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Abstract

The bacterium Neisseria meningitidis is capable of respiration in both aerobic and

microaerobic environments by reduction of oxygen and nitrite respectively. The

respiratory chain and genetic regulation of this system are already well under-

stood, but there are complex interactions between components which make pre-

dicting which respiratory path will be used difficult. To predict the respira-

tory behaviour of N. meningitidis a mathematical model has been constructed

which describes the behaviour of the respiratory system using a set of differ-

ential equations. A novel combination of experimental data gathering and suc-

cessive Bayesian fitting was then used to populate and parameterise the model.

The resulting model and parameter probability distributions represent a working

system for predicting respiratory behaviour in N. meningitidis. These parameter

distributions represent new knowledge in the field as almost none of the values

had been previously determined. The model also gives access to otherwise inac-

cessible information regarding the flux of electrons through the respiratory chain

in addition to the reduction states of the respiratory enzymes during aerobic and

microaerobic respiration.
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Chapter 1

Introduction

1.1 Biology of Neisseria meningitidis

Neisseria meningitidis is a Gram-negative, bean-shaped diplococcal bacterium1,

surrounded by a lipid membrane containing outer membrane proteins and li-

popolysaccharides1. When pathogenic, the bacteria also has a polysaccharide

capsule attached to the membrane1. It is non-spore forming, non-motile but pili-

ated, and lives as an obligate human pathogen (humans being its only host)2. N.

meningitidis inhabits the mucosal membranes primarily in the respiratory tract,

and it is estimated that up to 20-25% of the population have this bacteria in their

nasopharynx while being asymptomatic2–4.

The Neisseria genus contains a number of non-pathogenic species which are

part of the normal human flora including N. subflava, N. flavescens, N. lactamica

and N. sicca5. Two species of Neisseria are the causative agents of human dis-

eases, N. meningitidis, which causes bacterial meningitis and N. gonorrhoea which

causes gonorrhoea. Being β-proteobacteria2, the Neisseria genus is also related to

a number of other pathogenic bacteria including Bordetella, Burkholderia and Spir-

illum. This taxa also includes ammonia-oxidising bacteria such as Nitrosomonas6.

N. meningitidis is classified into 13 different serogroups based on the differ-

ences in lipopolysaccharides, capsules, outer membrane proteins and adhesion

molecules1,2,7. 3 of these 13 serogroups are the main cause of meningococcal
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CHAPTER 1. INTRODUCTION

meningitis, with serogroups B and C being the most prevalent1. Vaccines for

serogroup C are available, but serogroup B currently has no effective vaccine, as

it mimics human antigens2 and it is a poor immunogen8. The polysaccharide

capsule of serogroup B is composed of sialic acid which has structural homology

to the polysialylated form of the neural cell adhesion molecule9,10. In addition

to being the causative agent for meningococcal meningitis, N. meningitidis also

causes septicaemia and the combination has a mortality rate of ≈ 10% even with

therapy1,2.

N. meningitidis is dependent on a source of iron, and must source this from its

environment11. It does this by directly capturing iron from the host via human

transferrins11–13 and lactoferrin11. This capture is brought about by membrane

surface receptors that can bind the transferrins which then go on to internalise

the iron into the bacterium for growth14.

1.2 Pathogenicity of N. meningitidis

Meningitis is caused by N. meningitidis entering the bloodstream and travelling

to the meninges, a set of membranes that envelope the central nervous system,

where the bacteria goes on to cause inflammation. Once it has entered the blood-

stream, N. meningitidis is capable of switching its capsule by phase-variation to

avoid host-immune detection15,16. After colonisation by the bacterium, in order

to enter the bloodstream, it must first adhere to the mucosal tissue. This is facil-

itated by adhesion molecules on the outer membrane and by pili, with the latter

being the primary source of adhesion1,7. Once the bacteria are adhered to the

mucosal cells, additional contacts are made with the outer membrane proteins.

Interestingly, the presence of the polysaccharide capsule, which is required for

survival in the bloodstream, interferes with these additional contacts2. N. menin-

gitidis invades the bloodstream by being endocytosed by the mucosal epithelial

cells, a process which is triggered by the pili and outer membrane proteins on the

bacteria.
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N. meningitidis is able to survive in the bloodstream (typically an antimicro-

bial environment) mainly by virtue of its polysaccharide capsule as this is able

to protect the bacteria against various immune responses by the host including

complement-mediated bacteriolysis and phagocytosis by neutrophils1. Despite

these protective features, specific antibodies do provide full protection against

the bacteria, but the time taken for these antibodies to be produced means that

the host has a period of at least 1 week in which it must rely on innate immune

response1. Evidence suggests that systemic infection by N. meningitidis can only

occur in hosts which are immunocompromised in some way, specifically if they

do not have the serum bactericidal antibodies against capsular or non-capsular

antigens, or they are missing certain complement components4. A number of

factors can increase the likelihood of contracting bacterial meningitis including

smoking and travelling to epidemic regions2. In developed countries, the high-

est rates of invasive meningococcal meningitis are seen in infants and children

less than 4 years-old, adolescents, military recruits and groups where crowding

and new exposures occur such as college students living in dormitories, however

the disease is capable of affecting all age groups2.

There is evidence to suggest that much of the damage done to the host dur-

ing a meningococcal infection is actually caused by the host in an attempt to rid

itself of the bacteria17. A systemic infection causes a massive inflammatory re-

sponse and the resulting quantities of cytokines produced eventually lead to or-

gan dysfunction and the proteases produced by neutrophil activation also lead to

endothelial injury17.

Once N. meningitidis has entered the bloodstream, it goes on to invade the

cerebro-spinal fluid (CSF), which serves as an excellent culture medium for the

bacteria4. The host response to this infection is inflammation of the meninges,

the membranes surrounding the central nervous system. This leads to a build-up

of serous fluid in the brain causing cerebral swelling. Once the bacteria have en-

tered the CSF, antimicrobial treatment is required otherwise the effects are almost
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invariably fatal4.

Initially a meningococcal infection presents as a slight fever and chills, which

may improve after 4-6 hours. Haemorrhagic skins lesions may appears between

8 and 18 hours, however roughly 20% of suffers never present with lesions. These

skin lesions are possibly the most well known symptom of bacterial meningitis as

they are characterised by a non-blanching (does not turn white under mild pres-

sure) rash. The clearest evidence for meningococcal infection is a fever, stiff neck,

aversion to bright light, vomiting, skin lesions and headaches. Unfortunately not

all these symptoms may be present in all cases4.

When meningococcal septicaemia occurs, renal function may be impaired as

a direct consequence of cardiac impairment. Septicaemia causes “capillary leak”

which reduces cardiac output and increases the effort required to breathe nor-

mally. Reduced cardiac output can also affect the gastrointestinal tract leading to

reduced function. Once treated these symptoms will usually subside as cardiac

output improves17.

In most cases the treatment for meningococcal meningitis is with antibiotics,

where the primary aim is to achieve a rapid bactericidal effect in the CSF1. This

treatment is suggested prior to positive identification of cultures of the bacteria

obtained from the CSF as any delay is potentially life-threatening if the bacteria

have indeed invaded the CSF4.

1.3 Growth of N. meningitidis

Bacteria require carbon and energy sources in order to grow, and these are often

sourced from sugars present in the environment. N. meningitidis can only use the

sugars glucose and maltose as carbon sources18,19, however they can use peptides

as carbon sources. The bacteria are usually grown on Müller-Hinton broth and

Columbia agar which are peptide-based formulations.
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1.4 Organisation of the Respiratory Chain of N. meningitidis

N. meningitidis is classified as an aerobe and as such has an oxidase pathway

for reducing oxygen (O2), but given that the environment in the nasopharynx is

poor in oxygen, the bacteria must also be capable of respiring in a microaerobic

environment. This is evidenced by the fact that bacterial isolates from the na-

sopharynx routinely contain both strict aerobes and strict anaerobes20. Genomic

analysis of 2 strains of N. meningitidis shows that there are 3 terminal oxidases; 1

of each for reducing oxygen, nitrite (NO -
2 ) and nitric oxide (NO)21. This analysis

may be expanded as there are now many more genomes published. Experiments

showed that under oxygen limiting conditions, N. meningitidis was capable of

growth when nitrite was present in the media (Müller-Hinton Broth), and that

nitrate (NO -
3 ), the probable source for nitrite, had no effect on growth21. Addi-

tionally the bacteria require carbon dioxide, as shown by Tuttle and Scherp 22 and

have 2 enzymes which catalyse the reduction of CO2
4.

In vivo, nitrite is obtained as a product of digesting nitrate in food. There are a

number of facultative nitrate-reducing bacteria present in the mouth and pharynx

responsible for this20 which additionally have a proposed benefit of protecting

the host against peridontal and cariogenic bacteria23. Nitrite is also created by

oxidation of nitric oxide, which is produced as a host signalling molecule and as

a toxin as part of the host immune response20,23.

The respiratory pathway for reducing nitrite in N. meningitidis involves two

steps; nitrite is reduced to nitric oxide, which is then further reduced to nitrous

oxide. This represents incomplete reduction, as a further reduction step is possi-

ble (shown in Figure 1.1), reducing nitrous oxide to dinitrogen gas20,24.

Reduction of oxygen is favourable over nitrite reduction due to the redox po-

NO−3 → NO−2 → NO→ N2O→ N2

Figure 1.1: Complete denitrification. The process of reducing nitrite to nitrogen gas. In
N. meningitidis the first and final steps highlighted in blue do not occur.
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Reduction Enzyme

NO -
2 → NO AniA

NO → N2O NorB
O2 → H2O cbb3

Table 1.1: The reductions catalysed by the respiratory enzymes in N. meningitidis

tential differences. The redox potential of O2/H2O is +820 mV, NO -
2/NO is +348

mV, thus O2 has a higher tendency to acquire electrons resulting in a electro-

chemically favourable reaction25. The electron flow towards the oxidase is also

preferred physiologically as it liberates more energy by virtue of the transloca-

tion of more protons than the reduction of nitrite. The translocated protons are

ultimately used in the synthesis of ATP molecules for energy. This results in re-

duction of oxygen in preference to nitrite when both are present (in most cases).

Reduction of oxygen in N. meningitidis is carried out by the oxygen reduc-

tase cytochrome cbb3 oxidase, a membrane-bound heme-copper oxidase26. cbb3

is capable of binding oxygen and nitric oxide, which means that during nitrite re-

duction (denitrification), the oxidase can be competitively inhibited (chemically)

by the intermediate product of denitrification. cbb3 can be permanently damaged

at high concentrations of NO and O2, as they can both bind at the cbb3 active site

and react together to form peroxynitrite27–29.

Nitrite is reduced by the nitrite reductase AniA, which is a copper containing

reductase. This reduction does not involve translocation of protons, and thus

does not produce any usable energy. Nitrite is reduced to nitric oxide which can

then be further reduced by a nitric oxide reductase NorB. Since N. meningitidis

is capable of reducing nitric oxide, a host toxin, directly, this may help it defend

itself against part of the host immune response20,30 as has been shown in tissue

culture by Anjum et al. 29 .

The reduction processes carried out by these enzymes are shown in Table 1.1.

The major source for electrons in both respiratory pathways is NADH, al-

though electrons can also be obtained from pyruvate and lactate amongst others.
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Figure 1.2: Layout of the components of the respiratory system in Neisseria meningi-
tidis. Oxygen reducing components are shown in green, nitrogen reducing components
in red. Components transporting electrons are coloured light blue, and their transport is
indicated by dashed arrows. Respiratory substrates are shown in dark blue, with corre-
sponding arrows linking them to their reducing enzymes. Components which produce
membrane potential are also indicated.

These reduced substrates lead to reduction of ubiquinone to ubiquinol in the ubi-

quinone pool that exists within the bacteria. Ubiquinol is oxidised either by the

cytochrome bc1 complex or directly by the NorB enzyme whilst reducing NO

to N2O. Cytochrome bc1 is oxidised by a number of intermediate cytochromes

which act to transport electrons to the terminal oxidases; AniA and cbb3. The

c5 cytochrome transports electrons from the bc1 complex to AniA, and two cyto-

chromes, c2/x and c4, transport electrons to cbb3. It is not understood why cbb3 has

2 alternate cytochromes, and there is evidence to suggest that it can also be sup-

plied, in a limited capacity, by the c5 cytochrome as well31. The electron transport

chain (ETC) is shown graphically in Figure 1.2.

In addition to the difference in favourability between the two respiratory path-

ways, there is also a great deal of regulation, both at the enzymatic and tran-

scriptional level. Chemical inhibition also plays a part in regulation as briefly

mentioned previously. Expression of AniA is regulated by two processes, the
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reduction of oxygen and the presence of nitrite. The presence of oxygen down-

regulates the expression of an activator of AniA expression. This activator is FNR

(fumarate and nitrate reduction regulator), and the presence of oxygen effectively

means that AniA expression is repressed by the reduced expression of FNR. In N.

meningitidis, FNR appears to work slightly differently than in facultative anaer-

obes such as E. coli, in that FNR is still expressed at quite high concentrations of

oxygen, and is itself down-regulated by a separate co-factor32.

The presence of nitrite triggers the two component NarP/NarQ system which

activates expression of AniA in response to increasing levels of nitrite20. The

activity of AniA is also controlled by the competition for electrons by the other

reductase enzymes in the respiratory chain. Both NorB and cbb3 have a higher

affinity for electrons than AniA, and as a result the presence of these enzymes

(when active) has an inhibitory effect on AniA. The regulation of AniA is fur-

ther complicated by the production of nitric oxide, and the presence of a protein,

NsrR.

Nitric oxide has a direct inhibitory effect on the expression of AniA, as does

the NsrR protein. Nitric oxide also inhibits the NsrR protein, leading to a de-

represssion of AniA30. In the absence of nitric oxide, AniA is almost fully re-

pressed by active NsrR. As NO concentrations increase, NsrR is inactivated al-

lowing full activation of AniA. Once NO reaches a sufficiently high level it will

begin to inhibit AniA20,32.

NorB is less tightly regulated by respiratory components, as it is only acted

upon by NsrR, however it is regulated by FNR and NrsR outside the respiratory

chain33. This regulation by NsrR works in a similar way to how NsrR acts upon

AniA. When there is no nitric oxide present, the NsrR acts to inhibit NorB since

there is no substrate for it to reduce. In the presence of nitric oxide, NsrR is

inhibited, leading to the activation of NorB which is now able to reduce NO to

N2O. In this case nitric oxide is acting as a de-repressor of NorB.

This complicated set of regulatory relationships between the different compo-
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nents of the respiratory pathways is shown in Figure 1.3.

1.4.1 Nitric Oxide

Nitric oxide is a small molecule with chemical formula NO. It exists as a free

radical; the nitrogen having an unpaired electron it its outer valance shell. Ni-

tric oxide is an important cell signalling molecule in mammals, including hu-

mans34. Given its small, hydrophobic nature it easily passes through cell mem-

branes, but can only diffuse small distances from where it has been synthesised

as it reacts easily with other reactive oxygen species in addition to cysteine and

tyrosine residues in proteins and heavy metals35. NO regulates a number of cel-

lular processes by post-translational modification of proteins. Sufficiently high

concentrations of nitric oxide also cause cells to undergo apoptosis or necrosis

(depending on the activation state of PARP-1 (Poly-ADP-Ribose Polymerase))34.

Nitric oxide functions as part of the human immune system, being generated

by phagocytes which contain an inducible nitric oxide synthase. The phagocytes

release nitric oxide as a free radical which is toxic to bacteria as it causes DNA

damage36 and degradation of iron sulfur centres37,38. In response many bacterial

pathogens have evolved resistance mechanisms against nitric oxide39,40.

The respiratory system of Neisseria meningitidis is such that it conveys a degree

of resistance to host-generated nitric oxide. Given that N. meningitidis is capable

of denitrification and capable of reducing nitric oxide created from reduction of

nitrite, it is also capable of removing extracellular nitric oxide. This confers a

natural advantage on the bacteria as the only environment in which it can survive

is also one which will expose it to the human immune system and the sinus cells in

the nasopharynx express NOS (nitric oxide synthase)41 constitutively. It has been

shown that NorB expression in N. meningitidis can actually halt the production

of S-nitrosothiol produced by macrophages42 Additionally NorB appears to be

minimally controlled so that it can respond quickly to NO production41.
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1.5 Respiratory Enzymes in N. meningitidis

1.5.1 Cytochrome cbb3 oxidase

Cytochrome cbb3 oxidase is a Haem Copper Oxidase (HCO) enzyme found com-

monly in proteobacteria. They have been characterised in at least Pseudomonas

denitrificans, Rhodobacter sphaeroides, Rhodobacter capsulatus and Bradyrhizobium ja-

ponicum43. HCOs catalyse the reduction of Oxygen molecules to water whilst

translocating protons across the inner membrane, from the cytoplasm to the pe-

riplasm, producing an electrochemical gradient.

HCOs can be separated into two categories by their electron donor type. Cyto-

chrome c oxidases accept electrons from c-type cytochromes, and quinol oxidases

accept electrons from ubiquinol. The major difference between these two cate-

gories is a missing CuA site in quinol oxidases44. HCOs can be further broken

down to 3 types, the aa3-type cytochrome c oxidase, the bo3-type quinol oxidase

and the cbb3-type cytochrome c oxidase45. Alternatively 5 different HCO sub-

classes may be classified, the aa3, caa3 and cbb3-type cytochrome c oxidases, and

the bo3 and aa3-type quinol oxidases46. All of these different types of cytochrome

c oxidases are found in bacteria, whereas those in mitochondria are limited to

aa3-type cytochrome c oxidases47.

HCOs are themselves “defined by the primary sequence of their catalytic sub-

unit, which is composed of twelve transmembrane helices with six invariant his-

tidines ligating three cofactors; a high spin heme (one His ligand) and a copper

(3 His ligands) in the catalytic site and an additional low-spin heme (two His

ligands)”48. Sequence alignment has also indicated that bacterial NO-reductase

(NOR) might also be a divergent member of the HCO family. A schematic dia-

gram of the cbb3 oxidase is shown in Figure 1.4, and the 3D structure of cbb3 from

Pseudomonas stutzeri is shown in Figure 1.5. cbb3 is composed of three main sub-

units with CcoN being the catalytic subunit, which is related to subunit I of aa3

oxidases and NorB. This latter relation to NorB explains why cbb3 has some Nitric
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Figure 1.4: The cbb3 oxidase. This diagram shows the proton input pathway for Oxygen
reduction shown in red, and the putative pathway for Nitric Oxide reduction in blue.
Also shown are the 3 subunits and their associated heme centres. Adapted from Huang
et al. 48 .

Oxide reduction activity (and conversely why NorB has some Oxygen reduction

activity)48. CcoN contains the catalytic site – the high-spin heme b3-CuB – and a

low spin heme b. CcoO is anchored in the inner membrane and contains just one

c-type heme. CcoP contains two c-type hemes and is anchored to the inner mem-

brane. CcoQ, the fourth subunit is small, and helps to stabilise the complex48.

The mechanism of reduction of O2 by cbb3 oxidases is not fully understood,

as the reduction intermediates currently remain unknown48. The cytochrome

cbb3 oxidases have very low KM values, allowing them to operate even under

oxygen limiting conditions. cbb3 from Bradyrhizobium japonicum has a KM of 7

nM, much lower than that of the mitochondrial aa3 oxidase50. This high affinity

for oxygen suggests that N. meningitidis may have become adapted to surviving

in the human host in areas of low oxygen concentration. Since this type of oxidase

is also found in other human pathogens it is likely that it is used to allow those
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Figure 1.5: 3D Structure of cbb3 oxidase. This figure shows the structure of cbb3 from
Pseudomonas stutzeri49. CcoN is shown by the blue chain, with the heme and copper
centres being brown. CcoP is shown by the green chain, and CcoO by the cyan chain.
The PDB ID for this structure is 3MK7.

pathogens to survive in hypoxic environments in the human host51.

The catalytic reaction for the cbb3 oxidase is:

cbb3(reduced) +
1
2O2 + 2H+ → cbb3(oxidised) + H2O (1.1)

1.5.2 NorB Nitric Oxide Reductase

Nitric Oxide Reductase is also a Haem Copper Oxidase enzyme which is found

in bacteria as an integral membrane protein. There are three types of NOR, the

cytochrome bc type complex (cNOR), the cytochrome b type complex lacking the

cytochrome c component (qNOR) and a qNOR-type reductase that also includes

CuA (qCuANOR). cNOR-type reductases receive electrons from soluble redox

protein donors, whereas qNOR-type reductases receive electrons from quinol52.

The NOR in N. meningitidis is a qNOR-type reductase53, and is encoded by the
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norB gene (NMB1622). It catalyses the reduction of Nitric Oxide to Nitrous Oxide

receiving electrons directly from the quinone pool. Under microaerobic condi-

tions this enzyme is important as during denitrification to support growth, Nitric

Oxide accumulates as a result of reduction of Nitrite. The build up of Nitric Ox-

ide inhibits aerobic respiration as it binds competitively to the cbb3 oxidase. NorB

protects the bacteria from the toxicity of extracellular NO which is produced by

host tissues and macrophages, which produce NO in quantity during infection30.

The nitric oxide reductase in Neisseria gonorrhoeae is predicted to be an 84.3

kDa protein sharing significant sequence identity with the nitric oxide reductases

in Ralstonia eutropha, a Gram-negative soil bacterium, and consists only of the

NorB subunit52. The NorB protein is highly conserved across all Neisseria species

as evidenced by sequence analysis54.

The catalytic reaction for NorB is:

NorB(reduced) + 2NO + 2H+ → NorB(oxidised) + N2O + H2O (1.2)

1.5.3 AniA Nitrite Reductase

AniA nitrite reductase is an anaerobically induced, outer membrane associated

protein which uses nitrite as an electron acceptor55. It is a copper-containing

protein found in many denitrifying proteobacteria.

Nitrite reductases catalyse the reduction of nitrite to nitric oxide with no as-

sociated proton translocation. There are two types of nitrite reductase, those that

have haem centres, and those which have copper centres. AniA in N. meningitidis

is a copper-containing and accepts electrons from c-type cytochromes (c5).

In N. meningitidis this enzyme is important during oxygen limiting conditions

as it allows microaerobic respiration which can supplement growth by denitrifi-

cation20.

Interestingly, according to its genome sequence N. meningitidis strain 053442

appears to lack the aniA gene in its entirety, suggesting that this strain would be
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unable to perform denitrification and respire anaerobically54. 32% of N. menin-

gitidis strains sequenced by Barth et al. 54 contain non-functional copies of aniA

with frameshift mutations. These strains do still possess the norB gene for reduc-

ing Nitric Oxide however allowing them to prevent its toxic effects. It has been

suggested by some that this may actually be evidence that Neisseria meningitidis

is in the process of evolving away from denitrification to being a Nitric Oxide

tolerant aerobe39.

The catalytic reaction for AniA is:

AniA(reduced) + NO−2 + 2H+ → AniA(oxidised) + NO + H2O (1.3)

1.6 Respiratory Electron Transporters in N. meningitidis

1.6.1 NADH Dehydrogenase

NADH (Reduced Nicotinamide Adenine Dinucleotide) Dehydrogenase is an in-

ner membrane bound enzyme that catalyses the transfer of electrons from NADH

to the quinone pool in many bacteria. There are three types of NADH dehydro-

genase enzymes found in bacteria, NDH-1, NDH-2 and Na+-NDH. NDH-1 is

related to Complex I of the mitochondrial respiratory chain and translocates pro-

tons across the inner-membrane whilst reducing the quinone pool56–58. NDH-2

does not have any proton pump activity, nor does it have any Fe-S clusters59.

Na+-NDH translocates Na+ ions across the membrane60. The NADH dehydro-

genase of N. meningitidis is of the NDH-1 type25.

Mitochondrial complex I catalyses the oxidation of NADH and the reduction

of ubiquinone whilst translocating 4 protons across the membrane. It does so

using the following reaction scheme:

NADH + H+ + 4H+
inner + UQ→ NAD+ + 4H+

outer + UQH2 (1.4)
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1.6.2 Cytochrome bc1 Complex

The cytochrome bc1 complex oxidises quinols and reduces metalloprotein elec-

tron transporters (usually c-type cytochromes). It is an important part of bacte-

rial respiratory chains, and is also analogous to the mitochondrial complex III61.

Whilst catalysing the reduction of ubiquinone and the oxidation of c-type cyto-

chromes, the bc1 complex also translocates protons across the inner membrane

from the cytoplasm to the periplasm producing an electrochemical gradient. The

bc1 complex is found in both Gram negative and Gram positive bacteria, however

E. coli has no bc1 complex. A homologue, the b6f complex is also used for electron

transfer during photosynthesis in higher plants and phototrophic bacteria62.

In bacteria the bc1 complex is formed of one cyt b subunit which contains two

b-type hemes, one cyt c1 subunit which contains a single c-type heme and an

Rieske iron-sulfur protein. These subunits form the two catalytic sites of the bc1

complex. The reduction of ubiquinone appears to occur in a concerted manner at

one of these sites, Qo
62. Electrons from the quinol are shared between two reac-

tion chains, one which transfers electrons to the high-potential iron-sulfur protein

and c1, and another which transfers electrons to the low-potential cytochrome b.

The other catalytic site Qi uses the two electrons from the high and low potential

chains to reduce quinone, or other metalloprotein electron transporters63,64. This

modified Q-cycle is shown in Figure 1.6.

The reaction scheme for the bc1 complex is:

QH2 + 2 ferricyt c3+ + 2H+
Negative ⇐⇒ Q + 2 ferrocyt c2+ + 4H+

Positive (1.5)

1.6.3 Cytochromes c4, cx and c5

Cytochromes c4, cx and c5 are soluble c-type cytochromes. These are small heme

proteins that are found in the periplasm and are loosely associated with the inner

membrane. Along with their presence in proteobacteria, the c-type cytochromes

also form part of the mitochondrial respiratory apparatus in the form of cyto-
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Figure 1.6: The modified Q-cycle used by the bacterial bc1 complex. The cyt b subunit
is represented by the dashed blue outline, and contains the Qo- and Qi-sites, connected by
hemes bL and bH. The ISP (Rieske Iron-Sulfur Protein) and cyt c1 catalytic domains and
cyt c are represented by dashed circles. Electron transfer steps are shown by blue arrows,
proton release and uptake by red arrows, binding and release of quinone species by purple
arrows for Qo-site and yellow arrows for Qi-site. Adapted from Crofts et al. 65 .
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chrome c. Bacterial c-type cytochromes perform a very similar function to mito-

chondrial cytochrome c in that they transport electrons from the bc1 complex to

the terminal reductases. Cytochromes c-552, c-553 & c-554 from algal chloroplasts

and cyanobacteria, c2 from purple photosynthetic bacteria and c4 and c5 from

Azotobacter vinelandii along with many others all have sequence and structural

homology with mitochondrial cytochrome c66. The mitochondrial and bacterial

soluble cytochromes all fall within Ambler’s Class I of c-type cytochromes67. The

heme-attachment site of Class I c-type cytochromes is towards the N-terminus,

and a methionine residue 40 residues further down the chain towards the C-

terminus provides the sixth ligand67.

