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Summary

This thesis proposes biologically inspired solutions to the problem of autonomous navi-
gation and escape from pursuers for a robot in a dynamic environment. Pursuit can be
encountered in real life tasks, but the study of strategies to avoid it has not been extensive
compared to the study of pursuit. The problem of navigation and escape has been solved
by means of two different available techniques, from a high level control perspective: path
planning based on potential functions, and learning navigation strategies with Q-learning.
The sensed environment is represented through an approximate cell decomposition or
occupancy grid.

Embedding a navigation scheme that allows avoiding static and dynamic possible dangers
provides a robot with capabilities that improve its sense of self-preservation when inter-
acting with the environment for the first time, equivalent to innate behaviours in animals.
Biologically inspired features have been added to the designs, in the forms of:

• Temporary local goals for the navigation and escape representing possible hideaways
(refuges) or locations away from pursuers according to the knowledge of the environ-
ment.

• Protean motion towards the goal, to increase the chances of avoiding capture.

Novel contributions include a description of the problem of escape from pursuers, in a
dynamic, sensed, previously unknown environment; the use of different kinds of potential
functions adapted to the problem, with added biologically inspired proteanism and tem-
porary local goals (hideaways or more distant locations); a comparison of the performance
of different potential functions; a comparison of the possible variations in the proposed
algorithms; an interpretation of the problem from a game theory perspective; and the use of
tabular Q-learning with dynamic parameters and shaped reward functions to find suitable
navigation strategies. The work presented in this thesis intends to widen research on the
problem of individual escape from pursuers, along with the use of biologically inspired
features to solve engineering problems.
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e Subscript of the number of evaders in the observed environment

e(t) Positions of the cells corresponding to the evaders

~e Unitary vector of random direction for protean motion

E(t) Observed local environment

Eπ Expected values given a policy π

E1, . . . , Em Potential functions of each obstacle in the environment

Eg Potential function of the goal

f(d(.)) Function of the Euclidean distance

f(x, y) Function of the Euclidean distance

f(x0, y0) Limit of the influence of an obstacle

f ′(.) Gradient of the function f(.)
~f(~r) Repulsion force away from the predator
~F (~r) Attractive force towards a prey
~Fsg Vector from the robot to the subgoal

FIRAS Force Inducing an Artificial Repulsion from the Surface, in French

g(d(.)) Function of the Euclidean distance

g(y(t)) Pursuit policy

gm Shape or contour of the mth obstacle

G A matrix to compute the discrete Fréchet distance
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Chapter 1

Introduction

This thesis addresses the problem of autonomous navigation and escape from pursuers in
mobile robotics, present in real life applications and more complex than collision avoidance
only. The studied perspective of the problem contemplates the lack of previous knowledge
about the environment, or the unavailability of models that describe the environment, also
considering the sensing as the only source of information. The problem of escape from
pursuers (also called evasion in a pursuit-evasion game context) has not been extensively
studied as its counterpart, the pursuit.

The proposed designs in this thesis that compute solutions to the problem represent two
different points of view: the process of path planning with potential functions, and the
computation of strategies from reinforcement learning, considering their advantages to
solve the particular problem of navigation and escape with limited information. Biolog-
ically inspired features have been incorporated into the designs, following a current trend
in robotics and other engineering areas of turning eyes to nature and its processes, to find
better solutions as an alternative to traditional engineering solutions. The features offer a
complement and alternatives to avaliable autonomous navigation theory and algorithms,
in the escape of pursuers. Different variations are considered for the designs, being evalu-
ated through the analysis of simulations, and the feasibility of implementation in a robotic
platform.

The novel contributions include: a definition of the problem of navigation and escape from
pursuit with limited information; the review of different areas of knowledge focusing on
their fusion in the design of high level solutions to the problem, including bio-robotics,
biology, path planning, pursuit-evasion games, and reinforcement learning; the integra-
tion of biologically inspired features in popular path planning and reinforcement learning
methods; and an evaluation of the proposals by a statistical analysis of their success.

This chapter presents the motivation behind the project contained in the thesis (Section 1.1),
an introduction to the problem of navigation and escape from pursuers (Section 1.2),
the aims and objectives (Section 1.3), the main novel contributions (Section 1.4), a list
of publications resulting from the work in the thesis (Section 1.5), and an outline of the
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contents in the rest of the chapters (Section 1.6).

1.1 Motivation

Achieving the autonomous navigation of a robot is an ongoing problem, along with the
demands of the particular task, the characteristics of the elements in the environment,
the physical and kinematic limitations of the robotic platform, and the architecture of the
control system (Choset et al., 2005). Robots with autonomous navigation capabilities can
be applied to numerous areas of service like exploration, surveillance, recognition, rescue,
collection, and transportation. In some environments, threats can be present in the form
of pursuers or pursuit systems. Ideally, autonomous robots should be able to deal with
the different circumstances that they encounter during their navigation task, trying to self-
preserve their integrity within the limits of their capabilities. Added to the problem of
pursuit is the lack of information in the beginning of a navigation task, where no previous
mapping, learning or modelling of the environment has taken place, but the robot still
needs to respond to the threats in the environment.

This problem of a first interaction with pursuers and local available information coming
from sensing has not been exhaustively explored, as collision avoidance (Choset et al.,
2005), or even the problem of pursuit (Isaacs, 1965). Nevertheless, reliable autonomous
systems, capable of making the best of their circumstances, are needed in some tasks.
In order to avoid the danger posed by pursuers, a set of actions should provide an ad-
equate response according to the available knowledge. Many proposed control systems
for autonomous navigation do not contemplate any other action when interacting with the
general environment than collision avoidance, for both static and dynamic obstacles.

A gap in the design for control systems to compute navigation strategies or paths that
contemplate a response to other kind of threats, like pursuers, is present within the gen-
eral field of autonomous navigation, particularly for partially observable or incomplete
information environments. Some of the few efforts attempting to solve the problem of nav-
igation and escape from pursuers, found during the literature review, include: Amin et al.
(1997), Karaman and Frazzoli (2010), and Masoud (2002, 2003a,b) from a path planning
perspective, mostly based on potential functions; and Leondes and Mons (1979), Yavin
(1986), de Villiers et al. (1987), and Fuchs et al. (2010) in the context of pursuit-evasion
games. The proposed approaches consider a full knowledge of the actions of the pursuers,
their capabilities, and the environment, in general. However, the design of escape (or
evasion) strategies for autonomous robots can be performed independently from the design
of pursuers, and without necessarily committing the design to a particular pursuit strategy.

The incorporation of biologically inspired features in robotics is an area of opportunity in
research (Bekey, 1996; Habib et al., 2007). Biologically inspired features can be used for
the improvement of solutions to the problem of autonomous navigation, towards its ro-
bustness when the environment becomes challenging. Studies on anti-predator behaviour
modelling like Broom and Ruxton (2005) or Furuichi (2002), or even computational exten-
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sions of general phenomena like the results of co-evolution in Nolfi and Floreano (1999),
offer some inspiration for proposals to achieve autonomous navigation and escape from
pursuers.

The capability of reacting to threats in the form of pursuers, with information from sensing
only, is investigated in this thesis. Mechanisms to compute paths or navigation strategies
that implement biologically inspired self-preservation behaviours, like seeking refuge or
protean motion, as part of the navigation against collisions, are proposed. The areas of
artificial intelligence, control systems and robotics offer numerous options to solve au-
tonomous navigation problems, for example basic reactive controllers (Kim and Shim,
2003), high level plans (LaValle, 2006; Choset et al., 2005), or learning strategies (Sutton
and Barto, 1998). This thesis addresses the computation of high level paths or navigation
strategies by extending popular approaches from path planning with potential functions,
and later through reinforcement learning, to extend previous work on a more general
autonomous navigation (based on collision avoidance) to contemplate the escape from
pursuit. Situations of navigation whilst being pursued involve several elements that are
out of control of the designer, like the capabilities of the pursuers, and the characteristics of
the environment. Thus, designing general control systems that are able to deal with limited
information, and for a wider range of threats, are highly desirable to increase the autonomy
of robots.

1.2 Problem definition

Autonomous robots that navigate in unknown, dynamic environments need to make deci-
sions according to the information they perceive from their sensing devices. When a robot
is deployed to a new place that contains dynamic threats in the form of pursuers, along
with obstacles, an adequate response is needed. A set of navigation actions that avoids
collisions, and also capture by pursuers, provides a first response in the self-preservation
of a robot, regardless of any other learning or control system as a consequence of the
interaction with the environment, or according to other objectives of the navigation task.
The design of such a control system that provides actions to navigate and escape from
pursuers needs to consider the restrictions in the knowledge of the environment, as well as
the unavailability of dynamic models of the pursuers and obstacles, and the stochasticity
of real environments.

The problem of autonomous navigation and escape from pursuers is encompassed within
the family of general autonomous navigation, and consists of the following elements: (a)
a locally observed environment (partially observable or with incomplete information); (b)
obstacles; (c) pursuers; and (d) the robot that performs the navigation. A plausible solution
is the computation of paths or navigation strategies based on adequate techniques accord-
ing to the available information, the chosen representation of the environment, and the
chosen control approach. For this matter, path planning methods like potential functions
combined with a cell decomposition representation, or tabular Q-learning with discrete
actions and states are considered alternatives, based on their comparative advantages over
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other path planning methods and solutions to pursuit-evasion games.

1.3 Aims and objectives

General aim

The general aim of this thesis is to design solutions to the problem of navigation and escape
from pursuers, according to a given definition, using combinations of path planning and
reinforcement learning with biologically inspired features. A solution to the problem is:

• A navigation path or strategy that avoids collisions with obstacles; and

• A navigation path or strategy that leads away from pursuers, and prevents capture
for as long as possible.

Specific objectives

• Conducting a comprehensive literature review in the following topics:

– Biologically inspired robotics, particularly the current trends and projects, the
degrees of biological inspiration, and examples of applications of inspiration.

– Behavioural and mathematical models of anti-predator motion mechanisms for
general taxonomies of animals, and their extension to computational applica-
tions.

– Path planning, particularly the method of potential functions, dealing with dy-
namic environments, and applications to the task of escape from pursuers or
other similar problems.

– Pursuit-evasion games, considering the proposed methods to solve them, with
emphasis on evasion strategies.

– Reinforcement learning for autonomous navigation.

• Integrating concepts of path planning, reinforcement learning, game theory and biol-
ogy to propose solutions for autonomous navigation and escape from pursuers.

• Proposing a particular methodology for the analysis of the environment for the spec-
ifications of the problem, and then the computation of a plan or navigation strategy
according to the analysis, from path planning with potential functions, and reinforce-
ment learning.

• Proposing solutions to the problem of navigation and escape that are usable for dif-
ferent robotic platforms, and for dynamic, stochastic environments.

• Evaluating the performance of the proposals through simulations and a statistical
analysis.
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• Designing a visualisation to appreciate the results of the different steps in the pro-
posed algorithms, in MATLAB.

• Demonstrating some of the proposals in a real robotic platform.

1.4 Main original contributions

• Definition of the problem of navigation and escape from pursuers, for a sensed envi-
ronment where no previous model is available. The particular definition presented in
this thesis addresses the problem of navigation and escape from pursuers in a novel
form: the case where no previous information about the environment, and no model
of the pursuer are available. This perspective of the problem has not been studied
as extensively as more general autonomous navigation for collision avoidance, nor
the counterpart of evasion: the pursuit. The definition of the problem from the
perspective of path planning is mentioned in Chapter 4, and from the perspective
of game theory solved by reinforcement learning in Chapter 7.

• A review of different areas of knowledge: behavioural and mathematical biology,
path planning, pursuit-evasion games, and reinforcement learning, oriented to find-
ing models and previously proposed solutions to the evasion or escape from pursuers
in dynamic, unknown environments and applied to basic robotic platforms. The
review highlights the novelty of the study of anti-predator navigation motion and
its application to robotics, as well as a wide range of possibilities to solve the problem
of navigation and escape from pursuers using different methods of path planning,
machine learning, probabilistic analysis, optimisation theory, intelligent control, and
many others. The review is presented throughout Chapters 2, 3, and 6.

• The use of inspiration from biological, individual, general anti-predator behaviours
(but not necessarily mimicry) in path planning and reinforcement learning to solve
the problem of navigation and escape from pursuers. The integration of biologically
inspired features with both path planning with potential functions and basic rein-
forcement learning algorithms, takes the form of the design of a high-level control
system that computes a path or a strategy to achieve the evasion and navigation
avoiding collisions. Specifically in the designs, the following contributions can be
outlined:

– A biologically inspired analysis of the environment to compute the best location
for the robot in the current situation, from the sensed environment, and using
the concept of refuges (Chapter 4).

– An implementation of biologically inspired proteanism through the use of navi-
gation subgoals (Chapter 4)

– The incorporation of pursuers and the proteanism (subgoals) into popular po-
tential functions (Chapter 4).
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– Shaped reward functions from the biologically inspired analysis of the environ-
ment and parameters for the reinforcement learning algorithm (Chapter 7).

The contributions in the designs are the combination of concepts from different areas
of knowledge and applications, in a novel form to solve the problem of navigation
and escape from pursuers.

• An evaluation and comparison of the performance of different alternatives for the
computation of navigation plans or strategies for the navigation, from path planning
and reinforcement learning techniques. The proposed variations in the algorithms
that compute the paths or strategies regarding the use of different potential functions
and the parameters in the designs, are evaluated and compared using a statistical
analysis. The performance of the proposals has been evaluated through larger sets of
simulations with variations of the fundamental parameters, leading to strong conclu-
sions about the results. This proposed methodology based on statistics contributes
to set the basis for future evaluations of generated paths in different applications of
autonomous navigation (Chapters 5 and 7).

1.5 Publications

The work in this thesis has contributed to the following publications:

D. Araiza-Illan and T.J. Dodd. Biologically inspired controller for the autonomous navi-
gation of a mobile robot in an evasion task. In World Academy of Science, Engineering and
Technology, 68: 780-785, 2010.

D. Araiza-Illan and T.J. Dodd. Bio-inspired autonomous navigation and escape from pur-
suers with potential functions. In Proceedings of Towards Autonomous Robotic Systems. In
press, 2012.

1.6 Thesis outline

The thesis is structured to provide the literature review and theoretical basis in Chapters 2,
3 and 6, and the main research related to the theory in Chapters 4, 5, 7 and 8. Finally, the
concluding remarks are presented. A more detailed description is presented next.

