state lasing 

and careful measurements of gain may assist in understanding here.  Furthermore, as free 

carrier effects are fast, new modulation schemes can be imagined [3.21].  The shift of gain to 

longer wavelength also opens new prospects for low current density lasing in highly 
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homogeneous QD laser materials.  Here, one can imagine that due to the Poisson distribution 

high dot occupancy QDs will exist even at low current densities.  If the free carrier shift is 

sufficiently large compared to the inhomogeneous linewidth, this gain may appear where 

there is no absorption due to unpopulated QDs.  Further work in this area requires significant 

advances in QD epitaxy.   

The magnitude of the differential gain (and the sign) is of importance in determining the 

modulation properties and line-width enhancement factor of a laser.  A negative differential 

gain therefore gives the prospect of a negatively chirped laser.  It is possible to imagine a 

DFB laser operating in the negative differential gain region with tuneable negative chirp.  

GaAs based DFBs are now emerging, and such devices may be realised.  The need for these 

in optical communications systems is not yet evident though.   
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Chapter 4 

Integrated Amplifier Method for the 

Measurement of Spectral Gain of 1.3µm 

Quantum Dot Laser Material 

4.1: Introduction 

The accurate determination of gain of a material is a key requirement to obtain an 

understanding of lasers and amplifiers. The peak gain as a function of current density and 

temperature is used to determine static performance such as the threshold of the laser devices. 

The rate at which the peak gain evolves with current and temperature is used to determine its 

various dynamic and non-linear performances; the modulation characteristics of the laser, etc. 

The form of the gain spectrum allows the determination of the line width enhancement factor 

and is influenced by the carrier distribution, and configuration of higher energy states. 

Understanding how the peak in gain evolves is best understood by observing the gain 

spectrum. Quantum dot lasers exhibit a broad band emission, low threshold current density 

and lower transparency current density accompanied by a lower net modal gain as compared 

with their quantum well counterparts. At these low current densities the spontaneous 

emission power is also low. Furthermore, the broad spectral bandwidth of some quantum dot 

devices makes the measurement of the spontaneous emission and amplified spontaneous 

emission signal, required to one degree or another for all spectral techniques, a challenging 

task. Therefore, techniques which can be used at low current densities to measure the net 

modal gain correctly with a wide spectral range are vital to characterise quantum dot devices 

and hence be used to improve their performance.  

Laser engineering and design optimization often requires the exact determination of 

transparency current density, transparency point, internal loss and evolution of states due to 
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free carrier effects. The determination of the change in transparency energy and carrier 

distributions among dots as a function of increase in excitation levels is vital to understand 

the physics of dots and material behavior. All these require the access of wider spectral 

ranges and the lowest possible current densities. 

4.2: Outline 

A conventional technique for spectral gain measurement at room temperature is the 

segmented contact method [4.1] where different lengths of a waveguide are driven to 

determine the single pass gain.  This is the electrically driven equivalent of the variable 

optical stripe excitation method [4.2].  By this method, unguided spontaneous emission is 

eliminated through the use of external spatial mode filters.  A modification of this method 

was demonstrated by Xin et al. where the device‟s own waveguide was used as a mode filter 

[4.3] eradicating the requirement of an external filter. However, one drawback of this 

technique is the signal attenuation in the unpumped mode filter section. This is discussed 

later in this chapter.  

Another method, the integrated amplifier method, a modification proposed by Xin et al. [4.4] 

as an enhancement to their integrated mode filter method [4.3] is demonstrated for the first 

time, and analysed in detail in this chapter. It is shown that the waveguide material may act as 

a combined integrated amplifier and mode filter. By driving the amplifier section, it is 

possible to achieve 3-dB signal amplification. As a result, the gain spectrum may be deduced 

over a broader spectral range. The measurement of the gain/absorption spectrum is obtained 

under identical data acquisition conditions as for the integrated mode filter and segmented 

contact methods. Further, it is shown that the integrated amplifier method enables gain 

measurements at lower current densities, as compared to the standard technique [4.1], [4.3]. 
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The relative advantages and disadvantages of conventional techniques [4.1], [4.3] and the 

integrated amplifier method are discussed in detail. 

4.3: Device Epitaxy & Fabrication  

A bi-layer InAs/GaAs quantum dot laser device was used for the gain comparison grown by 

Dr. E. Clark. The schematic is shown in Figure 4.1. The structure comprises five pairs of 

closely-stacked quantum dot layers. The small separation (10 nm GaAs) between the paired 

layers results in preferential nucleation of quantum dots in the second layer above quantum 

dots in the first (seed) layer, so that the seed layer acts as a template for quantum dot growth 

in the second layer, fixing the quantum dot density [4.5]. This allows suitable growth 

conditions for the second quantum dot layer to be chosen to achieve emission wavelengths at 

room temperature from the quantum dot ground state beyond 1300 nm while maintaining a 

reasonable QD density i.e. ~2.7x10
10

 cm
-2

. The device epitaxial details are described 

elsewhere [4.6]. 
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Figure 4.1: Schematic of InAs/GaAs bi-layer device. 
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The small separation between the paired layers allows efficient electronic coupling between 

the layers so that emission occurs from the second, long-wavelength quantum dot layer [4.6]. 

The TEM image of the bi-layer sample is shown in Figure 4.2[4.7]. 

 

 

, Integraty 

 

 

 

The wafer was fabricated into 10mm long devices with 1mm isolated contacts and 300nm, 

the etch depth as shown in Figure 4.3 by Dr. K. Kennedy and Dr. Kristian Groom. This etch 

depth ensured the individual segments were electrically isolated, however an optical wave 

guiding was successfully achieved. The waveguides were 7 microns wide. A v-etched 

absorber was fabricated and cleaved to avoid reflections to allow the single pass 

measurement. 