• Cytochrome c4 is a diheme cytochrome and is the electron donor to cbb3

transferring electrons from the bc1 complex in N. meningitidis25,31,68.

• Cytochrome cx is a monoheme cytochrome which is also able to transfer

electrons from the bc1 complex to cbb3
25,31.

• Cytochrome c5 is a diheme cytochrome which appears to be membrane as-

sociated. It transfers electrons from the bc1 complex to AniA during Nitrite

reduction25,31.

1.6.4 Quinone Pool

The quinone source in N. meningitidis is predicted to be ubiquinone25. Ubiqui-

none, also known as Coenzyme Q10 is found in most eukaryotes. It is a vitamin-

like lipid soluble molecule with a long tail made of 10 isoprenyl subunits. This is

shown in Figure 1.7.

In its oxidised form it is known as ubiquinone, whereas when reduced it is

called ubiquinol. In the N. meningitidis respiratory chain, ubiquinone is reduced

to ubiquinol by the acceptance of 2 electrons from NADH (amongst others). Ubi-

quinol then donates electrons either directly to the terminal reductase NorB, or to

the bc1 complex.
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Figure 1.7: Structure of the ubiquinone molecule.

1.7 Respiration Regulatory Proteins in N. meningitidis

1.7.1 NsrR - Nitrite Sensing Repressor Protein

“NsrR is an NO-sensing Rrf2-type transcriptional repressor”54. In N. meningi-

tidis (and N. gonorrhoeae) it negatively regulates aniA and norB, and derepression

is caused by NO30,32,33. Rrf2 proteins have two DNA-binding helix-helix do-

mains32, with a putative iron-sulfur cluster inbetween. In NsrR, NO is expected

to bind to the iron-sulfur cluster, perturbing the structure of the repressor protein

and prevent DNA binding32.

norB is expressed in the absence of both a repressor and an activator, in that

with no repression and no NO present norB is still expressed to some extent69.

NsrR represses this expression until NO is present, at which point norB can be

expressed and the NorB enzyme can start removing the NO that is present.

aniA is positively regulated by FNR, but this seems to be quite insensitive

to oxygen in N. meningitidis, thus aniA would be expressed even at 60 to 80%

air saturation with oxygen32. aniA therefore needs to be corepressed in order to

prevent it being expressed excessively in aerobic conditions.
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1.7.2 FNR - Fumarate and Nitrate Reductase Regulator

Fumarate Nitrate Reductase is a transcriptional activator which binds to a 4Fe-4S

cluster under anaerobic conditions. When oxygen concentrations are low, FNR

causes increased expression of proteins that are necessary for anaerobic respira-

tion. “The presence of the 4Fe-4S cluster is correlated with protein dimerization,

which enables it to bind promoter DNA”70. Four cysteine residues are believed

to be ligated to the iron-sulfur cluster and these are required for FNR function.

The oxygen sensitivity of FNR is achieved by the iron-sulfur cluster breaking

down into 2Fe-2S via 3Fe-4S which is unable to bind DNA. In N. meningitidis,

aniA expression is directly linked to the presence of FNR20. When no NsrR is

present, aniA expression continues even up to 80% oxygen saturation suggesting

that FNR is actually quite insensitive to oxygen, an unusual response compared

to FNR from E. coli. FNR also becomes less sensitive to oxygen when it is bound

to its cognate DNA70.

1.7.3 NarQ/NarP - Nitrite Response Sensor/Regulator

NarP and NarQ are a two component signal transduction pathway that regulate

expression of aniA in Neisseria. NarQ is the sensor protein located in the inner

membrane, while the regulator protein, NarP is found in the cytoplasm. Being a

two component system, the sensor protein phosphorylates the regulator allowing

it to bind the target DNA (which may consist of multiple sequences) to activate

expression of genes.

In N. gonorrhoeae, NarP was shown to enhance the expression of aniA in re-

sponse to the presence of nitrite, as a mutant lacking narP was significantly slower

at growing under denitrifiying conditions71.

In N. meningitidis expression of aniA is increased greatly in conditions of high

nitrite concentration20. This effect is much more pronounced than simply being

in oxygen limiting conditions. FNR appears to be required for aniA expression

even when NarP/NarQ are present20. This suggests that the organism is inten-
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tionally preventing expression of nitrite reducing components until there is both a

high concentration of nitrite and a very low concentration of oxygen. This is plau-

sible as even under oxygen limiting conditions oxygen reduction is still favoured

over nitrite reduction.

1.8 Organisation of Respiratory Chains in Other Bacteria

The respiratory chain of N. meningitidis is shown in a simplified form in Figure

1.8. The components are coloured consistently throughout this section to allow

UQNADH 

Dehydrogenase
bc1

c5

c4

cx

cbb3

AniA

NorB

Figure 1.8: Branched electron transport chains of N. meningitidis. Blue denotes ini-
tial electron donor, red denotes quinone pool, purple denotes cytochrome electron trans-
porters and green denotes terminal reductases. UQ = ubiquinone.

easy comparison between the respiratory chains being discussed. As discussed

previously, the respiratory chain of N. meningitidis contains an initial electron

donor, in this case NADH dehydrogenase. This actually represents all the pos-

sible electron donors. NADH is considered to be the main electron donor along

with succinate72. There is also a quinone pool, consisting of ubiquinone/ubiquinol,

intermediate c-type cytochromes and terminal reductases. The following section

introduces the electron transport chains of a number of other bacteria as they are
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well studied model organisms for comparison with N. meningitidis.

1.8.1 The Respiratory Chain of Paracoccus denitrificans

The respiratory chain of P. denitrificans is shown in Figure 1.9. It is quite similar to

that of N. meningitidis with the exception of having a larger number of terminal

reductases, and the ability to perform complete denitrification. The chain pos-

sesses an initial electron donor, a quinone pool, intermediate cytochrome electron

transporters and terminal reductases.

UQNADH 
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Ubiquinol-cyt c 
oxidoreductase

Cyt c550
or 

pseudoazurin

Cyt c552

ba 3

oxidase
Nar nitrate 
reductase

Nap nitrate 
reductase

cbb3

oxidase

aa3

oxidase

Nitric 
oxide 

reductase
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reductase

Nitrous 
oxide 

reductase

Figure 1.9: Branched electron transport chains of Paracoccus species. Blue denotes
initial electron donor, red denotes quinone pool, purple denotes cytochrome electron
transporters and green denotes terminal reductases. UQ = ubiquinone. Electron trans-
fer between cytochromes c552 and c550 has not been demonstrated experimentally but is
possible, given the redox potential of the proteins. Adapted from Baker et al. 73 .

The bc1 complex of N. meningitidis is present as an analogue (Ubiquinol-cyt c

oxidoreductase), and the chain includes 2 further downstream c-type cytochromes.

P. denitrificans has 3 terminal oxygen reductases, ba3, which oxidises the quinone

pool directly, and cbb3 and aa3 which oxidise the c-type cytochromes. All three

oxygen reductases are HCOs. The branching of the aerobic ETC is quite common

among bacteria, but the reason for this is not currently fully understood.
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The reductase enzymes found in P. denitrificans are capable of complete den-

itrification as described in Figure 1.1. The nitrate reductases directly oxidise the

quinone pool, whereas the nitrite and nitric oxide and nitrous oxide reductases

oxidise the c-type cytochromes instead.

As with N. meningitidis there are a number of potential initial electron donors,

but only NADH is shown for simplicity of comparison.

1.8.2 The Respiratory Chain of Escherichia coli

The respiratory chain of E. coli is shown in Figure 1.10. It can be seen to be quite

distinct from other bacteria, and indeed from the mitochondrial respiratory chain.

The most obvious difference between E. coli and many other bacteria is the lack

UQNADH 
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Nar nitrate 
reductase

Nap nitrate 
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Nitrite 
reductase

Figure 1.10: Branched electron transport chains of E. coli. Blue denotes initial electron
donor, red denotes quinone pool and green denotes terminal reductases. UQ = ubiqui-
none. Under anaerobic conditions, ubiquinone is replaced by menaquinone. Adapted
from Nicholls and Ferguson 74 .

of c-type cytochromes in its aerobic respiration chain. The terminal reductases

are able to be reduced directly by the quinone pool. Additionally, under anaer-

obic conditions, the quinone pool changes from being ubiquinone/ubiquinol to

menaquinone/ubiquinol. E. coli also has no bc1 complex.
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E. coli also has a number of different terminal reductases in the form of cyt

bo3 and cyt bd. Cyt bo3 is an HCO and is structurally very similar to cyt aa3. Cyt

bd shows no sequence similarity with the HCO superfamily and has no CuB site.

Cyt bd has a much higher affinity for oxygen than cyt bo3 so is synthesised at

low oxygen concentration. In addition E. coli has a further cytochrome cyt bd-

II which is speculated to be important in microaerobic respiration. Initially it

was thought to be unlike other cytochromes as it appeared to contribute nothing

to the proton motive force by not translocating protons across the membrane75,

however this was later shown to be incorrect and in fact cytochrome bd-II does

produce a measurable proton motive force76.

E. coli is also capable of ammonification and possesses enzymes to reduce ni-

trate and nitrite, which are also under the regulatory control of FNR. The reduc-

tion of nitrite differs from N. meningitidis and P. denitrificans as NO -
2 is not reduced

to NO, but to NH+
4 instead.

As with N. meningitidis and P. denitrificans there are a number of potential ini-

tial electron donors, but only NADH is shown for simplicity of comparison.

1.8.3 The Respiratory Chain of Rhodobacter sphaeroides

The respiratory chain of R. sphaeroides is shown in Figure 1.11. This is more similar

to N. meningitidis and P. denitrificans than to E. coli in that it has c-type cytochromes

in the aerobic respiratory chain. R. sphaeroides has 3 terminal oxidases, cbb3 and

aa3 which are reduced by cytochromes, and Qox which is reduced directly by the

quinone pool.

The reductases involved in denitrification are all reduced directly by the qui-

none pool as with E .coli

There are two possible electron donors to the quinone pool, NADH dehydro-

genase and succinate dehydrogenase, but only NADH is shown for simplicity of

comparison.

35



CHAPTER 1. INTRODUCTION

UQNADH 

Dehydrogenase
bc1

cy cbb3

Qox

aa3
c2

{ {
NO3

Reductase

N O2
Reductase

Figure 1.11: Branched electron transport chains of Rhodobacter sphaeroides. Blue de-
notes initial electron donor, red denotes quinone pool and green denotes terminal reduc-
tases. UQ = ubiquinone. This diagram does not include any of the photosynthetic path-
ways that R. sphaeroides also has. Adapted from Ferguson et al. 77 , Daldal et al. 78 , Pappas
et al. 79

1.9 Computational Biology and Systems Biology

Computational biology is a broadly defined field primarily centred around devel-

oping and applying various mathematical and computational techniques to the

study of biological systems. These may include data-analysis and mathematical

modelling to improve the understanding of the biological system in question. The

field could be considered a fusion of multiple different fields (computer science,

biochemistry, mathematics, genetics etc.) into one multidisciplinary field.

Systems biology is the process of studying biological systems as a whole, and

using sophisticated computer modelling backed up by high-throughput molec-

ular tests80. Systems biology “combines approaches and methods from systems

engineering, computational biology, statistics, genomics, molecular biology, bio-

physics and other fields”81.

The aim of Systems biology is to take our detailed understanding of organisms
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beyond the molecular and cellular level. These are the levels to which the disci-

plines of molecular biology and biochemistry (among others) are more suited.

It aims to take our understanding to the level of the entire “complex system”.

Which is to say we gain understanding into the way the organism behaves as a

whole, rather than just having knowledge of the individual parts.

The level of complexity in biological systems is far greater than the popular

notion of what defines a complex system, however. Biological systems consist

of multiple different individual elements each performing specific tasks interact-

ing with each other to create ’coherent’ behaviour. This is very different from

popular complex systems which are collections of simple, identical components

interacting to produce ’complex’ behaviour82.

Gaining understanding such a complex system is difficult, and Kitano sug-

gests that it requires insight into the following properties83:

1. Structure of the system. This includes the way the system interactions are

“laid out” both at a component level and an organismal level.

2. The dynamics of the system. This involves understanding how the or-

ganism behaves under any given conditions over a particular time period.

This may include understanding how the metabolic processes change under

these conditions etc.

3. How the system is controlled. The control mechanisms can be tailored to

suit the desired function or to minimised the chance of malfunction.

4. How the system is designed. “Trial and error” experimentation can be

done away with, as the system can be designed based on defined properties,

backed up by models and simulations.

The level of integration between systems biology approaches and experimen-

tation can be seen in Figure 1.12. This shows the iterative cycles that are necessary

to gain understanding in both areas. The experimentation provides data to refine
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Figure 1.12: Systems biology cycle. Interactions between experimental analysis and the-
oretical approaches, and the main tasks for theory at the interfaces. Doyle and Stelling 81

and develop the system model, and data from that model can go on to improve

the design of the experiment.

Systems biology extends further into a computational discipline when you

consider that if you can create a model of a system, you can potentially run a sim-

ulation of the system using the model. Simulations can be developed for multiple

stages of the process, from molecular to organismal. Simulations of interactions

based on gene regulatory network models are being studied84, as are complete

plant development models85–87.

Figure 1.13 shows one of the limitations of the current technology “powering”

systems biology. As organisms get more complex, the models we can produce get

less complex and less quantitative80. This concomitant lack of data in models of

complex organisms decreases the likelihood of being able to produce a simulation

of the model. We might be able to simulate aspects of a complex organism, such

as the human heart88 but we are still a long way from being able to simulate the

entire human body.
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Figure 1.13: System complexity. Diagram showing how system complexity varies across
organisms, and how the complexity of the models we can produce is currently the inverse
of systems complexity. Kahlem and Birney 80

For simpler systems, like yeast, or E. coli an enormous amount of data al-

ready exists about individual gene regulation, protein interactions etc. and it is

possible to build sophisticated models of the entire gene regulatory network and

more89,90.

Computational systems biology forms part of what is known as “Complex

Systems Analysis” and is concerned with developing and using mathematical

models and algorithms to simulate biological systems. In the case of Neisseria

meningitidis, the layout of the complex system of interest, the respiratory system,

is well understood in terms of the position of all the components in the system.

What is not known is how electrons traverse the system, how the various compo-

nents interact with each other, and how they react to changes in external condi-

tions (changes in respiratory substrates). Computational systems biology can be

used to create a mathematical model of the current understanding of the respira-

tory system in Neisseria meningitidis which can then be simulated and the results

compared to experimental data. The experimental data can then be used to in-

form the parameters of the mathematical model.

A systems biology approach to understanding the mechanism of respiration
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in Neisseria meningitidis is necessary as there are a number of components in the

system which are inaccessible to the standard reductionist approach to biological

systems. These components cannot be isolated from the system in order to anal-

yse them, therefore any information must be gained from looking at the system

as a whole.

1.10 Modelling

1.10.1 Modelling Respiratory Systems

1.10.1.1 Current Attempts to Model Respiratory Systems

The following list details some of the modelling carried out on bacterial respira-

tory chains:

• Almeida et al. 91 created a kinetic model of denitrification in Pseudomonas

fluorescens and Paracoccus denitrificans by assuming that the components of

the respiratory chain were arranged like an electrical circuit. They produced

a simple and predictive model of denitrification using this approach.

• Jin and Bethke 92 proposed a new rate law that can be used to model the rate

of respiration in Pseudomonas. They showed the predictive power of the rate

law by looking at rates of benzoate oxidation.

• Cavaliere and Ardelean 93 developed an alternative approach involving mod-

elling respiration using “P systems” which are probabilistic models of events.

This assigned a probability of each reaction happening, dependant on the

state of the system and then iterated through a given set of steps evaluat-

ing probabilities and altering values based on the outcome. This approach

to modelling was limited in that it was only predicting the quantities of 1

component in each of 2 “compartments”; oxygen in the cell membrane and

carbon dioxide in the thylakoid membrane (the model was developed using

cyanobacteria).
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• Peercy et al. 90 created a kinetic model of how cytochrome production is reg-

ulated by oxygen in the respiratory system of Escherichia coli. They created a

set of differential equations to describe the relevant reactions and then pop-

ulated the model using parameters gathered from the literature. They were

able to obtain good fits to experimental data from the ArcAB subsystem of

the E. coli respiratory system.

• Klamt et al. 94 created a model of the steady-state behaviour of the electron

transport chain in purple non-sulfur bacteria (Rhodospirillaceae). This model

was also created using differential equations to describe rates of change of

components.

• Aguiar-González et al. 95 used an enzyme kinetic model to examine oxygen

consumption rates in the marine bacteria Pseudomonas nautica and Vibrio

natriegens. This simple model only describes the respiration rate however,

nothing more.

1.10.1.2 Other Relevant Modelling

• Baart et al. 72 created a flux model of primary metabolism in Neisseria menin-

gitidis. This model didn’t contain any useful information about the respira-

tory system, but showed that the flux model could predict substrate prefer-

ence in silico, and this was confirmed in vivo.

• Bernard Korzeniewski has been quite prolific in using mathematical models

to create computer simulations which describe biological processes, oxida-

tive phosphorylation in particular96–98.

1.10.1.3 Important Considerations

When modelling respiration in a cell, the most important factor is the change in

concentration of components over time without any particular spatial constraints,

ordinary differential equations (ODEs) are an appropriate technique. In these
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systems the model does not change with regard to the spatial arrangement of any

of the components. If the system requires changes in time and space, then partial

differential equations (PDEs) would be necessary (and more complicated)99.

Ordinary differential equations only depend on one variable; the time (t). In

this case, the change in concentration over time for each component can be mod-

elled as a single differential equation. For multiple components this leads to mul-

tiple differential equations with some that rely on the result of another (if the rate

of one reaction is directly related to the concentration of another component).

These ODEs must then be solved in parallel at a suitable time-scale.

Complications arise when using differential equations if the processes are con-

sidered to be stochastic, as a differential equation model assumes that every com-

ponent can have a continuous value, which is not the case as molecules are dis-

crete. However if the system being modelled is sufficiently large, this effect can

be ignored. If the reaction component size is small (< 100s of molecules) stochas-

tic simulation algorithms have to be used as described by Gillespie 100 . These

methods are usually slower than the simpler deterministic algorithms because of

the added complexity of modelling individual components99.

1.10.2 Modelling Tools

A number of software packages exist that are capable of this type of modelling

such as the Systems Biology Workbench101 and COPASI102. These allow you

to enter biochemical reactions in a format familiar to biologists, and have pre-

defined libraries for types of reactions such as mass-action, or one with Michaelas-

Menten kinetics etc. The mathematical equations are then derived automatically

from the reactions and can be modified by hand if necessary. Parameters for

the mathematical equations must be entered, and these will usually be derived

from experimental data, or in some cases educated guesses (at least initially).

Once a parameter set has been created, the modelling software can run a time-

course using a relevant solver-algorithm. COPASI (as at version 4.8) includes
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7 solvers, LSODA (Livermore Solver for Ordinary Differential Equations)103 for

deterministic systems (such as ODEs), Gibson-Bruck104, Direct Method, τ-leap

and Adaptive-SSA/τ-leap for stochastic systems, and Runge-Kutta and LSODA

for hybrid systems (where portions are not considered to be stochastic). A large

number of general and specific modelling tools also exist including but not lim-

ited to: Mathematica105, Matlab106, Gepasi107,108, E-Cell109, PyBioS99,110, CellDe-

signer111–113 and STOCKS 2114.

1.11 Aims

The over-arching aim of this study was to produce a working mathematical model

of the respiratory system of N. meningitidis which has been refined and parame-

terised by experimental biological data. This mathematical model should be able

to accurately simulate experimental datasets with known outcomes, and also be

able to predict the outcome of experiments that have not been performed. This

model, will also be able to provide insight into the states of various components

throughout the respiratory process, such as enzymatic oxidation states, some of

which are very difficult, if not impossible, to obtain in an in vivo study.

The layout of N. meningitidis respiratory chain, even though it is longer than

that of the model organism Escherichia coli is more similar to most other bacteria.

This, along with its profound medical importance make it an excellent target for

the type of mathematical modelling described above.

The individual aims of the study are therefore:

1. Construct a mathematical model of the N. meningitidis respiratory chain.

This will involve the conversion of the kinetic reactions involved in respira-

tion into mathematical equations that can be linked together, and if justified

simplifying the chain.

2. Obtaining experimental data on respiratory rates and enzyme kinetics.

This will involve performing experiments on respiring N. meningitidis and
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recording the concentrations of respiratory substrates under different con-

ditions.

3. Parametrise the model using experimental data. To do this a system will

need to be developed which can iteratively fit experimental data to specific

parts of the mathematical model.
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Materials and Methods

2.1 Neisseria meningitidis Strains Used in This Work

Name Description Source

MC58 Wild-Type Strain McGuinness
et al. 115

∆norB::spcr
Wild-Type with insertion of specti-
nomycin resistance cassette into
norB gene

Heurlier et al. 30

∆nsrR::spcr
Wild-Type with insertion of specti-
nomycin resistance cassette into
nsrR gene

Rock et al. 32

∆norB::spcr-∆nsrR::tetr

Wild-Type with insertion of specti-
nomycin resistance cassette into
norB and insertion of tetracycline
resistance cassette into nsrR genes

Heurlier et al. 30

∆aniA::spcr-∆nsrR::tetr

Wild-Type with insertion of specti-
nomycin resistance cassette into
aniA and insertion of tetracycline
resistance cassette into nsrR genes

Heurlier et al. 30

Table 2.1: Bacterial strains and sources
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2.2 Culturing Neisseria meningitidis

2.2.1 Growth of Neisseria meningitidis

N. meningitidis strains were grown on plates on Columbia Agar Base (CAB) with

defibrinated horse blood, and in liquid culture in Müller-Hinton Broth (MHB).

Plates were prepared by adding horse blood to a final concentration of 5% to

molten agar, and poured into plastic petri dishes. After streaking with N. menin-

gitidis the plates were incubated at 37 °C in a 5% carbon dioxide/air mixture.

Aerobic liquid cultures were grown in 10 ml MHB with 10 mM NaHCO3 in

plastic Sterilin tubes, and incubated at 37 °C at 200 rpm. Microaerobic cultures

were suspended in 20 ml MHB, 10 mM NaHCO3 in plastic Sterilin tubes, incu-

bated at 37 °C at 100 rpm.

2.2.2 Preparation of Antibiotic Selective Media

Liquid stock solutions of required antibiotics were either added directly to liquid

culture, or, if growing on plates, to the molten agar when also adding horse blood.

The final concentrations of antibiotics are given in Table 2.2.

Antibiotic Final concentration (µg/ml)

Spectinomycin 50
Tetracycline 2.5

Table 2.2: Final antibiotic concentrations

2.2.3 Preparation of Frozen Bacterial Stocks

Bacteria were grown in liquid culture until late log phase prior to harvesting.

Liquid cultures were then centrifuged at 4000 g for 15 minutes, and the pellet

was then re-suspended in a 25% glycerol, 25% water and 50% MHB, all of which

had been autoclaved beforehand. The bacterial stocks were then frozen at −80

°C.
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2.2.4 Streaking Plates for OD to CFU Ratio Calculation

Bacterial cultures were grown overnight and then transferred into aerobic liquid

culture and samples taken throughout the day to obtain a range of different op-

tical densities. The optical density was recorded at 600 nm on a Jenway 6305

Spectrophotometer (Bibby Scientific Limited, Staffordshire UK), and each sample

was serially diluted to the following levels: 10−5, 10−6 and 10−7. 100 µl of each of

these dilutions was plated on a fresh blood agar plate and left to grow overnight.

The following morning the number of colonies on each plate was counted and

used to create a simple conversion factor for Optical Density to Colony Forming

Units.

2.3 Measuring Oxygen Concentration

Oxygen concentration in respiring cultures was measured using a Clark elec-

trode116 from Rank Brothers, Cambridge, UK. This electrode has a silver anode

and a platinum cathode and uses a saturated potassium chloride solution as elec-

trolyte. The electrode is set at the bottom of a 7 ml reaction chamber separated

from its contents by a thin Teflon™ membrane. This apparatus is shown in Figure

2.1. The Teflon™ membrane is permeable to dissolved oxygen, which is reduced

by the electrode producing a measurable electrical current. The reaction chamber

is maintained at 37 °C by an attached water bath. When performing experiments,

5 ml of culture is added to the reaction chamber, which is stirred by use of a

magnetic flea, and the chamber covered with a plastic stopper. The stopper has

a number of holes through which the NO probe, or Hamilton syringe can be in-

serted. Data is collected by attaching the electrode to an external data logger (Pico

ADC20, Pico Technology).
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Figure 2.1: Exploded view of the oxygen electrode. This assembly sits atop a Rank
Brothers Digital Model 10 Controller which acts as a magnetic stirrer and provides the
polarising voltage to the electrode (Rank Brothers Ltd 117).
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2.3.1 Calibration of Oxygen Electrode

Calibration of the oxygen electrode assumes that anaerobic water will not pro-

duce any measurable current at the electrode. Oxygen saturated water contains

210 µM Oxygen at 37 °C118. 5 ml of ultra pure (18 MΩ) water was added to the

electrode chamber, and then aerated to saturation by use of a Pasteur pipette.

The maximum value recorded by the data logger then corresponds to a concen-

tration of 210 µM Oxygen, with the relationship between mV as recorded against

concentration being linear.