Chapter 2 starts by presenting a general review of the fields of bio-robotics, mentioning
different forms and degrees of biological inspiration applied to solve engineering prob-
lems. Several examples of current projects are used to illustrate the wide variety of im-
plementations of biological inspiration. The chapter also presents a review of literature
on prey-predator interactions from a mathematical and behavioural perspective, includ-
ing general individual anti-predator behaviours encountered in different species, different
mathematical models of individual anti-predator actions, other models of prey-predator
interactions from different perspectives, computational implementations of the models
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and their application to other different problems. Particular interest has been paid to
individual models of anti-predator behaviours that can be used in robotic applications like
autonomous navigation.

Chapter 3 continues the literature review, focussing on the field of path planning for nav-
igation of autonomous robots. The main methods used for path planning are surveyed
in general terms, with particular interest in solutions to the problem of escape from pur-
suers, and closely related areas. The chapter focuses on potential functions, and different
proposed variations in their implementation, due to their particular advantages.

Chapter 4 presents the path planning problem of navigation and escape from pursuers that
is solved in this thesis, altogether with an overview of the decisions made with respect to
the designs of solutions (including the control approach, the techniques, and the architec-
ture). Subsequently, the designs for the analysis of the environment and path planning
are presented. A biologically inspired analysis of the environment is proposed, based on
the concepts of refuges and proteanism (randomness in the navigation) from the literature
presented in Chapter 2, and according to the limits of the defined problem. The analysis
computes an occupancy grid of the elements in the environment, and a local navigation
goal, which are mapped into a potential function. Different kinds of potential functions
selected from the literature review in Chapter 3 are tailored for the solution of the problem
of navigation and escape, and finally a search method is proposed to compute a path that
would lead to avoiding collisions and escaping from pursuers.

Chapter 5 evaluates and compares the proposed variations for the path planning designs,
through simulations that demonstrate the performance of the proposed analysis of the
environment and path planning in a visual manner, but also through a statistical analysis
of the results. Different kinds of simulations were performed for the variations in the
analysis of the environment (regarding mainly the implementation of the proteanism and
the characteristics of the grid), the different kinds of potential functions, and possible
elements in the environment that complicate the problem. The analysis of the results
provides the best alternatives, from the ones proposed and evaluated, to avoid the capture
(or delay the capture) according to the characteristics of the environment.

Chapter 6 returns to the literature review, presenting an overview of the main concepts of
pursuit-evasion games, and the main groups of proposed solutions to such games. The
computation of evasion strategies independently from pursuit strategies, and their appli-
cation to autonomous navigation in robotics are of particular interest. Subsequently, the
chapter presents a summary of the main concepts of reinforcement learning, including
the characteristics of the algorithms and relevant implementation considerations. Some
applications of reinforcement learning to autonomous navigation are briefly mentioned,
as reinforcement learning is of interest for the final designs of solutions to the problem of
navigation and escape from pursuers, when mathematical models of the environment and
the other elements (like the pursuers) are not available.

Chapter 7 presents an interpretation of the same problem defined in Chapter 4 from a game
theory perspective, and a solution by means of a reinforcement learning algorithm. A
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biologically inspired implementation of tabular Q-learning is presented, based on the same
analysis of the environment proposed in Chapter 4, and adding a shaped reward function
(also with bio-inspired concepts) and dynamic learning parameters. The selection of the
learning parameters is justified through an analysis of their effect on the computation of an
adequate solution to the problem of navigation and escape. In the last part of the chapter, an
evaluation of the proposed design is presented, through a statistical analysis of simulations
similar to the ones presented in Chapter 5.

Chapter 8 describes the implementation process of some of the designs in a robotic plat-
form. A qualitative evaluation is presented, highlighting relevant aspects of the sensing
and the low level control used to complement the designs presented in Chapter 4.

Chapter 9 summarises the content of the thesis, with attention to the accomplishment of
the main objectives stated in the introduction. The main contributions and results for
the chapters that present and evaluate the designs are outlined, followed by the global
achievements. Finally, several ideas on possible future work are introduced.
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Chapter 2

Bio-robotics and biological studies
on anti-predator behaviours

Biological features can serve as an inspiration to solve robotic problems, offering solutions
to the problem of autonomous navigation and escape from pursuers. This chapter presents
a literature review on the fields of bio-robotics, biological anti-predator behaviours, prey-
predator mathematical models and some applications, to define the biologically inspired
basis of the core work in this thesis. Bio-robotics is an emergent area of study that has
broadened and acquired importance in the last twenty years, due to the applicability and
flexibility of bio-inspiration usage. Anti-predator and prey-predator interactions are bi-
ological features that have been studied in many different fields including behavioural
biology, mathematical biology, evolutionary biology, game theory, and control systems.

An explanation of the main subareas of study in the field of bio-robotics is offered, to clarify
the existence of different degrees of bio-inspiration. Section 2.1 presents a definition and
historical review of bio-robotics and its degrees of biological inspiration, biomimetics and
biologically inspired robotics. Many examples of recent bio-robotics projects are presented,
for both biomimetics and biologically inspired degrees, to facilitate the illustration of dif-
ferent degrees of inspiration.

An overview of relevant and important biology related studies on anti-predator behaviours
and prey-predator interactions is presented subsequently in Section 2.2. More specif-
ically, Subsection 2.2.1 deals with general anti-predator behaviours. Subsection 2.2.2
summarises population dynamics models, game theory fusions and food web models.
Subsection 2.2.3 presents other anti-predator and prey-predator interaction general mod-
els. Subsection 2.2.4 summarises evolutionary extensions of the models in population
dynamics and game theory fusions. Subsection 2.2.5 summarises some interesting work
on enhanced and applied anti-predator behaviours.

Finally, Section 2.3 analyses the reviewed literature from a critical point of view, highlight-
ing the relevance and orientation of anti-predator behaviours that has been considered for
the designs that solve the problem of autonomous navigation and escape from pursuers.
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Section 2.4 presents the conclusions of the chapter.

2.1 Bio-robotics

Bio-robotics is a relatively recent area of research, mainly motivated by the idea that com-
bining biology or bio-inspired concepts and engineering is advantageous, as biological
systems have grown to be more efficient through evolution, particularly in terms of energy.
Bio-inspired robotic systems are closely interrelated with other areas of knowledge and
research, such as behavioural biology, cybernetics, nanotechnology, control systems, and
mechanical engineering. The developments that have been taking place in the area of
bio-robotics have resulted in robotic platforms to study and understand biology, as well
as robotic solutions to engineering problems that incorporate biological tools and mech-
anisms. Regardless the degree of biological inspiration that is used in a design, which
sets the boundaries within the classification of bio-robotics into biomimetics or biologically
inspired robotics, any project involving a fusion between biology and robotics is considered
within the field of bio-robotics.

A general definition of bio-robotics is the incorporation of biological ideas and mechanisms
into robotics. Bio-robotics is divided into two main classes according to the degree of
biological inspiration and the main objective of the fusion of biology and robotics in the
system: biologically inspired robotics, and biomimetics. The definition of each class is
presented in Subsections 2.1.1 and 2.1.2, along with several illustrative examples.

Different degrees of bio-inspiration can be observed in the literature, ranging from exact
mimi-cry of animal processes to abstract metaphors. The term bio-inspired has been defined
by some authors in more general terms (Yuan and Yang, 2009), contemplating research on
biomimetics, bio-inspired robotics, but also a broad use of of neural networks, fuzzy logic
and genetic algorithms for information studies, communications, and finance. Table 2.1
presents a brief resume with the key contributions that originated the design of robotics,
and the use of bio-inspired features and mechanisms to solve engineering problems. The
combination of bio-inspired features with engineering developments is advantageous in a
sense of energetic efficiency and opportunities for applications of a single mechanism into
solving a wide range of problems (Bekey, 1996; Habib et al., 2007).

Current trends in bio-inspired research, according to Yuan and Yang (2009) and Siciliano
and Khatib (2008), are:

1. Reproducing human characteristics and behaviours (visual-perceptual capability, ma-
nipulation of objects in manufacture, robots that make facial expressions), including
the human developmental process.

2. Reproducing animal vision, audition and tactile systems for robotic path planning
applications (e.g., robotic whiskers), along with odour and taste recognition.

3. Developing human friendly robots that substitute animal companions.

4. Developing shape shifting robots that are able to reconfigure their morphology.
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Table 2.1: Presentation of the milestones of bio-robotics.

YEAR CONTRIBUTIONS

1920 Capek uses the word robot for the first time, in a novel (Norman, 2004-2011).

1937 The term artificial intelligence is first conceived by Turing and von Neumann (Norman, 2004-2011).

1943 A mathematical model of a neural network is proposed by McCulloch and Pitts (Norman, 2004-
2011).

1948 von Neumann compares computers (automata) and the human brain. Wiener defines the
principles of cybernetics (Norman, 2004-2011).

1949 von Neumann compares the function of genes to the capabilities of self-reproducing automata
(Norman, 2004-2011). Turtle robots created by Grey Walter (Sharkey, 2002).

1951 Berkeley built the first electronic robot, a squirrel-like device (Norman, 2004-2011).

1958 Rosenblatt introduced the perceptron, an artificial neural network that learns by trial and error,
simulating the process of human thinking (Norman, 2004-2011).

1968 First research on stability of walking robots (Garcia et al., 2007).

1972 First biped robot in Japan (Garcia et al., 2007).

1980-1990 Humanoid robots start to be built by several companies and research laboratories, Brooks
starts the branch of behaviour-based robotics, and complex behaviours are derived from neural
networks by Braitenberg (Sharkey, 2002). Cooperative robotics (Cao et al., 1997).

1990-2000 Robots as models of biological systems, evolutionary robotics to improve control and co-
evolution, reinforcement learning for control (Sharkey, 2002). Study of insects for hexapods
and cockroach-like robots, controlled by neural networks (Beer et al., 1997). Quadrupeds (Berns
et al., 1999). Aggregation mechanisms in robotics (Martinoli et al., 1999). Vision acquisition and
processing for guidance, navigation and maping (Franceschini et al., 1992). Micro-robots and
multi-robot systems inspired by insects (Franceschini et al., 1992; Mitsumoto et al., 1995; Beer
et al., 1997). Self-organising systems (Cao et al., 1997). Behaviour-based robotics (Matarić, 2001).
Locomotion of humanoids through muscles and control (Garcia et al., 2007). Robot localisation
and map generation (Durrant-Whyte et al., 1996).

2000-2012 Dynamic walking and running for legged robots by neural oscillators (Or, 2010). Robots for
multiple-media (Bachmann et al., 2009). Emotion expression and perception with social learning
(Garcia et al., 2007).

11



BIO-ROBOTICS AND BIOLOGICAL STUDIES ON ANTI-PREDATOR BEHAVIOURS

5. Applying biological mechanisms to engineering, in control systems and automation,
e.g. visual dynamic tracking systems; uses of neural networks and fuzzy logic for
control; planning with genetic algorithms, reinforcement learning and fuzzy logic.

6. Studying behavioural principles (brain mechanisms) and applying them to engineer-
ing, e.g. models of brain learning for grip control. These studies also include applying
learning schemes (associative, reinforcement or imitation based) and evolutionary
processes through simulated nervous systems for robot control.

7. Studying coordination and cooperation behaviours, and communication mechanisms,
for collective robotics (swarms).

8. Incorporating real biological components into robots (biohybrid robotics), like silk-
moth antennas as sensors.

The project presented in this thesis contemplates taking inspiration on animal anti-predator
behaviours to create an intelligent control system for a robot. Nature as it is known today
is the result of millions of years of evolution. Many processes are more energy efficient
than machines, and so complex that despite decades of research, their full understanding
has not been completed. Biology has inspired the development of new and better solutions
compared to existing engineering ones, as many biological features can be adapted to solve
different problems from other real life fields (Bar-Cohen and Breazeal, 2003). The design
of a control system that is able to navigate autonomously, and also escapes from pursuers,
requires a mechanism that can perform control actions towards that end.

The use of biological inspiration can occur in different areas that form part of a robotic
system (Dillmann et al., 2007; Siciliano and Khatib, 2008):

1. Design, including the mechanics and the electronics of the actuators for locomotion
that form the morphology of the robot.

2. Control, with a great part of inspiration coming from neurobiological research. Con-
trol can be performed on a high level or low level over a system.

3. Perception, considering the configuration and processing of information from sen-
sors.

In order to illustrate the application of bio-inspiration to the areas of a robotic system, the
examples given in the definitions of biomimetics and biologically inspired robots highlight
the relevant areas.

2.1.1 Biomimetics

A definition of biomimetics applied to robotics is the replication of a biological mecha-
nism or feature of an animal (mammal, insect, bird, fish, reptile, amphibian) in a robot, to
gain understanding and possibly deriving a mathematical model (Bar-Cohen and Breazeal,
2003; Siciliano and Khatib, 2008). Nevertheless, an exact replication of features is not
feasible, as nature relies on morphology and properties of materials to implement the
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Table 2.2: Different examples of the application of biomimetics in robotic projects.

YEAR PROJECT

2007 Implementation of a rat whisker sensory system in a robot, for testing neural models and to be
used as sensors for robotics in general (Pearson et al., 2007). Design, control and perception

2007 Small robots that are able to walk on water by using the surface tension. The key features of the
legs and actuation mechanisms of the robots have been designed according to the characteristics
of the water strider insects (Song and Sitti, 2007). Design and control

2008 Robot that represents the chewing process of a human jaw through actuators, following the
kinematics of the real movement (Xu et al., 2008). Design, control and perception

2008 Underwater robot that imitates the locomotion of turtles by four flippers. The designed and
implemented flippers are able to make the robot move underwater and on ground. A buoyancy
controller regulates the ascent and descent of the robot underwater (Low et al., 2008). Design and
control

2008 Micro air vehicle with physical characteristics like size and motion of the wings like a Diptera
insect (Wood, 2008). Design

2009 Flying robot that mimic the dragonfly structures of its wings. The robot has two independent
pairs of wings that emulate dragonfly aerodynamic characteristics. The design of the wings is
able to achieve some of the simple kinematics of a real dragonfly (DiLeo and Deng, 2009). Design

2009 Design and implementation of a mechanical knee that does the same functions of a human knee.
The designed knee is controlled by a central pattern generator (neural oscillator) and a reflex
mechanism (Renjewski et al., 2009). Design and control

2009 Robotic undulating-fin fish built to understand and model the wave propulsion systems for
underwater applications (Liu and Jin, 2009). Design

2009 Robotic fish capable of three-dimensional locomotion. The mechanical design of the robot
emulates a fish shape, with a flexible posterior body, flapping tail, and pectoral fins with three-
dimensional movement. The control system of the robot for the movement of the joints is based
on a central pattern generator (neural oscillator), after the obtention of the mathematical model
of the joints (Zhao et al., 2009). Design and control

2009 Vision based flying insect mechanisms that have been used in robotics for negotiating narrow
gaps between obstacles, collision avoidance, regulating flight speed and smooth landing (Srini-
vasan et al., 2009). Perception

2009 Model of a wing, based on the guillemot, that can be used for propulsion in air and underwater.
The model, obtained from empirical simulations with an artificially built wing, is used to analyse
factors involved in the evolution that led to the current functions of the guillemot wings, and the
compromises in performance due to the use of the wings for two different media: air and water
(Lock et al., 2010). Design

features (embodiment) (Pfeifer et al., 2007). Robotic implementation of biological features is
only possible with available resources, but embodiment remains a challenge, as the current
technology might not match the level of complexity in biological features. Research in bio-
inspired morphology and materials will make other desired animal features available for
robotics.