 

 

 

 

 

 

 

Figure 4.2: TEM of 5 bi-layer sample showing the coupled seed layer and emission layer for each 

composite layer known as bi-layer [4.7].(courtesy: Richard Beoland, Integrity Scientific),  

Isolation etch

( 300 nm deep)
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this end

1 mm1 mm
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V- etched

this end

~ 10 mm

Second 

Section

First 

Section  

Figure 4.3: Bi-layer device fabrication details. 
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4.4: Device Characteristics 

For the integrated amplifier method the front two sections of the multi-section device are used 

to act both as mode filter and amplifier and the 3
rd

 and 4
th

 sections are electrically driven in 

the same way as for the segmented contact method.  Therefore the front four sections of the 

device under test are required to be identical. The optical power vs. current characteristics 

cannot be measured for each section for direct comparison without cleaving up the device. As 

a consequence, I assume that identical voltage vs. current characteristics will correspond to 

identical optical power vs. current characteristics. The device geometries to obtain voltage vs. 

current and optical power vs. current characteristics from the front four individual sections of 

bi-layer multi-section device are shown in Figure 4.4.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Device geometries to obtain voltage vs. current and optical power vs. current of multi-

section bi-layer device. 
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The voltage vs. current characteristics of the first four individual sections is shown in Figure 

4.5(a). It can be observed that 1mm section lengths of the multi-section device showed 

essentially identical differential resistance (~ 4 Ohms) and turn on voltage confirming that all 

the four sections were electrically identical. The optical power vs. current (L-I) characteristics 

of the individual sections are shown in Figure 4.5(b).  
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Figure 4.5: (a) Voltage-current characteristics of first four sections of bi-layer device under test. 

(b) Optical power-current characteristics of the same four sections individually. 
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A constant attenuation (a constant ratio between the optical power of the corresponding 

sections) is observed suggesting the individual sections have similar L-I responses. The 

attenuation ratios are in good agreement with expectation. As absorption is proportional to    

e
-αL

 then the ratio should be ~3 (e). The higher values of the ratios of the light from the other 

three sections i.e. 2/3 instead of 1/3 are attributable to the unguided spontaneous emission 

being added due to the front section. 

4.5: Device Geometries 

Different multi-section device current injection schemes usually employed for the three 

different gain measurement methods i.e. segmented contact method, integrated mode filter 

method, and integrated amplifier method are schematically shown in Figure 4.6.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Schematic of the different device drive geometries employed. 

 

(a) 

(b) 

(c) 



 
 

77 
 

Using the segmented contact method (Geometry a, Figure 4.6(a)) without the use of an 

external mode filter the length of the electrically driven device was varied in order to allow 

the measurement of gain and absorption at each wavelength.   

In this case the amplified spontaneous emission spectra are measured for the bi-layer sample 

at 17
o
C with driven section lengths of L and 2L at a given current density as shown in Figure 

4.7. The comparison of the spectra at each wavelength indicates the presence of gain (or loss) 

at that particular wavelength which can be calculated [4.1] using eq. 4.1(eq.2.5): 

                   1.41ln
1 2
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The integration of a mode filter may be achieved through the introduction of un-pumped 

sections of the waveguide at the output of the device (Figure 4.6(b)).  The electrically driven 

sections are operated in exactly the same manner as in the segmented contact method 

(Geometry a). This method has the advantage of simplifying the experimental setup in terms 
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Figure 4.7: Amplified spontaneous emissions from section lengths L and 2L by geometry (A), for 

a 10mm long (each section length: 1mm) bi-layer device at 17
o
C. 
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of optics and improvement in gain measurement as mentioned by Xin et.al [4.3]. However, it 

is identified that as the front section is typically in loss, the signal is significantly attenuated.  

The net modal gain in this case can be determined by the same relationship as given by 

eq.4.1. 

An integrated amplifier and mode filter is obtained by driving the front sections of the device 

into gain over the spectral region of interest by pumping it with an optimum current density. 

The device geometry for the integrated amplifier method is as shown schematically by 

Geometry „c‟ in Figure 4.6, where the front sections act as a combined amplifier and mode 

filter.  In order to deduce the gain spectrum through the integrated mode filter method, 

initially the emission spectrum from only the amplifier/mode filter is measured, i.e. with the 

front two sections driven at a current density of JA in our case.  This intensity, IA, is 

subtracted from the intensities IL (driving a single contact at a given current density) and I2L 

(driving two contacts at the same current density as is for IL). The amplified spontaneous 

emissions obtained are shown in Figure 4.8. The net modal gain in this case can be deduced 

using [4.4] the eq. 4.2 (eq.2.7): 
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4.6: Apparatus 

The measurement system is shown schematically in Figure 4.9. It is important to note that for 

a fair comparison of the different methods an external mode filter was not employed for any 

of the methods. This is a key requirement for the segmented contact method, however, this 

ensured that the light collection efficiency was constant for all the three cases. All other 

acquisition parameters (resolution, sensitivity and integration times) were kept constant. The 

experimental apparatus is quite simple (compared to the apparatus for Hakki and Paoli 

described in the previous chapter). The continuous wave output, from the chip is fed directly 

into an optical spectrum analyser via a multimode mode fibre. Finally, the data acquisition is 

performed via computer. 
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Figure 4.8(2.14): Amplified spontaneous emissions from amplifier section (IA) and sections of 

lengths L and 2L (IL and I2L) for geometry C. 
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4.7: Results and Discussion  

4.7.1: Gain Measurement 

Generally with these methods, the gain spectrum can only be determined for wavelengths at 

which spontaneous emission occurs and the optical signal intensity is above the noise floor. 

Figure 4.10(a) plots the spontaneous emission spectrum at 14Acm
-2 

at which the material is 

operating in loss for the whole spectral region.  So, depending upon the details of spectral 

acquisition and the magnitude of the absorption, the spectral region over which the gain can 

be deduced will be significantly smaller than the region of spontaneous emission. Therefore, 

the gain spectrum may not be obtained over shorter wavelengths than say < ~ 1275nm where 

spontaneous emission is weak and signals are lost in the noise floor. Figure 4.10(b) plots the 

gain spectrum determined using, the segmented contact method of Figure 4.6(a) at a current 

density of 1.42kAcm
-2

,
 
where positive net modal gain is obtained in the spectral region 1150 - 

1300nm. The amplifier section may therefore be expected to increase the spectral range over 

which the gain/loss can be deduced.  

 

 

Figure 4.9. Experimental setup for the three gain measurement schemes. 
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Figure 4.10: (a) Spontaneous emission spectrum at 14Acm
-2

 by pumping a section of length L.      

(b) Net modal gain spectrum at 1.42kAcm
-2

 obtained from the amplifier section as a function of 

wavelength measured by the segmented contact method.  
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4.7.2: Results and Discussion 

 Comparison of the gain spectra deduced using the three measurement schemes is shown in 

Figure 4.11 at a current density of 350 Acm
-2

 with an amplifier current density (JA) of 350 

Acm
-2

.  