2.4 Measuring Nitric Oxide Concentration

Nitric Oxide concentration was measured using a Nitric Oxide probe (ISO-NOP,

World Precision Instruments) connected to a Nitric Oxide Meter (ISO-NO mkII,

World Precision Instruments). This is also a Clark type electrode, contained within

a steel sleeve with a semi-permeable membrane separating the working electrode

from the system being measured119–121. The NO probe is inserted through one of

the holes in the plastic lid of the reaction chamber of the oxygen electrode assem-

bly. The tip of the electrode should be immersed in the culture, with care being

taken not to trap any air bubbles on the surface of the probe. The sensor is also

attached to the same data logger as above. In this way both Oxygen and Nitric

Oxide concentrations can be measured in parallel. A diagram of the apparatus

when set up is shown in Figure 2.2.

2.4.1 Calibration of Nitric Oxide Electrode

Calibration of the nitric oxide electrode relies on adding known quantities of Ni-

tric Oxide to the electrode chamber. Sodium Nitrite will liberate Nitric Oxide

with a 1:1 ratio when added to a solution of excess Potassium Iodide and Sulfuric

acid based on the following reaction:

2NaNO2 + 2KI + 2H2SO4 −→ 2NO + I2 + 2H2O + 2Na2SO4 (2.1)
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Figure 2.2: Oxygen electrode chamber with nitric oxide probe inserted. This shows the
set up used to obtain all oxygen and nitric oxide measurements. A - ISO-NOP Nitric
Oxide probe. B - Electrode chamber cap. C - Culture medium. D - Oxygen electrode
chamber. E - Oxygen working electrode. F - Teflon™ membrane. G - Magnetic flea. H -
Air gap.

NaNO2 NO
Concentration (µM) Volume (µl) Concentration (nM)

10 50 99
100 25 591
100 50 1561

Table 2.3: Sodium Nitrite concentrations used to calibrate ISO-NOP Nitric Oxide sensor.

5 ml of 0.1 M Potassium Iodide/Sulfuric Acid was added to the electrode cham-

ber and allowed to stabilise. Then, increasing concentrations of Sodium Nitrite

solution were successively added to produce a standard curve of Nitric Oxide

concentration to recorded electrode mV. The volume and concentrations of Sodium

Nitrite added to the electrode chamber are detailed in Table 2.3.

2.5 Measuring Nitrite Concentration (Griess Assay)

Nitrite concentration in liquid culture was determined using the colorimetric as-

say described by Nicholas and Nason 122 . This reaction is based on chemical

diazotization which uses sulfanilamide and N-1-napthylethylenediamine dihy-
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drochloride (NED) under acidic (hydrochloric acid) conditions. Nitrite is con-

verted to nitrous acid under acidic conditions and this then forms a diazonium

salt with the sulfanilamide. The diazonium salt combines with NED and forms

a pink azo dye which can be detected using absorbance spectrophotometry at

a wavelength of 540 nm. Depending on the expected concentration of nitrite,

different sample volumes are used in the assay. The most common sample vol-

ume used was 25 µl which allows detection up to around 1 mM nitrite with the

following reagent volumes: 875 µl of 1% sulfanilamide in 1 M HCl and 100 µl

of 0.02% NED in 1 M HCl. When using different sample volumes, the volume

of sulfanilamide was altered such that the volume of sample + sulfanilamide al-

ways equalled 900 µl. After adding the sample to the reagents, it was left for 20

minutes for the colour to develop, then the absorbance at 540 nm was measured

and compared to a standard curve.

2.6 Nitric Oxide Production

Solutions of Nitric Oxide were prepared using a method derived from one de-

scribed by Aga and Hughes 123 . The apparatus setup is shown in Figure 2.3.

A concentrated solution of Sulfuric acid was added from a pressure-equalizing

dropping funnel to a concentrated solution of Sodium Nitrite solution in a stirred,

round-bottomed flask. This released NO gas which passed through a solution of

Sodium Hydroxide to neutralise any Sulfuric acid present, then through distilled

water to remove any Sodium Hydroxide and Nitrogen Dioxide before finally be-

ing bubbled into a collection vessel with a sealed rubber septum containing dis-

tilled water. The concentrations of the chemicals used in this preparation are

shown in Table 2.4.

The system should be set up in a fume cupboard as shown in Figure 2.3 and

sparged with N2 gas for 15 minutes (the dropping funnel will allow gas to pass

into the round bottomed flask even when the bottom valve is closed). The H2SO4

should be sparged separately. Valve 2 should be left open at all times. After
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Figure 2.3: NO making apparatus. 1 & 2 - N2 release valves. 3 - Pressure equalizing
dropping funnel, containing 50 ml 4 M H2SO4. 4 - Stirred, round-bottomed flask, con-
taining 200 ml 2 M NaNO2. 5 - Dreschel bottle with sintered bulb, containing ≈ 200 ml
1 M NaOH ( 2

3 full). 6 - Dreschel bottle with sintered bulb, containing ≈ 200 ml dH2O ( 2
3

full). 7 - Small glass bottle with rubber septum and needle entry valve, containing dH2O
2
3 full. This bottle either needs to also have a gas exit needle, or at least not be sealed
during the process.. 8 - To N2 gas bottle. Viton rubber tubing is used for all the flexible
hoses in this apparatus.

Chemical Volume (ml) Concentration (M)

NaNO2 200 2
H2SO4 50 4
NaOH 200 1

Table 2.4: Chemicals needed for preparation of Nitric Oxide solution.

sparging close valve 1 and then add the Sulfuric acid drop-wise from the drop-

ping funnel. Brown gas will start to bubble through to the collection vessel. This

apparatus should produce enough NO gas to saturate several small (10 ml) collec-

tion vessels which should have the needle removed and be sealed once saturated.

Once all the Sulfuric acid has been added the reaction was left to finish for up to

2 hours. Before disassembly the apparatus was sparged with N2 gas to remove

any residual NO gas.

52



CHAPTER 2. MATERIALS AND METHODS

The eventual concentration of NO in the solution will vary depending on the

temperature, but at 25 °C in ultra pure (18 MΩ) water the concentration will be

between 1.88 and 1.96 mM123,124.
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Chapter 3

Model - Construction and Parameters

3.1 Construction

The model was constructed based on existing knowledge of the respiratory chain

in Neisseria meningitidis from the ETC shown in Figure 1.2 (Chapter 1). No a priori

assumptions are made about separation of time-scales that would permit the use

of Michaelis-Menten kinetics, as the rates of intermediate reaction steps are not

known. This approach also permits tracking of the oxidation state of all the in-

termediates which allows understanding and offers the potential for predictions

that may be explored in future in vivo studies.

The model was generated as a set of ordinary differential equations which

describe the bulk-average concentration of substrates, products, enzymes and

their activity within a well-mixed vessel. It is assumed that the bacterial popula-

tion structure is homogeneous and that there are no variations in concentrations

of substrates between the bulk media and within the bacterial cells. Stochas-

tic effects are ignored at the protein level, but they are unlikely to be of impor-

tance. Initially protein production is largely ignored as the switching mechanism

is thought to happen on a time-scale that is much shorter than the transcription

and translation of new proteins, they are therefore assumed to be expressed con-

stitutively except where stated otherwise. However some datasets were available

in the published literature20 that suggested otherwise, and were tested using an

54



CHAPTER 3. MODEL - CONSTRUCTION AND PARAMETERS

extension to the model described below which includes transcription and trans-

lation of certain components.

3.1.1 Normalising the Data

The model contains no implied information about cell density. This means the

values for various component concentrations will differ between experiments.

Initially the optical density of cultures was used to determine the cell density

however experiments proved that this was not a completely reliable proxy as

the optical density is also affected by dead cells. Using optical density as a cell

density proxy should give linear relationships between cell densities and over-

all reduction rates, however this proved not to be the case, with rates of oxy-

gen reduction differing between cultures with the same optical density (data not

shown). Therefore where possible, any normalisation that was carried out used

the initial oxygen reduction rate as a relative indicator of living cells. Plating out

serial dilutions of high density cultures showed that a culture with OD600 = 1

contains approximately 1× 109 cells/ml.

3.1.2 Converting Biological Reactions into Differential Equations

The rationale for obtaining the form for each of the 9 component equations is

described below. Throughout the model the reduced components, i.e. those with

available electrons, are denoted as active and have a subscript a. Components

lacking a subscript denote the total, constant, amount of a component. ∅ denotes

nothing (this is used as the source or sink when substrates are entering or exiting

the system). It is assumed that all the chemical reactions occur with mass action

kinetics. That is to say that the rate of the reaction is proportional to the product of

the concentrations of the reactants, this assumption is made in the absence of any

knowledge of reaction kinetics. This kinetic scheme allows simple conversion of

a chemical reaction to final differential equations. The equation A + B → C the
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rate of reaction is proportional to [A][B]. Therefore reaction can be modelled as:

d[A]

dt
= −k[A][B]

d[B]
dt

= −k[A][B]

d[C]
dt

= k[A][B]

The reactions below are stoichiometrically balanced with respect to the respi-

ratory substrates. In cases where the product is not tracked (such as where the

product is water, or nitrous oxide), the equations is left with a non-integer right-

hand-side.

3.1.2.1 Respiratory Substrates

Oxygen

The change in concentration of oxygen is affected by the following kinetic pro-

cesses.
∅

β−→ O2

O2 + Ca
k1−→ 2H2O + Ci

where β is the rate constant of passive diffusion (as a function of O2 concentra-

tion) of O2 into the electrode chamber. The rate constant k1 describes the reduc-

tion of oxygen by the oxygen reductase cbb3; this value depends on the concentra-

tion of reduced (i.e. active) cbb3, Ca and the concentration of O2. The differential

equation that gives the change in oxygen concentration is

d[O2]

dt
= β(1− [O2]/KO)− k1[Ca][O2] (3.1)

In isolation the first term gives rise to a simple exponential input of oxygen until

the saturation level (KO) is reached to account for diffusion into the system. The

rationale for the form of the equation is given below.

During the course of the experimental stages of this work, on occasions where

the respiring cultures had died, either through being left in essentially anaero-
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bic conditions for too long, or were treated with Chloramphenicol (which stops

all protein production in the cell), the oxygen levels in the culture media would

begin to rise slowly. This did not occur in every case, and after some further ex-

perimentation it was concluded that it probably occurs when an air bubble gets

trapped underneath the lid of the oxygen electrode chamber. To try and abate the

rate of diffusion in all subsequent experiments particular care was taken to avoid

an air bubble being trapped in the electrode chamber.

Unfortunately even with no air bubble a small amount of oxygen was dif-

fusing in, so an experiment was set up to try and quantify the rate of diffusion.

Wild-type N. meningitidis cultures were grown to various different cell densities

and left to respire aerobically. Once the cultures had used all the available oxygen

they were killed either by adding a small volume of Potassium Cyanide (50 µl of

a 50 µM solution), or by heating the culture to 95 °C for 10 minutes. Oxygen

concentrations were then recorded as the gas diffused back into the electrode

chamber.

The experimental data showed that the increasing oxygen concentration takes

the form of an inverse exponential decay and therefore can be fit very easily to

an exponential function. The exact parameters of the diffusion seem to differ be-

tween cultures but it appeared to have a dependence on the cell density whereby

lower cell densities generally had higher rates of diffusion than higher cell den-

sities, but there was no obvious direct relationship. The equation used to fit raw

data for oxygen diffusion is a 3 parameter exponential:

f (x) = c− ae−bx

In the differential equation this collapses to two parameters, the oxygen satura-

tion level, and the rate of oxygen recovery thus:

d[O2]

dt
= β(1−O2/KO)
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Integrating and separating this equation gives:

−β
t

KO
+ C = ln([O2]− KO)

⇒ [O2]− KO = Ae

(
−β

t
KO

)

⇒ [O2] = KO + Ae

(
−β

t
KO

)

Nitric Oxide

The change in nitric oxide concentration is affected by the following kinetic pro-

cesses.
NO−2 + Aa

m1−→ NO + Ai

NO + Ba
l1−→ 1

2
N2O + Bi

NO + Ca
k5−→ NO-CX

NO-CX
k6−→ NO + Ca

NO
γ−→ ∅

The equations above have a number of additional interactions in comparison to

O2. NO is created by the reduction of NO -
2 by AniA, is reduced by its dedicated

reductase, NorB, and converted to N2O which is lost from the cell, interacts with

cbb3, and is also spontaneously lost from the electrode chamber. It is assumed

that the interaction with cbb3 occurs only in a reversible manner, leading to an NO

bound and temporarily inactive form CX. There is evidence that this interaction

can also lead to permanent degradation of cbb3 via the formation of peroxynitrite

at the terminal oxidase28,125. This is not currently considered in this version of

the model. These effects are described mathematically in the equation below.

d[NO]

dt
= m1[NO−2 ][Aa]− l1[NO][Ba]− k5[Ca][NO] + k6[CX]− γ[NO] (3.2)

The rate of synthesis of NO is captured by the first term, with rate constant m1

and depends on the both the concentration of NO -
2 and reduced AniA (Aa). The
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reduction of NO is described by the next term with the rate constant l1 and also

depends on the concentration of NO and reduced NorB (Ba). Inhibition of cbb3

by NO is modelled by the 3rd component of the equation. k5 is the rate constant

describing the reversible binding of NO to cbb3 to form the inactive form of cbb3,

CX. k6 is the rate of recovery of this inhibited cbb3. γ is the spontaneous rate of

loss of NO from the electrode chamber.

Nitrite

The change in nitrite concentration is affected by the following kinetic process.

NO−2 + Aa
m1−→ NO + Ai

Which can be modelled mathematically by this equation

d[NO−2 ]
dt

= −m1[NO−2 ][Aa] (3.3)

where m1 is the rate constant for reduction of NO -
2 by reduced (active) AniA (Aa).

3.1.2.2 Electron Transporters

In addition to the rate of change of concentration of the respiratory substrates,

the model also contains information about the upstream state of components of

the transfer chain, starting from the quinone pool. The ultimate upstream source

of electrons into the respiratory chain is from NADH, but for the sake of simplic-

ity all processes prior to the quinone pool are subsumed into a simple single rate

constant. This simplification is made to avoid further complications associated

with varying metabolism and to avoid distraction from the stated primary aim of

understanding the switching behaviour of the downstream chain. The quinone

pool was chosen as the starting point because it is known that NorB draws elec-

trons directly from this point and therefore this represents the first branch in the

chain. The desire was to understand how competition for electrons at branches
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affects function and therefore the quinone pool is included in the model.

Quinones

The change in concentration of reduced quinones is affected by the following

kinetic processes.

Qi
g−→ Qa

Bi + Qa
l3−→ Ba + Qi

Xi + Qa
f−→ Xa + Qi

The differential equation that models these reactions is

d[Qa]

dt
= g([Q]− [Qa])− l3[Qa]([B]− [Ba])− f [Qa]([X]− [Xa]) (3.4)

Qa is the reduced quinone, and Q the total concentration of quinones in the sys-

tem (Qi is calculated from these two values). g represents the constant rate of

availability of electrons into the quinone pool from NADH. The reduction of

NorB by active quinones is parameterised by the rate constant l3. NorB and re-

duced NorB are given by B and Ba respectively. As the quinones also reduce the

cytochromes, this also needs to be modelled. f is the rate constant parameteris-

ing the reduction of cytochromes by the active quinones. Total cytochromes and

total reduced cytochromes are given by X and Xa respectively which are used to

calculated Xi in the kinetic process.

Cytochromes

A simplified version of cytochromes was used and therefore X actually represents

a pool of different cytochromes, cx, c4, c5 and the bc1 complex. These are amalga-

mated into one here to simplify the equations and focus on the simple branching

of the chain and competition for electrons. This is a modelling choice and it is

further discussed in Chapter 8.

The concentration of active cytochrome pool changes due to both reduction by

the upstream quinone pool and oxidation by both of the remaining downstream
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terminal enzymes can be seen in the following kinetic processes.

Ci + Xa
k3−→ Ca + Xi

Ai + Xa
m3−→ Aa + Xi

Xi + Qa
f−→ Xa + Qi

These are modelled with the following differential equation

d[Xa]

dt
= −k3([C]− [Ca]− [CX])[Xa]−m3([A]− [Aa])[Xa] + f [Qa]([X]− [Xa])

(3.5)

where k3 is the rate constant describing the reduction of the available oxidised

cytochrome c oxygen reductase (cbb3) by the quinone pool (via cx & c4). C, Ca

and CX represent the overall concentration of cbb3, reduced (active) cbb3 and NO

inhibited cbb3 respectively. m3 is the rate constant describing the reduction of

AniA by the cytochrome pool (via c5). The concentration of active cytochromes

is thus increased by their reduction by the quinone pool, but this in turn can

reduce the flux from the pool because less oxidised cytochrome is available to

accept electrons. As stated previously, the relative time scales are unknown so all

processes appear explicitly.

3.1.2.3 Terminal Reductases

Finally, the changes in concentration of reduced terminal oxidases, cbb3, AniA

and NorB are described by the following equations. All the terms present in this

section have been introduced previously. These equations could equally have

been written for the oxidised form but these can easily be recovered because it is

assumed that the total concentration of the oxidases remains constant.
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Reduced cbb3

The kinetic processes which affect the concentration of reduced (active) cbb3 are

Ci + Xa
k3−→ Ca + Xi

O2 + Ca
k1−→ 2H2O + Ci

NO + Ca
k5−→ NO-CX

NO-CX
k5−→ NO + Ca

which is described by

d[Ca]

dt
= k3([C]− [Ca]− [CX])[Xa]− k1[Ca][O2]− k5[Ca][NO] + k6[CX] (3.6)

Inhibited cbb3

The following kinetic process alters the concentrations of reversibly inhibited

cbb3.

NO + Ca
k5−→ NO-CX

k6−→ NO + Ca

which is described by

d[CX]

dt
= k5[Ca][NO]− k6[CX] (3.7)

Reduced AniA

The concentration of reduced AniA is affected by the following kinetic processes.

Ai + Xa
m3−→ Aa + Xi

NO−2 + Aa
m1−→ NO + Ai

which can be modelled by

d[Aa]

dt
= m3([A]− [Aa])[Xa]−m1[NO−2 ][Aa] (3.8)
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Reduced NorB

Changes in NorB concentration occur via the following kinetic processes.

Bi + Qa
l3−→ Qi + Ba

NO + Ba
l1−→ 1

2
N2O + Bi

and are modelled by this equation

d[Ba]

dt
= l3[Qa]([B]− [Ba])− l1[NO][Ba] (3.9)

The flow of electrons and how this relates to the parameters described above

is shown in Figure 3.1.
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Figure 3.1: Electron flow through the respiratory chain.

3.1.3 Assumptions and their Justifications

A number of assumptions were made regarding the kinetics and reactions taking

place in the model.

1. It is assumed that NO inhibits the reduced cbb3 and not the oxidised form,

since it is not expected that Nitric oxide to bind to an inactive enzyme.

This is corroborated by Giuffre et al. 126 , who show significant levels of inhi-

bition of reduced cytochrome. They do also however observe low levels of

inhibition of the oxidised enzyme also. Their experiments used cytochrome

c oxidase (aa3) rather than cbb3, but this assumption should still stand as

the enzymes are of the same family. This also implies that the model deals
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exclusively with reversible inhibition.

2. Bacterial population structure and concentration variation not considered.

The primary substrates of interest are gases and substrates which are thought

to freely diffuse in and out of the cells. Additionally the culture is kept well-

mixed at all times, thus it can be assumed that the culture is homogeneous.

3. No backwards reactions. For simplicity, backwards reactions are not in-

cluded. However they may be important, and could easily be included in a

future study with the concomitant increase in parameter count.

4. No Michaelis-Menten kinetics. Separation of time-scales cannot be as-

sumed as the rates of intermediate reaction steps are not known. Future

information regarding time-scale separation could easily be incorporated.

5. All cytochromes can be modelled as one. The main effort of modelling

was to concentrate on the position of branches in the respiratory chain. In

the same way the effects of Laz and c5 on AniA and cbb3 respectively are

ignored. They are not the prime electron donors to their terminal reductases

and contribute very little overall to the reduction25. All the electron donors

are treated as a single modelled entity.

3.2 Parameters and their Prior Distributions

None of the rate constants or concentrations which were required for this model

have previously been determined for Neisseria meningitidis, so values from other

similar organisms had to be used instead. In some cases there appears to be no

data in the literature regarding values of particular components. Table 3.1 lists

the values that have been obtained from the literature.
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Symbol Description Value Source

k1
Rate constant for O2 reduction

by reduced cbb3
415 µM−1s−1 Forte et al. 127

and Hunter 128

k3
Rate constant for cbb3 reduction

by cytochrome pool 3 µM−1s−1 Chang et al. 68

l1
Rate constant for NO reduction

by reduced NorB
0.27−

500 µM−1s−1

Rock et al. 32

and Wasser
et al. 53

l3
Rate constant for NorB

reduction by quinone pool Unknown N/A

m1
Rate constant for NO -

2 reduction
by reduced AniA Unknown N/A

m3
Rate constant for AniA

reduction by cytochrome pool
4.8±

0.2 µM−1s−1 Nojiri et al. 129

k5
Rate constant for cbb3 inhibition

by NO 100 µM−1s−1
Giuffre et al. 126

and Blackmore
et al. 130

k6
Rate constant for recovery of

NO inhibited cbb3
38 s−1 Rock et al. 20

β
Rate constant for passive

diffusion in of O2
Unknown N/A

KO Saturation O2 level 48 µM This work

g Rate of electrons in from NADH 0.8 s−1 This work

f Rate constant for reduction of
cytochromes by quinones 8 µM−1s−1 This work

γ Spontaneous loss of NO Unknown N/A

Q Concentration of quinones 0.3 µM Hedrick and
White 131

X Concentration of cytochromes ≈ 3.97 µM Deeudom 25

A Concentration of AniA 0.003−
0.03 µM This work

B Concentration of NorB 0.003−
0.03 µM This work

C Concentration of cbb3
0.003−
0.03 µM This work

Table 3.1: Model parameters. This table shows all the parameter values that have been
obtained from the extant literature, or interpolated from preliminary experiments done
during the course of this work. These values represent the initial data that is used to
populate the model, from which all subsequent parameter sets are generated. For val-
ues that show concentrations of components, they represent the value for a culture with
OD600 = 1.00.
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Variables

O2 - Oxygen concentration

This variable is always obtained directly from the experimental dataset as it indi-

cates the starting point for oxygen in the model. It is calculated from a linear re-

gression analysis of the first linear section of oxygen reduction to eliminate noise

in the data.

NO - Nitric oxide concentration, and NO−2 - Nitrite concentration

As for Oxygen concentration, these variables are simply obtained from the dataset

and the same conditions apply.

Xa, Aa, Ba, Ca, Qa - Reduced enzyme concentrations, and CX - Reversibly NO inhibited

cbb3

These values are unknown at start of simulations. They have to be lower than the

total concentrations for each enzyme, and the model enforces this. Given the rates

of reduction of these enzymes they are all set to very low values, determined from

exploratory runs of the parameter estimation algorithm. The rates of reduction

for these enzymes actually make the initial value (so long as it is low) largely

irrelevant as they reach their steady-state after only a few integration cycles.

Parameters

k1 - Rate constant for O2 reduction by reduced cbb3

A value for k1, the constant for O2 reduction by reduced cbb3 was calculated by

using the kcat value from Pseudomonas stutzeri, and the KM value from Neisseria

lactamica, which Forte et al. 127 and Hunter 128 determine are 166 s−1 and 0.4 µM

respectively. k1 can be calculated as 166 s−1

0.4 µM = 415 µM−1s−1.
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k3 - Rate constant for cbb3 reduction by cytochrome pool

k3, the rate constant for reduction of cbb3 by the cytochromes was calculated from

values obtained from the maximum reduction rate of cbb3 by cytochrome c4 in

Vibrio cholerae by Chang et al. 68 . A rate of 300 electrons transported per second

was observed with a cytochrome c4 concentration of 100 µM. This concentration

was not saturating, but there appears to be a linear relationship between rate and

concentration. It is assumed that 1 electron equals 1 reduction of cbb3, thus the

rate constant for reduction of cbb3 by cytochromes is 300 s−1

100 µM = 3 µM−1s−1.

l1 - Rate constant for NO reduction by reduced NorB

An estimate for the rate constant for NO reduction by reduced NorB can be ob-

tained from Rock et al. 32 .

They observed rates of NO reduction of 54± 6 nmol min−1mg−1 in total protein

content from dry weight. Thus the rate of NO reduction is 0.9± 0.1 µmol s−1g−1

bacterial protein. The protein content of the cells was assumed to be similar to

that of E. coli at 50% of dry weight, where each cell weighed 0.6 pg. A cul-

ture of Neisseria meningitidis with OD600 = 1 has 1 × 109 cells/ml, and the re-

action volume is 5 ml. 5 × 109 cells × 0.6 × 10−12 g × 50% × 0.9 µmol s−1g−1

results in 1.35 nmol s−1 of quinones in 5 ml, which when converted to molarity is

0.27 µM−1s−1.

Wasser et al. 53 suggest that the rate constant may be as high as 500 µM−1s−1,

although this was estimated for a cNOR type nitric oxide reductase.

l3 - Rate constant for NorB reduction by quinone pool

No information available in the literature, so the rate constant is set to 1 µM−1s−1.

m1 - Rate constant for NO-
2 reduction by reduced AniA

No information available in the literature, so the rate constant is set to 1 µM−1s−1.
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m3 - Rate constant for AniA reduction by cytochrome pool

The value for m3, the rate constant for reduction of AniA by cytochromes, is the

observed electron transfer rate between the equivalent cytochrome and nitrite

reductase from Achromobacter xylosoxidans. A value of 4.8 ± 0.2 µM−1s−1 was

observed during stopped-flow experiments by Nojiri et al. 129 .

k5 - Rate constant for cbb3 inhibition by NO

Giuffre et al. 126 and Blackmore et al. 130 showed with cytochrome c oxidase that

NO could bind reversibly and inhibit the activity of the enzyme. The rate constant

they calculated was 108 M−1s−1. An assumption was made that even though the

enzyme is different, its NO binding characteristics would be similar to that of cbb3

as it is of the same family.

k6 - Rate constant for recovery of NO inhibited cbb3

Giuffre et al. 126 calculated a half-life of t½≈ 80 min, however without any con-

crete values for concentration of CX-NO this cannot be used to calculated a rate

constant. Rock et al. 20 observed the apparent Ki and calculated it to be 380 nM

at 50 µM O2. Since Ki =
k6
k5

, a value for k6 can be estimated as k6 = Ki × k5 =

0.38 µM× 100 µM−1s−1 = 38 s−1.