The work on biomimetics over the past decade has been extensive. Several universities
around the world have dedicated research centres for the development of mechatronic de-
vices that emulate biological systems. Some examples of projects in the area of biomimetics
in the last five years are presented in chronological order in Table 2.2. The specific area of
the robotic system that has been inspired by biology is highlighted in bold letters.

Mimicking nature through robotics provides alternative tools to evaluate mathematical
models of biology, instead of using animals, and isolates characteristics by simplifying the
system. Nevertheless, the replication of biology into robotics is not a trivial process, as
technology will always limit the complexity of the implementation in terms of hardware
and software. Also, building complex robotic platforms just to understand how nature can
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be replicated using available technology or to try models seems incomplete without divert-
ing into the application of the research to more rewarding tasks, like solving engineering
problems or for the optimisation of systems.

Reviewed literature in the area of biomimetics applied to robotics did not contemplate any
examples of replication of prey-predator interactions, nor the creation of robotic platforms
that would emulate any anti-predator behaviour. Nevertheless, it is not the aim of the
designs in the thesis to replicate animal anti-predator behaviours, but to use them as inspi-
ration to solve the problem of navigation and escape from pursuers.

2.1.2 Biologically inspired robotics

Complementing Subsection 2.1.1, the main objective of this subsection is the definition of
biologically inspired robotics, and its exemplification through recent research. Biologically
inspired robotics refers to the incorporation of features or mechanisms of animals into a
robot physically, to solve engineering problems (already solved by nature) or for novel
applications (Siciliano and Khatib, 2008), for example adding a vision system based on
human eyes to a robotic rover. Bio-inspired robotics also refers to the extraction of the
main idea behind physical, mental or chemical mechanisms of animals, to use it for the
control (mathematically and algorithmically) of a robot, for example pheromones based
algorithms. The extraction and implementation of the ideas can be done in different de-
grees, from using a feature from biology and replicating it with available resources like in
a flexible human-like spine in Or (2010) and plastic tendons in Borghesan et al. (2010), to
capturing the main core of an idea but the actual implementation is not similar to the real
biological process at all, like aggregation behaviours inKernbach et al. (2009) and wheel-
leg based robots in Bachmann et al. (2009). Implementation often depends on available
resources regarding mathematical modelling, software, simulation platforms, hardware,
and materials (Bar-Cohen and Breazeal, 2003).

A simple distinction between applications of biomimetics and biologically inspired ro-
botics is difficult due to their close relation, particularly the subsequent evolution of some
biomimetic projects into components of more complex biologically inspired ones; e.g.,
using adhesive tape that replicates the physiognomy of the feet in a gecko into robots so
they are able to climb walls, in Habib et al. (2007). Nevertheless, some specific projects
were originated as biologically inspired; e.g., aerodynamic structures in the shape of seeds
of the tumbleweed plant for exploration in Mars, in Southard et al. (2007). Figure 2.1
illustrates the degree of mimicry or inspiration that is present in biomimetics and bio-
inspired robotics, with some examples from the literature review.

Several examples of biologically inspired robotics from the last five years are presented in
chronological order, according to their degree of inspiration: replicating biological features
or mechanisms with available resources for other tasks in Table 2.3, or extracting the core
idea of the biological feature or mechanism and implementing it in any imaginable way
in Table 2.4. The specific area of the robotic system that has been inspired by biology is
highlighted in bold letters.
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Figure 2.1: Degrees of mimicry or inspiration in biomimetics and biologically inspired robotics.

Table 2.3: Examples of projects using biological features/ideas for other purposes.

YEAR PROJECT

2007 Robotic fin that produces a range of motions similar to a real one, for the propulsion of underwater
vehicles. The mechanism is built using servomotors (Tangorra et al., 2007). Design

2007 Round rovers for Mars exploration that use wind to travel great distances with little power,
inspired in the tumbleweeds. The robot has fabric sails that allow controlling the movement.
The design has been simulated for different kinds of wind (Southard et al., 2007). Design and
control

2007 Quadruped robot motions controlled by a central pattern generator that is capable to climb up
stairs, and find equilibrium in inclined and unstable terrains . The control system complies with
generating behaviours of inclination and folding that animals with four legs use for different
situations of navigation (Kimura et al., 2007). Control

2007 Artificial sucker mechanism for robotic manipulators, inspired by the suction in octopus tentacles.
A model of the real interacting muscles in the suction process is simplified for the physical
implementation with actuators (Grasso and Setlur, 2007). Design

2009 Chewing robot that performs different complex human-like movements to test dental materials.
The robot moves according to the chewing cycle of a human mandible, creating a wear in
materials (Raabe et al., 2009). Design and control

2009 Mechanical design of a walking robot with three legs.The design reduces the number of motors
in other designs with different numbers of legs (Liang et al., 2009). Design

2010 Leg design with four degrees of freedom for six-legged robots. Previous proposed designs for
six-legged robots have three degrees of freedom only (Roennau et al., 2010). Design

2010 Control of a flexible human-like spine for the walk stability of biped robots. The control is based
on a hybrid central pattern generator (neural network) and zero moment point (feedback-control)
control system that combines both approaches. The stability of artificial flexible spines in real-time
allows the robot to adapt to dynamic environments (Or, 2010). Control

2011 Groundhog-like robot for mine safety exploring and rescuing, that works under hazardous
conditions. The sensorial system is able to predict disasters inside the mines, and the robot can
also be used to deposit sensor network nodes along its path. The robot has a basic biologically
inspired shape and a moving head with a design to avoid problems in traditional excavating
techniques (Zhang and Gao, 2011). Design
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Table 2.4: Examples of projects using the extracted core of biological features/ideas.

YEAR PROJECT

2007 Solving problems of locomotion in complex terrains, by combining jumping with rolling or
gliding in robots. The jumping is achieved by storing and then releasing energy by compressing
the rolling or the gliding mechanism, like animals would compress the legs (Armour et al., 2007).
Design and control

2008 Feedback error and unsupervised learning based control system for robotic adaptive arm mo-
tions, inspired by the learning from the cerebellum and the elasticity of the muscles (Sungho,
2008). Control

2008 Rat brain structures based architecture for robot mapping and navigation. SLAM (simultane-
ous localisation and mapping) is performed extracting features from landmarks, and Hebbian
learning (neural networks) to build the map. Reinforcement learning is used to learn goals of
navigation (Barrera-Ramirez and Weitzenfeld-Ridel, 2008). Control

2009 Robot that uses a wheel-leg architecture in lunar exploration, along with light based obstacle
sensing (Dunker et al., 2009). Design

2009 Immune response based learning mechanism for two mobile robots (learner and helper), in a
track. Two algorithms were used, the behaviour arbitration (innate response: a set of rules) and
the clonal selection (adaptive response: based on reproduction of suitable cells, some become a
memory, others become anti- antigens). Attacks by antigens are replaced by weak areas of the
track, where the learner robot may go out of its path, triggering a response from the helper robot,
and storing the problematic state and solution (antibodies) for future similar cases (Chingtham
and Nair, 2009). Control

2009 Micro air-land vehicle with a bat-like wing for flying and a wheel-leg mechanism with modified
servo-motors for navigating in a terrain. The navigation is controlled from land, from the images
of a built-in camera (Bachmann et al., 2009). Design

2009 Aggregation algorithm for mobile micro-robots based on honeybees thermotactic aggregation
behaviour. Honeybees find the warmest place in an environment by executing random walks
collectively. The algorithm has been implemented in a sensor-actuator architecture, measuring
light instead of temperature (Kernbach et al., 2009). Control

The examples mentioned in Tables 2.3 and 2.4 separate the degree of inspiration within the
area of biologically inspired robotics, although in some cases the line between copying a
feature (mimicking) and using the feature as inspiration is not very clear. The examples
in Table 2.4 demonstrate the concept of biological inspiration more clearly. Unfortunately,
authors tend to use the terms biologically inspired and biomimetics indiscriminately across
their publications. This whole section on bio-robotics has been written to try to define
and separate the two main subareas, biomimetics and bio-inspired robotics, so the reader
would be able to understand the aim and the expectations of the work presented in this
thesis.

The use of inspiration from biology into machines, including robots, has evolved into a
better performance, a miniaturisation of the hardware, and an increment in the intelligence
(Dario et al., 2005). Considering the advantages of using bio-inspired features and mecha-
nisms when implemented to solve engineering problems, the main backbone if this thesis is
the use of biologically inspired anti-predator behaviours to achieve autonomous navigation
and escape from pursuers of a mobile robot.

The solution to the problem of autonomous navigation from a biologically inspired per-
spective has been more oriented to the use of artificial neural networks or other types of
controllers that function in a similar way to a determined species, for a specific physical
model of robot in a determined media (water, air, ground). Proposed biologically inspired
solutions to the problem of individual evasion from pursuers were looked for, but none
was found.
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The next section presents a compilation of reviewed literature regarding prey-predator
interactions, including general anti-predator animal behaviours (the main biological in-
spiration for the designs presented in this thesis), as well as different models that have
been proposed to study prey-predator interactions from different points of view (including
population dynamics, individual contributions to the population dynamics, some anti-
predator and predator behaviours as motion models, evolutionary studies, and compu-
tationally enhanced models for other applications.

2.2 Studies on prey-predator interactions

The first modern studies on anti-predator behaviours and prey-predator interactions date
between the 1920s and the 1940s. The use of mimicry and camouflage to prevent predation,
as well as mathematical models that describe prey-predator interactions are among these
first studies (Sumner, 1935).

This section presents a general perspective on anti-predator behaviours and prey-preda-
tor interactions. Studies on anti-predator behaviours include predator recognition, mor-
phological adaptations, and evasion behaviours. Prey-predator interactions have been
modelled using different mathematical approaches like population dynamics, game theory,
evolutionary algorithms, and others. The review on prey-predator interactions includes:

• Anti-predator behaviours from a behavioural biology perspective, with focus on in-
dividual behaviours that are feasible to implement in autonomous mobile robotics.

• A general basic review of prey-predator interactions, from a mathematical biology
perspective, which refers to the study of density population distributions in popula-
tion dynamics from specific models and spatial pattern formations.

• A resume of fusions of population dynamics models and game theory concepts (equi-
librium, individual strategy selection, costs and payoffs). The fusion tries to incorpo-
rate the effect of individual behaviours into the prey-predator interactions and the
resulting changes in the distribution of populations.

• A brief mention of food web models, another way to model the connections between
species in an ecosystem.

• Other mathematical models, including motion camouflage, predator-prey chasing
and fleeing respective motions, and collective motion anti-predator behaviours.

• Evolutionary algorithms that have been incorporated into population dynamics mod-
els, fusions of game theory and population dynamics models, and behaviours mod-
elled as neural networks or other kinds of controllers, to analyse the effects of the
co-evolution of species in prey-predator interactions.

• Enhanced anti-predator behaviours and implementations into robotic platforms. Some
of the anti-predator behaviour models have been modified for other applications,
including simulations.
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Figure 2.2: Related areas that study prey-predator interactions.

Figure 2.2 represents the relations between the areas that study prey-predator interactions.

Reviewed literature in the following subsections focuses on presenting the most relevant
work for the biological inspiration basis in a general form, and summarising the most
important work of non relevant but closely related areas of prey-predator modelling. Three
main key points were considered in the analysis of the literature regarding relevant work,
considering its applicability to robotics:

• Finding feasible methods to identify threats in the environment.

• Finding feasible anti-predator behaviours (i.e., behaviours that can be implemented
in a simple autonomous mobile robot, in unknown environments and with limited
sensing capabilities, such as protean fleeing and the use of refuges), with major inter-
est on individual anti-predator behaviours, although some group evasion studies are
mentioned.

• Finding mathematical navigation models of the feasible anti-predator or evasion be-
haviours that can be extended to the proposed design of the control system.

2.2.1 Anti-predator behaviours

The study of predation and anti-predation behaviours in animals started in the nineteenth
century, focusing on animal coloration principally. In the 1950s, defence mechanisms in
birds and insects were actively studied. In the 1970s, a modern approach to behavioural
ecology was started, and the volume of studies for different species has increased since
(Caro, 2005).

Animal species have developed different ways to deal with the threat of predation. Some
are innate, the result of evolution, and others are learned and adjusted after prey-predator
interactions. Anti-predator behaviours include mimicry, camouflage, fleeing, freezing, pro-
tean combinations, and fighting back, but not all of them are relevant to the project, in terms
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of feasibility of implementation in real life. Fleeing and proteanism are of interest for the
designs presented in this thesis.

According to Caro (2005), the triggering of anti-predator behaviours occurs in stages cor-
responding to the interaction between a prey (or a group) and a predator (also possible in
a group). The first stage corresponds to the predator recognition by observing or matching
features, innate or learned. The second and subsequent stages are a set of prevention and
evasion actions according to the level of threat and other factors like the morphological
characteristics of the prey and the environment. Predator recognition and the main cate-
gories of prevention and evasion actions are reviewed next. Behaviours are described in a
general form, i.e. not specific to any taxonomic group nor species.