Towards longer wavelengths all three techniques show essentially identical results in terms of 

the spectral shape and magnitude of the peak gain for the ground state.  At shorter 

wavelengths the methods utilizing the integrated mode filter (Geometry (b)) and integrated 

amplifier (Geometry (c)) are coincident. For shorter wavelengths the gain spectrum may not 

be obtained with these data acquisition parameters utilizing the integrated mode filter method 

(Geometry (b)), due to attenuation of the emission (mode filter operated in loss) and the 

signal being indistinguishable from the noise floor. 

For the two techniques (Geometry (b)) and Geometry (c)) that utilize a mode filter a slightly 

different gain spectrum is obtained in comparison with the segmented contact method 

(Geometry (a)) towards shorter wavelengths. The difference suggests either the presence of 

unguided spontaneous emission in configuration „a‟ or spatial inhomogeneity of the sample. 

However, similar measurements for different materials where the length of the contact was 

varied showed similar results, suggesting that this difference is due to the absence of external 

mode filtering in Geometry (a).  Furthermore, the observation of a change in the excited state 

gain but not in ground state gain between the different spectra in Figure 4.11 is unlikely to be 

due to spatial inhomogeneity of the QDs. However, a spatial variation in carrier life time 

could produce such an effect. 
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Figure 4.12  plots the gain spectra as a function of current density for (a) segmented contact 

(Geometry (a)) and (b) integrated amplifier (Geometry (c)) with an amplifier current density 

of JA=1.42kAcm
-2

.  For these plots, the data is manually inspected and only where the signal 

can be distinguished from the noise floor is it plotted.  Wider ranges of the gain spectrum are 

measured using the integrated amplifier method (Geometry (c)) with identical data 

acquisition conditions.  These differences become smaller as the current density in the 

sections being measured is increased, where the sections under test are no longer in loss but 

are in gain. For low current densities however, the difference is clearer; in terms of enhanced 

spectral range and with some current densities only being accessed through the use of the 

integrated amplifier. The gain spectra are noisier in the case of the integrated amplifier 

method as it is expected that the signal experiences both attenuation and amplification while 

passing through the amplifier section of the waveguide. This is clearer towards the shorter 

wavelengths and at lower current densities where the waveguide material operates in loss. 
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Figure 4.11: Net modal gain spectra as a function of wavelength for J=350Acm
-2

 and JA=350Acm
-2 

utilizing schemes a, b, and c.   
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It should be noted that for the segmented contact method (Geometry (a)) the external mode 

filter was omitted. The introduction of this lossy component is expected to enhance the 

observed benefits of the integrated amplifier. 
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Figure 4.12: Net modal gain spectra as a function of wavelength for (a) a current density range 

14Acm
-2

 – 300Acm
-2

 utilizing the segmented contact method and (b) 7Acm
-2

 – 300Acm
-2

 utilizing 

the integrated amplifier method. 
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This method allows the measurement of the gain/absorption spectrum at low forward current 

density. The lowest current density shown corresponds to average dot occupancy of                

~ 0.04 e-h /QD, deduced from the peak intensity of spontaneous emission at this current 

density, compared to the saturated spontaneous emission.  

Figure 4.13 plots the modal gain derived from Figure 4.12 including αi (~ 2cm
-1

) and 

spontaneous emission as a function of wavelength. In Figure 4.13 (a) at 7Acm
-2

 (~ 0.04 e-h 

/QD), where the dots are essentially empty, modal absorption of 9 ±1 cm
-1

 is measured for the 

ground state. The saturated modal gain of the ground state (at ~300 A cm
-2

) is 7±1 cm
-1

.  

These values are very similar, with the difference in these two values attributed to the 

different possible carrier occupancies of the filled quantum dot leading to an additional 

broadening mechanism (due to different magnitudes of the free carrier shift of the band-gap) 

which reduces the peak gain, as compared to the peak absorption at these biases.  This 

contrasts previous reports where absorption spectra and gain spectra were compared under 

different bias conditions [4.1, 4.8], where very different values for absorption and saturated 

gain were deduced.  

Figure 4.13 (b) shows that at low current density, i.e. at 7Acm
-2

 (~ 0.04 e-h /QD), the 

spontaneous emission and absorption peak (Figure 4.13 (a)) are observed to be coincident 

(1338nm/0.93 eV).  However, at high current density the spontaneous emission and peak in 

gain do not coincide, with the gain peak being ~4meV smaller in energy.  As self-heating 

effects are identical in both cases [4.1, 4.3], this shift is attributed to free carrier effects, 

where the free carrier shifted gain spectra is superimposed upon the absorption spectra. The 

observation that the spontaneous emission does not significantly shift in peak position 

(certainly no blue shift) from low occupancies (0.04 e-h pairs per QD) to ground state 

saturation appears at odds with the blue shift of the gain peak with increasing current density.  

This is once more attributed to the free-carrier shift of the gain as compared to the absorption 
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spectrum. It is tentatively suggested that the red-shift of QDs in gain, superimposed upon the 

absorption shows self heating effects and that the free carrier effects where carrier population 

is more random-like in nature. 
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Figure 4.13: (a) Modal gain and (b) spontaneous emission spectra obtained by integrated 

amplifier method. 
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4.8: Summary 

In this chapter a comparison of gain spectrum measurement techniques utilizing a multi-

section bi-layer InAs/GaAs quantum dot laser device to access low current densities was 

presented. A modified measurement technique, the integrated amplifier method was 

employed for the analysis by using the output sections of a multi-section device as an 

integrated optical amplifier and mode filter. The resultant enhancement to the spectral range 

over which the gain can be determined was discussed in detail. This technique was shown to 

be particularly advantageous for the measurement of the absorption/gain spectrum at low 

carrier densities where the waveguide is operating in loss. A brief comparison of gain spectra 

and spontaneous emission spectra is presented, highlighting the use of integrated amplifier 

method in analysing the quantum dots at low injection levels. 

 

4.9: Future work 

The integrated amplifier method has demonstrated that more gain spectrum information can 

be obtained.  This has been carried out on-chip, with a modest amplification (~3dB).  It 

would be interesting to try this technique on high gain material where the amplification could 

be higher and therefore benefits would be greater.  Significant insight into the carrier 

distributions in QD lasers at low current densities may be made.  Another possible 

experiment is to try using an external fibre coupled amplifier.  Whilst this is less convenient, 

costly, and suffers from a possible spectral mis-match between the device under test and the 

amplifier, large levels of amplification (e.g. 20-25dB) may be possible.   
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Chapter 5: Lasing Spectral Analysis for O-

band Optical Communication  

5.1: Introduction 

For a fibre optic optical communications system, there are two limits in order to successfully 

maintain a given bit error ratio for the transmitted signal.  Firstly, attenuation of the signal 

may result in the signal being indistinguishable from noise.  Secondly, dispersion of the 

optical pulses may result in inter-symbol interference, overlapping the train of optical pulses.  