β - Rate constant for passive diffusion in of O2, and KO - Saturation O2 level

The parameters obtained from fitting oxygen diffusion data showed a small dif-

ference in KO between cell densities, thus KO = 48 µM was selected as the stan-

dard value for this parameter. β differed more between the experiments thus in

the parameter estimation system it is not fixed and allowed to be modified freely.

An example of the experimentally observed diffusion rates are shown in Figure

3.2. KO is the apparent saturation concentration of Oxygen in the respiring cul-

ture and forms part of the exponential diffusion equation mentioned earlier in

this chapter.
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Figure 3.2: Oxygen Diffusion Rates. This figure shows experimentally observed rates
of oxygen diffusion back into the electrode chamber. An exponential decay function has
been fitted to the green dataset and produces the KO value (the effective saturation con-
centration) of ≈ 48 µM.

g - Rate of electrons in from NADH (or rate of reduction of quinones)

This value is unknown, but initial runs of the algorithm suggest the value to be

about 0.8 s−1.

f - Rate constant for reduction of cytochromes by quinones

Snyder et al. 63 showed by reducing yeast cytochrome bc1 by using 25 µM mena-

quinol the rate constants were 7.9 s−1 for cytochrome b, and 1.55− 6.9× 105 M−1s−1

for cytochrome c1 (second order). However preliminary tests showed that a value

of 8 µM−1s−1 was more appropriate.
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γ - Spontaneous loss of NO

This value is assumed to be the same as the β, the rate constant for oxygen dif-

fusion in across the liquid-gas barrier, as this is simply the reverse, given the

physical similarity of Nitric Oxide and Oxygen.

Q - Concentration of quinones

Q, the concentration of quinones was calculated based on data from Hedrick and

White 131 . The protein content of the cells was assumed to be similar to that of

E. coli at 15% of wet weight, where each cell weighed 2 pg, and that there were

1µmol of respiratory quinones per g of bacterial protein132. A culture of Neisseria

meningitidis with OD600 = 1 has 1× 109 cells/ml, therefore there are 1.5 nmol of

quinones in 5 ml culture (5× 109 cells× 2× 10−12 g× 15%× 1 µmol/g), converted

to molarity is 0.3 µM.

X - Concentration of cytochromes

Deeudom 25 suggests that the total cytochrome concentration (inc. cbb3) is about

4 µM in Neisseria meningitidis. Thus subtracting the value for C leaves a concen-

tration of ≈ 3.97 µM.

A, B, C - Concentration of Respiratory enzymes

Given the lack of concrete values for these parameters, the assumption is that all

the respiratory enzymes are present in roughly equal quantities. Based on the

values given for Q above, there are 1.5 mg of cell protein in 5 ml of OD600 =

1 culture. cbb3 is thought to be about 0.1%-1% of the total cell protein and is

approximately 100 kDa in molecular weight. Therefore converting these values

to molarity gives a concentration of approximately 3-30 nM.
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3.3 Solving Ordinary Differential Equations

The model equations (given previously) are solved in parallel using the com-

mon 6th order Runge-Kutta-Fehlberg algorithm for integrating ordinary differ-

ential equations133. Adaptive step-sizes were implemented using the Cash-Karp

method134. The adaptive step size system was required as it prevented the in-

troduction of systemic numerical instabilities (see appendix for further details of

why this was necessary).

3.4 Implementation of the Model in Software

The parameter estimation system and ODE solver were a bespoke implementa-

tion written in Java. The Runge-Kutta algorithm was modified from that found in

Numerical Recipes in C135. A custom implementation was written rather than us-

ing off the shelf systems for solving ODEs and parameter estimation as maximum

flexibility was required for integrating the two techniques (parameter estimation

and ODE solving), and it allowed adaptation of the code to the requirements

more quickly and more easily. Alternative systems are available such as CO-

PASI102, but with more limited scope for customisation and integration of tech-

niques.

The implementation of the model has no constraints on respiratory substrate

concentration, thus allows the altering of these concentrations whilst solving the

equations. This ability means that the switch between aerobic and anaerobic res-

piration can be examined synthetically, and the model is also capable of simu-

lating how the respiratory system responds to the sudden addition of substrates

such as Nitric Oxide. More complicated methods are possible, but given the high

diffusion of the substrates concerned as well as the deliberate injection of the rele-

vant substrate this method was a simpler and reasonable mimic for my empirical

method. This ability was an absolute requirement, as in order to fully parame-

terise the model it was necessary to isolate sections of the model, which required
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adding aliquots of respiratory substrate during respiration.

3.5 Parameter Estimation

Estimating the parameter values for the components in the mathematical model

involved comparing the biological results with those produced by solving the

ODEs and adjusting the parameter values to minimise the difference between the

two results. The different methods for parameter estimation that were investi-

gated are detailed in Chapter 4.
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Chapter 4

Parameter Estimation Methodologies

4.1 The Challenge of Parameter Estimation

Parameter estimation is a technique that attempts to estimate the values of a set

of parameters based on measured data. This involves creating an estimator - an

algorithm that generates new parameter estimates - and some form of calculation

to assess how good the estimate is. The model being discussed in this thesis has a

large number of unknown values which need to be estimated and it was not clear

what values many of these parameters should take, or even if the initial values

used are close to the “true” values. Given the inherent variability of experimental

data in biology, point estimates for parameters are not going to be representative

of the true state of that parameter unless a near infinite number of datasets are

analysed. Thus the output of the parameter estimation needed to be a proba-

bility distribution, with probability densities that reflected the probability of the

parameter taking on a particular range of values. Another requirement of the

estimator is that it needs to be able to select new estimates based on prior prob-

ability distributions, since some information about certain parameters is known

beforehand, and this knowledge will improve as more datasets are analysed.

These requirements lend themselves well to Monte-Carlo type methods, which

produce output which can be represented as a probability distribution and can be

selected from a prior probability distribution.
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4.2 Methods and Algorithms Used

Below are the various different methods for parameter estimation that were in-

vestigated during the course of this work. All of these methods involve a sam-

pling system that attempts to select parameter values which minimise the differ-

ence between the simulation result and the experimental data by using a differ-

ence function. The main difference between the parameter estimation method-

ologies laid out below are the ways in which they generate new parameter val-

ues, either from a probability distribution or based on the previous value, and

the way this is applied and tested against the experimental data. The aim of the

parameter estimation methodology was to achieve an output from the difference

function that was as close to zero (perfect fit/no difference) as possible. The value

produced by the difference function is hereby referred to as the Goodness of Fit or

F value, with larger values representing worse fits to the experimental data. The

methods and algorithms are presented here in chronological order of use during

this work.

4.2.1 Difference Functions

Two different difference functions were used to calculate the F value. One was the

sum of the Least Squares Differences between the measured components in the

experimental data and the simulation result. This was used in early parameter

estimation runs.

F =
n

∑
j=1

(√
m

∑
i=1

(∆xij)2

)
(4.1)

Where j is the current component, n the number of components, i the current data

point, m the total number of data points and (∆xij)
2 the square of the residuals

between the experimental and simulated data for componenet j at data point i.

Therefore the F value becomes “the sum of the squares of the residuals for each

data point for each parameter.”
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The second method for calculating the F was a log-likelihood. This method

assumes that there is Gaussian error in the experimental dataset, and that the

variance of this error is known. This method calculates the likelihood of the simu-

lated data falling under a normal distribution which has the experimental data as

its µ, and a preset error value as its σ. The method was used as it allowed tuning

of the σ value, which provided more control over how new parameter sets were

accepted. The lower the value of σ, the closer the simulated data needs to be to

the experimental data to achieve a low F value. This function serves 2 purposes:

it can be used as a measure of how close the simulated data is to the experimental

data, and can also be used as the likelihood function in a Metropolis-Hastings

type Monte-Carlo scheme.

F =
n

∑
j=1

(
m

∑
i=1

ln(norm(x1, µ1, σ))− ln(norm(x2, µ2, σ))

)
(4.2)

Where j is the current parameter, n is the number of parameters, i is the current

data point, m is the total number of data points, norm is a function that accepts

3 arguments (x, µ, σ) and returns the probability density associated with x in a

normal distribution with parameters µ and σ (the probability of a continuous

parameter taking on a particular value is zero), x1 and µ1 are zero, x2 is the solved

value at data point i for parameter j, µ2 is the experimental value at data point i

for parameter j and σ is the preset standard deviation.

x1 and µ1 are set to zero because this likelihood calculation can also be used

on the time axis in addition to the value axis. Since there is no time uncertainty

in the data, this can be ignored by setting these values to zero and the equation

becomes:

F =
n

∑
j=1

(
m

∑
i=1

ln(norm(0, 0, σ))− ln(norm(x2, µ2, σ))

)
(4.3)

The value for σ is determined such that the first few iterations of parameter

estimation generate very high F values (with the knowledge that this will always

decrease) subject to the computational limits imposed by floating point precision
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(values of σ which are too low generate nonsensical F values).

In most cases the components used for calculating the likelihood are Oxygen

and Nitric Oxide, as these were the primary measured chemicals.

4.2.2 Monte Carlo Methods

A brief section is included here to describe Monte Carlo Methods, as the tech-

niques used for parameter estimation all use this method as their estimator in

some form. “Monte Carlo Methods” is a generalised term to describe a stochastic

technique that makes use of random numbers to examine a problem in conjunc-

tion with probability statistics. Monte Carlo Methods allow modelling of complex

systems without having to exhaustively search every possible outcome. Large

systems are sampled in random configurations and that data applied in such a

way that it can be used to describe the system as a whole. “Monte Carlo tech-

niques are often the only practical way to evaluate difficult integrals or to sam-

ple random variables governed by complicated probability density functions”136.

The generalized form of Monte Carlo Methods involves generating a set of ran-

dom numbers which conform to a particular probability distribution (depending

on the problem) and observing the fraction of those numbers which fulfil a par-

ticular set of properties (when transformed by some algorithm). The larger the

number of random numbers generated, the more useful the output.

As a simple example, the value of π can be estimated using a Monte Carlo

method. With the prior knowledge that π
4 is equal to the area of a circle with

diameter d, divided by the area of a square with sides d (see appendix), the value

of π can be estimated simply by generating uniformly distributed random points

on the square and the counting the number that also lie inside the circle. The

value of π is 4× number of points in circle
total number of points . The estimate for the value of π improves

with the number of points (and in this case converges slowly on the true value).
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4.2.2.1 Markov Chain Monte Carlo

Markov Chain Monte Carlo algorithms use Monte Carlo Methods to create a

Markov chain whose stationary distribution is the desired (posterior) distribu-

tion. Markov Chains are sequences of states where state xt+1 depends only on

state xt. Given suitably large numbers of iterations, the chain will forget the ini-

tial state (x0) and the resulting chain will represent the posterior (stationary) dis-

tribution. This distribution won’t depend on either t or x0
137. The states in the

chain prior to arriving at the stationary distribution are known as “burn in” and

are discarded, and the stationary distribution is the usable output which can then

be converted into a more convenient format to use as a posterior probability dis-

tribution.

4.2.3 Simulated Annealing

This technique was described independently by Kirkpatrick et al. 138 and Černý 139 .

The name comes from the metallurgical annealing process whereby large crystals

are formed while a material is slowly cooled. The slow cooling increases the prob-

ability of individual crystals obtaining lower energy states than the initial. As the

material cools the “distance” each crystal can move along the energy landscape

decreases. In a simulated annealing algorithm, “distance” is controlled by a per-

turbation kernel which takes the “temperature” as input to change how much

each parameter can be perturbed. Simulated annealing “consists of a discrete-

time inhomogeneous Markov chain”140 whereby the previous state is modified

with a perturbation kernel (the neighbouring states) and then accepted or rejected

using a transition probability which depends on the current temperature and the

energies of the previous and current states. The advantage of this scheme is that

areas of local minima have a lesser effect on the outcome of the Markov chain as

the high initial temperature allows for the chain to “jump” out of these minima.

Simulated annealing could be considered an adaptation of stochastic hill climb-

ing. Figure 4.1 contains some simple pseudo-code which shows how this some-
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c1 = c0;
c2 = mutate(c1);
i = 0;
while i < i_max

if fitness(c1) > fitness(c2)
c2 = mutate(c1)

else
c1 = mutate(c2)

i = i + 1
if fitness(c1) > fitness(c2)

return c1
else

return c2

Figure 4.1: Pseudo-code showing how stochastic hill climbing works. Simulated an-
nealing alters this algorithm by having an annealing temperature which alters the prob-
ability of a parameter set being accepted.

what similar algorithm works. This will provide a “best” parameter set, but there

is no information about the possible spread of values in the parameter set. A

spread, or distribution of values that can describe the system is required because,

although there may be a be a particular parameter vector value that can accu-

rately describe the system, it is very unlikely that there will be enough data to

determine it. To this end a modified version of simulated annealing was used

integrated with aspects of a simple genetic algorithm. In the genetic algorithm

paradigm a synthetic “chromosome” is created which contains “genes” repre-

senting the parameters in the simulation. These include the rate constants, con-

centrations of various components and initial concentrations of substrates and

products. This chromosome is then copied and perturbed several times (depend-

ing on the eventual population size required), with the size of the perturbation

being dependent on the current annealing temperature. For instance the highest

temperature could indicate that the individual parameters can be perturbed by

up to ±10%, and as the temperature decreases the perturbation percentage has a

concomitant decrease. An example annealing temperature schedule is shown in

Figure 4.2. The annealing temperature is programmed to decrease after a defined

number of iterations such that the magnitude of individual mutations becomes

smaller as the simulation progresses. This should have the effect of honing in on
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Figure 4.2: Example simulated annealing temperature schedule. This represents how
the annealing temperature changes as the annealing process progresses. Temperature
is denoted by the y-axis value, and simulation progress by the x-axis value. This is a
heavily compressed time-frame, as in reality the system would normally process 10,000
sets of parameters at each annealing temperature.

a set of parameters with a better fitness value. Once the chromosome popula-

tion has been created, 2 are selected at random and their fitness values evaluated,

in this case by the Least Squares Difference method. The chromosome with the

lowest fitness value is discarded and the other is cloned and perturbed. The two

chromosomes are then added back to the chromosome population. The genetic

algorithm is used to improve the parameters sets by perturbing genes (individ-

ual parameters) from fit chromosomes (complete parameter sets), re-running the

simulation and discarding unfit parameter sets. An unfit parameter set is defined

as one with a fitness value lower than the highest so far. This technique involves

having two chromosomes selected at any one time. The parameters from each

chromosome are simulated and the least fit one is discarded. At this point the

contents from the fitter chromosome are cloned and perturbed, and the cycle is

repeated. Figure 4.3 shows this diagrammatically. After many cycles (upwards
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Figure 4.3: Schematic diagram showing the technique used to generate a spread of
parameters using a synthetic chromosome. The parameters are loaded as genes on the
chromosome which are then perturbed, 2 chosen and the fittest kept and perturbed. Each
time a chromosome is perturbed it is reintroduced into the chromosome pool, and the
next 2 chromosomes are chosen at random.

of 1000) the chromosome pool should only contain the best fitting parameter sets

to the experimental data. The spread of the parameters can be used to infer the

sensitivity of the simulation to changes in parameter values in a similar way to

that described by Toni et al. 141 .

This algorithm was rejected as unsuitable as it seemed to be incapable of set-

tling on solutions to the Nitric Oxide reduction datasets during testing. Addi-

tionally this technique does not produce probability distributions which were

eventually required to incorporate data from previous datasets.

4.2.4 Approximate Bayesian Computation by Sequential Monte Carlo

“Approximate Bayesian Computation methods have been conceived with the

aim of inferring posterior distributions where likelihood functions are compu-

tationally intractable or too costly to evaluate. They exploit the computational
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efficiency of modern simulation techniques by replacing calculation of the likeli-

hood with a comparison between the observed data and simulated data”141.

To incrementally improve the parameter sets, a version of Bayesian inference

is used in conjunction with a standard Monte Carlo method in a system called

Approximate Bayesian Computation by Sequential Monte Carlo (ABCSMC) as

described by Toni et al. 141 . An implementation of algorithm (S) was used from

that paper.

Bayesian Inference - This is a statistical method for inferring the probability of

a hypothesis based on available evidence. As more evidence is accumulated, the

inference is updated and the probability of the hypothesis being true is changed.

Given enough evidence, the probability of the hypothesis being true should ei-

ther be very high or very low causing you to either accept or reject the hypothesis.

Bayesian inference relies on having a prior probability (or probability distribu-

tion) for the hypothesis, and this can inevitably introduce a level of bias into the

inference. Bayesian inference can be described thus:

P(H | E) =
P(E | H)

P(E)
· P(H) (4.4)

• P(H | E) is the posterior distribution of H given E.

• P(H) is the prior distribution

•
P(E | H)

P(E)
is the impact of E on the degree of belief in H.

A simplistic example of using Bayesian inference to alter a hypothesis could

happen in the case of having two jars of sweets. Jar 1 has 15 strawberry sweets

and 25 raspberry sweets. Jar 2 has 20 of each. Supposing a third party selects 1

sweet at random from 1 of the jars. They select a strawberry sweet, what is the

probability that it came from Jar 1? From the point of view of our third party both

jars are identical, therefore P(H1) = P(H2) and the total probability must equal

1, so the prior probability of each jar is 0.5. The observation, E is of a strawberry

sweet, which we can then use to calculate the likelihood of it being from each jar
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individually by P(E | H1) = 15/40 = 0.375 and P(E | H2) = 20/40 = 0.5. The

Generalised Bayes formula can then be used to work out the probability of the

strawberry sweet being from jar 1, that is P(H1 | E).

P(H1 | E) =
P(E | H1)P(H1)

P(E | H1)P(H1) + P(E | H2)P(H2)

=
0.375× 0.5

0.375× 0.5 + 0.5× 0.5

= 0.429 (4.5)

Before the observation of the sweet, the probability of the third party taking

from jar 1 was the prior probability of 0.5. After the observation this probability

must be revised to 0.429.

Bayesian inference is widely used in computational analysis for artificial in-

telligence and email spam identification. It is also used in the field of population

genetics and phylogenetics142.

Approximate Bayesian Computation - This is a method for doing approxi-

mate Bayesian inference which allows approximately the same inferences to be

made, with considerably less computation. It also enables approximation of pos-

terior values within the Bayesian scheme. It operates on summary statistics of the

datasets rather than the datasets themselves. Common examples are population

mean and variance. The summary statistic needs to be a sufficient statistic, that

is, the sample from which the statistic is calculated provides no additional infor-

mation than does the statistic. This is useful for large complex datasets where the

probability of a simulation of the dataset matching the original is very small (un-

acceptably so), in this case a summary statistic of the datasets can be used, and

the difference calculated. If the difference is less than a pre-defined acceptance

threshold, then the simulated dataset is accepted. ABC originally came from the
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fields of population and evolutionary genetics143, but is now being applied to

complex and stochastic dynamical systems141,144,145.

ABC differs from standard Bayesian inference shown in Equation 4.4 in that

the likelihood term does not need to be calculated. Instead the difference between

the summary statistics of the observed data and the simulated data is used. The

simulated data is considered an acceptable sample from the posterior distribu-

tion if the difference in summary statistics is less than a predefined acceptance

threshold. The most basic ABC methods takes the following form:

θ is a parameter vector to be estimated, π(θ) is the prior probability distribution,

and x is the observed data. The posterior distribution is π(θ | x) ∝ f (x | θ) ·π(θ).

1. Create a candidate parameter vector θ∗ from the prior distribution π(θ).

2. Simulate dataset x∗ using the model and parameter vector θ∗.

3. Compare x∗ with x using a distance function d and an acceptance criteria ε.

If d(x, x∗) ≤ ε, accept θ.

Given a low enough value for ε, the output distribution should approximate

the true posterior distribution if sampled a large enough number of times.

Sequential Monte Carlo - This is a method of particle filtering whereby a large

set of samples (N) are drawn from the prior distribution, and for each sample,

the probability is calculated. Weights for each particle are assigned based on the

probabilities, and these affect how likely a particle is to be selected in subsequent

rounds of selection. At the end of each round, the posterior distribution of the N

particles becomes the prior distribution for the next round.

Approximate Bayesian Computation by Sequential Monte Carlo - This com-

bines the previous two methods by drawing a large number of particles from

the prior distribution using Bayesian inference. The prior distribution is a dis-

crete approximation to a continuous distribution in the scheme used here (algo-

rithm S1 from Toni et al. 141), so a perturbation kernel based on a Laplacian or

Gaussian distribution is used on each sample to provide small deviations to bet-
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ter approximate a continuous prior distribution. Each sample is simulated and

only accepted if it exceeds the acceptance threshold. This is calculated based on

the least-squares difference (LSD) between the simulated data and the original

dataset. If a sample is rejected, a new one is drawn from the prior distribution

and SMC then continues as described above. The weights of the accepted sam-

ples are calculated based on the probabilities of being selected from the prior and

the samples go on to form the posterior distribution. For each subsequent round,

the mean LSD of the posterior distribution from the previous round is used as the

acceptance threshold. This ensures that each round results in better fitting param-

eter sets. The cycle is then repeated until a pre-defined cycle limit is reached141.

The above description shows one particular method of performing ABCSMC, but

it should be made clear that this is not the only method.

A significant advantage of this technique is that it is readily parallelisable, as

each particle in the SMC process is independent, thus can be simulated in paral-

lel. This advantage is not unique, as many other sampling approaches are paral-

lelisable also. A parallel version of this algorithm was implemented in the JAVA

programming language which resulted in significant speed-ups when multiple

processing threads can be used. The threading manager means that the algo-

rithm is theoretically most efficient (in terms of computational time) when the

number of particles is an exact multiple of the number of processing threads. In

practice however this is negated by the fact that some particles require multiple

samples due to them not meeting the acceptance criteria.

This algorithm was rejected on the grounds that it seemed incapable of set-

tling on sensible posterior distributions with some datasets. It is suspected that

the distance function used was causing a conflict which meant the algorithm was

accepting bad parameter sets and rejecting good ones. The requirement of a suit-

able distance function or summary statistic is a major disadvantage of this algo-

rithm.
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4.2.5 Metropolis Hastings Monte Carlo

The Metropolis-Hastings algorithm is a Markov Chain Monte Carlo method to

retrieve sequences of random samples from a probability distribution which can-

not be sampled directly (or would be very difficult). The algorithm was originally

developed by Metropolis et al. 146 for generating samples from the Boltzmann

distribution. It was later extended to a more general form for any distribution by

Hastings 147 .

This algorithm used in this work is much simpler than the previously de-

scribed ABCSMC and takes the following form as similarly described by Chris-

tensen et al. 148 :

An initial vector of starting parameters Xt is used to generate a new vector

of parameters X∗ using a proposal density q(X∗ | Xt). p(X) are the prior prob-

ability distributions for each X[ ], which in this implementation are represented

by histograms with 1000 bins of equal width. These will return the probability

of a value based on which bin it falls into. D is the experimental data. The new

candidate vector X∗ is accepted with probability

α(X∗ | Xt) = min
{

1,
p(X∗)p(D | X∗)q(Xt | X∗)
p(Xt)p(D | Xt)q(X∗ | Xt)

}

In this case, the proposal density was chosen to be symmetric by using a lapla-

cian distribution which depends on the current value of Xt. The laplacian distri-

bution also appeared to be the most efficient proposal density for this model.

Thus q(Xt | X∗) = q(X∗ | Xt) and these cancel out of the acceptance ratio equa-

tion. The acceptance ratio allows for a more probable (based on the prior) X∗ to

be accepted even if the results are worse, and allows a better set of results to be

accepted even if X∗ is less probable. If both are better/more probable then X∗ is

always accepted.

The steps used in the Metropolis Hastings algorithm implemented here are as

follows:
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1. Start with dataset D and initial parameters Xt where t = 0

2. Propose a new X∗ using the proposal density q(Xt → X∗)

3. Generate D∗ from the model using parameters X∗

4. Calculate an acceptance ratio α(X∗ | Xt)

5. Accept X∗ with probability α(X∗ | Xt) else stay at Xt, then return to 2.

The likelihoods, p(D | X) are Gaussian in nature as described previously as it

is assumed that there is Gaussian noise in the experimental data. Thus it is easy

to calculate a Gaussian likelihood using Equation 4.3 and adjusting for the fact

that it produces a log-likelihood value.

This algorithm has several advantages, in that it was simple to implement,

generated the required probability distributions and didn’t require complex func-

tions to determine acceptance. Its only major disadvantage was that it was an

unparallel algorithm, thus it was quite slow as each iteration depended on the

results of the previous.

This algorithm represents the central technique of this work, and although

not a novel technique it requires original work which has been mentioned above

(choice of proposal distribution) and is mentioned later in this work (length of

chains, convergence criteria etc.).

4.3 Validating the Parameter Estimation Algorithm

The Metropolis Hastings Monte Carlo algorithm was validated by using a much

simpler ODE system than is required by the respiratory model, to make sure it

was capable of parameter estimation and producing the necessary output for cre-

ating probability distributions. The simpler ODE system selected was the Lotka-

Volterra model as this can be tested much more quickly by virtue of having far

fewer parameters to estimate (4 as opposed to >20) and has only 2 differential

equations to solve. The Lotka-Volterra model describes a simple predator-prey
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relationship149,150 and only requires two first-order, non-linear differential equa-

tions, which are shown in equation 4.6.

dx
dt

= x(α− βy)

dy
dt

= −y(γ− δx) (4.6)

The algorithm was validated by generating a dataset using the Lotka-Volterra

equations with a known set of parameters. The dataset was generated using

the same ODE solving equations described in Chapter 3 for 1000 generations.

The Metropolis Hastings algorithm was given uniform distributions to sample

from for each of the priors (this means that there is more-or-less no sampling

distribution), and the acceptance criteria for each iteration were based upon the

log-likelihood (described previously) values between the input dataset and the

solved output from the new parameters. The algorithm was allowed to continue

for 10000 iterations, generating 4 Markov-Chains of length 10000. During this

time the algorithm will be altering the 4 input parameters trying to improve them

based on the log-likelihood values produced. The resulting Markov Chains were

likely to represent the stationary or posterior distributions of the 4 parameters

and were very close to the true values from the input data.