Identification of predators

Recent surveys on recognition of predators reveal two mechanisms of prey in the animal
kingdom to recognise a predator: innate and learned. Innate recognition is present in
species where the predictability of predators is high and the variety of predating species is
low, but also in young specimens with high risk after birth and limited learning before
the first predation (Caro, 2005). The second mechanism is learning which animals are
likely to be predators. Chemical cues and other morphological and environmental signals
trigger prey responses, which differ from species to species, used for different stages of
the total prey response. Learning occurs when predators are unpredictable and variable
(Ferrari et al., 2008), by adding chemical cues and morphological characteristics to the set
of possible predators, or from a generalised response to multiple objects and animals that
becomes more specific after interactions (Caro, 2005). The main studied taxonomic groups
regarding recognition of predators are mammals, birds, amphibians, and fish, and both
recognition mechanisms, innate and learned, have been found on them Veen et al. (2000);
Caro (2005); Mirza et al. (2006); Ferrari et al. (2008).

Chemical cues from predator odours and other injured animals from the same prey species,
after suffering predation, trigger a prey response. Learning occurs when prey are exposed
to chemical cues in different intensities (Mirza et al., 2006). According to Ferrari et al. (2008),
the level of risk of a predator is intensified when the chemical cues are more concentrated,
and the prey response is equivalently intensified. A generalisation of predator recognition
happens when the prey has learned, from exposure to chemical cues, that an animal is a
high level threat. The prey will react to the risk when other animals that are similar in
species to the original predator are detected. If an animal is a medium level threat, the prey
reacts only to that particular species (Ferrari et al., 2008).

Morphological and behavioural anti-predator behaviours

In order to avoid predation, animals have developed the following categories of anti-
predator behaviours, from Caro (2005):

19



BIO-ROBOTICS AND BIOLOGICAL STUDIES ON ANTI-PREDATOR BEHAVIOURS

1. Avoiding detection through morphological (inherent to their physical characteris-
tics) and behavioural adaptations (Chapters 2-3). Morphological adaptations, par-
ticularly crypsis (use of colours) allow avoiding detection, and are also known as
camouflage. The first adaptation for detection avoidance is matching the background
by colour resemblance, melanism (spots on the skin in leopards), seasonal coloration
and masquerade (physically similar to inedible objects, like stones). Another form
to avoid detection is the concealment of shadows on the body, by pigmentation or
crouching. Other adaptations include disruptive coloration, the change of pattern
coloration over different parts of the body to alter the silhouette of the animal, and
being physically different from the animals of the same species (apostatic selection).
Most of the morphological adaptations are the result of evolution.

Behavioural mechanisms also allow avoiding detection. Animals reduce and change
the times of their normal activities like foraging and reproduction, specially in re-
sponse to chemical cues. Another behavioural mechanism is the building of refuges,
areas with more safety, either as physical natural or built structures, or as habitat
shifts.

2. Vigilance (Chapters 4-5). Vigilance is the action of scanning for possible preda-
tors, with the individual benefit of increasing the probability of detecting a preda-
tor. Group vigilance reduces the effort of individual vigilance, increases the time of
foraging, and allows the start of other anti-predator actions faster (e.g., fleeing).

3. Warning signals (Chapter 6). Acoustic warning signals are used to manipulate other
individuals to attract the predator towards them, to call for grouping (recruiting), to
distract the predator from the offspring, and to deceive. At the same time, warning
signals require energy and time, but also increase the chances of capture.

4. Grouping (Chapter 8). Animals form groups because the risk of predation is reduced.
Grouping allows creating confusion by simultaneous proteanism of the individuals,
mobbing, and saturating the predator (i.e., escape while the predator is dealing with
an individual prey).

5. Defences (also morphological and behavioural) including mobbing in groups, freez-
ing, fleeing and last resort (attacking) (Chapters 9-11). Defence mechanisms allow
chasing the predators out, or a counterattack. Morphological and physiological de-
fences, a result of evolution, include spines, dermal plates, weapons (claws, hooks,
horns), malodour and unpalatability, venom, body size, and locomotion. Mobbing is
a group defence mechanism that adds the creation of confusion, alerts other animals,
and attracts a second degree predator (a predator for the current predator). Mobbing
consists of approaching, observing, and harassing (following or attacking) a predator.
Mammals, birds, insects and fish resort to mobbing, at the cost of energy and risk due
to the closeness to the predator.

Different morphological and environmental factors make animals escape from preda-
tors, in terms of flight initiation distance. The studied factors include temperature of
the environment, the prey group size, the experience with predators, the physical
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Figure 2.3: Example of an individual fleeing trajectory with and without proteanism, and example
of a group protean fleeing display.

condition and morphological adaptations of the prey (size, presence of tails, agility,
age), the habitat selection, the characteristics of the predator (body size, exposure to
the face), the distance to a refuge, among others (Stankowich and Blumstein, 2005).
The possible escape actions are flying, running away (fleeing), jumping out of the
way, climbing or dropping from trees, freezing, counterattacking, and entering water.
Proteanism is incorporated to increase the probability of the escape.

Particular attention has been paid to the individual defence mechanisms of fleeing and
proteanism in the literature review, due to their feasibility of implementation in robotics.
Humphries and Driver (1970) defined the concept of protean behaviour as any behaviour that
is unsystematic to prevent prediction. Protean behaviours delay and reduce effectiveness
in the reactions of the predator, and also work against learned predatory strategies. The
protean fleeing of an individual (named single erratic behaviour) contemplates the use of
zig-zag movements, spinning, looping or bouncing, as an emergency reaction to a predator
or to prevent an attack. In groups, protean strategies include scatter displays, luring by
some individuals or mobbing, and deterrence. Examples of protean fleeing, individual
and in group, are shown in Figure 2.3. Although protean behaviours have been studied in
specific species, no clear application to engineering problems has been noted.

The implementation of many of the morphological and anti-predator behaviours men-
tioned previously, is outside the scope of the project presented in this thesis. Replicating
all the combinations of anti-predator categories in different stages of a predator-prey in-
teraction into robotics requires the conjunction of several areas of knowledge, and a full
understanding of generalised animal behaviours that has not been completed yet (Caro,
2005). Nevertheless, avoiding detection through refuges and individual escape actions,
such as fleeing with added proteanism, can be used as an inspiration to create evasion
mechanisms for a robot in the task of autonomous navigation and escape from pursuers.
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Table 2.5: Highlight of the milestones of prey-predator interaction models.

YEAR CONTRIBUTIONS

1810 Food web analysis is first used (Williams and Martinez, 2004).

1925-1926 Lokta-Volterra model, introduced for the study of prey-predator interactions based on differential
equations (Morin, 1999; Berryman, 1992).

1927 Food webs and food chains are used to represent community patterns by Elton (Morin, 1999).

1935 Nicholson-Bailey model, simple model to describe a host-parasite system (Morin, 1999; Berryman,
1992).

1952 Discovery of spatial pattern formations in reaction-diffusion equations by Turing (Garvie, 2007).

1960 Leslie-Gower model, incorporating density independence for prey and predator populations
(Morin, 1999; Berryman, 1992). First use of game theory in evolutionary biology by Lewontin
(Sigmund, 2001).

1963 The Rosenzweig-MacArthur model, a modification of the Lokta-Volterra model in absence of
predators and the rate of predation is presented (Meza et al., 2005).

1970 Parrish and Saila model, for two competitive prey species (Morin, 1999). Topological food-web
analysis (Williams and Martinez, 2004).

1971-1975 Hamilton combines game theory and evolutionary biology (Sigmund, 2001).

1972 Cramer and May model, for coexistence of two competitive prey species when predators are gone
(Morin, 1999).

1973-1982 Evolutionary game theory mathematical formulations and first textbook by Maynard Smith and
Price (Sigmund, 2001).

1974 Reaction-diffusion equations applied to modelling prey-predator interactions by May (Garvie,
2007).

1975 Roughgarden and Feldman model, for the coexistence of a third competitive prey species (Morin,
1999).

1976 Comins and Hassell model for the coexistence of several competing prey species (Morin, 1999).

1977 Holling-Tanner model, a modification of the Leslie-Gower model with a nonlinear prey response
(Morin, 1999). Lokta-Volterra model with diffusion is studied by Jorné (Satulovsky and Tomé,
1994).

2.2.2 Population dynamics, game theory and food chains

Different mathematical models of prey-predator interactions have been proposed as part of
the study of population dynamics in mathematical biology, to understand the fluctuations
in the species as a result of predation and many other individual, external and internal
factors. Table 2.5 presents the milestones in the development of models of prey-predator
interactions as populations, mentioned before. The models can be divided into the follow-
ing groups:

• The study of population density distributions and pattern formations, through mod-
els based on differential equations for two or more prey populations, including the
Lokta-Volterra, the Leslie-Gower, the Rosenzweig-MacArthur and the Nicholson-Bai-
ley models, and the use of reaction-diffusion equations. Studies also include the
application of evolutionary algorithms to the models, reviewed in Section 2.2.4

• The fusion of game theory concepts and density distribution models, to evaluate the
process of strategy selection of individuals in prey-predator interactions, and not the
populations as a whole, as in the previous group.

• Food web models, which emphasise the consumption relations between predator and
prey species in an ecosystem.
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The Lokta-Volterra model is described by two coupled differential equations

dN1

dt
= α1N1 − λ1N1N2 (2.1)

dN2

dt
= λ2N1N2 − α2N2 (2.2)

where N1 is the number of individuals of the prey species, N2 is the number of individuals
in the predator species, α1 is the grow rate of prey, α2 is the death rate of predators,
λ1N1N2 is the decrease of the prey population due to predators, and λ2N1N2 is the growth
in the predator population due to eating prey (Bradshaw and Moseley, 1998). The other
mentioned models incorporate more terms into the equations like gradients of diffusion of
predators and prey (Guan et al., 2011).

The models concerning population density distributions have been analysed from different
perspectives (Morin, 1999):

• Finding oscillatory solutions to the equations, representing natural cycles of preda-
tion, death and regeneration of populations, and stability of cycles, i.e. the presence
of stable limit cycles. For example, Bradshaw and Moseley (1998) studied oscillations
in populations using the Lokta-Volterra model; Guan et al. (2011) constructed a Lya-
punov function to analyse the stability of the Leslie-Gower model; Gakkhar and Naji
(2003) studied the stability of a Holling-Tanner model.

• The generation of spatial patterns in the distributions of populations. Among the
examples, Petrovskii and Malchow (1999) studied the formation of irregular patterns
using a reaction-diffusion equation; Liu and Jin (2009) analysed the formation of spa-
tial patterns in a Lokta-Volterra model; Neubert et al. (1995) used integro-difference
equations to study spatial pattern distributions and dispersal functions.

• Impact of external and internal factors (aggregation, refuges, illness, available re-
sources, sampling, intraguild predation) in the population densities and pattern for-
mation. Examples include the application of the Lokta-Volterra model to groups
and solitary individuals differently to study effects of cooperation and aggregation in
population densities by Mchich et al. (2006); Guan et al. (2011) concluded that refuges
influence strongly the formation of patterns; Meza et al. (2005) used a control theory
approach to analyse the stability of a Rosenzweig-MacArthur model considering ex-
ploitation of resources and threshold policies for the populations; and Ives et al. (2005)
considered different factors related to the availability of consuming resources that
affect populations, such as sampling (survival and reproduction of some individuals),
resource partitioning within species, and intraguild interactions (killing potential
competitors), in a Lokta-Volterra model for multiple species.

• Analysis of the resulting dynamics after applying evolutionary algorithms to the
models. For example, Dercole et al. (2006) evolved a Rosenzweig-MacArthur model
to analyse the stability of the ecological cycles in the populations.

• Optimisation of computation of solutions. Examples include the use of finite differ-
ence methods to solve the reaction-diffusion equation in Garvie (2007).

23



BIO-ROBOTICS AND BIOLOGICAL STUDIES ON ANTI-PREDATOR BEHAVIOURS

Population game theory combines the dynamics of animal behaviour with the study of
population distributions, also known as population dynamics (Cressman et al., 2004), to
find equilibrium points (stability in the spatial distributions) from a more individual per-
spective. Cressman et al. (2004) modelled an individual payoff in terms of a density pop-
ulation distribution model (Lokta-Volterra), as the survival and fitness of an individual
depends on the distributions of other animals, and the strategy dynamics were defined
using replicator equations. In Tschirhart (2004), the payoff is defined in terms of the expen-
diture of energy (in predation) and biomass necessary to replace it (eating prey). Population
densities are analysed and equilibrium points are computed in terms of maximisation of
energy. Brown et al. (1999) considered a prey-predator system as a foraging game where
the predators look for maximising their success on predation and prey look for an optimal
level of vigilance, using a Rosenzweig-MacArthur model of population dynamics with
incorporated prey fear dynamics.

Food web analysis has been oriented to four main areas (Williams and Martinez, 2004). The
first area is a topological approach, or the construction of network structures. The second
area is a statistical analysis of the connections within the web and their dependence. The
third area is the emergence of patterns in the distribution of connections (e.g. the presence
of omnivores and their relation to stability of the community in Morin (1999)). The fourth
concerns the mechanisms that take place in the food webs, by using mathematical tools,
such as a bioenergetic model of dynamics that studies the stability of density population
distributions as a result of energy consumption and recovery through feeding. Other
attempts bring together population game theory and a bioenergetic analysis (Tschirhart,
2004).

One of the applications of the study of predator-prey interactions in terms of density of
population is pest control, where a predator species is introduced to control the pest pop-
ulation (Ives et al., 2005). Recent research includes the interactions between multi-species
predator-prey systems.

The study of density population distributions as a result of predator-prey interactions,
their extensions to individuals through game theory and food chains (or food webs) are
extensive research fields. This subsection only presents a small glance into the contents
of research on population dynamics, as it forms part of the general context regarding the
available models of prey-predator interactions, although the object of study differs from
models that could be directly applicable for navigation strategies to escape from pursuers.

2.2.3 Other models of prey-predator interactions

Mathematical models of specific anti-predator collective and individual behaviours have
not been developed extensively. Some interesting models that are included in this subsec-
tions are motion camouflage, chasing and fleeing motions, and individual strategy selec-
tion based on start of reaction times. Other group anti-predator models are mentioned in
general, although they are outside the scope of the thesis, dealing with a single robot in the
task of escape.
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Figure 2.4: Graphical representation of the model presented in Broom and Ruxton (2005) for a prey-
predator interaction.