A figure of merit for determining the dispersion limit of an optical system is ε (epsilon); 

eq.5.1:  

                                           1.5λBLΔε D  

where B is the bit rate, L is the transmission length,  is the spectral linewidth of the 

transmitter, and D() is the fibre dispersion coefficient.  Depending on the specifics of the 

particular system ε≤0.5.  Whilst the launch power of the transmitter, power budget, and 

sensitivity of the receiver, determines the attenuation limit, the linewidth of the transmitter is 

key in determining the dispersion limit.   

QD lasers are currently being commercialized for fibre-to-the-home (FTTH). Figure 5.1 plots 

the spectral line-width of commercial 10GHz, QD laser devices as a function of temperature 

along with spectral width requirements of a PX10 optical transmitter to achieve the IEEE 

P802.3av 10G-EPON standard [5.1] (data provided by Dr M. Sugawara, QD Laser Inc.) for 

O-band telecommunication. The linewidth requirement to achieve ε = 0.123 by PX10 optical 

transmitter are also shown in Figure 5.1.The empirically obtained data corresponds to 1905 

samples, showing the difficulty in meeting this specification using quantum dot lasers.   
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In this chapter the effect of inhomogeneous linewidth on the lasing linewidth of QD lasers is 

studied. Two samples, with different inhomogeneous linewidth are compared under 

conditions where it is hoped that the effects of homogeneous linewidth and spectral hole 

burning are maintained at a constant level, allowing the effects of inhomogeneous linewidth 

alone to be studied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: black crosses: The measured RMS spectral width of 1905 samples of the material: 

QLF1339-AA at 5mW, as a function of central wavelength at -10
o
C, 25

o
C and 85

o
C (courtesy: 

Dr M. Sugawara, QD Laser Inc.), (light red) RMS spectral width for the standard PX10 

transmitter for o-band (1260nm-1360nm), (dark red) Required RMS spectral width to achieve 

ε= 0.123 for PX10 optical transmitter. 
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5.2: 3-dB Line Width of Lasing Spectrum 

By increasing the drive current, the gain and hence the corresponding intensity of the 

individual longitudinal modes (where round-trip phase matching is satisfied) of a Fabry-Pérot 

laser device increases. As soon as the net modal gain equals the mirror loss, the device starts 

lasing. With any further increase in injection current the gain spectrum should not change. 

However, increasing the drive current above threshold often manifests itself as an increase in 

the intensity of (neighbouring) modes in addition to the main mode which initially met the 

threshold gain condition. The processes by which this occurs are described in the subsequent 

sections. Resultantly, a number of lasing modes may be observed at a given drive current, 

with the lasing line width increasing (an increase in the number of lasing modes) with 

increasing injection current [5.2]. Figure 5.2 plots the, electroluminescence spectrum above 

threshold for a 1.3µm InAs/GaAs Innolume quantum dot (QD) laser device (1mm long, 3µm 

wide as described in (section: 5.5)), with 3mW output power at 30
o
C, constant heat-sink 

temperature, under continuous wave operation. The, 3-dB lasing spectral line width of a 

lasing spectrum is shown, which is ~ 6.5nm (4.5meV). 

 

 

 

 

 

Figure 5.2: The lasing, electroluminescence spectrum, for 1.3µm Innolume laser device as a function 

of power (optical power: 3mW, heat-sink temperature: 30
o
C), showing 3-dB lasing spectral line width 

measurement. 
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5.3: Inhomogeneous Broadening 

Ideally in the case of QDs of identical size and composition the individual energy transitions 

of each would perfectly overlap. Resultantly, as shown in Figure 5.3(a) the ensemble of 

identical electronic states would appear as delta like function.  

However, the Stranski-Krastanov (self-assembled) QDs grown by molecular beam epitaxy 

are not of the same size, with the QD size distribution being approximated as Gaussian [5.3]. 

The broadened, resulting emission spectrum of the ensemble is due to many dissimilar 

electronic states. In the case of this inhomogeneous broadening being small compared to the 

separation between states, an emission spectrum similar to that in Figure 5.3(b) is obtained.  

 

 

                                  

                                                          

                                                               

 

 

 

     Figure 5.3: The expected density of states for GS and ES as a function of energy for a QD laser 

material exhibiting the inhomogeneous broadening in case of (a) similar, (b) dissimilar dot sizes. 

The line widths of the GS and ES optical transitions in this case would depend upon the 

uniformity of dot sizes. More homogeneous (same dimension/similar sizes/similar 
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composition) dots would result in reduced inhomogeneous line widths of the individual 

transitions (GS and ES). Measurements of the spontaneous emission [5.4] and absorption 

spectra [5.5] of a laser device can provide a comparative measurement of inhomogeneous 

linewidth with and without free carrier effects. 

5.4: Homogeneous Broadening 

The increase in temperature or excitation level (average number of electron-hole (e-h) pairs 

per QD) influences the entire dot ensemble by increasing the line width of the individual 

quantum dots. Resultantly, the line width of the overall spontaneous emission and gain 

spectrum is increased. This is known as homogeneous broadening.   

The mechanism and influence of the homogeneous broadening upon the QD laser emission 

can be explained as follows: For a laser device, by increasing the current/temperature the 

homogeneous line width of individual dots increases. At some point, as shown in Figure 5.4, 

the overall homogeneous broadening may become comparable with the inhomogeneous 

broadening. At low temperatures and current densities (low Γhom) various QDs act 

independently to lase with a broad spectral line width. For larger Γhom (higher temperatures 

and current densities) QDs spatially and spectrally isolated from lasing QDs may now 

contribute to lasing. This process results in a reduction in lasing line width with increasing 

Γhom.   
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     Figure 5.4: The lasing spectra, of a QD laser device as a function of homogeneous broadening 

which connects the spatially isolated dots, resulting in an emission via narrow lasing line [5.6]. 
 

 

In order to compare two quantum dot devices with similar homogeneous broadening, it is 

essential to compare them at the same population inversion level i.e. at the same percentage 

of their corresponding saturated modal gain and the heat-sink temperature.  