Given the simplicity of this system, a particularly bad set of initial parameter

estimates (i.e. x0 as described previously) were given to exaggerate the burn in

period, and to show that given a long enough time the algorithm will eventually

settle on “correct” values. This validation step also informs the likely values for

two tuning variables in the algorithm; the acceptance - how stringent the algorithm

is on accepting new parameter sets, which is the σ value of the log-likelihood cal-

culation, and the internal sigma value - this describes the magnitude of parameter

perturbation at each iteration. The graphical results of the Lotka-Volterra valida-

tion are shown in Figures 4.4 and 4.5. Figure 4.4 shows the generated validation

data compared to the solved output from the parameters at the end of the Markov

87



CHAPTER 4. PARAMETER ESTIMATION METHODOLOGIES

0 100 200 300 400 500 600 700 800 900 1000
Generation

1

2

3

4

5

6

Po
pu

la
tio

n

Simulated X
X
Simulated Y
Y

Lotka-Volterra Simulation
a = 7, b = 2, c = 6, d = 3.5

Figure 4.4: Simulation results of the Lotka-Volterra validation run.

Chains. Figure 4.5 shows a plot of the 4 Markov Chains generated by the MHMC

algorithm. The initial 3000 generations are the burn-in and represent the region

of the Markov Chain where the algorithm is trying to converge on the stationary

distribution. The region beyond 3000 generations is likely to be the stationary

distribution and this can be used to calculate a posterior probability distribution.

The results of this validation show that the algorithm is capable of parameter

estimation and can produce output that is compatible with generating probabil-

ity distributions. The comparison of the Lotka-Volterra data shows that the algo-

rithm could have been run for more iterations as the solved output doesn’t quite

match the generated input data. The Markov Chains show that the algorithm has

stabilised on values very close to the “true” values of the input data.

88



CHAPTER 4. PARAMETER ESTIMATION METHODOLOGIES

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iteration

0

1

2

3

4

5

6

7

8

9

10

Pa
ra

m
et

er
 v

al
ue

a
b
c
d

Lotka-Volterra parameter search by Metropolis-Hastings

Figure 4.5: MHMC results of the Lotka-Volterra validation run. Note the initial burn-in
period followed by the distribution trajectory. True parameter values are indicated by
dashed lines in matching colours.

4.4 An Integrated Parameter Estimation Scheme Combining MHMC With Bayesian

Inference

In order to correctly parameterise the complex model being investigated it would

have been impossible to use a MHMC-based parameter estimation algorithm

alone, since it would be difficult to generate dataset which could provide enough

information to estimate all the parameters at once. This being the case the param-

eter estimation algorithm was combined with a Bayesian approach to generating

the proposal/prior distributions. Each run of MHMC will generate a Markov-

Chain which can be used to calculate a posterior probability distribution for each

parameter. These posterior probability distributions could be used to inform a

subsequent round of parameter estimation in a Bayesian manner by using these

distributions as the proposal/prior distributions for that subsequent round. This

approach relies on the overall problem being able to be broken down into smaller
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problems which add increasing amounts of information. Thus the initial round

of parameter estimation may only be estimating a small percentage of the total

number of parameters, but the posterior probability distributions generated can

be used as informed prior probability distributions for a second round of parame-

ter estimation which includes more parameters. The entire scheme is represented

visually in Figure 4.6.

4.5 Implementing the Integrated Scheme

As described previously, one dataset alone is not sufficient to provide enough

information to be able to parameterise the model. In order to correctly perform

Bayesian informed parameter estimation, the mathematical model needed to be

separated into simpler units which could more easily be described by specific sets

of experimental data. These simpler units would each provide information on a

subset of the total number of parameters in the model.

The model was separated such that the simplest parts could be parameterised

first. In this case, the simplest section of the model was those equations which

describe oxygen respiration. This only requires one enzyme (although it does

still require the electron transport chain). This section of the model also has the

simplest experimental dataset.

These simplified datasets are parameterised, with each dataset analysed at

least 10 times, generating at least 10 Markov Chains per parameter. These repeats

are performed to provide statistical significance by reducing bias that could be

introduced by using only 1 Markov Chain.

After this section of the model has been parameterised, posterior probability

distributions are calculated, new sections are added and the process (shown in

Figure 4.6) repeated, until all of the parameters have been estimated.

At this point the output probability distributions should be representative of

the true parameter values for all the components in the model, subject to certain

caveats such as the fact that parts of the model are simplified. These probabil-
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CHAPTER 4. PARAMETER ESTIMATION METHODOLOGIES

ity distributions should be accurate enough that they can be used to predict the

behaviour of the biological system in vivo.
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Chapter 5

Oxygen Reduction in N. meningitidis

5.1 Reduction of Oxygen

5.1.1 Introduction

The first dataset used in the iterative approach to parameter estimation was of

a simple oxygen reduction experiment carried out in aerobic conditions. This

dataset is the simplest biologically as under aerobic conditions and without the

presence of any microaerobic substrates (nitrite or nitric oxide) the only respira-

tory pathway that is active is the oxygen reducing one. Additionally, the other

parts of a respiratory chain influence the oxygen reducing pathway either by

competing for electrons, or chemically inhibiting it. The relevant portions of the

ETC are shown graphically in Figure 5.1.

The equations that describe this portion of the ETC are:

d[O2]

dt
= β(1− [O2]/KO)− k1[Ca][O2]

d[Qa]

dt
= g([Q]− [Qa])− l3[Qa]([B]− [Ba])− f [Qa]([X]− [Xa])

d[Xa]

dt
= −k3([C]− [Ca]− [CX])[Xa]−m3([A]− [Aa])[Xa] + f [Qa]([X]− [Xa])

d[Ca]

dt
= k3([C]− [Ca]− [CX])[Xa]− k1[Ca][O2]− k5[Ca][NO] + k6[CX]

These equations describe the change in concentration of oxygen over time, which
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UQNADH 

Dehydrogenase
bc1
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Figure 5.1: Oxygen reducing electron transport chain of N. meningitidis. This shows the
complete electron transport chain of Neisseria meningitidis with the components irrelevant
to oxygen reduction greyed out. In the mathematical model all of the purple elements
(cytochromes) are amalgamated into one entity.

is the experimentally observable value, the reduction state of the quinone pool

and the reduction state of the cytochrome “pool”. This portion of the model

involved 8 parameters which were to be estimated. This large number of pa-

rameters will clearly result in over-fitting, but in the Bayesian scheme this was

necessary to generate loose bounds for all of the parameters.

5.1.2 Experimental Results

Generation of oxygen reduction datasets required the growth of MC58 (wild-type

Neisseria meningitidis) in aerobic conditions until mid log-phase growth had been

achieved. This corresponds to an OD600 of 0.3-0.9 and usually required an in-

cubation period of roughly 3 hours. Once the required cell density had been

obtained, the culture was transferred to the oxygen electrode chamber and the

oxygen concentration recorded as the culture respired. At this point the cells

are only using whatever amount of oxygen is presently dissolved in the culture

medium in addition to that diffusing in through the cap (negligible). Once the
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Figure 5.2: Highly repeatable oxygen reduction. This shows an oxygen reducing culture
being repeatedly aerated after oxygen depletion with very similar rates of subsequent
oxygen reduction

culture had used up all its dissolved oxygen, the electrode chamber cap was re-

moved and the culture medium aerated using a Pasteur pipette. This restores

oxygen levels throughout the culture and allows the bacteria to continue respir-

ing in aerobic conditions. A typical oxygen reduction plot is shown in Figure 5.2.

This is split into individual reduction sections, which can then be used as input

data for parameter estimation. In many cases if the culture is allowed to become

completely anaerobic for a prolonged period of time, the bacteria will die, evi-

denced by a subsequent lack of oxygen reduction, however this is not always the

case as shown in Figure 5.3.

The experiments used to generate data for oxygen reduction are highly re-

peatable and consistently generate the same basic result of a linear reduction of

oxygen with time.

The oxygen reduction datasets generated and used for parametrising this por-

tion of the mathematical model are shown in Figure 5.4.
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Figure 5.3: Aerating oxygen reducing cultures with significant delay. The oxygen re-
ducing ability of N. meningitidis can be robust as evidenced by the 1000s delays between
aeration with no change in subsequent respiration rate. Also of note is that nitric oxide
concentration is not changing, suggesting that reduction of nitrite is not occurring either.

96



CHAPTER 5. OXYGEN REDUCTION IN N. MENINGITIDIS

0 100 200 300 400 500 600 700 800 900 1000
Time (s)

0

25

50

75

100

125

150

175

200

µ
M

O
xy

ge
n

Dataset 1
Dataset 2
Dataset 3

Oxygen Reduction in Neisseria meningitidis

Figure 5.4: Oxygen Reduction in Neisseria meningitidis. These three experimental
datasets were used as input data for the parameter estimation algorithm. They all show
the same linear oxygen reduction. The different rates are due to differing starting cell
densities. The specific rates are very similar at 1.5 µMs−1 per OD unit.

97



CHAPTER 5. OXYGEN REDUCTION IN N. MENINGITIDIS

5.1.2.1 Generation of Prior Probability Distributions

In accordance with the integrative scheme that was introduced in Chapter 4, an

attempt was made to estimate the distributions of the parameters involved in

modelling these data. In order to do this probability distributions were needed to

act as priors to feed into the estimation system as this is required for a Bayesian

approach. These probability distributions were generated from data obtained in

the published literature, which is described in Chapter 3, and preliminary ex-

perimental data. It was assumed that all the prior probabilities would be log-

normally distributed, therefore the distributions used were created under the fol-

lowing scheme:

• Where the literature value had bounds associated with it (i.e. published

with ± values), the bounds were assumed to cover 3σ of the normal distri-

bution. Thus the variance used for the lognormal distribution is
(

bounds
3

)2

with narrow upper and lower limits.

• Where the literature value has no bounds associated with it (i.e. published

as a single figure), the bounds were assumed to be ±10% of the literature

value, and this was used as σ. Wider upper and lower limits were used in

these cases.

• Where there are no literature values available, the value was estimated

based on preliminary experimental data and bounds of ±10% were used

again. In this case upper and lower limits for the distribution were made

very wide to try and accommodate for incorrect assumed prior values.

The distributions were created as histograms with 1000 bins, thus the limits de-

scribed above actually represent the cut-off values at the lower and upper ends

of the histogram. The sampling algorithm that uses these histograms rejects any

sample that is outside the range of the histogram (even if in reality it will have an

exceptionally small but non-zero probability). This means that the prior proba-

bility distributions do in fact have hard limits imposed.
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With reference to the above, the values required to create prior probability

distributions from Table 3.1 in Chapter 3 are shown in Table 5.1.

Parameter x̄ σ

k1 415 µM−1s−1 13.83

k3 3 µM−1s−1 0.1

β 1.4× 10−4 µM−1s−1 4.67× 10−6

g 0.847 s−1 0.028

f 8.749 µM−1s−1 0.292

Q 0.3 µM 0.01

X 3.97 µM 0.134

C 0.03 µM 0.001

Qa 0.24 µM 0.008

Xa 3.176 µM 0.105

Ca 0.024 µM 0.0008

Table 5.1: Prior Probability Table This table shows the prior means and variances used
to create lognormal distributions to be used as the prior probability distributions.

A graphical representation of the data in Table 5.1, the initial probability dis-

tributions used to start the Monte-Carlo run are shown in Figure 5.5. Due to

the method used to read and generate the probability distributions in software,

this and all subsequent figures showing probability distributions are actually his-

tograms with 1000 bins of equal width. The distributions therefore have defined

upper and lower limits.

5.1.2.2 Initial Parameter Estimation Results

The parameter estimation process produces a large amount of output data which

can be processed. Included in these data are the best simulation results from

each run. Best is defined here as the simulation with the best goodness-of-fit, i.e.

the one with the closest match to the experimental data. For the oxygen reduction

training datasets, of which there are 3, each was run 20 times for 20,000 iterations.
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Figure 5.5: Prior probability distributions for oxygen reduction. These are the proba-
bility distributions used as priors by the parameter estimation algorithm.
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This lower iteration count was chosen as a compromise between execution time

and statistical accuracy. In fact given that the burn-in time for these runs was

relatively short, 20,000 iterations still provides plenty of data. A representative

example of the simulated data is shown in Figure 5.6. This figure was generated

from the set of parameters that produced the most fit output compared to the

input dataset.

Initially the simulation results are not particularly good fits compared to the

experimental data and as such have a low goodness-of-fit. The calculation per-

formed actually produces a value that represents the “goodness of fit” related to

the distance of the simulated data away from the experimental data and account-

ing for Gaussian noise. As such the quality of the simulated data will be given in

terms of its “goodness-of-fit” or F value. As the parameter estimation progresses

the F value reduces as the simulated result gets closer and closer to the experi-

mental data. Quite often this does not take many iterations and a representative

plot showing how the simulation’s F value decreases is shown in Figure 5.7. The

initial period where the F value is high up until the point it settles at a lower value

is classed as “burn-in” and is discarded when generating posterior distributions.

Each of the parameters that are to be estimated produces a trajectory of values

for each run of the estimation algorithm. These trajectories are used to generate

the posterior probability distributions required for Bayesian inference in subse-

quent steps. During the “burn in” period the parameter values can be observed

to change rapidly from one iteration to the next as they approach their optimum

values. Once the “burn in” has completed the values settle and produce largely

flat trajectories with minor deviations around the optimum value. This settled

region is used as the source for generating the posterior probability distributions.

Figure 5.8 shows the trajectories from each simulation run on a single dataset

for the k3 parameter.

Not all parameters in this stage of the model will produce trajectories like the

one shown, as if there is a great deal of freedom as to what value a particular pa-
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Figure 5.6: Oxygen Reduction in Neisseria meningitidis. This dataset shows the simple
linear reduction of Oxygen in aerobic conditions. The high affinity of cbb3 for oxygen is
evidenced by very little non-linearity at low oxygen concentrations. The solved output
is a representative result of the parameter estimation system. The inset shows that the
solved output is achieving much higher affinity than the experimental data.
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Figure 5.7: Simulation F value improves as parameter estimation progresses. This is a
representative figure constructed from a single run on one dataset. Initially the F value is
high showing that the simulated result does not match the experimental dataset. As the
parameter estimation algorithm progresses, the F value decreases as the simulated result
approaches the experimental dataset. The inset shows a zoomed in view of the F value
after the “burn-in” process has finished.
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Figure 5.8: Individual parameter trajectories for multiple runs on the same experimen-
tal dataset. This figure shows the trajectories for the same parameter, in this case k3 - the
rate constant for cbb3 reduction, from 20 individual runs of parameter estimation upon
the same input data. The trajectories show clear convergence after the “burn-in” period.

104



CHAPTER 5. OXYGEN REDUCTION IN N. MENINGITIDIS

rameter can take without drastically decreasing the F value it will be accepted by

the parameter estimation algorithm. In this case the trajectories will not converge,

and will ultimately produce a wide probability distribution. This is not necessar-

ily indicative of a problem however, as this output still contains information that

can be used in the next stage of parameter estimation with new datasets.

The trajectories above are processed to produce probability distributions given

as histograms. The “burn in” is discarded and the settled data is then binned and

counted. For the datasets used, the burn-in period was 1500 iterations (10,000 for

dataset 3). These histogram probabilities are then assigned as the posterior dis-

tributions and in turn are used directly as prior probability distributions for new

datasets. For simplicity’s sake when referring to the distribution of individual

parameters for purposes of comparison, these histograms are transformed into

log-normal distribution such that they can be represented by two numbers, x̄ -

the mean, and σ2 - the variance.

The posterior probability distributions generated from the three experimen-

tal datasets, each started with 20 runs are shown in Figure 5.9. In the case of

parameters which represent concentrations, such as X and C, the concentrations

of cytochromes and cbb3 respectively, the individual dataset probability distribu-

tions are shown, as they cannot be sensibly combined, and it emphasises the fact

that the datasets were different.

As can be seen from the posterior distributions, the parameter estimation al-

gorithm has not satisfactorily produced posterior distributions that are contained

within the bounds of the prior distributions whilst also still managing to fit to the

experimental data. This is especially true of the concentration of Q, where the

Markov-chain has tended towards the upper limit of the input prior distribution.

This suggests that the prior distribution for Q is incorrect, with a mean that is

possibly as much as 10× too low, and with a variance that is too small, as the pa-

rameter estimation algorithm has attempted to increase the value of Q right up

to the upper limit of the input distribution. This incorrect value for Q is probably
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Figure 5.9: Posterior probability distributions for oxygen reduction. These are the prob-
ability distributions generated by parameter estimation on 3 oxygen reduction datasets.
These have been overlaid onto the prior probability distributions used by the parameter
estimation algorithm, also shown in Figure 5.5. The various posterior distributions dis-
played here are all marginal distributions of a single joint distribution. This applies to all
subsequent probability distributions.
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the cause of several of the other distributions being flatter and outside of the main

body of their prior distributions. Another interesting observation is that the dis-

tribution for k3 shows a distinct bi-modality. It is possible that the true posterior

probability distribution is bi-modal, however this is quite likely to be due to the

choice of proposal distribution for the parameter estimation algorithm. The left-

most region of the bimodal distribution could be caused by the natural bias of the

algorithm for values within more likely regions of the prior (proposal) probabil-

ity distribution. If this is the case, the right-most region is the “true” probability

distribution where the increase in likelihood of fitting outweighs the fact that the

values selected have a low probability of being selected from the prior distribu-

tion. Assuming this is the case, the prior distribution may also be incorrect for

k3, but the shape of the posterior distribution may also be directly caused by the

more obviously incorrect prior distribution of Q.

Since the posterior probability distributions generated at this stage cannot be

used as priors for the reasons described above, the prior distributions were al-

tered to try and correct them. These alterations are described in the next section.

5.1.2.3 Secondary Prior Probability Distributions

To improve the prior probability distribution to counteract the behaviour seen in

the section above, a number of changes were made to the distribution parameters.

All of the rate constant and total concentration parameters were flattened out,

that is to say the variance was increased. In addition the mean value for Q was

increased tenfold since the previously described results showed this value was

far too low. The parameters for reduced enzyme concentration were not altered,

as the ODE solver is accurate enough to correct these immediately. The values

required to create the updated prior probability distributions are shown in Table

5.2.

A graphical representation of the data in Table 5.2, the initial probability dis-

tributions used to start the Monte-Carlo run are shown in Figure 5.10.
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Figure 5.10: Prior probability distributions for oxygen reduction. These are the proba-
bility distributions used as priors by the parameter estimation algorithm.
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Parameter x̄ σ

k1 415 µM−1s−1 30.93

k3 3 µM−1s−1 0.316

β 0.00014 µM−1s−1 4.67× 10−6

g 0.847 s−1 0.089

f 8.749 µM−1s−1 1.732

Q 3 µM 0.1

X 3.97 µM 0.424

C 0.03 µM 0.003

Qa 0.24 µM 0.008

Xa 3.176 µM 0.105

Ca 0.024 µM 0.0008

Table 5.2: Prior Probability Table This table shows the prior means and variances used
to create lognormal distributions to be used as the prior probability distributions.
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5.1.2.4 Secondary Parameter Estimation Results

The posterior probability distributions for this second attempt were generated in

the same way as described previously for the first attempt.

The second attempt at parameter estimation, revealed an issue with the input

datasets that were being used. The first dataset contains no information about

what happens to the rate of oxygen reduction once oxygen concentration ap-

proaches zero, as the experimental data does not extend this far. The second

and third datasets do contain this information as they show complete oxygen re-

duction to zero, in addition to several seconds of data after that point. This can

be seen in Figure 5.4.

The result of dataset 1 lacking this additional feature is that the parameter es-

timation algorithm was able to over-sample from the prior distributions as there

was no significant difference in goodness-of-fit between “in prior” and “out of

prior” parameter values. If these distributions were to have been included in the

overall posterior probability distributions for oxygen reduction they would have

skewed the distributions towards the priors rather than their true values. The

posterior distributions for dataset 1 are shown in Figure 5.11.

The usable posterior probability distributions were therefore generated from

the experimental datasets 2 & 3, each started with 20 runs and are shown in Figure

5.12. In the case of parameters which represent concentrations, such as X and C,

the concentrations of cytochromes and cbb3 respectively, the individual dataset

probability distributions are shown, as they cannot be sensibly combined, and it

emphasises the fact that the datasets were different.

The distribution of k3 is perhaps the most interesting as it shows that the es-

timates used as priors are most likely incorrect as the posterior distribution has

shifted significantly to the right, increasing the mean value of the parameter by

a factor of ≈ 1.5×. The other rates are largely similar to their prior distributions

suggesting that the priors were good estimates for the actual values. The prior

distribution for Q had already been altered as described previously and the new
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Figure 5.11: Oversampled Posterior Distributions. The posterior probability distribu-
tions for dataset 1 of oxygen reduction are oversampled from the prior probability distri-
butions. This is not directly obvious by the probability distributions alone, but in conjunc-
tion with the input dataset which lacks features present in datasets 2 and 3. In this case
both k1 and k3 are skewed towards the prior probability distributions, and this causes
the distribution of C to be very wide as it can take a very broad range of values without
affecting the goodness of fit of the simulated data to the experimental data.
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Figure 5.12: Posterior probability distributions for oxygen reduction. These are the
probability distributions generated by parameter estimation on 2 oxygen reduction
datasets. These have been overlaid onto the prior probability distributions used by the
parameter estimation algorithm, also shown in Figure 5.10.
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Priors Posteriors

Parameter x̄ σ x̄ σ

k1 415 µM−1s−1 30.93 413.228 µM−1s−1 30.046

k3 3 µM−1s−1 0.316 4.496 µM−1s−1 ↑ 0.463 ↑
β 0.00014 µM−1s−1 4.67× 10−6 0.00012 µM−1s−1 0.00017

g 0.847 s−1 0.089 0.889 s−1 0.089

f 8.749 µM−1s−1 1.732 8.707 µM−1s−1 1.35 ↓
Q 3 µM 0.1 3.143 µM 0.240

X 3.97 µM 0.424 4.732 µM ↑ 6.707 ↑
C 0.03 µM 0.003 0.043 µM ↑ 0.044 ↑

Table 5.3: Posterior Probability Statistics. This table shows the parameters required to
create lognormal distributions that describe the prior and posterior probability distri-
butions. The values for the priors are as in Table 5.2. The posterior distributions were
generated from datasets 2 & 3, and where they relate to concentrations, these have been
normalised. The lognormal distributions represent best-fits to the actual posterior distri-
butions. Where there are significant differences between the prior and posterior values
for either the mean or standard deviation, these are indicated by ↑ and ↓.

value chosen seems to be a great deal better based on the closeness of the poste-

rior distribution to the altered prior distribution. The concentrations of X and C

appear to be underestimated in the prior distributions, as the posteriors show a

significant shift to the right as with k3. A comparison between the prior probabil-

ity distributions and the posterior probability distributions can be seen in Table

5.3. In this table the obtained distributions have been fitted to lognormal dis-

tribution which can be described by 2 parameters, which makes comparing the

distributions much easier.

A graph showing how well the solved output fits the experimental data dur-

ing the parameter estimation stage is shown in Figure 5.13. This shows the solved

output which achieved the best goodness of fit against the experimental data.
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Figure 5.13: Oxygen Reduction in Neisseria meningitidis. This figure shows how well
the best simulated data fits against the experimental data from dataset 2. The inset shows
again, that the solved output is achieving much higher affinity than the experimental
data.
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5.1.2.5 Analysis of Convergence

It is possible to estimate the degree of convergence of the parameters from the

Monte Carlo trajectories using the R statistic introduced by Gelman and Rubin 151

and Brooks and Gelman 152 . This statistic is a single value that represents how

close the trajectories for each individual parameter have come to convergence.

The R statistic was calculated using the Bolstad2153 library for R154 (statistical

software package).

Table 5.4 shows the R statistics obtained from the trajectories run for oxygen

reduction parameter estimation. The R statistic is a measure of scale-reduction,

and fully converged trajectories will have a value of 1.0 whereas trajectories which

have not converged will have values greater than 1 with the magnitude depend-

ing on how far away from converging they are. Gelman states that if the R statis-

tic is not near 1, and in practice greater than ≈ 1.2 then further simulation runs

would be a good idea137. The R statistic shows that all of the rate constants ap-

peared to have converged to a reasonably high degree which could also be seen

from the distribution plots. The concentration parameters had converged to a

much lesser degree however this was not completely unexpected, as there were

a larger number of parameters in the model than were required to fit the exper-

imental data and thus the potential range of parameter values was broad at this

stage. The apparent lack of convergence of some parameters at this point was not

a problem as with subsequent, more complex datasets, the range of potential pa-

rameter values should decrease, allowing the trajectories to converge more easily.

5.1.2.6 Analysis of Correlation

Given the large number of parameters, and the simple form of the experimental

data it is quite likely that a number of the parameters will be correlated with one

another. This effect should also have been exacerbated at this stage due to the

limited constraints (by virtue of wide prior probabilities) on the ranges of values
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Parameter R Statistic Parameter R Statistic

k1 1.38 f 1.65

k3 1.36 Q 2.37

β 1.09 X 11.93

g 1.57 C 9.44

Table 5.4: Gelman-Rubin Convergence Statistic. This table shows the Gelman-Rubin
Convergence statistic for all the Markov chains from datasets 2 & 3. For parameters
which are concentrations, the statistic relates to the values after normalisation (data is
normalised based on initial oxygen reduction rate). Concentration parameters exhibit
greater inter-dataset differences even after normalisation thus giving high R statistic val-
ues. The intra-dataset values are lower.

that parameters can take. In order to investigate this a set of correlation matri-

ces were constructed by calculating the Pearson’s Product-Moment Correlation

Coefficient (denoted by r, not to be confused with the R statistic) for each of the

parameters. This value provides the direction of correlation as indicated by the

sign, and the degree of linearity as indicated by the magnitude. A positive corre-

lation indicates that as the value of one parameter increases, the other increases

also. A negative correlation indicates that as the value of one parameter increases,

the other decreases.

The upper-triangle correlation matrices are shown in Figures 5.5 & 5.6 and

were constructed by concatenating all the trajectories created by the parameter

estimation system (discarding the burn-in) together and the Pearson’s Product-

Moment Correlation Coefficient calculated for each combination for each dataset.