A game to predict optimal behaviour in an individual prey-predator interaction in terms
of the initial time of an anti-predator response or an attack is proposed by Broom and
Ruxton (2005). Strategies for the prey and the predator can be computed simultaneously
using the following assumptions: when the prey starts running before the predator does,
it will not be captured; the decisions of the prey are affected by the cost of fleeing (less
feeding); the prey is assumed stationary and cryptic in the beginning of the game; prey
can detect predator at greater distance than the predator detects the prey; the payoff of
the prey is the probability of surviving, reduced by the costs of fleeing. The model shows
that the optimal strategy of a prey is running immediately after a predator is detected, or
running immediately after being detected by a predator. The optimal strategy of a predator
is attacking immediately after discovering a prey, or attacking when the distance to the prey
is minimal if the prey has been discovered before and the distance to it is large.

The model in Broom and Ruxton (2005) is represented visually in Figure 2.4, for a predator
with a linear trajectory entering the detection space of the prey with radius rdet. v is a point
in the trajectory of the predator, and d(v) is the distance from the predator to the prey, with
a minimum of dmin. The predator can initiate an attack from any point v in its trajectory, or
wait until the distance is dmin. The probability of detection of the prey tends to zero if the
predator and the prey are far from each other, and not running is preferable for the prey to
running (as it has energetic costs).

The model in Broom and Ruxton (2005) is not directly useful for the solution of the problem
of navigation and escape from pursuers as it is in terms of starting the actions of fleeing
or attacking, and the problem described in this thesis assumes that pursuers should start
pursuing or planning and executing an interception as soon as they detect the robot, and
the robot should start fleeing as soon as it detects pursuers. Nevertheless, it has inspired
the definition of some of the assumptions in the designs.
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Anderson and McOwan (2003), Glendinning (2004) and Justh and Krishnaprasad (2006) ob-
tained and analysed models of the capture of prey, denominated motion-camouflage, where
the predator moves towards the prey following a special trajectory, to make the prey think
the predator is stationary. Motion-camouflage achieves reaching the prey in all circum-
stances, compared to classic pursuit, and if the predator is faster than the prey, motion-
camouflage performs faster than classic pursuit. The proposed models assume a pre-
dictable linear prey trajectory while the predator has not been discovered.

The models in Anderson and McOwan (2003) and Glendinning (2004) deal with the prob-
lem of stealthy predation, therefore it is not applicable to the solution of the problem of this
thesis. But it has inspired the need of intelligent evasion as a response to intelligent pursuit.

Furuichi (2002) presented a mathematical model of the motion of a prey and a predator.
The prey and the predator are modelled to have head directions, and viscous resistance
is also added to the model. The distance between predator and prey is converted into a
repulsion or attraction force, which causes an appropriate response (chase in the case of
the predator, or evasion in the form of straight fleeing or protean zig-zag in the case of
the prey) according to their closeness. The model tries to replicate both predator and prey
navigation schemes during the pursuit of the prey.

The predator perceives an attractive force towards the prey in terms of the distance to the
prey, |~r|, defined as

~F (~r) =


0 D1 ≤ |~r|
B1 · ~r/|~r| D2 ≤ |~r| < D1

B2 · ~r/|~r| |~r| < D2

(2.3)

where B1 and B2 are constant values, and [D2, D1] is an interval of distances where the
predator can chase the prey. The prey perceives a repulsion force away from the predator,
also in terms of the distance to the predator, |~r|, defined as

~f(~r) =


0 dsight ≤ |~r|
br · ~r/|~r| ds ≤ |~r| < dsight

b · ~e |~r| < ds

(2.4)

where br is a constant for the force, dsight is the radius of detection of the predator by the
prey, ds is a smaller distance where the prey shifts from a linear repulsion movement in the
same direction of the vector between the predator and the prey to a zig zag with a random
direction given by ~e, changing at random time intervals. Figure 2.5 represents the model
by Furuichi (2002) visually.

The most relevant model to the work presented in this thesis, based on individual actions
to avoid predation, is the one in Furuichi (2002), considering the use of protean navigation
and fleeing as anti-predator responses. Fleeing with added proteanism is presented as a
response to the chase motion, in a more deliberative manner than repulsive and attractive
forces in Furuichi (2002). The use of forces to model the interaction has inspired the im-
plementation of a planning approach with artificial potential functions, which incorporate
obstacle avoidance and information to make predictions about the future to compute a
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Figure 2.5: Attraction and repulsion forces in the model presented in Furuichi (2002) for a prey-
predator interaction.

navigation path of escape.

Prey swarming causes confusion for some predators. Thus their attacks become less suc-
cessful (Jeschke and Tollrian, 2007). Other proposed models involve group anti-predator
behaviours, for example a fish school evading predators in Zheng et al. (2005), where three
behaviour patterns for evasion are considered: schooling (as imitating other fish and colli-
sion avoidance motions), cooperative escape, and selfish escape, depending on the distance
to the predator. Zheng et al. (2005) proposes a model of the predator. The behaviour
patterns are assessed in terms of individual consumed energy, frequency of collisions,
unification of the group, and polarisation of collective motion. Lee (2008) extended the
work by Zheng et al. (2005) to the area of robotic swarms, where other elements of artificial
intelligence have been added to improve the original model and to implement it on robotic
platforms. This category of group anti-predator models does not focus on the development
of individual anti-predator behaviours, but on the relations between elements of the group
and their resulting joint behaviours.

Collectivity is useful in terms of robustness and flexibility, as it has been demonstrated in
multi-robot systems for the most diverse applications. Thus, cooperation and many other
biological group behaviours have been studied and extended into robotics and computer
simulations, e.g. robotic swarms, and multi-agent systems. Some examples of developed
artificially enhanced anti-predator behaviours, i.e. bio-inspired anti-predator behaviours
that are improved or modified for other purposes, are mentioned in Subsection 2.2.5.

2.2.4 Evolutionary prey-predator interactions

Genetic algorithms have been used in prey-predator individual models (e.g., artificial neu-
ral network based navigation controllers), and game models, to study the effects of evo-
lution on prey-predator interactions. In this subsection, the use of evolutionary stud-
ies applied to population dynamics models, reviewed in the previous section, is briefly
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mentioned. Then, a general overview on distinguished analytic work in evolutionary
game theory is presented, with emphasis on the generation of anti-predator strategies by
the prey. Finally, key studies on the co-evolution of predator and prey behaviours are
presented. Evolutionary biology and evolutionary game theory complement the studies on
prey-predator interactions, and give support for the use of some anti-predator behaviours
like proteanism for autonomous mobile robotics, although an evolutionary approach has
not been considered for the proposed designs in this thesis.

Evolution applied to prey-predator population density distribution models has been stud-
ied, to analyse the effect of co-evolution in the dynamics and stability of the populations,
including other external and internal factors such as the geography of the habitat, the
homogeneity of a population (Abrams, 2000). Most of the studies on evolutionary prey-
predator interactions assume a co-evolution (simultaneous evolution) of prey and predator
species, although individual evolution may cause instability of the system, particularly in
the case of an evolved prey.

Other studies combine population dynamics models with evolutionary algorithms to study
the dynamics of diversity in a food web (e.g., Drossel et al. (2001)). The co-evolution
of multiple species and the effect in their populations are studied in macro-evolutionary
models based on the relations of a food web in a determined ecosystem.

From another perspective, evolutionary game theory proves that unpredictability (protean
behaviours) is developed as a counter-strategy against predation (Miller and Cliff, 1994;
Miller, 1997). According to Miller and Cliff (1994), studies on behavioural biology have
proved that humans and animals posses a Machiavellian intelligence, translated into the
actions of randomness (or unpredictability), concealment (understood as hiding information)
and deception (or giving false information).

Other examples of studies on evolutionary game theory include Haynes and Sen (1996),
using a predator-prey (pursuit-evasion) game to develop coordination strategies for the
predators from evolution. Linear prey strategies (i.e. the prey moves in a line) are effective
as they avoid staying in a specific local neighbourhood. Wahde and Nordahl (1998a)
analysed the evolution of pursuit-evasion games where the speed of evaders is different
from pursuers. In Wahde and Nordahl (1998a), evaders were designed to be controlled
by artificial neural networks, whereas pursuers of two kinds were analysed: adaptive
neural network and fixed strategy based; evaders were found to develop complex protean
strategies. Finally, Mitchell (2009) investigated the evolution of prey-predator games with
multiple behaviours (extracted from studies on pre-encounter and post-encounter games,
such as habitat selection, or waiting for a prey that is in a refuge), concluding that prey
movements depend on predators learning prey locations; also, prey vigilance of predators
enhances their chance of surviving.

From a behavioural perspective, Floreano and Nolfi (1997) studied the effect of adaptive
protean behaviours, in the co-evolution of prey and predators, using robots to simulate
prey and predators strategies, controlled by simple perceptrons. Fixed and adaptive pro-
tean perceptrons were evolved and compared, and both evolutions generated noisy con-
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trollers for the prey, illustrating the usefulness of proteanism as a prey strategy for evasion.
Floreano and Nolfi (1997) concluded that the co-evolution may lead to the development
of increasingly more complex behaviours (arms races), or cycling problems where effective
strategies are lost and replaced by others that are better for a specific individual in a specific
time, but are not effective in the long run.

Studying the co-evolution of strategies enhances their extension to artificial evolution, to
develop robots that act faster and robustly to dynamic environments, by the mutual chal-
lenges that the co-evolution brings to the competitors representing prey and predators
(Nolfi and Floreano, 1999). For example, competition and cooperation behaviours have
been achieved from co-evolving soccer-playing robots against another team, or among their
own teammates (Uchibe and Asada, 2006).

Evolutionary computational studies show that developing specific complex protean anti-
predator behaviours is the result of interactions between populations of prey and preda-
tors. When designing autonomous robotic systems, it would not be necessary to develop
adaptations of anti-predator behaviours (including evasion) from zero, as it happens when
randomly initialised controllers are evolved using genetic algorithms. Specific anti-predator
behaviours could be implemented as part of the autonomous control system, to be trig-
gered when circumstances require them.

2.2.5 Enhanced anti-predator behaviours and applications

Bio-inspired robotics and control systems have extended biological group behaviours to
the fields of formations, swarms, multi-robot systems and multiple player games as multi-
agent systems (Cao et al., 1997). Anti-predator behaviours of fish schooling and extended
to crowd dynamics have been implemented in simulations. Prey-predator interactions
have been morphed to pursuit-evasion games and solved by different game theory and
reinforcement learning techniques, reviewed in Chapter 6. Some examples of designed or
artificially improved anti-predator behaviours inspired from nature are presented in the
following paragraphs.

Oboshi et al. (2002) presented an evolutionary method to develop group evasion behaviours
against predation. In this article, a fish chooses to move using any of four basic behaviours:
attraction, repulsion, parallel moving, and searching, according to distances to other fish.
For evasion, the fish choose any of the basic behaviours considering angles between them
and other fish and predators. The parameters that determine which basic behaviour to use
were evolved with genetic algorithms until they converged. Obtained group navigation
movements are similar to real ones.

Morihiro et al. (2007) studied agent based self-organised grouping and anti-predator be-
haviours computed from a reinforcement learning algorithm. Agents (individuals) are
attracted or repulsed by other agents, and repulsed by predators, according to a predefined
reward function in terms of the distances between the elements.
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Lee (2008) presented a model for group evasion behaviour used to simulate human crowds,
based on biologically inspired schooling evasion patterns (from the models used by Oboshi
et al. (2002) and Zheng et al. (2005)) and human sociological factors. The biologically in-
spired elements of the model target an evasion from imminent danger, and the sociological
elements target distant danger that can be predicted.

Swarm robotics (multi-robot systems) have focused on the task of pursuit rather than
evasion, principally when emulating pursuit-evasion games. Individual or group anti-
predator behaviours extended from a biological model are rarely implemented on robots,
and few attempts using simple group anti-predator behaviours (e.g., dividing the group
and moving in two different directions) remain as simulations.

The study of pursuit-evasion games in the game theory field involve the use of extended
models from prey-predator biological interactions. Although the purpose of studying the
games and solving them through different methods, some from artificial intelligence, is
not necessarily related to biology (as shown in Chapter 6). Moreover, the focus of pursuit-
evasion games is normally the pursuing (individual or collective) of a simple evader. The
definition, different forms that have been proposed to find a solution, and robotic imple-
mentations of pursuit-evasion games are reviewed with more detail in subsequent chap-
ters.

2.3 Discussion

The design of a deliberative high-level control system that decides on an evasion navigation
strategy is inspired by the idea of animals possessing a Machiavellian intelligence, trying
to confuse an intelligent predator by the use of anti-predator behaviours. The goal is not
to emulate animal nor human reasoning, but to take inspiration from them to construct a
solution to a problem in the area of robotics. According to the definitions of biomimetics
and biologically inspired robotics, it can be deduced that the use of biological inspiration
from anti-predator animal behaviours to solve the problem of autonomous navigation and
escape from pursuers for a robot falls into the category of biologically inspired robotics.
More specifically, the area of the system in which the bio-inspiration occurs belongs to the
control system, considering the division presented by Dillmann et al. (2007).

Animal species present several complex anti-predator behaviours, some of them char-
acteristic of a taxonomical group. Morphological adaptations are the most difficult to
implement in a robotic system, as they depend strongly on the available technology for
the embodiment. Nevertheless, three general anti-predator behaviours are of particular
interest for the solution of the problem of this thesis: fleeing, hiding and protean, as they are
more feasible to use as inspiration for implementing control strategies in a robotic platform.
Many species use the three behaviours to try to avoid predation, as Caro (2005) mentions.
Other features that are of interest for inspiring the designs are: assessing how quickly
to deliberate an evasion strategy by distance to predators and/or distance to hideaways,
inspired by Broom and Ruxton (2005), and using protean behaviours in the presence of a
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pursuer, to try to deceive it in a Machiavellian way (inspired by Miller and Cliff (1994);
Miller (1997)).

Combinations of the distances between a robot (prey) and predators or pursuers, and
between the robot and possible hideaways (also named refuges in biology), can be used
in a relatively simple autonomous robotic system to determine how immediate an evasion
strategy is needed, inspired by the ideas of Broom and Ruxton (2005). Other features
that animals normally consider when they start an evasion, according to Stankowich and
Blumstein (2005), would need a complex interface of sensors and processing of signals and
images that analyse the environment if implemented into a robotic system; other factors
would be irrelevant if predators or pursuers are not animals.