5.5: Spectral Hole Burning  

Spectral hole burning is a process which may usually occur for Fabry-Pérot laser devices. Its 

effect on lasing line width can be explained as follows: 

Figure 5.5 (a) plots a schematic of the Fabry-Pérot mode reflectivity as a function of 

wavelength. The gain spectrum is shown schematically in Figure 5.5 (b). The ideal lasing 

spectrum is shown in Figure 5.5 (c), considering perfect gain clamping. However, the 

increase in photon density with increasing drive current will denude the lasing QDs of 

carriers as the stimulated recombination rate and carrier supply rate to these states becomes 

similar. This creates a “Spectral hole” centred on this lasing mode (see Figure 5.5 (d)). As the 

laser is operating at a current significantly higher than threshold, as lasing from the main 

mode quenches so gain increases resulting in lasing from neighbouring modes may lase as a 

consequence of this process. These instantaneous effects result in a time-integrated increase 

in lasing line width with increasing laser power. 
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Figure 5.5: (a) Fabry-Pérot longitudinal modes, (b) time integrated gain response (c) lasing via single 

mode, (d) the spectral dip in the gain spectrum, (e) lasing via neighbouring modes. 
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5.6: Outline  

In this chapter the 3-dB lasing line widths of two quantum dot laser devices are compared 

under continuous wave operation, at a constant heat-sink temperature of 30
o
C. One of the 

selected devices is fabricated from the commercial Innolume epitaxial material and is 

composed of 10 QD layers while the other is fabricated from QD bi-layer material 

comprising 5 bi-layers. Both devices are realised as single mode Fabry-Pérot lasers. The laser 

cavity lengths are selected, such that at lasing both devices should operate at approximately 

the same inversion level. By doing this, we try to maintain the same homogeneous 

broadening in the two devices. 

The 3-dB lasing spectral line width is measured and compared as a function of output power, 

and in an attempt to make spectral-hole burning effects similar, this is also discussed in terms 

of output optical power/QD. This is discussed with reference to the line widths of the 

spontaneous emission and gain spectra which provide a measure of inhomogeneous 

broadening.  

5.7: Material Characteristics 

In this section various material characteristics of the Innolume and bi-layer devices are 

discussed. The segmented contact method [5.7] is employed to estimate the inhomogeneous 

line widths via spontaneous emission and modal gain results of the corresponding devices. 

The devices are characterised as a function of current density at 30
o
C constant heat-sink 

temperature, under continuous wave operation. 
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5.7.1: Inhomogeneous Line width Measurement 

5.7.1.1: Significance and Measurement Methods  

In our case, the significance of measuring the inhomogeneous line width is to check the 

homogeneity of the QDs for each of the materials being tested, as a reduced inhomogeneous 

line width corresponds to more dots of the same sizes. Therefore, it is expected that it would 

lead to higher density of states for GS/ES of QD ensemble. The spectrum would be 

broadened homogeneously with a small increase in 3-dB line width of the lasing spectrum as 

function of current density offering reduced mode competition. 

Different techniques are employed to estimate the inhomogeneous line width of a laser 

device, such as photoluminescence measurement [5.8], using a high energy laser as a pump 

source or by absorption measurement [5.5]. However, in our case we purpose that, via 

spontaneous emission measurements, it can also be estimated at very low current/carrier 

densities by keeping the heat-sink temperature fixed at a value. In this case the measured 

inhomogeneous line width corresponding to a particular heat-sink temperature would not 

change as a function of current density. In the following, the measurements are carried out at 

room temperature, so thermal energy, providing some homogeneous line width is present in 

all cases. 

5.7.1.2: Experimental Results 

In our case two materials, the Innolume and bi-layer are compared through inhomogeneous 

line widths at room temperature. Figure 5.6 (a, b) plots the normalized spontaneous emission 

spectra as a function of current density, by employing the segmented contact method (eq. 

2.6), for the Innolume (5mmx3µm) and bi-layer (10mmx7µm) devices at 30
o
C constant heat-

sink temperature, under continuous wave drive. The minimum achievable carrier densities 
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correspond to ~ 0.03 and ~ 0.04 e-h pairs per QD for the Innolume and bi-layer devices, 

respectively. It can be observed that for the given range of current densities as shown in the 

Figure 5.6(a, b) for each of the devices the full width half maximum of the spontaneous 

spectra does not change. Hence, it is deduced that the line width of the individual dots does 

not vary for the corresponding carrier densities. The overall contribution of homogeneous 

broadening to the intrinsic inhomogeneous line width due to thermally induced broadening 

mechanisms is already given in literature as ~ 8-10meV [5.9] which will be included in this 

estimate. 

The spontaneous emission line widths were measured to be ~40±1meV and ~27±1meV for 

the Innolume and bi-layer devices, respectively which in each case includes the intrinsic 

inhomogeneous line width and the additional broadening due to the room temperature. The 

smaller line width of spontaneous emission spectra of the bi-layer device is suggestive of the 

majority of its dots mainly being of the same size in comparison to the Innolume laser device. 
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Figure 5.6: Normalised spontaneous emission spectra as a function of current density at 30
o
C 

constant heat-sink temperature for (a) Innolume (5mmx3µm,) (b) bi-layer (10mmx7µm) devices, 

measured via segmented contact method under continuous wave condition. 



 
 

100 
 

5.7.2: Modal Gain Measurement 

5.7.2.1: Measurement and Significance 

The modal gain measurement can be used to retrieve the information about the 

inhomogeneous linewidth and to explore other broadening mechanisms in the laser device. In 

our case, by measuring the line width of the modal gain spectra of the Innolume and bi-layer 

devices, the homogeneity of the dots may be compared again but we would also be including 

free carrier effects (increasing the homogeneous broadening) as well. As the gain 

measurement is an important factor, such a measurement is also instructive. 

5.7.2.2: Experimental Results 

Figure 5.7 plots the normalised modal gain spectra for the Innolume and bi-layer devices. The 

modal gain spectra for the Innolume (5mmx3µm) and the bi-layer (10mmx7µm) devices 

were retrieved at 30
o
C constant heat-sink temperature by the segmented contact method 

(eq.2.5). To perform a comparison of line widths, the spectral gain results in each case were 

normalised to their corresponding GS saturated modal gain (Innolume: 24cm
-1

, bi-layer: 8cm
-

1
: section: 5.7.3.2) value. As sown in the Figure 5.7, the line widths of the Innolume and bi-

layer devices are measured to be ~ 50±1meV and ~ 34±1 meV respectively. A reduced line 

width in case of bi-layer device is quite obvious.  
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5.7.2.3: Discussion  