The datasets were analysed separately to allow examination of intra dataset cor-

relation. The matrices are upper-triangle only as the lower triangle is a duplicate

of the same data. The diagonals are shown in grey as they are not useful data

since the correlation of X against X is always 1.

The correlation matrices show that most of the model parameters are not cor-

related with each other, giving low to very low r values. Between the two datasets

the only parameters that appear to be correlated are C and X and k3 and X, and
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these are both negative correlations. The negative correlation between k3 and X

can be explained by the fact that as the concentration of X decreases, an increase

in k3 is required to maintain the same rate of electron flow out of the cytochrome

pool. The correlation between C and X can be explained by factoring in the fact

that the rate of oxidation of C is very high. This should lead to any reduced

cbb3 being oxidised almost straight away. Therefore if the concentration of X in-

creased, it would lead to an increase in the reduction state of C (as there will

be more electrons to move from X to C), so to maintain the same eventual rate

of oxygen reduction (by oxidation of C), the concentration of C must decrease.

The converse is also true. The fact that there are intra-dataset correlations that

don’t appear in both datasets suggests that the rates and concentrations in the

two datasets haven’t been completely decoupled from the optical density (or in

this case the reduction rate proxy for OD). The positions in the electron transport

chain of these correlations are shown below, marked by superscript N and �.

g−→ Q
f−→ XN

k�3−→ C�N
k1−→ O2

5.1.3 Discussion

The experimental datasets showed that oxygen reduction in N. meningitidis is a

simple almost completely linear system with the reductase having a high affinity

for oxygen demonstrated by the almost complete lack of non-linearity as oxygen

concentration approaches zero. This simple linearity could be very easily have

been modelled to a high degree of accuracy with just 2 parameters in a simple

y = −mx + c system. Admittedly this would not include the behaviour when the

oxygen concentration reaches zero, where the is some non-linearity. However this

essentially meant that there were a much larger number of parameters available

to fit than were necessary, which lead to over-fitting of the data. The size of the

parameter set meant that there were a very large set of potential combinations

that would have lead to a similar result, however this was mitigated somewhat

by the prior probability distributions given to the algorithm. Even so, this meant
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that the posterior distributions generated were very wide and therefore allowed

much greater freedom for the next dataset to explore the parameter space.

With the knowledge of the underlying transport chain and the affinity of cbb3

for oxygen, a linear reduction of oxygen with high affinity over nearly two or-

ders of magnitude was expected. This was evidenced in the experimental data.

It is however remarkable that this behaviour can be modelled with so few com-

ponents in the model, as it requires significant changes in the reduction states of

the enzymes to achieve this. A brief discussion on the affinity of cbb3 for oxygen

can be found in the appendix.

Perhaps the most interesting new piece of data to come out of this first round

of parameter estimation is the discovery that the literature value used for the

concentration of quinones - Q - in the cell was at least an order of magnitude too

low. This can be explained however by the fact that the literature value used is

not for the same bacteria, and there were a number of assumptions made about

Neisseria meningitidis cell size and weight.

120



Chapter 6

Nitric Oxide Reduction in N.

meningitidis

6.1 Aerobic Nitric Oxide Reduction

6.1.1 Introduction

The next dataset used in the iterative approach to parameter estimation was of

aerobic oxygen reduction interrupted by the addition of Nitric Oxide. These

datasets are the next most complicated after aerobic oxygen reduction as it intro-

duces the nitric oxide reduction pathway. In this case the oxygen reduction and

Nitric Oxide reduction pathways are active. Additionally, inactivation of cbb3 by

Nitric Oxide was occurring. The portions of the ETC relating to Nitric Oxide re-

duction are shown graphically in Figure 6.1. However this pathway cannot be

isolated in vivo as N. meningitidis is incapable of completely anaerobic respiration

therefore the required parts of the model are actually those from Chapter 5 and

those in Figure 6.1.
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Figure 6.1: Nitric oxide reducing electron transport chain of N. meningitidis. This shows
the complete electron transport chain of Neisseria meningitidis with the components irrel-
evant to nitric oxide reduction greyed out.

The equations that describe this portion of the ETC are:

d[O2]

dt
= β(1− [O2]/KO)− k1[Ca][O2]

d[Qa]

dt
= g([Q]− [Qa])− l3[Qa]([B]− [Ba])− f [Qa]([X]− [Xa])

d[Xa]

dt
= −k3([C]− [Ca]− [CX])[Xa]−m3([A]− [Aa])[Xa] + f [Qa]([X]− [Xa])

d[Ca]

dt
= k3([C]− [Ca]− [CX])[Xa]− k1[Ca][O2]− k5[Ca][NO] + k6[CX]

d[NO]

dt
= m1[NO−2 ][Aa]− l1[NO][Ba]− k5[Ca][NO] + k6[CX]− γ[NO]

d[CX]

dt
= k5[Ca][NO]− k6[CX]

d[Ba]

dt
= l3[Qa]([B]− [Ba])− l1[NO][Ba]

These equations describe the change in concentration of Nitric Oxide over time,

which is the experimentally observable value (in addition to the afore modelled

oxygen). Also being modelled was the change in concentration of inhibited cbb3

and the reduction state of NorB. This more complete portion of the model in-
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volved 14 parameters which were to be estimated. This number includes the 8

values already estimated in Chapter 5.

6.1.2 Experimental Results

Generation of Nitric Oxide reduction datasets required the growth of MC58 (wild

type Neisseria meningitidis) in aerobic conditions until mid log-phase growth had

been achieved. This corresponds to an OD600 of 0.3-0.9 and usually required an

incubation period of roughly 3 hours. Once the required cell density had been

obtained, the culture was transferred to the oxygen electrode chamber and the

oxygen and nitric oxide concentrations recorded as the culture respired. To model

nitric oxide reduction required that nitric oxide solution was added to the culture

while it is respiring aerobically. Part-way through aerobic respiration nitric oxide

solution was added to various final concentrations all at ≈ 5 µM and the culture

then left to reduce nitric oxide (in addition to oxygen). The nitric oxide reduction

datasets generated and used for parametrisation of this portion of the model are

shown in Figures 6.2, 6.3, 6.4 & 6.5. Unfortunately the experimental data upon

addition of nitric oxide is very difficult to reliably reproduce, with different cul-

tures having apparently different tolerances to nitric oxide (data not shown).

The dataset in Figure 6.2 appears to show a system that was partially primed

for microaerobic respiration. In this case it was speculated that there was a small

amount of NorB (nitric oxide reductase) present. Initially the oxygen reduction

was carried out in exactly the same manner as in Chapter 5. Upon addition of

nitric oxide, oxygen respiration slowed and almost stopped as a result of compe-

tition for electrons between cbb3 and NorB, and the direct chemical inhibition of

cbb3 by NO. Nitric oxide started to be removed as a combination of diffusion (al-

though this rate will be low as shown in the previous two datasets) and reduction

via NorB. Once the NO has been removed from the system oxygen reduction re-

sumes at almost the same rate as before and still has the same high affinity feature

as the oxygen reduction datasets in Chapter 5.
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Figure 6.2: Nitric Oxide Reduction in Neisseria meningitidis. This dataset shows the
effect on rate of oxygen reduction as nitric oxide (to≈ 3 µM) is introduced to the respiring
system which also appears to have been partially primed for nitric oxide reduction. Note
that the increase in nitric oxide concentration seen at the end of the dataset is most likely
due to drift in the electrode.

When a larger amount of nitric oxide is introduced to a culture, the rate of oxy-

gen reduction changes more significantly, as can be seen by comparing Figures

6.3 and 6.4. Again the removal of nitric oxide will primarily be due to diffusion,

although now at higher concentrations more nitric oxide will interact with cbb3

temporarily inhibiting it. This inhibition causes the reduction in oxidase activity,

and the sequestering of NO by cbb3 also causes some of the visible reduction in

nitric oxide concentration. The time-scale over which the nitric oxide disappears

strongly suggests that it is not due to nitric oxide reductase activity. This is cor-

roborated by the NO removal time-scale in Figure 6.5 which contains no NorB.

It may also be possible that at this concentration of nitric oxide some cbb3 may

have been permanently inhibited as mentioned in Chapters 1 & 3. Additionally

at higher nitric oxide concentrations nitric oxide could react chemically with oxy-
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Figure 6.3: Nitric Oxide Reduction in Neisseria meningitidis. This dataset shows the
effect on rate of oxygen reduction as a larger amount of nitric oxide (to ≈ 7.8 µM) is
introduced to the respiring system.

gen under the following scheme:

2NO + O2 → 2H+ + NO−3 + NO−2 + H2O

As the cultures in this dataset were obviously being negatively affected by the

addition of such a high concentration of nitric oxide, either by permanent inhibi-

tion of cbb3 or actual cell death, it was unlikely that this particular dataset could

be used to accurately predict parameters in the model as it includes factors that

were never part of the original model.

The dataset in Figure 6.4 shows very little visible change in the rate of oxygen

reduction when a small amount of nitric oxide is added. In actual fact the change

in rate was an ≈ 3% reduction after addition of nitric oxide based on linear re-

gression of pre- and post-addition rates. The observed removal of nitric oxide

is due primarily to diffusion, although there may also be some preliminary (as

the culture has not been primed with nitric oxide) nitric oxide reductase activity.
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Figure 6.4: Nitric Oxide Reduction in Neisseria meningitidis. This dataset shows the
effect on rate of oxygen reduction as a small amount of nitric oxide (to ≈ 0.6 µM) is
introduced to the respiring system.

However for modelling purposes it was assumed that the nitric oxide reductase

activity for this dataset is zero.

The dataset in Figure 6.5 shows a visible change in reduction rate of cbb3 upon

addition of nitric oxide. This is due to inhibition of the cbb3 directly by nitric ox-

ide. This culture is incapable of reducing nitric oxide, having a norB− mutation,

thus the only route for removal of nitric oxide is by simple diffusion.

6.1.2.1 Prior Probability Distributions

As in Chapter 5 the integrative scheme requires that all the parameters involved

have associated prior probability distributions. The posterior probability distri-

butions from Chapter 5 were used as prior probability distributions in this chap-

ter. Where new parameters were introduced (which had not been modelled thus

far), the distributions were generated based upon published literature values

which are noted in Chapter 3. When using literature values the prior probabil-
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Figure 6.5: Nitric Oxide Reduction in Neisseria meningitidis. This dataset shows the ef-
fect on rate of oxygen reduction as nitric oxide (to ≈ 2.5 µM) is introduced to a respiring
norB− mutant culture. Any removal of nitric oxide here is due to diffusion and seques-
tering by cbb3 alone.

ity distributions were generated according to the same scheme as in Chapter 5.

Where the posterior probability distributions from Chapter 5 describe rate con-

stants the raw values from the distributions were used as priors in this chapter.

Where the distributions describe component concentrations, idealised lognormal

distributions were used based on normalised the values to account for the differ-

ent culture densities. This ensures that the prior distributions completely encom-

pass the experimental posterior distributions. The distribution of the parameter

γ - the rate of loss of NO - was initially assumed (incorrectly) to be similar to

β, thus the same probability distribution was used. This was actually a mathe-

matical oversight as the two parameters are not functionally similar, however the

resulting data is shown here to demonstrate the effect of this incorrect parame-

ter. For the other new parameters, lognormal distributions were used as priors as

described in Chapter 5. The values required to create idealised lognormal proba-

bility distributions for each parameter are shown in Table 6.1.
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Parameter x̄ σ

k1 413.228 µM−1s−1 30.046

k3 4.496 µM−1s−1 0.463

l1 6 µM−1s−1 2

l3 1 µM−1s−1 2

k5 100 µM−1s−1 10

k6 38 s−1 8

β 0.00014 µM−1s−1 4.67× 10−6

g 0.889 s−1 0.089

f 8.707 µM−1s−1 1.35

γ 0.00014 µMs−1 4.67× 10−6

Q 3.143 µM 0.240

X 4.732 µM 6.707

B 0.043 µM 0.044

C 0.043 µM 0.044

Table 6.1: Prior Probability Table This table shows the prior means and standard devia-
tions used to create lognormal distributions to be used as the prior probability distribu-
tions.
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Figure 6.6: Prior probability distributions for aerobic nitric oxide reduction. These are
the probability distributions used as priors by the parameter estimation algorithm.
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The initial probability distributions used to start the Monte-Carlo runs are

shown in Figure 6.6.

6.1.2.2 Parameter Estimation Results

The parameter estimation process was run in the same fashion as that described

in Chapter 5. The 4 experimental datasets were run 20 times (each) for 20,000

iterations using the prior probability distributions shown in Figure 6.6. This gen-

erated parameter trajectories from each of the 4 datasets. The second dataset

(Figure 6.3) was still analysed even though it is unlikely that the model will suc-

cessfully be able to be parameterised from it. Unfortunately upon examination

of the F values from the MHMC output and the best-fitting solved output it was

clear that the prior probability distributions in conjunction with the model are in-

capable of accurately describing the experimental data. This strongly suggested

that the new prior probability distributions (those obtained from the literature for

the NO related components) were incorrect. The solved output from datasets 3 &

1 are shown in Figures 6.7 & 6.8 respectively.

In dataset 3, the reduction of oxygen appears to be being modelled quite accu-

rately. This is due to the largely featureless nature of the reduction curve which

can easily be accommodated by the wide prior probability distributions given for

the parameters involved. The rate change upon addition of a small amount of

nitric oxide is only very slight, thus a perfectly straight line will fit it very well.

As can be seen however, nitric oxide removal by diffusion is being modelled very

poorly indeed. There is no active NorB in this culture, thus there is no modelled

nitric oxide reduction. The prior distribution for the diffusion rate of nitric ox-

ide is clearly incorrect, as nitric oxide removal in the solved output is virtually

non-existent.

In dataset 1, reduction of oxygen is being modelled very poorly as the param-

eters produced by the parameter estimation system do not appear to have cap-

tured the behaviour that causes oxygen reduction to cease. In this case the F value
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has been minimised by generating a linear reduction of oxygen which doesn’t ac-

curately represent either of the observed rates. As has been noted about dataset

3, the rate of nitric oxide diffusion is incorrect, thus in order to obtain a sensible

rate for removal/reduction of nitric oxide the rate constants for nitric oxide re-

duction will have been increased artificially in the simulation. This combination

of parameters also means that the reduction in rate of oxygen reduction cannot

be modelled correctly. This behaviour should be attributed to temporary chemi-

cal inhibition of cbb3 by nitric oxide itself (which is now present in high enough

concentrations), and by competition for electrons with NorB.

As in Chapter 5, the prior probability distributions were incapable of produc-

ing parameter sets which accurately model the experimental data, thus making

the posterior probability distributions generated invalid. The prior probability

distributions were therefore modified to reflect the increased understanding of

the parameters of the model. In addition to altered prior probability distribu-

tions a slightly different parameter estimation protocol was employed which is

detailed in the next section.

6.1.2.3 Adapted Parameter Estimation Protocol

As dataset 3 was the simplest of the experimental datasets which describe the ef-

fects of addition of nitric oxide to aerobically respiring cultures, this dataset could

be run as a standalone step in the Bayesian scheme for parameter estimation. This

dataset described some of the experimentally observed behaviour in isolation,

such as the removal of nitric oxide by diffusion alone, therefore could generate

a posterior probability distribution for datasets where that parameter could not

be examined in isolation. Datasets 1 and 4 ideally required this information as

a prior probability distribution as the experimentally observed disappearance of

nitric oxide was expected to be due to both diffusion and reduction (by NorB).

Therefore dataset 3 could be used to inform the prior probability distribution of

datasets 1 and 4. Statistically this did not pose a problem even though the three
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Figure 6.7: Nitric Oxide Reduction in Neisseria meningitidis. This figure shows the first
attempt at fitting the model to experimental data using priors determined from literature
values. Nitric oxide disappearance is not being modelled at all.

datasets were run in parallel previously. This was because the numerical output

from those previous attempts was not being used as input for the subsequent

attempts.

6.1.2.4 Secondary Parameter Estimation Results

Trial and error was employed to produce an initial informed prior value for γ,

the rate of diffusion of nitric oxide, which was the problematic parameter for

datasets 3 and 4 previously. This value was estimated to be ≈ 0.02 µMs−1 based

upon visual comparison of the solved output against the experimental data. This

value was then used as a prior with no bounds so that the parameter estimation

algorithm could home in on the correct distribution. All the other prior probabil-

ity distributions were left unchanged from the first attempt. It should be noted

that γ actually represents a set of physical effects on nitric oxide rather than just
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Figure 6.8: Nitric Oxide Reduction in Neisseria meningitidis. This figure shows the first
attempt at fitting the model to experimental data using priors determined from literature
values. Nitric oxide disappearance is now being modelled much more accurately than in
Figure 6.7. Oxygen reduction is not being modelled correctly and the best fitting param-
eters generate a straight line rather than capturing the stopping and restarting of oxygen
reduction.

diffusion as with β. γ is actually likely to include binding to metalloproteins,

spontaneous degradation and the direct chemical reaction with oxygen in addi-

tion to the loss by simple diffusion.

Figure 6.9 shows greatly improved fitting of solved data to experimental val-

ues suggesting that the parameters are now correct (or at least reasonably close)

for describing the removal of nitric oxide. The model is still not capturing the

small effect on oxygen reduction rate visible in the experimental data however.

A linear regression of the solved oxygen data suggests that it is in fact a perfectly

straight line (R2 = 0.9999, source data not shown) whereas there should be a

slight elbow upon addition of nitric oxide. This was not considered to be a signif-

icant problem here, as the effect is far more visible in the subsequent dataset(s),
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Figure 6.9: Nitric Oxide Reduction in Neisseria meningitidis. This figure shows the
second attempt at fitting the model to experimental data using priors determined from
literature values in addition to manually adjusted priors. Oxygen reduction is modelled
almost perfectly, and the shape of the nitric oxide reduction curve is captured well also.

therefore would be more easily modelled.

The posterior probability distribution for γ produced by this dataset parame-

ter estimation can be used a prior probability distribution for parameter estima-

tion of datasets 1 and 4, as this now includes the missing information about rate

of removal of nitric oxide.

6.1.2.5 Tertiary Parameter Estimation Results

The third round of parameter estimation built upon the results from the previous

section. After parametrising the value for γ from dataset 3, it was then possible to

attempt parameter estimation on datasets 1 and 4 which also involved l1, l3, k5 &

k6 for reduction of nitric oxide and inactivation of cbb3 by nitric oxide respectively.

The prior probability distributions used for this round of parameter estimation

were the same as in Figure 6.6 except that the distribution for γ was replaced by

134



CHAPTER 6. NITRIC OXIDE REDUCTION IN N. MENINGITIDIS

that found in the previous section.

Preliminary test runs (data not shown) using these prior probability distribu-

tions suggested that at least one of the two parameters relating to the inactivation

of cbb3 by nitric oxide was incorrect for this model. In order to obtain a oxygen

reduction curve that matches the general shape of the experimentally obtained

data a ratio of k5 : k6 ≈ 2000 : 1 was required. Since it was unknown which of the

two values was more incorrect, both parameters were allowed to be perturbed

freely during parameter estimation, i.e. they had no prior probability distribu-

tion. Unfortunately this seemed to be the only sensible approach to take given

the lack of further data. These preliminary runs suggested that the number of

parameter estimation iterations would need to be increased for this dataset also

due to the presence of local F value minima caused by the model fitting oxygen

as a straight line between the fixed starting point and the point at which oxygen

is depleted similar to the result shown in Figure 6.8. Figure 6.10 illustrates local

minima phenomenon. Given that this figure shows that a suitably low F value is

not achieved until at least 15000 iterations (and in some cases this extended up

to 50000 iterations) a value of 100000 iterations was chosen to ensure that a sig-

nificant number of data-points were available to generate posterior probability

distributions.

A representative plot showing the solved data after running the parameter es-

timation system as described above is shown in Figure 6.11. The model appeared

to be able to capture all the features of the oxygen reduction curve including the

halting of oxygen reduction upon addition of nitric oxide, and the recovery after

nitric oxide has been removed. Similarly to the results seen in Chapter 5 the high

affinity of cbb3 for oxygen is also captured (probably a little too high). Nitric ox-

ide was generally modelled less well than was hoped. The point of nitric oxide

depletion appeared to be modelled correctly, but the rate of reduction of nitric ox-

ide starts too fast and slows too quickly resulting in more pronounced curvature

than the experimental data shows.
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Figure 6.10: Local Fitness Minima During Parameter Estimation. This figure shows
the F value as the MHMC progresses on dataset 1. A local fitness minimum is clearly
visible at a F value of approximately 7000 where the parameter estimation algorithm has
settled on a straight line for oxygen reduction. After a variable number of iterations the
MHMC run exits the local fitness minimum and progresses towards a much better fitting
set of parameters. This is a typical plot of the F values, however in some runs the fitness
minimum is exited much more abruptly rather than the gradual change seen here.

The concentration of nitric oxide present will also affect the rate of cbb3 reduc-

tion (due to the effect of temporary inactivation by nitric oxide), thus implying

that the rate constants obtained to describe that effect may not be completely cor-

rect. Some of the observed discrepancy between the experimental and solved

nitric oxide concentrations may in fact be due to errors introduced into the ex-

perimental data by the experimental set up. The nitric oxide electrode was not

capable of detecting large changes in concentration quickly and this always re-

sulted in a lag between nitric oxide addition and detection by the electrode. This

is obvious in the experimental datasets where the total nitric oxide addition is

not captured as the cultures have already started to remove it. This requires back-

wards extrapolation of the experimental data to determine what the actual added
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Figure 6.11: Nitric Oxide Reduction in Neisseria meningitidis. This figure shows the
third attempt at fitting the model to experimental data using priors determined from lit-
erature values in addition to manually adjusted priors. Oxygen reduction is being mod-
elled remarkably well, whereas the rate of nitric oxide reduction appears to be slightly
too high in the solved output.

concentration was (and what should be added in silico to the model).

The posterior probability distributions generated from this third round of pa-

rameter estimation are shown in Figure 6.12. The distributions generated for the

parameters relating solely to oxygen reduction were broadly similar to the prior

probability distributions which was to be expected and confirms that these distri-

butions capable of describing the oxygen reduction behaviour. The rate of NO re-

duction by NorB appeared to be very similar to the prior probability distribution

however the rate of NorB reduction seemed to have been vastly overestimated

in the prior distribution. The prior distribution for this parameter was unknown

however, and was set to a very wide lognormal with mean of 1. The rate of NO

diffusion (γ) tended to settle at the lower end of the prior distribution. The most

interesting posterior probability distributions were those of k5 and k6 which actu-
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ally had to be freely perturbed, rather than be constrained by their prior probabil-

ity distributions. Neither of these two parameters settled anywhere near the prior

probability distributions. k5 never settles on a value less than ≈ 400 µM−1s−1.

This value turned out to be a critical threshold at which the inactivation of cbb3

occurs. At lower values of k5 the inactivation is slower than observed in the ex-

perimental dataset and in the solved data the “elbow” is shifted visibly to the

right. At or above this threshold the inactivation point closely matches that seen

in the experimental dataset. It appeared that that absolute values of k5 and k6

are unimportant, only that k5 is greater than ≈ 400 µM−1s−1 and that the ratio of

k5 : k6 ≈ 2000 : 1. Unfortunately this meant that it was impossible to determine

if the obtained posterior probability distributions were actually representative of

the true distributions.

A comparison between the prior and posterior distributions can be seen in tab-

ular form in Table 6.2. This table shows the parameters of the idealised lognormal

distributions which describe the obtained probability distributions to more easily

represent the data.

6.1.2.6 Analysis of Convergence

The Gelman-Rubin R statistics were calculated for the Monte-Carlo trajectories

for each parameter and these are presented in Table 6.3. The newly included pa-

rameters all had large R statistic values suggesting that there is still opportunity

for scale reduction in the trajectories. This is highly likely to be due to the fact that

k5 and k6 had to be unconstrained by prior probability distributions, and they are

directly affecting the values of l1 and l3 in such a way as to prevent them con-

verging fully. This is especially true of l3 which has an extremely high R statistic.

This actually suggests that l3 is a long way away from being fully converged, or

that an anomalous Markov Chain has been included.
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Figure 6.12: Posterior Distributions for Datasets 1 and 4. The posterior probability dis-
tributions for datasets 1 and 4 of nitric oxide removal.
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Priors Posteriors

Parameter x̄ σ x̄ σ

k1 413.228 µM−1s−1 30.046 417.88 µM−1s−1 31.172

k3 4.496 µM−1s−1 0.463 4.65 µM−1s−1 0.619

l1 6 µM−1s−1 2 13.12 µM−1s−1 ↑ 8.321↑
l3 1 µM−1s−1 2 0.058 µM−1s−1 ↓ 0.021↓
k5 100 µM−1s−1 10 1741.8 µM−1s−1 ↑ 1822.0↑
k6 38 s−1 8 1.076 s−1 ↓ 1.473↓
β 0.00014 µM−1s−1 4.72× 10−6 0.00014 µM−1s−1 4.7× 10−6

g 0.889 s−1 0.089 0.857 s−1 0.086

f 8.707 µM−1s−1 1.35 8.398 µM−1s−1 1.237

γ 0.017 µMs−1 0.0015

Q 3.143 µM 0.240 7.06 µM 1.317

X 4.732 µM 6.707 27.45 µM 12.08

B 0.043 µM 0.044 0.137 µM 0.048

C 0.043 µM 0.044 0.071 µM 0.029

Table 6.2: Posterior Probability Statistics. This table shows the parameters required
to create lognormal distributions that describe the prior and posterior probability dis-
tributions. The values for the priors are as in Table 6.1. The posterior distributions were
generated from datasets 1 & 4 (after being run on dataset 3), and where they relate to con-
centrations, these have been normalised. The lognormal distributions represent best-fits
to the actual posterior distributions. Where there are significant differences between the
prior and posterior values for either the mean or standard deviation, these are indicated
by ↑ and ↓.
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Parameter R Statistic Parameter R Statistic

k1 1.15 g 1.13

k3 1.31 f 1.20

l1 4.92 γ

l3 131.447 Q 1.54

k5 6.46 X 3.82

k6 7.37 B 6.74

β 1.02 C 2.92

Table 6.3: Gelman-Rubin Convergence Statistic. This table shows the Gelman-Rubin
Convergence statistic for all the Markov chains from datasets 1 & 4. For parameters
which are concentrations, the statistic relates to the values after normalisation (data is
normalised based on initial oxygen reduction rate).
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6.1.2.7 Analysis of Correlation

A correlation analysis was performed on each of the parameters using the Monte-

Carlo trajectories as in Chapter 5. The upper-triangle correlation matrices are

shown in Tables 6.4 and 6.5. There was a very strong positive correlation be-

tween k5 and k6, which given the brief discussion earlier in the chapter was to be

expected. As it appeared that the ratio and not the absolute values of k5 and k6

was important, a strong positive correlation between values would achieve this.