Unfortunately, many of the mathematical models that deal with predator-prey interac-
tions are more focused on obtaining good models for population dynamics in terms of
density distributions, pattern formations and relations in an ecosystem. Although some
studies incorporate individual behaviours into the models in the form of game theory
based computation of strategies, few could be used to solve the problem of navigation and
escape without being modified in essence, as their main focus is the analysis of population
dynamics, and not deriving improved control strategies for other applications. On the
other hand, evolutionary studies also based on prey-predator interactions corroborate the
emerging of complex behaviours, such as proteanism, when co-evolving prey and predator
together, thus supporting the use of proteanism and intelligent escape to solve the problem
studied in this thesis.

From the few models that deal specifically with the individual dynamics in a prey-predator
interaction independently from each other, such as the study of chasing and fleeing motions
by Furuichi (2002), some ideas have been extracted and used to inspire a solution to the
problem of navigation and escape. The attraction and repulsion forces that drive the fleeing
in Furuichi (2002) and the incorporation of proteanism are particular features used as
inspiration.

Although some group evasion movements have been modelled in swarm computation and
robotics, it is not trivial trying to extrapolate their results into a single individual. The
problem of escape in a single robot is limited to the capabilities of the robot to process the
environment and to decide what to do in that specific situation, without the help of any
other individual, and at a greater cost if it is unsuccessful in the escape.

Prey behaviours and their implementations into robotic applications have been mostly
ignored, but no reason has been given for that. Are they inefficient in terms of energy
consumed? Are prey anti-predator behaviours so disadvantageous or too complicated to
implement compared to predation ones? And why do most of defence, surveillance and
rescue applications base their developments in search and destroy, capture or find, respec-
tively (i.e., developing intelligent pursuers)? No clear answer to the previous questions is
to be found in the literature. But other researchers agree that robots that are designed to
exist in the most common habitats, surrounded by pets, wild animals, children, people, or
any other danger, need to deal with the possibility of being chased, as real beings do in
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nature, hence the need to design robots that can deal with the most basic tasks of survival
and self-protection emerges, if full autonomy is to be achieved someday. Furthermore, the
problem of escape from pursuers becomes more complex when adding unknown, dynamic
environments, and limited sensing capabilities.

The extraction of features from fleeing, hiding and protean anti-predator behaviours as
inspirations from biology to solve the problem of navigation and escape from pursuers
from a path planning and game theory perspective are detailed in Chapters 4, 5, and 7.

2.4 Concluding remarks

This chapter presented a brief literature review on the area of bio-robotics, adding some
recent examples of research projects to illustrate the difference between biomimetics and
biologically inspired robotics. The definitions were used later to set into context the work
presented in this thesis. The project in this thesis contemplates the use of anti-predator
behaviours as an inspiration to solve the problem of autonomous navigation and escape,
implemented through path planning and reinforcement learning algorithms.

Subsequently, the chapter presented a literature review on prey-predator systems from
different points of view:

• Biology and ecology: general anti-predator behaviours of different taxonomic groups.

• Mathematical biology: a review on models for prey-predator interactions, which deal
with population dynamics, pattern formations, properties of the models, interference
of different factors (internal and external) in the dynamics, effect of individual actions
(through the use of game theory concepts) on the dynamics, and interrelation of
species in ecosystems (food webs).

• Evolutionary biology: a brief resume of the trends in the studies on the co-evolution
of prey-predator interactions. Some studies demonstrate the emerging of complex
behaviours as result of the evolution.

• Other models of anti-predator behaviours and prey-predator interactions: three in-
teresting models of individual behaviours of chasing and fleeing, motion camouflage
and attack and reaction, and examples of group anti-predator behaviour models.

• Artificial improvements of anti-predator behaviours: brief review on the uses of biol-
ogy concepts and models to create improved technological systems, such as simula-
tion tools.

The review of the different models and studies on anti-predator behaviours and prey-
predator interactions highlighted the lack of models of individual real actions and reactions
of different animal species. None of the models found in the literature can be used directly
to solve the problem of collision avoidance and escape from pursuit for a mobile robot
with limited sensing capabilities. Nevertheless, the models by Furuichi (2002), Broom and
Ruxton (2005) and the evolutionary studies in proteanism can be used to construct such a
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system that performs individual actions equivalent to some anti-predator behaviours for
the robot.

Finally, a discussion of the presented literature review takes place, highlighting the gaps
on the use of anti-predator behaviours as inspiration to improve current technology, and
which concepts in specific literature have inspired the designs contained in this thesis.

The next chapter presents a comprehensive literature review on general path planning
methods, with main focus on potential functions. A deeper review on previous work
related to potential function implementations and challenges is provided, with some ex-
amples and explanations added to highlight the functionality of the different proposed
models. The concepts provided in this chapter and the following serve as the basis for the
designs presented in Chapter 4.
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Chapter 3

Autonomous navigation with
potential functions

The study and design of robots that are capable of successfully navigating autonomously
in challenging environments that involve pursuit and possible danger are advantageous
and to some extent necessary for the following reasons:

• Intelligent escaping robots provide a complex and challenging platform to evaluate
the success of the design of pursuers for tasks like surveillance and target interception
in real life situations.

• The incorporation of escape behaviours, to avoid predation (also interpreted as danger
or capture) adds realism to robots that interact with humans and animals, as they may
encounter pursuit situations.

• Using biological inspiration for the navigation and escape from pursuers opens the
door to more research into assessing the feasibility of implementing anti-predator
behaviours in simulations and robotics.

The problem of autonomous navigation and escape from pursuers can be potentially solved
using any of the numerous possibilities that path planning offers, or even using tools
from game theory and artificial intelligence. The navigation and escape problem has been
analysed from two different perspectives in this thesis:

1. As a path planning problem, where an optimal trajectory of navigation is found
according to the characteristics of the environment, different kinds of constraints, and
a possible goal.

2. As a pursuit-evasion game, where the opponents are the pursuers (traditionally the
evaders are the opponents), and a navigation strategy is computed by maximising
the pay-off of selection actions within the strategy, according to the state of the envi-
ronment and the respective actions of the pursuers.
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This chapter presents a review of the literature relevant to path planning methods, with an
emphasis on potential functions. Pursuit-evasion games are reviewed in Chapter 6.

Section 3.1 presents a general overview of the different methods available in path planning
for the computation of a navigation trajectory. Planning for autonomous navigation has
been studied widely, and several algorithms have been proposed to find a path using
different information from the environment in the form of a map, and combining the use
of search methods. The reviewed methods include: bug algorithms (Subsection 3.1.1),
roadmaps (Subsection 3.1.2), cell decomposition (Subsection 3.1.3), sample-based meth-
ods (Subsection 3.1.4), and potential functions (Subsection 3.1.5). Some of the main
search algorithms used to compute an optimal or suboptimal solution for the different path
planning methods are mentioned in Subsection 3.1.6. Subsection 3.1.7 summarises the
main forms used by the different path planning methods to represent the environments.
Section 3.2 includes some relevant work in the area of path planning for stealth or covert
navigation, as it is related to hiding behind obstacles, and also reviews previous work on
path planning for evasion from pursuers.

Solutions to path planning using potential functions are of particular interest, due to the
advantages of this method for the solution of the problem presented in this thesis. Sec-
tion 3.3 expands Subsection 3.1.5 into a comprehensive review of the main branches of
research in the field of potential functions: scalar potential functions, numerical solutions to
the Laplace’s equation, and direct vector field from a set of functions for the obtention of a
control law. The section includes a brief summary of the main challenges when planning for
dynamic, sensed, previously unknown environments, and how they have been addressed
by potential function based path planning techniques (Subsection 3.3.4). Also, discrete
approaches to potential functions are mentioned (Subsection 3.3.5), followed by the main
challenges in the implementation of the functions (local minima) (Subsection 3.3.6). The
end of Section 3.3 presents a brief summary of combinations of potential functions and
other path planning methods (Subsection 3.3.7).

Finally, a discussion of the methods and algorithms is included in Section 3.4. The dis-
cussion explains the selection of potential functions over other kinds of path planning
methods for the solution of the problem of autonomous navigation and escape. The existent
formulations of potential functions (scalar and vector based) are also analysed towards
their application to represent dynamic partially observable environments with obstacles
and pursuers. The conclusions of the chapter are presented in Section 3.5.

3.1 Path planning for navigation of autonomous robots

Motion planning, including path planning, is a widely studied area of research. A motion
planning problem is defined as obtaining a minimum-cost feasible path that connects an
initial and a final state (or configuration). In real life, a path is a set of translations and
rotations in the free space, considering some constraints according to the physical charac-
teristics and dynamics of the robot (LaValle, 2006). The term path planning corresponds to
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the calculation of kinematic variables like position or speed, while the term trajectory plan-
ning includes kinematics and dynamics (forces), mostly applicable to robot manipulators.
Path planning can be static or dynamic, continuous or discrete, offline planning in advance
for the whole navigation from an initial point to a final or online from sensors as a repeated
loop of sensing, planning and acting (Choset et al., 2005).

The main approaches to solve the problem of path planning can be grouped into the fol-
lowing categories, according to Hwang and Ahuja (1992a); Bell (2005); Choset et al. (2005);
LaValle (2006):

• Sensor-based bug algorithms

• Roadmaps

• Cell decompositions

• Sample-based methods

• Potential functions

Exact and heuristic algorithms can be used in any of the approaches mentioned before.
Exact algorithms find an optimal solution if it exists, or find that no solution exists. Heuris-
tic algorithms find fast solutions, but at the cost of reliability and optimality (Al-Sultan
and Aliyu, 1996). The main characteristics of each category are briefly explained in the
next subsections, mentioning the advantages and disadvantages for their use in solving a
problem of autonomous navigation and escape from pursuers in a dynamic environment
with limitations of processing time and information. Particular interest has been given to
potential fields, detailed deeper in Section 3.3.

Some of the challenges that have been addressed in path planning methods (Bell, 2005) are:

• Dealing with dynamic and complex environments

• Planning with imperfect information from the environment

• Planning for imperfect localisation of objects in the environment

• Dealing with error tolerance

Nevertheless, these challenges are still being addressed in current research. In order to
design a planning system or algorithm to solve the problem of autonomous navigation
and escape, considering challenges such as imperfect information, the following steps are
required according to Hwang and Ahuja (1992a):

1. Obtaining a representation of the robot and the environment, i.e., the identification
of the free-space and the obstacles. The representation could be done using cells in a
grid, identification of landmarks, curves that join points of the free-space, or potential
functions.

2. Selecting and implementing a search method (e.g., A*), or algorithm (e.g., gradient
descent, following walls) to find a path as the solution, according to the optimality
required by the task, and the available computational resources.
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Figure 3.1: Examples of a a path connecting landmarks and a path following the contour of an
obstacle, by means of bug algorithms.

3. Optimising the path locally by smoothing it according to physical constraints. This
step would facilitate the introduction of a low level controller to physically move the
robot to the required locations.

The search methods and the representation of the environment are not path planning meth-
ods alone, but components that can be exchanged to produce methods within the categories
mentioned in Section 3.1. The procedure proposed by Hwang and Ahuja (1992a) is con-
sidered in Chapter 4 for the design of a bio-inspired methodology for the environment
analysis, and for computing a path. The following subsections summarise the main five
options of methods available for path planning.

3.1.1 Sensor-based bug algorithms

The simplest path planning methods are also named bug algorithms in some literature. The
algorithms can do two main kinds of motions: linear movements towards the goal or
around obstacles that appear between a robot and a goal, according to the information from
the sensors (Bell, 2005; Choset et al., 2005). These algorithms are based on landmark and
geometrical representations of the environment, reviewed in Subsection 3.1.7. Figure 3.1
illustrates two bug algorithms based on landmarks and following the geometry of the
obstacles.

Compared to other kinds of path planning methods, bug algorithms are easier to un-
derstand and implement computationally, therefore they are recommended for robotic
tasks that require simpler navigation strategies that follow landmarks. Also, their sensor-
based approach allows them to deal with local information and dynamic environments.
Nevertheless, bug algorithms are limited to direct navigation movements towards the goal,
or circumnavigating obstacles, and some require the labelling of the landmarks.

3.1.2 Roadmaps

In path planning, a map is a data structure that contains a model of the environment
(Choset et al., 2005). Maps can be topological (based on landmarks), geometric (based
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Figure 3.2: Roadmap with 8 nodes in the free-space, for an environment with two rectangular
obstacles. A path would connect nodes 1and 4, 4 and 7 and 7 and 3, to go from locations 1 to 3.

on shapes or line segments) or represented by grids. A roadmap is a topological map,
consisting of curves or skeletons connecting points in the free space (i.e., the space that is
not occupied by obstacles). A path is formed by the union of curves from an initial position
towards a goal location (Hwang and Ahuja, 1992a; Bell, 2005; Choset et al., 2005; LaValle,
2006; Siciliano and Khatib, 2008). Search methods like depth-first, breadth-first, best-first,
and A* are used to compute the connections between the curves.

Roadmaps can be divided into visibility graphs (lines connecting the vertices of polygonal
objects within the sight of each other), Voronoi diagrams or deformation retractions (sets
of points equidistant to closest obstacles), silhouettes (lines called slices that connect critical
points and boundaries of obstacles and the environment), subgoal networks and freeway
nets. An example of visibility graphs is shown in Figure 3.2, with 8 nodes connecting the
lines of vision according to the geometry of the square obstacles.

Roadmaps have the ability to deal with complex geometries in the environment, like poly-
gons, but if the robot does not know the environment before the planning, a map built
through sensors needs to be computed and stored. Also, finding closed paths that connect
an initial and a goal configuration is not possible due to the loss of connection between the
curves in the roadmap; this problem can be solved by incorporating different computations
of the curves (e.g., hierarchical Voronoi diagrams), but at a higher computational cost. The
main drawback of roadmaps is the overall high computational cost of the curves in the free
space, particularly when the environment is complex. Probabilistic roadmaps have been
incorporated within the group of sample-based path planning methods (Subsection 3.1.4),
as the algorithms incorporate a sampling of the possible configurations.

3.1.3 Cell decomposition methods

In cell decomposition, the environment is divided into regions (cells), and an adjacency
graph is computed to indicate cells sharing common boundaries. A path is computed from
the adjacency graph to indicate movement from cell to cell, but no trajectory (i.e. specific
kinematics to move towards a location) is computed (Hwang and Ahuja, 1992a; Bell, 2005;
Choset et al., 2005; LaValle, 2006). Cell decomposition methods are frequently used for
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Figure 3.3: Example of an environment with two obstacles and its cell approximation, where the
black cells represent the obstacles.

coverage tasks.