The measured line width of the modal gain spectrum in each case is due to the contribution of 

inhomogeneous line width, thermally induced additional broadening and the Poisson carrier 

distribution. The inhomogeneous line widths of the GS, Innolume and bi-layer devices as 

already measured by us are ~ 40±1meV and ~ 27±1meV respectively which already include 

an homogeneous line width due to thermal energy of ~ 8-10meV. The difference between the 
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Figure 5.7: Normalized modal gain spectra with respect to the GS saturated modal gain as a 

function of current density for QD, (a) Innolume (5mmx3µm), (b) bi-layer (10mmx7µm) 

devices at 30
o
C constant heat-sink temperature obtained via segmented contact method. 
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measured modal gain line width and the inhomogeneous line width is estimated as ~ 30meV 

and ~ 21meV for the Innolume and bi-layer respectively. This difference is attributable to the 

broadening due to the poisson carrier distribution as already discussed in chapter 3(section: 

3.10). It is a time averaged response of probable dot occupancies as a function of mean dot 

occupancy. It is noteworthy that the ratio of the line widths measured by spontaneous 

emission at low current density (27:40 = 0.68) is almost identical to that measured for gain at 

high current density (34:50 = 0.68). 

5.7.3: Device Length Selection 

5.7.3.1: Significance of Device Length Selection  

For our analysis, the 3-dB, GS lasing spectral line width of the devices are to be analysed 

under the same population inversion condition. The main purpose is, to try maintaining the 

same homogeneous broadening (due to free carrier and thermal effects) at each excitation 

level. In this way we are able to observe solely, the effects of different inhomogeneous line 

width of each of the device material on their respective 3-dB lasing line width. For this 

purpose, the GS gain-current density (G-J) curves for each of the devices are inspected 

carefully. Laser cavity length selection is based upon selecting devices operating at the same 

percentage of their respective saturated modal gain. 

5.7.3.2: Length Selection 

The single pass gain measurements were performed via the segmented contact method at a 

heat-sink temperature of 30
o
C, in order to select device (Innolume and bi-layer) lengths for 3-

dB, GS lasing spectral line width comparison. The modal gain as a function of current density 

was determined in each case. Figure 5.8 (a, b) plots the normalised gain as a function of 

current density curves with respect to the maximum GS gain for each of the devices at 30
o
C. 
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The squares (open and closed) represent the experimental data. An empirical fit [5.10] was 

employed to determine the saturated modal gain values in each case, which were 24±1cm
-1 

and ~8±1 cm
-1

 in case of Innolume and bi-layer devices respectively. The selected devices 

were operating at 63% of their respective saturated modal gain value. This corresponds to the 

lengths, 1mm and 4mm for Innolume and bi-layer laser devices respectively.  
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Figure 5.8: The GS normalised (with respect to maximum GS modal gain) modal gain as a 

function of current density (G-J characteristics) for QD, (a) Innolume (5mmx3µm), (b) bi-layer 

(10mmx7µm) devices at 30
o
C by segmented contact method, under continuous wave measurement 

condition.   
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5.8: Device Characteristics 

5.8.1: Significance of Single Mode Device 

A single mode laser device is advantageous, as higher order modes have different effective 

refractive indexes they will have a different spectral position leading to an apparent 

broadening of the emission linewidth. A single mode device is expected to lase via fewer 

modes i.e. it would exhibit a lower 3-dB lasing spectral line width than a multi mode device 

[5.3]. A single lateral mode device is also generally needed for fibre coupling as the presence 

of higher order modes may result in a reduction in coupling efficiency of the laser. 

5.8.2: Modal Behaviour of Innolume and Bi-layer Devices 

A high resolution spectroscopy technique is generally used to resolve the 

electroluminescence spectra, in order to ensure single mode behaviour of the devices. An 

Advantest 8384 optical spectrum analyser was used for this purpose and electroluminescence 

spectra were resolved with 10pm resolution in each case to observe the Fabry-Pérot 

longitudinal modes as clearly as possible. The spectra were analysed over various wavelength 

ranges. Figures 5.9 (a, b) plots the resolved electroluminescence spectra as a function of 

wavelength, at 30
o
C heat-sink temperature under continuous wave measurement condition, 

for the Innolume (1mmx3µm) and bi-layer (4mmx5µm) laser devices. 

According to the Figure 5.9 (a, b), in each case the mode position was predicted from the 

inspection of one of the spectra and was then predicted for the other two, to confirm the 

single mode behaviour. Mode beating for a second lateral mode was not observed for both 

devices and this was confirmed via inspection.  
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Figure 5.9: The schematic and electroluminescence spectra for (a) Innolume (1mmx3µm), (b) bi-

layer (4mmx5µm) QD laser devices showing single mode behaviour after lasing at 30
o
C heat-sink 

temperature under continuous wave operating mode. 
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5.9: 3-dB Line width Comparison 

5.9.1: Light-Current Density Characteristics 

In our case optical power as a fnction of current density was used to determine, the threshold 

current density and the external differential efficiency for each laser device. 

5.9.1.1: Significance and Measurement of External Differential Efficiency   

One of the basic and essential steps as a part of the characterisation of any laser device is to 

determine the external differential efficiency i.e.  ηd. It is a measure of the efficiency of a 

laser device to convert electrical energy into output optical power. Theoretically, with an 

injection of „q‟ coulombs within a particular time slot, the output optical power (photons 

emitted) produced for the same time interval is given by hc/λ (h: Plank‟s constant, c: velocity 

of light in vacuum, λ: wavelength of the photon) . Therefore, the ηd is calculated as hc/qλ.  

It can be determined empirically via light-current density characteristics (L-J) of a laser 

device i.e. from the slope of the linear section above Jth. In this case the external differential 

efficiency for both facets is determined by eq.5.2: 

                                            2.52 









hc

q

dI

dP
d


  

Where P is the optical out put power, I is the injection current, and the factor of 2 is for both 

facets. Here (eq. 5.2) in order to calculate the external differential efficiency of a device, we 

always compare the slope of L-J characteristics of the device (2dP/dI) with the slope (hc/qλ) 

of a 100% efficient device.  
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The ηd can also be calculated for a particular device length by eq.5.3.  

                                    )3.5(
im

m
id







      

Where αm is the mirror loss. The αi is the internal loss: the characteristic of the device 

material. The ηi is the internal quantum efficiency of the laser. 

5.9.1.2: Results  

The internal loss (αi) in each case was measured to be ~1.5cm
-1

 via net modal gain analysis 

as described in the section: 5.7.2. The mirror loss in each case was calculated by using the 

eq. 5.4: 

                 4.5
1

ln
2

1

21












RRL
m  

Where L is length of the laser device. R1 and R2 are the reflectivities of the both facets 

assumed to be 32% in each case.  