There also appeared to be a strong negative correlation between B, and l3,

which would make sense if the model were trying to maintain a constant level of

NO reduction. More NorB would require less reduction of NorB to maintain the

same level of reduction. There are obvious negative correlations between k5, k6

and l1, l3. As more NO is being sequestered by cbb3, less needs to be reduced to

maintain the same level of inhibition.

6.1.3 Discussion

The parameter distributions obtained from this more convoluted set of datasets

are capable of modelling the experimental data impressively well given the lack

of prior information available and taking into account the assumptions made

about the system. Oxygen reduction can be modelled almost perfectly using pos-

terior distributions from earlier datasets which will still fit new data. Nitric oxide

reduction and removal was modelled less well, however it was not clear whether

this was due to a limitation of the model itself, or an inherent issue with the ex-

perimental set-up. In reality it was probably a combination of both which would

be impossible to decouple. The general features of nitric oxide reduction were

captured in the model even if a precise fit wasn’t achieved. There were a large

number of unknowns in these experimental datasets, it was not clear for exam-

ple how much NorB was present in dataset 1, therefore the concentrations and

rates obtained will most likely not reflect in vivo values, however they do pro-

vide valuable information about how they interact with other parameters. It is
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possible that the difference in observed and solved nitric oxide reduction rates is

actually due in part to an overestimation of γ introduced by the analysis of the

first dataset in Figure 6.4. It was assumed that there was no NorB present in that

culture, thus any and all nitric oxide removal would solely be due to diffusion.

If this were not the case, and in fact there was some small amount of nitric ox-

ide reductase activity, then γ would be overestimated as it would include this

NorB activity. The posterior probability distributions for datasets 1 and 4 (Figure

6.12) potentially support this hypothesis as they show the parameter estimation

system trying to reduce the value of γ to the lower limit of its range. This inap-

propriately high value of γ could account for much of the discrepancy between

the reduction rates of the experimental and solved data.

There is further evidence of incomplete decoupling of the model parameters

from the experimental conditions here, as shown by the concentration posteriors

all having shifted from the priors. The major difference can be seen for X - the

cytochrome pool. This value doesn’t actually represent any in vivo component

as it is a simplification to represent all the cytochromes, hence the change in this

value is not unexpected. Unfortunately, this is probably also the cause of shifting

of the other component concentrations.

The simulated results and parameter set generated from parameter estimation

are corroborated by experimental data observed by Anjum et al. 29 as described

below.

Small concentrations of NO added result in no visible change in oxygen re-

duction rate (Figure 6.13a). Larger concentrations of NO appear to slow the rate

of oxygen reduction which is then recovered (Figure 6.13b). A norB− mutant

treated with a larger concentration of NO shows a much slower recovery of oxy-

gen consumption (Figure 6.13c) which can be shown in silico simply by removing

NorB as can be seen in Figure 6.14.

As more parameters had been populated in the model it was now possible to

examine the reduction states of the various enzymes in the system as respiration
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Figure 6.13: Addition of Nitric Oxide to Aerobic Cultures. Figure 5 reproduced from
Anjum et al. 29 . Oxygen concentration is represented by solid lines and nitric oxide by
dashed lines. a) Addition to wild-type culture, b) Addition to cycP mutant, c) Addition
to norB mutant.

0 50 100 150 200 250 300 350 400 450 500 550 600 650
Time (s)

0

10

20

30

40

50

60

70

80

90

100

µ
M

O
xy

ge
n

Experimental Oxygen
Solved Oxygen

Nitric Oxide Addition to in silico norB
-
Mutant

Dataset 1

0

0.5

1

1.5

2

2.5

3

3.5

4

µ
M

N
it
ri
c
O
xi
de

Experimental Nitric Oxide
Solved Nitric Oxide

Figure 6.14: Addition of Nitric Oxide to in silico norB− mutant. Solved output from an
in silico norB− mutant created by removing NorB from the simulation in Figure 6.11.
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progresses. A plot showing these states can be seen in Figure 6.15. This figure

shows that the reduction states of the enzymes are quickly adjusted to the correct

steady state values (of the order of a few seconds) except for NorB, which seems

to have a much slower rate of reduction. This slow rate of reduction means that

the initial concentration of reduced NorB in the simulation is much more impor-

tant, and should in fact be much closer to being in a completely reduced state at

t0. In the datasets used this doesn’t affect the outcome as there is sufficient time

for NorB to become reduced before Nitric Oxide starts being reduced. The low

rate of NorB reduction and the lack of convergence shown are probably due to

a lack of information available in experimental datasets. The virtually instanta-

neous oxidation of NorB suggests that NorB is very good at reducing nitric oxide.

The cytochrome pool appears to stay almost fully reduced throughout the entire

simulation, as the rate of cytochrome reduction significantly outweighs the rate

of oxidation by downstream components. The high rate of cbb3 inactivation also

means that upon addition of nitric oxide, ≈ 98% of cbb3 becomes inactivated in-

stantaneously.

6.2 Aerobic Nitric Oxide Reduction in nsrR- mutant

The nsrR− mutant, which expresses NorB in an essentially constitutive manner

was not effective in generating a usable dataset as it removed any NO almost

instantaneously resulting in non-modellable dataset shown in Figure 6.16.
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Figure 6.15: Reduction States During Nitric Oxide Reduction. This figure shows how
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Figure 6.16: Nitric Oxide Reduction in an nsrR− Mutant. This figure shows nitric oxide
and oxygen reduction in an aniA−nsrR−. mutant. In this case the aniA− mutation has no
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on the rate of oxygen reduction as it is being removed very quickly by the constitutively
expressed NorB.
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Chapter 7

Nitrite Reduction in N. meningitidis

7.1 Microerobic Nitrite Reduction

7.1.1 Introduction

The last datasets to be used in the iterative approach to parameter estimation was

of cultures able to respire nitrite in addition to oxygen. In these cultures nitrite

was added to a culture already respiring oxygen to observe both the rate of nitrite

reduction, and the effect on oxygen respiration caused by the production of nitric

oxide. These datasets were the most complex in terms of the information con-

tained within them and the number of model components needed to solve them.

In addition to the components being used to model nitric oxide reduction, the ni-

trite reduction pathway is also active. The portions of the ETC relating to nitrite

reduction are shown graphically in Figure 7.1. However since Neisseria menin-

gitidis is incapable of growing anaerobically, in actual fact the entire pathway is

required, using oxygen, nitric oxide and nitrite reduction.
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UQNADH 

Dehydrogenase
bc1

c5

c4
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cbb3
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NorB

Figure 7.1: Nitrite reducing electron transport chain of N. meningitidis. This shows the
complete electron transport chain of Neisseria meningitidis with the components irrelevant
to nitrite reduction greyed out. In the mathematical model all of the purple elements
(cytochromes) are amalgamated into one entity.

The equations that describe this portion of the ETC are:

d[O2]

dt
= β(1− [O2]/KO)− k1[Ca][O2]

d[Qa]

dt
= g([Q]− [Qa])− l3[Qa]([B]− [Ba])− f [Qa]([X]− [Xa])

d[Xa]

dt
= −k3([C]− [Ca]− [CX])[Xa]−m3([A]− [Aa])[Xa] + f [Qa]([X]− [Xa])

d[Ca]

dt
= k3([C]− [Ca]− [CX])[Xa]− k1[Ca][O2]− k5[Ca][NO] + k6[CX]

d[NO]

dt
= m1[NO−2 ][Aa]− l1[NO][Ba]− k5[Ca][NO] + k6[CX]− γ[NO]

d[NO−2 ]
dt

= −m1[NO−2 ][Aa]

d[CX]

dt
= k5[Ca][NO]− k6[CX]

d[Aa]

dt
= m3([A]− [Aa])[Xa]−m1[NO−2 ][Aa]

d[Ba]

dt
= l3[Qa]([B]− [Ba])− l1[NO][Ba]

These equations describe the change in concentration of nitrite over time,
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which is the experimentally observed value (in addition to the afore modelled

oxygen and nitric oxide). Also modelled is the reduction state of AniA. This

represents the complete mathematical model not including any transcriptional

parameters.

7.1.2 Experimental Results

Generating datasets for Nitrite reduction could be performed in with two differ-

ent cultures; an aerobic NsrR deficient mutant, or microaerobic wild-type. Mi-

croaerobic cultures appeared to grow very poorly during the course of this work

and in most cases did not survive the transition from being in the incubator to

being moved to the electrode chamber. Therefore an nsrR− mutant was used in-

stead of the wild-type. This mutant expresses AniA and NorB in a constitutive

manner, removing the necessity for growing the cultures in microaerobic condi-

tions. The cultures were grown in aerobic conditions until mid-log phase growth

had been achieved. This corresponded to an OD600 of 0.3− 0.9 and usually re-

quired an incubation period of roughly 3 hours. Once the required cell density

had been obtained the culture was transferred to the electrode chamber, Sodium

Nitrite was added to a concentration of 1 mM and the nitrite and oxygen con-

centrations recorded as the culture respired. Unfortunately nitric oxide concen-

trations could not be recorded as the NO electrode had failed and could not be

replaced.

In addition to the datasets obtained from nsrR− mutant cultures, a further

dataset was obtained from Rock et al. 20 which showed oxygen and nitric oxide

concentrations in a microaerobic wild-type culture where nitrite is added part-

way through aerobic respiration. The datasets generated and used for parametri-

sation of this portion of the model are shown in Figures 7.2 & 7.3.

The dataset in Figure 7.2 shows an nsrR− mutant which has had 1 mM nitrite

added at t = 0 s. Nitrite reduction proceeds linearly and at quite a high rate. Oxy-

gen starts linearly but then slows down presumably as nitric oxide is produced
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Figure 7.2: Nitrite Reduction in Neisseria meningitidis. This dataset shows the effect
on oxygen respiration of nitrite respiration as nitric oxide is produced. This culture is an
nsrR− mutant which is expressing AniA and NorB in an essentially constitutive manner.

and inhibits cbb3. It is also possible that given the high rate of nitrite reduction

large quantities of nitric oxide are being produced which will react directly with

oxygen as described in Chapter 6 affecting the rate of observed oxygen reduction.

The dataset in Figure 7.3 shows a wild-type culture grown in denitrifying con-

ditions, so that it is expressing both AniA and NorB. Nitrite is added at time

t ≈ 200 s to a concentration of ≈ 1 mM (Moir, private communication). Upon ni-

trite addition a small decrease in oxygen respiration rate is observed, and a large

increase in nitric oxide occurs as nitrite is reduced. Nitric oxide is then main-

tained at a fairly constant level until oxygen is fully reduced at which point a

further increase in nitric oxide concentration is observed. It is posited that this

final increase in NO concentration is because the electrons that were being pulled

through the oxygen respiration pathway are now free to be drawn to AniA al-

lowing more nitrite reduction to take place.
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Figure 7.3: Nitrite Reduction in Neisseria meningitidis. This dataset shows the effect of
nitrite addition to an aerobically respiring culture. Nitrite is added at 200 s. Oxygen and
Nitric Oxide data-points are recorded with much less frequency than in previous datasets
hence the inclusion of dots on the plot.

7.1.3 Prior Probability Distributions

As described previously all parameters must have an associated prior probability

distribution. The posterior probability distributions from Chapter 6 were used

as prior probability distributions in this chapter. Where new parameters were

introduced, the distributions were generated based on published literature values

which are noted in Chapter 3. When using literature values the prior probability

distributions were generated according to the same scheme as in Chapter 5. The

values required to create idealised lognormal probability distributions for each

parameters are shown in Table 7.1.

The initial probability distributions used to start the Monte-Carlo runs are

shown in Figure 7.4.
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Figure 7.4: Prior probability distributions for microaerobic oxygen and nitrite reduc-
tion. These are the probability distributions used as priors by the parameter estimation
algorithm.
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Parameter x̄ σ

k1 417.88 µM−1s−1 31.172

k3 4.65 µM−1s−1 0.619

l1 13.12 µM−1s−1 8.321

l3 0.058 µM−1s−1 0.021

m1 1 µM−1s−1 1

m3 4.8 µM−1s−1 0.2

k5 1741.8 µM−1s−1 1822.0

k6 1.076 s−1 1.473

β 0.00014 µM−1s−1 4.67× 10−6

g 0.857 s−1 0.086

f 8.398 µM−1s−1 1.237

γ 0.00014 µMs−1 4.67× 10−6

Q 7.06 µM 1.317

X 27.45 µM 12.08

A 0.137 µM 0.048

B 0.137 µM 0.048

C 0.071 µM 0.029

Table 7.1: Prior Probability Table This table shows the prior means and standard devia-
tions used to create lognormal distributions to be used as the prior probability distribu-
tions.
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Figure 7.5: Solved Nitrite Reduction in Neisseria meningitidis. This figure shows the
first attempt at fitting the model to experimental data. Nitrite reduction is being modelled
well, whereas oxygen reduction is being modelled quite poorly as the solved data shows
to high a rate of oxygen reduction. Nitric oxide is solved purely as a product of nitrite
reduction and is not compared to any experimental data.

7.1.4 Parameter Estimation Results

The parameter estimation process was run in the same fashion as that described

in Chapters 5 & 6. The 2 experimental datasets were run 20 times (each) for

20,000 iterations using the prior probability distributions shown in Figure 7.4.

The solved output from datasets 1 and 2 are shown in Figures 7.5 and 7.7 re-

spectively. Given the apparent poor fitting of the solved outputs shown in both

of these figures, plots of the redox states for both of these datasets are shown in

Figures 7.6 and 7.8.

The solved data shown in Figure 7.5 doesn’t fit particularly well to the experi-

mental data. Nitrite reduction appears to be modelled well as it is a simple linear

reduction. Oxygen reduction however is modelled very poorly. The initial rate of

oxygen consumption is too high, and the slowing of consumption is too abrupt.

The halting of oxygen reduction is due to the amount of nitric oxide being pro-
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Figure 7.6: Reduction States During Nitrite Reduction. This figure shows how the re-
duction states of the enzymes involved in nitrite reduction change during respiration.

duced by the reduction of nitrite. This level of nitric oxide quickly inhibits the

cbb3 totally as can be seen by the high concentration of NO in Figure 7.5 and in

the redox plot in Figure 7.6. The redox plots show that essentially all the elec-

trons in the system are flowing to the nitrite reduction pathway. Nitric oxide is

progressing as fast as possible based on the electron flow into NorB. NorB stays

in a permanently oxidised state suggesting that the reduction activity of NorB is

faster than the rate of reduction of NorB itself. The level of NorB is also not easily

modelled correctly using this data as no information is available about the actual

levels of nitric oxide being produced during nitrite reduction.

The solved data in Figure 7.7 appears to fit oxygen reduction quite well but

fails to fit nitric oxide reduction almost entirely. The most significant feature, that

nitric oxide should increase when oxygen reduction ceases is missing. The redox

state plot in Figure 7.8 suggests the reason for the lack of this feature. The cyto-

chromes appear to be in a completely reduced state shortly after the start of the
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Figure 7.7: Effect of Nitrite Addition on Aerobically Respiring Cultures. This figure
shows the first attempt at fitting the model to experimental data. Oxygen respiration
appears appears to be modelled quite well, but nitric oxide is being modelled particularly
badly. The most significant feature of the nitric oxide dataset is absent in the solved data.

simulation. This permanently reduced state means that when oxygen reduction

ceases there is essentially no difference to the flow of electrons to either NorB or

AniA. This suggests that parameters g and f , the reduction of cytochromes and

the reduction of the quinone pool are too high, leading to the permanent reduc-

tion of both those components. The nitrite levels are equally difficult to model as

nitric oxide in the previous dataset as the levels are unknown.

The posterior probability distributions for the above results are not shown

here as they do not provide any useful information at this point.

7.1.5 Second Parameter Estimation Results

A second attempt was made to try and better fit the solved data to the experimen-

tal data by adapting the priors for dataset 2 using knowledge from the previous

parameter estimation attempt. The prior probability distributions for dataset 2
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Figure 7.8: Reduction States During Nitrite Reduction. This figure shows how the re-
duction states of the enzymes involved in nitrite reduction change during respiration.

were altered such that the means of f and g were reduced 10 fold, and the dis-

tributions were broadened significantly. Additionally the m3 rate constant prior

distribution was set correctly as in the previous round it was erroneously set to

have a uniform prior. The other distributions were left unchanged. The new prior

probability distributions are shown in Figure 7.9.

The new prior probability distributions proved to be difficult for the parame-

ter estimation system to use, as out of 10 runs only 2 produced reasonable fitted

data. One of these fits is shown in Figure 7.10. This shows a vastly improved

fit over Figure 7.7. Oxygen is being modelled almost perfectly, and the major

features of the nitric oxide data are also qualitatively present. In addition, the

similarity between the oxygen reduction rates and nitrite reduction rates is cor-

roborated by Rock et al. 20 who showed that under denitrifying conditions nitrite

reduction rate should roughly equal oxygen reduction rate.

The redox state plot shown in Figure 7.11 shows how the change in substrate
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Figure 7.9: Prior probability distributions for microaerobic oxygen and nitrite reduc-
tion. These are the modified probability distributions used as priors by the parameter
estimation algorithm.
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Figure 7.10: Effect of Nitrite Addition on Aerobically Respiring Cultures. This figure
shows the second attempt at fitting the model to experimental data. Oxygen respiration
appears appears to be modelled well. Nitric oxide production is being modelled well
qualitatively, as the major features of the experimental data are present. Clearly though
further rounds of parameter estimation are in order to improve the quantitative fit.

reduction has come about. The cytochrome and quinones are no longer in a per-

manently reduced state, and once oxygen is depleted NorB is able to access some

of the electrons that were previously directed towards cbb3, causing the increase

in nitric oxide concentration. Additionally the cytochrome pool increases its over-

all reduction state once oxygen is depleted, as one of the sinks for electrons is no

longer active, this also has a small effect on the reduction state of AniA which

increases due to the larger supply of upstream electrons available to it. The in-

crease in electrons available to AniA also causes an increase in the rate of nitrite

reduction. The more marked reduction state change of the quinone pool once the

culture starts respiring nitrite is partially corroborated by data obtained by Otten

et al. 155 . They found that the reduction state of the quinone pool in Paracoccus

should differ between aerobic respiration and denitrification, however in their

experiments “denitrification” was simulated by knocking out the bc1 complex,
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Figure 7.11: Reduction States During Nitrite Reduction. This figure shows how the
reduction states of the enzymes involved in nitrite reduction change during respiration.

the equivalent of stopping oxygen and nitrite reduction in Neisseria meningitidis

while leaving the quinol reductase (NorB in N. meningitidis) intact. Their results

showed that the quinone pool should become more reduced under “denitrifying”

conditions not less. This discrepancy may be related to the difference in organ-

isms and could indicate more complex interactions between the components in

Neisseria meningitidis.

The posterior probability distributions generated from this second attempt

at parameter estimation are shown in Figure 7.12. These were generated only

from the two Markov Chains that produced simulation output that qualitatively

matched the input data. The other Markov Chains settled on solved output which

did not have the correct dataset features.

The idealised lognormal distribution parameters that fit the posterior proba-

bility distributions are shown in Table 7.2 and compared to the prior probability

distributions.

As can be seen from Table 7.2 and Figure 7.12 most of the rate constant proba-
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Figure 7.12: Posterior probability distributions for microaerobic oxygen and nitrite re-
duction. These are the final posterior probability distributions generated by the param-
eter estimation system for microaerobic oxygen and nitrite reduction, all concentrations
have been normalised to assume an OD600 of 1.
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Priors Posteriors

Parameter x̄ σ x̄ σ

k1 (µM−1s−1) 417.88 31.172 403.51 27.59

k3 (µM−1s−1) 4.65 0.619 4.58 0.436

l1 (µM−1s−1) 13.12 8.321 6.42 2.33↓
l3 (µM−1s−1) 0.058 0.021 0.096 0.025

m1 (µM−1s−1) 1 1 0.175 ↓ 0.087

m3 (µM−1s−1) 4.8 0.2 4.79 0.042

k5 (µM−1s−1) 1741.8 1822.0 138.66 (γ = 399.86) 338.18↓
k6 (s−1) 1.076 1.473 1.59 0.527

β (µM−1s−1) 0.00014 4.7× 10−6 0.00014 4.7× 10−6

g (s−1) 0.857 0.086 0.085 0.0078↓
f (µM−1s−1) 8.398 1.237 0.771 ↓ 0.096↓
γ (µMs−1) 0.0024 9× 10−5 0.0024 8.8× 10−5

Q (µM) 7.06 1.317 34.31 ↑ 5.49↑
X (µM) 27.45 12.08 2.81 ↓ 0.595↓
A (µM) 0.137 0.048 0.704 ↑ 0.3↑
B (µM) 0.137 0.048 7.80 ↑ 3.63↑
C (µM) 0.071 0.029 1.3 ↑ 0.259↑

Table 7.2: Posterior Probability Statistics. This table shows the parameters required to
create lognormal distributions that describe the prior and posterior probability distri-
butions. The values for the priors are as in Table 7.1. The posterior distributions were
generated from dataset 2, and where they relate to concentrations, these have been nor-
malised. The lognormal distributions represent best-fits to the actual posterior distribu-
tions. Where there are significant differences between the prior and posterior values for
either the mean or standard deviation, these are indicated by ↑ and ↓. Where a γ value
is shown in brackets it means that a 3 parameter lognormal had to be used, and γ is the
location parameter for the distribution.
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Parameter R Statistic Parameter R Statistic

k1 1.07 g 1.03

k3 1.06 f 2.27

l1 1.30 γ 1.02

l3 2.89 Q 2.31

m1 3.47 X 2.39

m3 1.14 A 2.39

k5 2.11 B 5.64

k6 1.76 C 1.59

β 1.01

Table 7.3: Gelman-Rubin Convergence Statistic. This table shows the Gelman-Rubin
Convergence statistic for the two Markov chains from dataset 2. For parameters which
are concentrations, the statistic relates to the values after normalisation (data is nor-
malised based on initial oxygen reduction rate).

bility distributions have remained fairly stationary throughout the multiple rounds

of parameter estimation (from Chapters 5 & 6). The distribution of l1 has nar-

rowed towards the lower end of the prior bounds. The distributions of f and

g are almost identical to their modified prior distributions with very little devi-

ation. The concentration distributions however have all been modified signifi-

cantly from their prior distributions.

7.1.6 Analysis of Convergence

The Gelman-Rubin R statistics were calculated for the Monte-Carlo trajectories

for each parameter and these are presented in Table 7.3. These values show very

high levels of convergence for all parameters, however it should be noted that

these values may not be truly representative as in fact only 2 trajectories are being

analysed here since these were the only ones that produced usable output.
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7.1.7 Analysis of Correlation

Correlation analysis was performed on each of the parameters using the Monte-

Carlo trajectories as in Chapters 5 and 6. The upper-triangle matrix is shown in

Figure 7.4. There are quite a few cross correlations between parameters in this

dataset, although they are all classed as “moderate” rather than “high”. There

are some obvious correlations such as the concentration of AniA and the reduc-

tion rate constant of Nitrite being negatively correlated, and that AniA and cbb3

are negatively correlated to the concentration of cytochromes. This is explained

by the fact that the more cytochromes, the faster AniA and cbb3 can be reduced

which means fewer are required to maintain the same level of substrate reduction.

Interestingly cbb3 and rate of reduction of oxygen do not appear to be correlated

at all. This is most likely due to the fact that the reduction rate constant of oxygen

by cbb3 is so high that any oxygen is reduced almost instantaneously meaning

that changes in that rate constant make very little difference if the concentration

of cbb3 is changed.

7.1.8 Discussion

The parameter estimates generated from this new set of data are capable of mod-

elling experimental data particularly well, even if only in a qualitative manner.

It also shows that the initial prior estimates for the values of f and g were (at

least) an order of magnitude too high. These estimates were generated very early

on in the modelling process during a trial-and-error period trying to find values

that made sense biologically yet also allowed the model to fit the data. Impres-

sively these initial values worked very well for most of the datasets where the

nitrite pathway way was not being employed, and it only became obvious in the

later sets that these values were too high. The nitrite datasets shows that the

rate of flow of electrons into the system was too high causing the cytochromes

and quinone pool to stay in a permanently reduced state leading to very little

change in enzyme activity when substrates were added or were depleted. The
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enzymes essentially had an unlimited supply of readily available electrons from

both sources. Reducing the rate of both flow of electrons into the system, and the

flow from the quinone pool to the cytochromes caused a massive change in the be-

haviour of the system as neither could be maintained in a fully reduced state. This

completely altered the dynamics of the system as there was now true competition

for electrons from the quinone pool and the cytochromes. The model became ca-

pable of modelling, in a qualitatively correct manner, the behaviour of the system

when substrates were added and became depleted. Perhaps more impressively,

none of the other rate constants needed to change, although the concentrations

of the various enzymes were altered. Additionally the simple change of reducing

the flux of electrons through the system actually brought the reduction states of

the quinones and cytochromes into line with what was already published in the

literature (≈ 50% reduced)155.

7.1.8.1 Using Nitrite Posterior Parameters on Previous Datasets

To further investigate the posteriors generated from parameter estimation, the

best parameters that produced the output shown in Figure 7.10 were used to

create solved datasets for aerobic oxygen respiration, and for the addition of nitric

oxide and compared against their equivalent experimental datasets. The enzyme

concentrations were all scaled to match their respective datasets, and the solver

was run using those parameters (no parameter estimation was performed). The

results from these simulations are shown in Figures 7.13, 7.14 and 7.15.

Figure 7.13 shows the results of a simulation using the parameters obtained

from nitrite parameter estimation compared to a simple aerobic oxygen reduction

dataset. The concentration parameters have been appropriately scaled to match

the experimental dataset (normalised based on observed oxygen reduction rate).