The decomposition of the environment into cells can be exact (using cells of different shapes
to represent complex geometries) or approximate (using a standard size for all the cells).
Some of the most used exact cell decompositions are trapezoidal and Morse, both con-
sidering the critical points of the geometries, the vertex or extremes in the obstacles and
environment (Choset et al., 2005). An example of approximate cell decomposition is shown
in Figure 3.3, where the obstacles were approximated by square cells.

Cell decomposition methods deal with complex geometries by means of an exact decom-
position, but at a very high computational cost. Also, the uses of traditional exact cell
decomposition are limited to previously known static environments. Cell decomposition
methods have been used previously for pursuit-evasion tasks, where the pursuers need to
cover the environment to find and capture the evader (Choset et al., 2005). Approximate
cell decomposition based path planning has been incorporated to the category of sample-
based methods.

3.1.4 Sample-based methods

Sample-based methods consist of the computation of a map of sampled configurations
of a robot in the environment (nodes), linked by collision free paths to change from one
configuration to another. A solution is computed by answering a query, where a robot
needs to move from an initial configuration to a final configuration. This family of methods
has been used for manipulators, industrial automation, problems with multiple dynamic
and kinematic constraints, and other planning problems different to navigation (Choset
et al., 2005; LaValle, 2006; Siciliano and Khatib, 2008). Examples of sample-based meth-
ods include: probabilistic roadmaps for multiple queries, expansive-spaces trees, rapidly-
exploring random trees, approximate cell decomposition in a 2-D navigation environment,
and potential fields with gradient descent (where the environment is sampled in a grid).
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Figure 3.4: Probabilistic roadmap between the points 1 and 2 (initial and goal) in the free-space, for
an environment with two square obstacles.

An example of a probabilistic roadmap is presented in Figure 3.4, where the points repre-
sent randomly sampled configurations (in this case positions in a 2-D plane), and the lines
are the paths that link the configurations without colliding with obstacles. A query to go
from point 1 to point 2 is the connection of paths within the roadmap.

Sample-based methods allow obtaining a path to the goal in bounded time, but are not nec-
essarily the best option when using an exact representation of the possible configurations
in the environment. As only few samples of the possible configurations are used for the
planning, the computational time is reduced. Sampling offers an alternative for environ-
ments with complex geometries, and high dimensional configuration spaces in robots. The
main drawback is that sample-based methods require designing different modules within
the whole algorithm to ensure that any path between configurations does not collide with
obstacles, and also post-processing to optimise the obtained path. Furthermore, they do not
compute global optimal paths, but paths that connect an initial and a final configuration.

3.1.5 Potential functions

Potential functions can be used to represent the environment, as the path is desired to
move away from obstacles and towards a goal thus repulsion and attraction functions are
used correspondingly (Hwang and Ahuja, 1992a; Bell, 2005; Choset et al., 2005; LaValle,
2006; Siciliano and Khatib, 2008). Figure 3.5 represents the concepts of attraction and
repulsion forces. Artificial potential fields have been widely used in path planning for
both manipulator robots and for autonomous navigation in a 2-D and 3-D world. They
were introduced by Khatib (1986) for robot path planning. A path is traditionally found
by following the negative gradient towards the goal, although other proposals introduce
search methods and using navigation functions to overcome local minima problems.

Potential functions have been applied to local partially observable environments, in a man-
ner similar to sensor-based bug algorithms. A great portion of the research on path plan-
ning using potential functions considers a sensed, previously unknown, partially observ-
able environment. Other path planning methods are not suitable for bug-like online im-
plementations, where the planning is done while navigating in a partially visible environ-
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Figure 3.5: Representation of the attraction and repulsion potential forces exerted by a goal and an
obstacle.

ment from sensed information. Two of the main advantages of potential functions over
other path planning methods are the physical principles behind them, which make them
easier to understand, and their low computational cost (Hui and Pratihar, 2008). Also,
potential functions can be used in combination with other path planning and artificial
intelligence techniques, like cell decomposition, sample-based planning approaches, re-
active controllers, or even reinforcement learning (Megherbi and Malayia, 2012). The main
drawback of using potential functions is the presence of local minima and the oscillations
in closed spaces (ravine problem), mentioned in more detail in Subsection 3.3.6.

The advantages mentioned above, combined with their proven applicability to sensed dy-
namic environments, make potential functions a candidate method to use in a first attempt
to solve the problem of navigation and escape from pursuers. Although it is desirable to
use different path planning methods, combined with different search algorithms and envi-
ronment representations to produce the best possible outcome, a first approach to solve the
problem of navigation and escape from pursuers is done using potential functions. Section
3.3 gives a deeper insight into potential functions, including a brief historical timeline, a
recollection of the main research divided into three subsections (with graphical examples),
the main challenges when using potential functions (local minima), and relevant work that
combines potential functions with other path planning methods.

3.1.6 Search algorithms for path planning

Search algorithms are used by path planning methods to find the connections between
different possible configurations of a robot (nodes), normally from an initial configuration
to a final configuration or goal (LaValle, 2006). The search can be blind, without an evalu-
ating criteria, or heuristics-based where an evaluation function is used to assess if a node
can generate a path towards the goal. The connections of the different related nodes are
explored through a depth-first, breadth-first or any other expansion technique.

Heuristics-based search algorithms can be optimal (finding the best solution possible ac-
cording to the heuristics), or suboptimal (limited to find a solution in a given time that
might not be the best possible). Search algorithms imply a previous discretisation of the
environment into nodes (possible configurations) using a representation according to the
path planning categories mentioned before, and then a path is computed.
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The most popular optimal tree search algorithms (i.e. they expand the nodes as they search)
include (Bell, 2005; LaValle, 2006; Robotin et al., 2010):

• Dijkstra algorithm. This algorithm calculates the cost to move from a node to any
other for all the nodes. The connecting cost of two nodes is the minimum moving
cost possible.

• Best-first-search algorithm. In this algorithm, the distances between the current node
and the goal are computed, choosing the next node that is closer to the goal.

• A*. A* is a combination of the Dijkstra and the best-first-search algorithms. The
minimum cost path that goes through a node is computed as the sum of the estimated
minimum cost path from the start to the node, and the estimated minimum cost from
the node to the goal. The search algorithm is considered admissible if it is able to
always find the minimum cost path from the initial node to the goal. The original A*
algorithm is not suited to dynamic complex environments that need constant updates
in the computed paths.

• D*. D* was inspired by A*, but targeting dynamic environments with incomplete
information that can be acquired later through sensing. A graph is normally used to
represent the configurations of a robot (nodes) and the costs of moving from a node to
the other (connecting curves). A function, process-state, computes an optimal path to
the goal, and another function, modify-costs, updates the costs in the connecting curves
according to the new information from the environment. If the costs are updated, the
process-state function recomputes the remaining path towards the goal.

• Focused D*. A heuristic is incorporated into D* to update only the costs of the nodes
that are more likely to generate optimal paths, thus reducing the number of expanded
nodes.

The optimal search algorithms mentioned above can be bounded through combined heuris-
tics or hierarchies to find a suboptimal solution in a given time (Luke, 2009). For example,
modifications to A* like real time search LSS-LRTA*, weighted A*, IDA*.

Sample-based tree methods try to deal with continuous environments by sampling them,
instead of discretising the whole set of possible configurations into nodes. Some sample-
based methods include random exploration during the search for a path that connects an
initial configuration to a goal. An example is rapidly-exploring random trees (Bruce and
Veloso, 2002), where the path is the product of random exploration and selected configura-
tions towards the goal within the samples.

Other popular local search algorithms (i.e. they consider a whole solution to the search
formed by segments, and then adjust the segments to improve the solution) include (Rus-
sell and Norvig, 2003; Luke, 2009):

• Hill climbing. Starting from an initial random solution, better candidates are con-
structed from it, and they substitute the initial solution if they are better according
to an evaluation criteria. Hill climbing is equivalent to gradient-based methods,
but no mathematical functions are needed. Modifications can be added to obtain
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a guaranteed global optimum, like changing the amount of variation in the new
candidate solutions, or random restarts in the search.

• Random search. This algorithm starts in a random solution, and looks for better
solutions constructed from the initial solution randomly. Random search involves a
larger degree of exploration than hill climbing.

• Simulated annealing. Also starting from a random solution, the difference between
simulated annealing and hill climbing is that not always the best candidate sub-
stitutes the previous solution, but worse solutions can substitute previous with a
probability. The probability decreases with time.

• Tabu search. In Tabu search, a record of the recent candidate solutions is kept (tabu
list), and they cannot be considered as new solutions until they are allowed out of the
tabu list sometime later.

• Evolutionary and genetic algorithms. Considering a sample of candidate solutions
instead of one at a time, the candidates are evaluated and resampled to improve the
final solution in a bio-inspired way.

• Particle swarm optimisation. This algorithm is similar to evolutionary and genetic
algorithms, but the candidate solutions are modified (mutated) and not resampled.

One of the main drawbacks of the previously mentioned local search algorithms, like ge-
netic algorithms, is the time to compute global optimal solutions. Nevertheless, limiting
the time of computation allows obtaining suboptimal solutions that could be enough for
the requirements of a task. Pruned tree search (A*,D*), hill climbing, simulated annealing,
random search and Tabu search algorithms, have been used for path planning in robotics
(including potential functions).

3.1.7 Models of the environment for path planning

Different models have been proposed for the representation of the environment in path
planning. The representations, in combination with search methods, form the different
classes of path planning methods mentioned in Subsections 3.1.1 to 3.1.5. A representation
of the environment is required to allow the computation of an optimal or suboptimal path,
using less data for the computations but still delivering an optimal solution, and calculating
simpler next actions to perform (Baranauskas et al., 2008).

The models can be separated according to the main characteristics of the analysed environ-
ment: (a) models for indoor and structured environments where the ground can be con-
sidered in a plane; (b) models for natural environments with irregularities and elevations
in the terrain; and (c) proposals to deal with dynamic environments or mobile elements
(Siciliano and Khatib, 2008, Chapter 36). Some of the most used models are (Siciliano and
Khatib, 2008):

• Occupancy grid. The environment is represented as a grid, and every cell has a
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probability of occupation by obstacles that can be recomputed according to the in-
formation available from sensor measurements.

• Line or geometrical maps. Considering a set of points sensed from the environment,
an algorithm like split-and-merge is used to group the points into lines to represent
elements in a geometrical form.

• Topological maps. Topological maps represent the environment from relations be-
tween the present elements, like distances between obstacles.

• Landmarks. The landmarks are features in the environment that can be distinguished
from others. They can be represented with Gaussians in combination with extended
Kalman filters, for example. The landmarks can be connected to form a path, through
a relational graph.

• Elevation grids. A 3-D environment can be represented as a grid, if related to a plane.

• Point sets. A data structure that stores points of a 3-D environment is used.

• Meshes. Also used to represent 3-D natural environments with several irregularities.

• Cost maps. Points in the environment are represented in terms of the cost to move
towards a specific location.

• Semantic attributes. Semantic attributes refer to the classification of landmarks to
simplify their representation.

• Tracking dynamic elements. A proposed alternative to deal with dynamic environ-
ments is the tracking of movable obstacles, which is advantageous when recomputing
any other model online according to the updates of information.

Grid representations have been widely used in combination with path planning techniques
such as potential fields, further expanded in Section 3.3. They offer a compact useful rep-
resentation for environments like houses and streets, but they can be adapted to complex
elevated terrains by means of relations between cells (Siciliano and Khatib, 2008).

3.2 Stealth navigation and evasion from pursuers

Stealth navigation is an area of path planning that is related to the problem of navigation
and escape, but does not offer a solution when the robot has been identified and it is being
chased. Stealth navigation is based on the assumption that the opponent (pursuer, static
observer or target to chase) has not found the robot in the environment. Stealth navigation
offers a possibility to avoid capture if the robot reaches cover and the pursuers are unable
to see it anymore and desist on their pursuit.

Covert or stealth navigation is a useful resource for tasks where detection needs to be
avoided (Marzouqi and Jarvis, 2006). These tasks can be found in policing and military,
like surveillance, spying, exploring hostile environments, tracking targets and crime pre-
vention, but also in computer and video games. Different path planning methods have
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been used to solve the problem of stealth navigation, particularly potential functions and
roadmaps.

The study of covert or stealth navigation can be grouped into three categories, according to
the perspective of study:

• General stealth: navigating using obstacles to minimise the visibility or exposure of
a robot to static observers placed in the environment. The environment is usually
assumed to be known previously. For example, Teng et al. (1993) proposed using
an occupancy grid morphed into a hypercube according to a visibility analysis of
the elevations in a terrain, added to predicting the movements of adversaries, to
plan a stealth path. Ravela et al. (1994) considered a visibility analysis of the terrain
elevations in a known environment, represented with harmonic potential functions
(mentioned in Subsection 3.3.2), to compute stealth paths.

Jarvis and Marzouqi (2005) proposed finding a stealth path that considers minimising
the costs according to the distance to a goal and the observability risk, in an environ-
ment approximated into a uniform grid. This is extended in Marzouqi and Jarvis
(2006) for unknown and partially known environments by updating the costs of each
cell as the environment is sensed. In Marzouqi and Jarvis (2005), the same authors
used an exact cell decomposition in the environment.

Birgersson et al. (2003) also worked with unknown environments, obtaining grid-
based maps of terrain elevations and the shadows within them (where a robot is un-
observable) and then computing potential functions of attraction to the shadows or
the goal, and repulsion from the obstacles. Tews et al. (2004a,b) extended the work
of Birgersson et al. (2003) using an occupancy grid updated with new information
from sensors to represent obstacles and an observer in an unknown environment,
computing respective potential functions. Tews et al. (2004b) focused on a multi-
robot system where the acquired map and the traveled stealth path are shared to all
robots remain covered while navigating.

• Stealth interceptions: navigating using obstacles to minimise the exposure to dy-
namic invaders, towards intercepting them at a specific location and time (Park et al.,
2009), also named motion camouflage. The trajectory of the invaders is assumed to
be predictable. For example, Park et al. (2009, 2010) used detection roadmaps from
the environment to assess if a stealth path is available to achieve interception at a
certain point and time. Other examples of motion camouflage have been mentioned
in Subsection 2.2.3. This area of stealth planning deals primarily with the design
of pursuers that are capable of capturing their target, whose movement is simple
and can be modelled or predicted (Anderson and McOwan, 2003; Glendinning, 2004;
Justh and Krishnaprasad, 2006).