For the 1mm Innolume and 4mm bi-layer laser devices the αm was calculated as 11.4cm
-1

 

and 2.8cm
-1

 respectively by eq. 5.4. Therefore, by using the information (αi and αm), values 

of external differential efficiencies were calculated (eq. 5.3) as 0.88ηi, for 1mm long 

Innolume and 0.65ηi, for 4mm bi-layer devices. 

Figure 5.10 (a, b) plots, the light-current density characteristics for Innolume (1mmx3µm) 

and bi-layer (4mmx5µm) devices, at 30
o
C heat-sink temperature. The experimentally 

determined external differential efficiency values, by eq.5.2, were 20% and 18%, for 

Innolume (1mm) and bi-layer (4mm) devices respectively. 
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5.9.1.3: Discussion 

A low value for the experimentally determined differential efficiencies is observed for both 

devices. These reduced values of external differential efficiencies for both devices may be 

attributable to devices operating at ~ 63% of their maximum saturated modal gain values 

where gain cannot be described as being linear as a function of current density, as shown in 

Figure 5.8. At this point of operation, it is expected that the increase in photon density as a 
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Figure 5.10: Light-current density characteristics (a) Innolume (1mmx3µm), (b) bi-layer 

(4mmx5µm) devices at 30
o
C heat-sink temperature, under continuous wave measurement condition. 
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function of current density starts deviating from the expected exponentially increasing 

behaviour.    

5.9.2: 3-dB Line Width Comparison  

5.9.2.1: Experimental Conditions 

The 3-dB line width of the GS lasing spectrum was measured for the Innolume (1mmx3µm) 

and bi-layer (4mmx5µm) devices as a function of the same incremental steps of output 

optical power to analyse the effect of spectral hole burning in each case. The heat-sink 

temperature was kept constant at 30
o
C and devices were operated under continuous wave 

condition. The 10pm resolution adjustment was used to resolve the intensity spectrum 

properly.  

5.9.2.2: Innolume Laser Device 

5.9.2.2.1: Experimental Results 

Figure 5.11 (a) plots the GS lasing spectra as a function of output optical power for the 

Innolume (1mmx3µm) device at 30
o
C under continuous wave operation condition. Figure 

5.11 (b) plots the same GS lasing spectra as function of output optical power with a 10dB 

offset for each trace, in order to clearly observe the evolution of lasing spectrum as a function 

of output power. The 3-dB lasing spectral line width measurements were performed up to an 

optical power of 4.5mW and two important mechanisms can be noticed. Firstly, after 3.5mW 

the GS electroluminescence spectrum shows a dip in the middle of the lasing spectrum and 

secondly, the lasing spectra showed a red shift and a broadening with increased out put power 

levels. 
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5.9.2.2.2: Homogeneous Line Width of the Innolume Laser Device 

Figure 5.12 (a) plots the measured, 3-dB lasing spectral line width as a function of output 

optical power for the Innolume (1mmx3µm) laser device at 30
o
C heat-sink temperature, 

under continuous wave operating. The blue line represents the data of the measured 3-dB line 

width after the dip in the middle of the GS lasing spectra was observed.  
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Figure 5.11: GS electroluminescence spectra as function of output optical power for Innolume 

(1mmx3µm) laser device (a) lasing (b) offset by 10 dB, at 30
o
C constant heat-sink temperature 

under continuous wave operation mode 
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Figure 5.12 (b) plots the GS lasing spectrum at 4.5mW for the same experimental conditions 

as mentioned previously. From the Figure 5.12 (a), a dip in the middle of the GS lasing 

spectrum at 4mW was observed. Any further increase in the current density manifested itself 

as a decrease in the intensity of the central lasing modes and an increase in the intensity of the 

lasing modes on either sides of the dip. The difference between the peaks as shown in Figure 

5.12 (b) on the either side of the dip at 4.5mW output optical power is quite obvious and was 

measured to be ~6nm(4±0.5meV).  

5.9.2.2.2.1: Experimental Results and Discussion 

The observed dip is attributable to the mechanisms which are already discussed in the 

literature [5.3] i.e. when homogeneous broadening becomes comparable with the 

inhomogeneous broadening then a laser device starts lasing via central lasing mode and all 

dots with in the range of homogeneous line width via carriers and photons contribute to the 

lasing and resultantly device lases via few modes. However due to the gain saturation, at 

current densities higher than the threshold after the gain saturation, when the carriers 

relaxation rate for the dots contributing to the central lasing mode becomes lesser than their 

stimulated emission rate, the corresponding mode looses the intensity and a dip equal to the 

line width of the mode/QD is observed. Then lasing process shifts to the other neighbouring 

modes and other lasing peaks are observed.  

Such a dip with increase in excitation level has already been observed experimentally as well 

in the case of 1.3µm QD lasers [5.3]. Therefore, the observed difference between the peaks 

(4± 0.5meV) of the lasing spectrum in our case indicates the homogeneous linewidth of the 

QD, Innolume laser device.  
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Figure 5.12: (a) GS, 3-dB lasing spectral line width as a function of power. (b) 

electroluminescence spectrum as a function wavelength at 4.5mW, 30
0
C heat-sink temperature for 

Innolume (1mmx3µm) laser device under continuous wave measurement condition . 
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5.9.2.3: Bi-layer Laser Device 

Figure 5.13 (a) plots the GS lasing spectral results for a bi-layer (4mmx5µm) laser device as a 

function of output optical power at 30
o
C constant heat-sink temperature, under continuous 

wave measurement conditions. Figure 5.13(b) plots the offset (10dB per trace), lasing spectra 

for the same device under the same experimental conditions, in order to observe the evolution 

of the lasing spectra. Figure 5.13(c) plots, the increase in 3-dB lasing spectral line width as a 

function of output optical power as was measured from Figure 5.13 (a, b). 

 An increase in GS 3-dB lasing spectral line width at 30
o
C under continuous wave 

measurement conditions for the bi-layer (4mmx5µm) laser device was measured as ~ 3nm 

(2meV) at 5mW. A red shift and a broadening with increasing output power were observed. 