The overall rate is too slow, however the simulation shows the same high affinity

feature as the experimental dataset even with the reduced electron flux through

the system. The difference in reduction rate is highly likely to be caused by the
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Figure 7.13: Aerobic Oxygen Respiration with Nitrite Posteriors. This figure shows the
simulation results using the posteriors from nitrite parameter estimation with appropri-
ately scaled concentrations.

incomplete decoupling of cell culture density from other parameters.

Figure 7.14 shows the results of a simulation using the parameters obtained

from nitrite parameter estimation compared to an aerobic oxygen reducing dataset

where nitric oxide is added. The concentration parameters have been scaled ap-

propriately to match the experimental dataset (as above). The concentration of

NorB was altered further because this experimental dataset was not grown in mi-

croaerobic conditions and will not be expressing a high level of NorB. Thus NorB

concentration was reduced to a value of 0.01 µM. This was required to achieve

a reasonable fit for the removal of nitric oxide. If the parameter obtained from

nitrite fitting was used the nitric oxide was removed almost instantaneously. Ad-

ditionally in order to produce a similarly shaped oxygen reduction curve, the

value of k5, the rate constant of cbb3 inhibition by nitric oxide, had to be increased

by ≈ 660×. This was required to reduce the rate of oxygen reduction to a suit-

able rate while there was nitric oxide present. The result is another qualitatively
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Figure 7.14: Aerobic Oxygen Respiration with Nitric Oxide Addition with Nitrite Pos-
teriors. This figure shows the simulation results using the posteriors from nitrite param-
eter estimation with appropriately scaled concentrations. The concentration of NorB (B)
had to be reduced significantly to obtained a similar nitric oxide reduction rate, and the
value of k5 had to be increased 66x to create a similarly shaped oxygen reduction curve.

correct fit to the experimental data. The discrepancies again my be related to

incorrect density decoupling.

Figure 7.15 shows the results of a simulation using the nitrite posteriors with

the same modification to k5 as described for Figure 7.14, to assess the difference

it makes to the original result shown in Figure 7.10. The oxygen and nitrite re-

sults are almost identical, only the nitric oxide shows any significant change. The

qualitative result is still very good as there is still an increase in nitric oxide con-

centration after oxygen runs out, however the change is much more sigmoidal

that in the original simulation. This may not necessarily be a problem however

as the original experimental data is of low resolution and would be incapable of

capturing a more curved increase in nitric oxide concentration. It is highly likely

in fact that both increases in nitric oxide concentration, after nitrite addition and

after oxygen depletion are much more curved that the experimental data would
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Figure 7.15: Nitrite Reduction using Modified Nitrite Posteriors. This figure shows
the simulation results of the nitrite reduction dataset using the modified value of k5 as
described for Figure 7.14. The change has not hugely affected the result except for making
the increase in nitric oxide concentration when oxygen runs out a lot less sharp. This
however may be closer to the in vivo result. The experimental data is of a low enough
resolution that it is very difficult to tell.

suggest.

The fact that the value of k5 can increase by such a large amount and only have

such a limited effect on the outcome is due to the fact that the original parame-

ter estimation results tended towards lower values where the probability was

higher (as dictated by the priors). However increasing the value for k5 would

have had very little difference because the nitric oxide would be acting on van-

ishingly small concentrations of reduced cbb3 since it spends most of its time in

a fully oxidised state. In this case the posterior distribution is a little misleading

as the value of this parameter actually has very little effect on the outcome of the

simulation.
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Chapter 8

Discussion and Completed Model

From Chapter 1, the stated aims of this thesis were:

1. Construct a mathematical model of the N. meningitidis respiratory chain.

This will involve the conversion of the kinetic reactions involved in respira-

tion into mathematical equations that can be linked together, and if justified

simplifying the chain.

2. Obtain experimental data on respiratory rates and enzyme kinetics. This

will involve performing experiments on respiring N. meningitidis and record-

ing the concentrations of respiratory substrates under different conditions.

3. Parametrise the model using experimental data. To do this a system will

need to be developed which can iteratively fit experimental data to specific

parts of the mathematical model.

173



CHAPTER 8. DISCUSSION AND COMPLETED MODEL

With reference to the above, a mathematical model was constructed as described

in Chapter 3, the equations shown below:

d[O2]

dt
= β(1− [O2]/KO)− k1[Ca][O2]

d[NO]

dt
= m1[NO−2 ][Aa]− l1[NO][Ba]− k5[Ca][NO] + k6[CX]− γ[NO]

d[NO−2 ]
dt

= −m1[NO−2 ][Aa]

d[Qa]

dt
= g([Q]− [Qa])− l3[Qa]([B]− [Ba])− f [Qa]([X]− [Xa])

d[Xa]

dt
= −k3([C]− [Ca]− [CX])[Xa]−m3([A]− [Aa])[Xa] + f [Qa]([X]− [Xa])

d[Ca]

dt
= k3([C]− [Ca]− [CX])[Xa]− k1[Ca][O2]− k5[Ca][NO] + k6[CX]

d[CX]

dt
= k5[Ca][NO]− k6[CX]

d[Aa]

dt
= m3([A]− [Aa])[Xa]−m1[NO−2 ][Aa]

d[Ba]

dt
= l3[Qa]([B]− [Ba])− l1[NO][Ba]

Additionally if the preliminary suggested expression equations are to be included

this list is extended to include:

d[A]

dt
=

(
R
(

1− [O2] + k10[NO]

[O2] + k10[NO] + k11

)
− S

(
1− [NO]

[NO] + k13

))
− k8[A]

d[B]
dt

= T
(

[NO]

[NO] + k15

)
− k16[B]

The data required to populate the parameters has been obtained by experi-

mental means as described in Chapters 5-7. These data provided information on

both respiratory rates and enzyme kinetics. Additional information was gathered

from the literature as shown in Chapter 3.

To use the information obtained from the literature and from experimental

data, an integrated parameter estimation scheme was devised, which combined

Bayesian inference with a Monte-Carlo type parameter estimation system into an

iterative method for extracting parameter values from progressively more com-

plex datasets as described in Chapter 4. This iterative method produces posterior
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probability distributions for each of the parameters in the model calculated from

the various rounds of parameter estimation for each successive dataset. The final

parameter probability distributions are shown in tabular form in Table 8.1. This

table shows the values required to produce idealised lognormal distributions of

each of the parameters. Plots of the actual obtained distributions are shown in

Figure 8.1.

The value of k5 has no associated bounds in the table as it was concluded that

the value reported is actually much lower than the true value as evidenced in

Chapter 7 whereby the posterior parameters from nitrite reduction were unable

to model the true effect of NO inhibition of oxygen shown in Chapter 6. Increas-

ing the value of k5 could restore the correct behaviour in the NO reduction dataset

without a significant detrimental effect on the nitrite dataset. Unfortunately this

makes the bounds on this value indeterminate without further Monte-Carlo sim-

ulation being run with the adapted value. The distribution shown in Figure 8.1

shows the un-adapted values for comparison.

8.1 Amalgamation of Cytochromes

The choice to replace the multiple cytochromes bc1, cx, c4 and c5 with one single

entity was a modelling one, to both simplify the modelling process by reducing

the total component count and number of rate constants, and to allow the model

to focus on simple electron transport chain branching and competition for elec-

trons. The rate constants for each of the cytochromes could be subsumed by the

respective “out rates” from the amalgamated cytochrome to its downstream elec-

tron acceptor. The downside of this approach is that it means that any rates ob-

tained for X are probably not going to be biologically relevant as it is essentially

masking the behaviour of multiple different hidden components. This simplifica-

tion does not appear to have affected the model in a detrimental way when using

the datasets in this work.
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Symbol Description Mean Value σ

k1
Rate constant for O2 reduction

by reduced cbb3
403.51 µM−1s−1 27.59

k3
Rate constant for cbb3 reduction

by cytochrome pool 4.58 µM−1s−1 0.436

l1
Rate constant for NO reduction

by reduced NorB 6.42 µM−1s−1 2.33

l3
Rate constant for NorB

reduction by quinone pool 0.096 µM−1s−1 0.025

m1
Rate constant for NO-

2 reduction
by reduced AniA 0.175 µM−1s−1 0.087

m3
Rate constant for AniA

reduction by cytochrome pool 4.79 µM−1s−1 0.042

k5
Rate constant for cbb3 inhibition

by NO
≈

66000 µM−1s−1 Indeterminate

k6
Rate constant for recovery of

NO inhibited cbb3
1.59 s−1 0.527

β
Rate constant for passive

diffusion in of O2
0.00014 µM−1s−1 4.7× 106

KO Saturation O2 level 48 µM 0

g Rate of electrons in from NADH 0.085 s−1 0.0078

f Rate constant for reduction of
cytochromes by quinones 0.771 µM−1s−1 0.096

γ Spontaneous loss of NO 0.0024 µMs−1 8.8× 105

Q Concentration of quinones 34.31 µM 5.49

X Concentration of cytochromes 2.81 µM 0.595

A Concentration of AniA 0.704 µM 0.3

B Concentration of NorB 7.8 µM 3.63

C Concentration of cbb3 1.3 µM 0.259

Table 8.1: Model parameters. This table shows all the parameter values that have been
generated by iterative parameter estimation throughout this work. For values that show
concentrations of components, they represent the value for a culture with OD600 = 1.00.
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Figure 8.1: Final Posterior probability distributions. These are the final posterior prob-
ability distributions generated by the parameter estimation system, all concentrations
have been normalised to assume an OD600 of 1. Note the value of k5 will be significantly
different from that shown.
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Parameter Prior Oxygen Posterior NO Posterior Nitrite Posterior

k1 415 413.228 417.88 403.51

k3 3 4.496 4.65 4.5

l1 6 → 13.12 6.42

l3 1 → 0.058 0.096

m1 1 → → 0.175

m3 4.8 → → 4.79

k5 100 → 1741.8 66000

k6 38 → 1.076 1.59

β 0.00014 0.00012 0.00014 0.00014

g 0.847 0.889 0.857 0.085

f 8.749 8.707 8.398 0.771

γ 0.017 → 0.0024 0.0024

Q 0.3 3.143 7.06 34.31

X 3.97 4.732 27.45 2.81

A 0.137 → → 0.704

B 0.043 → 0.137 7.8

C 0.03 0.043 0.071 1.3

Table 8.2: Change in Parameter Values. This table shows the mean of each parameter
value at each stage of the model. Where parameters are not used and therefore generate
no posterior distribution, a→ is used instead.

8.2 Parameter Changes Throughout this Work

The way the parameters change throughout the various rounds of parameter es-

timation described in this work is presented in Table 8.2 and discussed below.

• k1 - Changes very little and the final distribution resembles the prior distri-

bution very closely.

• k3 - Increases slightly to achieve the required oxygen reduction rate and

affinity.

• l1 - Increases by a factor of two initially however this is a very broad dis-

tribution suggesting that the magnitude is less important at this point. It
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settles back to a value closer to the prior when a more appropriate dataset

is used.

• l3 - Reduces significantly to achieve desired NO reduction rate.

• m1 - Reduces significantly to achieve desired nitrite reduction rate.

• m3 - Changes very little from prior distribution.

• k5 - Increases significantly in order to inhibit cbb3 by the amount seen in

experimental data.

• k6 - Decreases significantly for the same reason as above.

• β - No change.

• g - No change initially, but final posterior shows a 10× decrease to prevent

permanent reduction of cytochromes.

• f - No change initially, but final posterior shows a 10× decrease to prevent

permanent reduction of quinone pool.

• γ - Initial decrease to prevent NO being lost too quickly from the in silico

results.

• Q - Initial increase to allow enough electron flux through the system. Final

large increase as a result of reducing electron flux into the system.

• X - Significant change seen for NO reduction, but this change is negated in

the final posteriors after reducing electron flux.

• A - Significant increase required to attain observed Nitrite reduction rate

after reducing electron flux.

• B - Increases required to attain Nitric Oxide reduction rate, and after reduc-

ing electron flux.

• C - Significant increase required to attain Oxygen reduction rate, exacer-

bated by the reduction of electron flux.
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Figure 8.2: Nitric Oxide Reduction in an nsrR− Mutant. This figure shows nitric oxide
and oxygen reduction in an aniA−nsrR−. mutant. In this case the aniA− mutation has no
effect as no nitrite is being reduced. Addition of nitric oxide has only a very small effect
on the rate of oxygen reduction as it is being removed very quickly by the constitutively
expressed NorB.

8.3 Testing the Model

8.3.1 Addition of Nitric Oxide to an nsrR− mutant

The nsrR− mutant should express NorB at significantly higher levels than in

wild-type cultures, by as much as 100× according to Rock et al. 32 . This is a simple

in silico test to do as it simply requires the concentration of NorB to be increased

by 100×. Additionally a representative experimental dataset which has not been

used during parameter estimation can be used to compare the in silico result with

the in vivo data. This experimental dataset is shown in Figure 6.16 and repeated

here in Figure 8.2. The in silico test was performed using the same parameter val-

ues used to generate Figure 7.14 with the value for NorB increased by 100×. The

result of this simulation is shown in Figure 8.3. This figure shows significant simi-
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Figure 8.3: Nitric Oxide Addition to In silico nsrR− Mutant. This figure shows the effect
of adding two aliquots of increasing concentration of nitric oxide to a simulated nsrR−

mutant.

larity with the experimentally observed result capturing the fast removal of nitric

oxide due to the large quantities of NorB, and also models the slight reduction in

oxygen reduction rate whilst the NO is being removed.

8.3.2 In silico cyt Knockouts

It is possible to predict the effect on both the electron transport chain and the rates

of respiration of knocking out some of the cytochromes that are encompassed

within parameter X. This can be done by simply reducing the concentration of X

and leaving all other parameters unchanged. In this case the concentration was

reduced by 25% (this value is somewhat arbitrary but might be similar in effect

knocking out 1 of the c-type cytochromes). This is a simplification of actually

knocking out a specific cytochrome as this will actually affect all components

downstream of X.
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Figure 8.4: In silico Cytochrome Mutant. This figure shows the effect of reducing the
total amount of cytochromes while leaving all other components unchanged. All the
reaction rates have slowed as a result of this change.

The experimental dataset used for comparison is that in Figure 7.10. The result

of the simulated dataset is shown in Figure 8.4 compared to the solved result from

the wild-type.

The simulated cytochrome mutant shows that all reaction rates have slowed,

although not by large amounts. The most obvious difference in the figure is the

change in production and removal of nitric oxide, which is reduced to approx-

imately 10% of its production compared to the wild-type. This predicted result

could easily be tested with an experiment using a c-type cytochrome knockout

mutant grown in microaerobic conditions.

The reduction state plot can be seen in Figure 8.5. It also compares the sim-

ulated cytochrome mutant to the wild-type. As can be seen, the redox states

of cbb3 and AniA do not change significantly as they are very efficient electron

donors, remaining in an oxidised state. NorB remains in a more reduced state
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Figure 8.5: In silico Cytochrome Mutant Redox States. This figure shows the effect on
the enzymatic reduction states of reducing the total number of cytochromes to simulate
a cytochrome knockout mutant. The wild-type is represented by solid lines, and the
synthetic mutant by dashed lines.

in the cytochrome mutant as there is less NO to ultimately reduce resulting in

fewer electrons donated. The reduction state of the quinones is quite similar be-

tween the two simulations throughout. The reduction state of the cytochromes

is significantly different, being higher than the wild-type at all times. This can

be explained by looking at the quinone pool reduction state. As it remains fairly

similar to the wild-type, the same flux of electrons must be passing through it,

thus the same amount of electrons are being passed to fewer cytochromes. Since

the rate of donation of electrons by the cytochromes has not been altered, the elec-

trons build up in the cytochromes until a new steady-state is reached where the

overall reduction state of the cytochromes is higher.
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Figure 8.6: Improved Fit with Scaling Factor. This figure shows the best fit achieved
using a scaling factor rather than an approximate OD to calculate component concentra-
tions. Compare with 7.14.

8.4 Single Parameter Scaling Fits

As has been discussed previously the proxy being used to try and estimate cell

density appears to be inadequate as it does not scale correctly with the nor-

malised data. It is however possible to obtain very good fits to all the experi-

mental datasets with the exception of nitrite dataset 1 - which is an nsrR− mutant

- by simply introducing a “scale factor” which is applied to all concentrations in

the system. An example of the better fit after using the scale factor is shown in

Figure 8.6 in comparison to Figure 7.14.

The magnitude of the scale factor required for each dataset is shown in Table

8.3 along with the Oxygen Reduction Activity which formed part of the initial

scaling.

The fact that NorB needed to be scaled by a smaller amount in Nitrite dataset

184



CHAPTER 8. DISCUSSION AND COMPLETED MODEL

Dataset Scale Factor O2 Reduction Activity (µMs−1)

Oxygen Dataset 1 1
7 0.211027

Oxygen Dataset 2 1
2.4 1.016159

Oxygen Dataset 3 1
8 0.181488

Nitric Oxide Dataset 1 1
5.5 0.336669

Nitric Oxide Dataset 3 1
3 0.597478

Nitric Oxide Dataset 4 1
5.8 0.324286

Nitrite Dataset 2 1
5.8 (NorB 1

5 ) 0.275

Table 8.3: Dataset Scale Factors

2 suggests that the value for NorB is actually underestimated in the priors. This

does not affect the other datasets as they either have no NorB or only very low

levels.

A plot of the scaling factors compared to the dataset oxygen reduction rates is

shown in Figure 8.7. A simple linear regression through the datapoints suggests

that the relationship between the two is approximately linear with a gradient of

0.36366.

8.5 Concluding Remarks

The parameterised model created in this work appears to be capable of at least

qualitatively modelling the behaviour of all the datasets presented, using the fi-

nal set of parameter distributions. The model is not 100% quantitative, although

this was not an explicit requirement for the model. It should still be capable of

offering insight into how the system behaves even if it cannot predict changes

precisely. The non-quantitative nature of the model was to be expected given the

high level of complexity in the model and some of the assumptions made regard-

ing cytochromes, backward reaction rates etc. The most obvious “fault” in the

model is that there is an incomplete decoupling of cell density from other com-

ponents. Unfortunately this is most probably because the proxy used was not

completely accurate as a replacement for cell density.
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Figure 8.7: Dataset Scaling Factors. This figure shows the magnitude of the scaling fac-
tor relative to the experimental oxygen reduction rates. The red lines indicates a linear
regression through the datapoints.

The integrated parameter estimation system created for this work operates

as intended and could be extended to parameterise other systems if the same

Bayesian approach were taken to data gathering. It is not however a system that

could be used without human curation though, as it can still produce mathemat-

ically correct results with parameters that are actually very unlikely in vivo. This

was shown in Chapter 7 where the values for 2 parameters were an order of mag-

nitude too high in the prior probability distributions causing the simulation to

fail. These same values worked “perfectly” for the datasets in Chapters 5 and 6.

Such human interaction with the system is important however as it forms part of

the Bayesian approach whereby we provide the “prior” knowledge to the system.

In conclusion, a novel system for parametrising a respiration system model

has been created and utilised which has been able to successfully populate the
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model and produce probability distributions for all parameters. These param-

eters are able to be used in a conjunction with the constructed model to create

simulated data which matches the existing experimental data in a qualitative

manner, and to provide insight into the hidden behaviour of the system. Such

a novel system was necessary as no previous attempts to ascertain values for

biological component parameters such as rate constants in a complex biological

system have been able to produce the same richness of information as this ap-

proach. This is simply due to the interactions between components in the model

and the limited avenues of data gathering available for such a model.
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Chapter 9

Further Work - AniA and NorB

Expression in N. meningitidis

The expression of AniA and NorB has not been mentioned in this work thus far

as it adds a further level of complication to an already complex model. The data

shown in the previous chapters shows that it seems to be possible to model, with

reasonable accuracy, many of the facets of respiration without the need for modi-

fying the levels of expression of the respiratory enzymes. However regulation of

expression systems do exist in the respiratory system and it would be an oversight

to omit them from discussion here.

Unfortunately due to time constraints it was not possible to fully investigate

expression in this respiratory system, however the following was theorised as a

potential method for including expression of AniA and NorB in the model.

It is posited that expression of AniA and NorB could be modelled by treating

them as being expressed using Michaelis-Menten kinetics. This being the case, the

rate of change of the two enzymes in the system can be expressed as differential

equations in the following manner:
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d[A]

dt
=

(
R
(

1− [O2] + k10[NO]

[O2] + k10[NO] + k11

)
− S

(
1− [NO]

[NO] + k13

))
− k8[A]

d[B]
dt

= T
(

[NO]

[NO] + k15

)
− k16[B]

The parameters required for NorB expression can be explained simply: T is equiv-

alent to the Vmax of enzyme expression and k15 is equivalent to the KM. k16 is in-

cluded to model the degradation rate of the enzyme. The expression rate of NorB

is dependent solely on the concentration of NO present.

AniA expression is more complicated to model as it is not only repressed by

oxygen, but activated and repressed by NO. The NO activation is modelled by

S and k13 which correspond to the Vmax and KM of the activation respectively.

This ensures that AniA isn’t expressed when NO is too low. The repression of

activation by oxygen and NO is modelled by R,k10 and k11 which represent the

Vmax, “NO inhibition scale factor”, and KM of the repression respectively. The

“NO inhibition scale factor” effectively sets the cut-off concentration of NO at

which it starts repressing AniA expression. As with NorB expression, k8 here

represents the degradation rate of AniA.

The first part of the AniA equation models the regulation by FNR, and the

second part in addition to the NorB equation models the regulation by NsrR.

As detailed in Chapter 1, NsrR is a repressor of both AniA and NsrR, and FNR

(Fumarate and nitrite reductase regulator) is an activator of AniA. Nitric Oxide

inhibits the NsrR protein leading to an increase in expression of both NorB and

AniA since the repression by NsrR is no longer present. Higher concentrations

of Nitric Oxide cause FNR to be inhibited which effectively represses AniA. High

concentrations of Oxygen also cause inhibition of FNR meaning that AniA isn’t

expressed until low concentrations of Oxygen are present.

These two new differential equations could easily be incorporated into the
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Figure 9.1: Effect of Nitric Oxide on NsrR and FNR Dependent Gene Expression. Ex-
pression of (A) NorB and (B) AniA in wild-type Neisseria meningitidis. Figure adapted
from Heurlier et al. 30 .

model to complement the original 9 equations. There are two datasets which

could potentially be used to populate these new parameters. The first is from

Heurlier et al. 30 which details levels of expression in response to regulation by

Nitric Oxide (produced by Spearmine NONOate). This is shown in Figure 9.1.

The second is from Rock et al. 20 which details the effect on Oxygen reduction and

Nitric Oxide creation and reduction during microaerobic respiration, and this is

shown in Figure 9.2.
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Figure 9.2: Effect of Expression of AniA and NorB. This figure shows an aerobically
respiring culture in media with nitrite present. When oxygen is depleted, AniA and NorB
begin to be expressed causing in increase and then decrease of NO. While NO is being
reduced, Oxygen concentration slowly rises due to diffusion, and begins to be reduced
once more when NO is depleted. Data from Rock et al. 20 .
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Appendix A

Appendix

A.1 Monte Carlo Estimation of π

d

d

Figure A.1: Circle circumscribed by a square. A Circle of diameter d inside a square of
side d.

Using the example shown in Figure A.1:

• The area of the square is d2.

• The area of the circumscribed circle is π ×
(

d
2

)2
= π

4 × d2.

• The ratio of the two is therefore
π
4×d2

d2 = π
4 .

Pi can be estimated by calculating the ratio of randomly distributed points that

fall within the circle to those that fall within the square.
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A.2 Adaptive step sizes and numerical instability

An adaptive step size routine was required for the ordinary differential equation

algorithm to prevent numerical instability issues from arising and producing bo-

gus results. At points during the simulation, a number of parameters can take

on very small values, or are changing rapidly and a fixed step size algorithm can

cause problems here by assuming that the value stays small, or stays constant

during the length of the fixed step. The result of these assumptions is numer-

ical instability whereby the erroneous values of these parameters affects other

parameters in the simulation. The most obvious and disastrous effect is of con-

centrations in the simulation going negative.

To prevent this issue an adaptive step size was implemented whereby if the

parameters are changing slowly the step size can be large, but this is adaptively

decreased (and conversely increased) when parameters are changing more quickly.

In the absence of an adaptive step size routine, the fixed step size would have to

be set small enough to solve the rapidly changing regions correctly, but would

then be unnecessarily small in the slowly changing regions.

A.3 Affinity of cbb3 for Oxygen

A large amount of data was gathered during the course of this work of oxygen

reduction which could be used for analysis of the affinity of cbb3 for oxygen. Sim-

ple observation of these datasets which can be seen in Chapter 5 shows that cbb3

must have a high affinity for oxygen by virtue of the fact that oxygen reduction

continues linearly all the way down to almost zero oxygen. A lower oxygen affin-

ity would show a marked slowing of the reduction rate as the concentration of

oxygen decreased. A simple was of visualising the change in rate during oxygen

reduction is to plot the instantaneous rate against the concentration of oxygen.

A more appropriate way to visualise the rates is to use a Lineweaver-Burk

(double reciprocal) plot. This allows the Vmax and KM to be calculated from a
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regression line through the data. The x-axis intercept is equal to − 1
KM

, and the

y-axis intercept is equal to 1
Vmax

. A Lineweaver-Burk plot for a representative

oxygen reduction dataset is shown in Figure A.2.
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Figure A.2: Lineweaver-Burk Plot for Oxygen Reduction in Neisseria meningitidis. V
was calculated as a 5 second rolling average rate to try and smooth out some of the
data. The rates are largely negative as oxygen was being removed from the system. The
regression line shown is a simple linear regression through all datapoints.

Unfortunately the combination of particularly noisy data generated by the

oxygen electrode, and the limited sampling rate (of 1s−1) mean that the degree of

affinity could not be explored further. The essentially flat regression line through

the Lineweaver-Burk plot here would imply a completely linear reduction rate

and extremely high affinity of cbb3 for oxygen.

A.4 Software Used During this Work

The main code of the integrated parameter estimation system was written in

Java™ with various helper scripts written in Python. Initial visualisation of re-
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sults was carried out using GNUPlot. Calculation of the Gelman-Rubin R statistic

was performed using the statistical software package ’R’, and the correlation anal-

ysis used the scipy library for Python. This thesis was typeset using LATEX, figures

if drawn were created using Inkscape, data plots were created with Grace, prob-

ability plots with Matplotlib156 for Python. Figure 1.5 was created with UCSF

Chimera157.
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