In case of the bi-layer laser device, a dip similar to that of the Innolume (1mmx3µm) laser 

device was not observed for the GS, even up to 5mW.  
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Figure 5.13: (a) GS , lasing spectra as a function of out put optical power, (b) GS, lasing spectra 

off set by 10dB, (c) 3-dB lasing spectral line width of GS for bi-layer (4mmx5µm) laser device at 

30
o
C heat-sink temperature. 
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5.9.2.4: Comparison of 3-dB Lasing Spectral Line width 

Figure 5.14 (a, b) allows a comparison of the devices by plotting the GS, 3-dB lasing line 

width for both devices (Innolume: 1mmx3µm, bi-layer: 4mmx 5µm) at 30
o
C heat-sink 

temperature. Figure 5.14 (a) plots the 3-dB lasing spectral line width as a function of the 

output optical power for each device, in order to try to make spectral hole burning effects 

similar. Figure 5.14 (b) plots the 3-dB lasing spectral line width of each device as a function 

of optical output power per quantum dot. The dot densities in the case of the Innolume and 

bi-layer materials are ~ 4x10
10

/cm
2
 and 2.7x10

10
/cm

2
 respectively. This is done in an attempt 

to normalise the removal of carriers from the lasing QDs.  

5.9.2.5: Results and Discussion 

The differential device resistances in both cases of the Innolume (~ 4ohms) and bi-layer        

(~ 3ohms) laser devices may cause different self heating effects which may influence their 

corresponding homogeneous broadenings. The analysis would be more reliable if the self 

heating effects are entirely removed by maintaining the junction temperature at a constant 

value by the method already described (Chapter: 3). However, the lasing spectra for the 

Innolume (1mmx3µm) and bi-layer (4mmx5µm) laser devices show approximately similar 

red shifts in lasing electroluminescence spectra (~ 3nm ±1). It is attributed to similar self 

heating effects due to the devices operating at same inversion level.  

 From Figure 5.14 (a) it can be observed that with an increase in output optical power for 

both of the devices, the 3-dB mode packet line width goes on increasing. For the same steps 

of increase in output optical power, the increase in the 3-dB lasing spectral line width and the 

rate of increase for the Innolume device is greater in comparison to the bi-layer device.  
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Figure 5.14 (b) plots the 3-dB lasing spectral linewidth as a function of output optical 

power/dot (photons/dot)). The purpose here is to try to make the spectral hole burning effects 

as similar as possible in both cases.  
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Figure 5.14: (a) 3-dB lasing spectral line width as a function of output optical power, (b) optical 

power/dot (photons/dot) for Innolume (1mmx3µm) and bi-layer (4mmx5µm) devices at 30
o
C 

heat sink temperature under continuous wave operation condition. 
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5.10: Summary 

Bearing in mind the attempts made to maintain similar levels of homogeneous line-width and 

the effects of spectral hole-burning, the role of a reduced inhomogeneous line-width on 

reducing the lasing line-width has been highlighted.  The results presented, on QD materials 

with inhomogeneous line-widths (as measured by low current density EL) differing from 40 

meV to 27meV show quite different laser line-width characteristics with increasing output 

power.  This is suggestive of inhomogeneous line-width being the key driver for the lasing 

line width for the Innolume sample.  For the narrower bi-layer sample, the reduced lasing 

line-width, and reduced sensitivity to power within the mode suggests we are moving towards 

a realm where the homogeneous line-width is dominant.  For these samples and conditions, 

the switch from the line-width being governed by the inhomogeneous line-width, to the 

homogeneous line-width is occurring in this range of values for inhomogeneous line-width.  

5.11: Future Work 

The reduction in laser line-width observed for the bi-layer sample is very promising for fibre-

optic communications applications.  These results point to continued work in developing the 

epitaxial processes to reduce the inhomogeneous line-width may pay off in large reductions 

in lasing line-width.   

In terms of future experiments, a range of samples where only the inhomogeneity was 

changed would eliminate uncertainties present in these measurements due to different QD 

densities, chip lengths, etc. The noise characteristics of the devices would also be of interest.   
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Chapter 6: Conclusion & Future Work  

The main aim of the thesis was to characterise 1.3µm QD laser devices in terms of their static 

performance via different gain measurement techniques. These devices are currently being 

commercialised in telecommunication and medical fields and have found their place in 

sensing devices and displays. Therefore, there is a need to improve upon their performance 

via understanding the physics of the devices. Gain measurement is a major technique to 

accomplish this. By gain measurement, we can determine the static and dynamic performance 

of a laser device and hence can optimise the device designs to improve their performance.   

In chapter 2 initially a historical review of gain measurement techniques is presented, which 

is then followed by a technical review of three gain measurement techniques. The purpose 

mainly was to point the important aspects to be taken care off while selecting and then 

successfully implementing a technique. The methodology of comparison and analysis of the 

techniques presented here can further be used to evaluate any new gain measurement 

technique in terms of S/N ratio, low and high current density measurement and resolution 

requirements. 

The chapter 3 presents the empirically obtained gain data obtained under the strict conditions 

of constant heat sink and constant junction temperature conditions. Therefore presents an 

excellent comparison of spectral gain measurements with and without self heating effects. 

The origin of negative differential gain is explored due to the free carrier effects. This can 

further lead to designing high speed switching laser devices. The concept of Poisson carrier 

distribution and corresponding shift and asymmetric broadening of the gain spectrum has 

been explained fully. This can lead to futuristic low threshold devices having a reduced 

inhomogeneous line width. The physics of carrier dynamics at high current densities 



 
 

120 
 

explained in this chapter can lead to understanding the behaviour of dual state lasing devices 

and SOAs. 

In chapter 4 the gain characterisation at very low carrier density was made possible by 

demonstrating an integrated amplifier. The noise due to the integrated amplifier in the gain 

spectra was less and 3-dB amplification was achieved without any spectral mismatch with the 

signal getting amplified. This low carrier density analysis can further be used to explore the 

carrier distribution (Fermi/random) among dots, in case, if more optically efficient materials 

are available. The analysis would be more reliable if self heating effects are entirely removed 

via method explained in chapter3. 

Chapter 5 discusses the effect of inhomogeneous linewidth on lasing spectral line width of 

the laser devices. It shows that for the laser device having more value of inhomogeneous line 

width the lasing line width is controlled via inhomogeneous line width. However for the 

devices with very less inhomogeneous line width the lasing line width remain small and 

independent of the output optical power and spectra broadens homogeneously. The analysis 

was accomplished empirically by comparing a bi-layer laser device with a commercial 

Innolume material. In this case spectral hole burning and homogeneous line width of the two 

materials were kept constant to make a fair comparison and to infer the interdependence of 

inhomogeneous line width and lasing line width. However the carrier life time may be 

another point to be considered while comparing the materials in future, as it can effect the 

lasing line width as well.      
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