• Visibility analysis: this area of computer science deals with the geometrical analysis
of visibility behind bodies in the environment, considering obstacles, elevations in the
terrain, and the embodied capabilities of the robot in terms of range and distances.
For example, Woo et al. (1990) analyse different kinds of shadows formed behind
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bodies for different perspectives.

Some of the work considers a full knowledge of the environment (e.g. Ravela et al. (1994);
Teng et al. (1993); Jarvis and Marzouqi (2005); Park et al. (2009, 2010)), including the location
and shape of obstacles, and the location and range of sight of the observers (surveillance
robots, fire to avoid or invaders to capture, among others), including their predictable
motion if the observers are dynamic. The work on unknown dynamic environments does
not consider incorporating pursuers in the planning (Birgersson et al., 2003; Tews et al.,
2004b,a; Jarvis and Marzouqi, 2005), and if it does, the considerations are that the pursuers
have not detected the robot initially, so stealth navigation is apparently enough as a solu-
tion (Marzouqi and Jarvis, 2006). Unfortunately those considerations are far from the case
where pursuers have discovered a robot and start a pursuit, a model of the pursuers (to
predict their behaviour with confidence and anticipation) is not available, and the robot
has no previous knowledge of the environment.

In the context of pursuit-evasion games, path planning techniques have been used as part
of the computation of strategies for evading the pursuers, as in Amin et al. (1997) and
Karaman and Frazzoli (2010) oriented to aircraft. Repulsive forces exerted by the pursuers
similar to potential functions (Amin et al., 1997), Voronoi diagrams (Amin et al., 1997),
and incremental sampling-based algorithms (Karaman and Frazzoli, 2010) are some of the
techniques used to deal with more than two pursuers. Nevertheless, most of the naviga-
tion strategies computed for pursuit-evasion games do not use path planning techniques,
but optimisation theory (i.e. the computation of an optimal control law from differential
equations subject to optimisation criteria) and graph search approaches (e.g. Leondes and
Mons (1979); Yavin (1986); de Villiers et al. (1987); Amin et al. (1997); Fuchs et al. (2010)).
Solutions to pursuit-evasion games are reviewed later in Section 6.2.

3.3 Artificial potential fields for path planning

Potential functions for path planning were introduced in the 1970s, specifically to solve
problems of trajectory planning for robot manipulators with different segments and subject
to kinematic constraints. The work has extended into autonomous vehicles (ground, aerial,
aquatic) and even multi-robot coordination. The milestones of artificial potential fields are
summarised in Table 3.1.

Potential functions have been used for the two kinds of systems that can be designed using
control and path planning methods, illustrated in Figure 3.6:

• Reactive. In a reactive system, the perception of the environment (known a priori
or unknown and sensing based) is mapped into potential functions that generate a
vector field through the gradient operation. The gradient is then followed by the
actuators in the robot. Some examples include the work of Koren and Borenstein
(1991); Guldner and Utkin (1995); Tsourveloudis et al. (2001); Birgersson et al. (2003);
Poty et al. (2004). Another way to implement a reactive system is through designing a
control law incorporating the vector forces exerted by a potential field, as in Masoud
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Table 3.1: Milestones of artificial potential fields.

YEAR CONTRIBUTIONS

1976-1984 Khatib, Arimoto and Miyazaki, and Pavlov and Voronin introduced the possible use of potential
fields for robot control (Bell, 2005).

1986 Khatib introduced a conic repulsion function and a quadratic attraction function (Khatib, 1986).
Krogh and Thorpe proposed the first combination of potential fields with a search method (Bell,
2005).

1987 First topological considerations for the implementation of the potential fields by Koditschek
(1987).

1989 Koren and Borenstein proposed a constant discrete attraction field that deals with uncertainty.
Latombe and Barraquand combined harmonic function based potential fields with random
motion search methods (Charifa and Bikdash, 2009).

1990 Connolly formulated the obtention of a potential field through a solution to Laplace’s equation
(Connolly et al., 1990). Search methods different to following the gradient descent are used (Bell,
2005).

1992 Rimon and Koditsheck extended the potential fields to the configuration space for path planning
(Bell, 2005).

2000-2012 Dealing with multiple minima problems, narrow corridor problems, closeness of goal and
obstacles problem (Charifa and Bikdash, 2009). More realistic shapes of obstacles (Bell, 2005).
Other potential functions have been proposed (Charifa and Bikdash, 2009).

2002 Masoud used potential fields to solve the problem of evasion from pursuers in crowded environ-
ments (Masoud, 2002).

et al. (1994); Masoud and Masoud (2000); Masoud (2003b); Cherubini and Chaumette
(2010); Roussos et al. (2010).

• Deliberative. A map of the environment using potential functions is obtained, then
a search method or gradient descent is used to find an optimal path towards a goal
(or temporary subgoal), for a priori known environments or previously unknown and
sensed. The path is then tracked by a controller. Examples of deliberative controllers
are the work inWarren (1989); Masoud (1996); Masoud and Masoud (2002); Masoud
(2010); Pradhan et al. (2011).

Literature on the use of potential fields for path planning can also be categorised according
to the type of proposed mathematical construction, presented in Subsections 3.3.1 to 3.3.3:
scalar potential functions (Subsection 3.3.1), solutions for Laplace and Poisson equations
under boundary conditions (a boundary value problem) for the obstacles and the limits
of the environment (Subsection 3.3.2), and obtention of a vector field directly (Subsec-
tion 3.3.3).

3.3.1 Scalar potential functions

Based on the notion of electric fields (e.g. Khatib (1986); Koren and Borenstein (1991)) or
on the differences of potential in a resistor network (e.g., Tsourveloudis et al. (2001)), a
scalar field can be computed from the superposition of potential functions that consider
the distan,ce between the important points in the environment (obstacles and goal) and
a robot. Obstacles are assumed to have a positive charge, therefore exerting a repulsion
force in all directions, and the goal can be assumed to have a negative charge, exerting an
attraction force towards its location (Koren and Borenstein, 1991).
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SENSING ACTING E.g. wall→moving wheels-

(a) Reactive control system

SENSING DELIBERATING ACTING E.g. wall→ turn left→moving wheels- -

(b) Deliberative control system

Figure 3.6: Structures of a reactive and a deliberative control systems.

Different potential functions have been proposed to represent the attraction of the goal, as
well as the repulsion of the obstacles, the most used presented in the following paragraphs.
The principle of superposition can be applied to combine the effect of all the forces in a field,

φ(x, y) = E1 + · · ·+ Em − Eg (3.1)

where φ(x, y) is the scalar field for all points (x, y) in a 2-D space (that can be extended
to more dimensions, x1, . . . , xl). E1, · · · , Em are the potential functions of each obstacle in
the environment, and Eg is the potential function of the goal. The vector field of Equa-
tion 3.1 can be obtained from the gradient of the scalar field defined by potential functions
(Sowerby, 1974). A path can be computed following the gradient descent towards the goal
for continuous tasks, or from other search methods if the representation of the environment
is discrete (like steepest descent or the ones mentioned in Subsection 3.1.6).

Attraction functions for the goal

Some of the most popular attraction potential functions are:

• Smoother quadratic well (Koren and Borenstein, 1991; Ge and Cui, 2000; Vadakkepat
et al., 2001; Velagic et al., 2006): a conic function has the form

Eg = Kg · (Rg)1/2 (3.2)

whereRg = (x−xg)2+(y−yg)2 andKg representing the force of the effect of the goal
in the potential field in a 2-D plane. This function has a similar shape to the electric
field function.

• Quadratic goal (Khatib, 1986; Al-Sultan and Aliyu, 1996; Yun and Tan, 1997; Haddad
et al., 1998; Ge and Cui, 2000; Huh et al., 2002; Wang et al., 2002; Masehian and Amin-
Naseri, 2004; Zhu et al., 2006; Mora and Tornero, 2008; Takahashi et al., 2010; Tan et al.,
2010): a quadratic representation can be used instead of Equation 3.2 for the goal,

Eg = KgRg (3.3)
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where Rg = (x − xg)2 + (y − yg)2 as presented in Equation 3.2 for a 2-D plane. A
quadratic function has better stabilising properties when finding a solution for the
path planning problem, as it helps to prevent some local minima.

• Others: superquadric functions (Khosla and Volpe, 1988), Gaussian functions (McIsaac
et al., 2003), harmonic functions (Guldner and Utkin, 1995).

Repulsion functions for the obstacles

Some of the most popular repulsion potential functions are:

• Quadratic well (Koren and Borenstein, 1991; Vadakkepat et al., 2001; Velagic et al.,
2006): for no obstacles represented as points in space, the electric field for every one
of them can be approximated as

Em =
Km

Rm + c
∀m ∈ {1, . . . , no} (3.4)

where Rm = (x−xm)2 +(y− ym)2, Km representing the force of the effect of the mth
obstacle in the potential field in a 2-D plane, and c a constant that avoids a division
by zero when the distance is close to zero. If the robot collides with an obstacle, i.e.
(x, y) = (xm, ym), the total field approximates a large bounded value. The values of
the constants K1, . . . ,Kno

affect the magnitude of the repulsion force and therefore
they need to be selected according to the requirements of the task.

• Limited quadratic function (Wang et al., 2002; Ding et al., 2005; Zhu et al., 2006,
2009; Lee et al., 2010; Takahashi et al., 2010; Tan et al., 2010; Pradhan et al., 2011): a
modification of the conic function was proposed to limit the influence region of the
obstacles in the environment,

Em =

 Km

(
1

f(x,y) −
1

f(x0,y0)

)2
Rg if f(x, y) 6 f(x0, y0)

0 otherwise
(3.5)

where f(x, y) is a function of the distance, or the velocity and the distance, and
f(x0, y0) is the limit of the influence of the obstacle in a 2-D plane. The term Rg , same
as in Equations 3.2 and 3.3, deals with situations where a local minimum is present
due to an obstacle and the goal being equidistant to the robot, but some authors do
not use it resulting in the so-called FIRAS (Force Inducing an Artificial Repulsion
from the Surface, in French) function (Khatib, 1986; Janabi-Sharifi and Vinke, 1993;
Yun and Tan, 1997; Ge and Cui, 2000; Mora and Tornero, 2008).

• Solid obstacles (Al-Sultan and Aliyu, 1996; Hwang and Ahuja, 1992b): obstacles can
be represented by solid shapes,

Sm = x, y : gm(x, y) ≤ 0; gm(x, y) ∈ C2[0,∞), (x, y) ∈ R2 (3.6)

where gm(x, y) is the shape (e.g. circle) of the contour of the mth obstacle in a two-
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dimensional plane, and C2 is the class of the function gm(x, y) (differentiable twice
and the derivatives are continuous). Al-Sultan and Aliyu (1996) used a cylindrical
field for each obstacle, inside the region described by Sm, of the form

Em = Kmmax (0,−gm(x, y))
r (3.7)

where Km is a constant of large value that defines the strength of the field, and r ≥ 2,
for m = 1, . . . , no obstacles.

• Others: superquadric functions (Khosla and Volpe, 1988), fractional functions (Poty
et al., 2004), elliptical (Pradhan et al., 2011), Gaussian (McIsaac et al., 2003), dipolar
(Roussos et al., 2010), exponential (Weir and Bott, 2010), sigmoid (Ren et al., 2007),
circular (Pathak and Agrawal, 2004).

Many authors have used the proposals formulated by Khatib (1986) in their research. Conic
repulsion and quadratic attraction potential functions are the best alternatives when com-
bining approaches against local minima that are easy to implement computationally. The
formulations in terms of distance can be adapted to sampled points in the configuration
space, or even in a grid by using the centroids of the cells as reference points for the
functions. This allows dealing with navigation problems where the geometry of the envi-
ronment is too complex geometrically, or even unknown like in analysis of the environment
mapping that are based on information from sensors.

3.3.2 Boundary value problem solutions to the Laplace equation

In order to avoid local minima, one of the main challenges when designing potential func-
tions, some researchers have proposed finding functions that respect the conditions of the
Laplace equation as they have a unique minimum in the location of the goal (Connolly
et al., 1990; Kim and Khosla, 1992; Masoud et al., 1994; Masoud and Masoud, 2000; Prestes
et al., 2001; Masoud and Masoud, 2002; Alvarez et al., 2003; Masoud, 2003a; Trevisan et al.,
2006; Pimienta et al., 2006; Shi et al., 2007; Silveira et al., 2010; Masoud, 2010). Considering
the Laplace equation (a harmonic function) of a field of l dimensions, φ(x1, . . . , xl),

L∑
l=1

∂2φ

∂x2l
= 0 (3.8)

the resulting field does not have problematic local minimum points. If a function satisfies
Equation 3.8 in a region, any critical point within the region is a saddle point. If the robot
reaches the saddle point far from the goal, it can find a path out of it.

The potential field is obtained by formulating a boundary value problem (BVP) for a dif-
ferential equation like the Laplace. In a BVP, boundary conditions are proposed for the
obstacles, the limits of the environment and the goal. An example is the use of Dirichlet
conditions, where traditionally the following values are used: φ(x, y) = 1,∀x, y ∈ m,m =

1, . . . , no for the locations or boundaries of the no obstacles and the limits of the environ-
ment, and φ(x, y) = 0 for the goal regions (Connolly, 1994). Other conditions that can be
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used in the BVP are Neumann (Zelek, 1995) or anisotropic (Masoud, 2002).

A path can be obtained by following the resulting vector field (e.g. in Prestes et al. (2001);
Mbede et al. (2002); Masoud (2002, 2003b)). Vector solutions to the boundary value problem
can also be used to obtain control laws as in Masoud et al. (1994); Masoud and Masoud
(2000, 2002); Masoud (2007a).

The Laplace equation (Equation 3.8) can be approximated by a Taylor expansion. An
approximated scalar potential field can be represented by a grid, where every inner cell xl
has a potential value defined as an average of the surrounding cells (stencil). Calculating
the Taylor series expansions of the gradient about the point x1 gives

φ(x1 + δ, . . . , xl) = φ(x1, . . . , xl) + δ
∂φ

∂x1
+

1

2
δ2
∂2φ

∂x21
+

1

6
δ3
∂3φ

∂x31
+O(δ4) (3.9)

φ(x1 − δ, . . . , xl) = φ(x1, . . . , xl)− δ
∂φ

∂x1
+

1

2
δ2
∂2φ

∂x21
− 1

6
δ3
∂3φ

∂x31
+O(δ4) (3.10)

for small δ.

The two expansions are added,

φ(x1 + δ, . . . , xl) + φ(x1 − δ, . . . , xl) = 2φ(x1, . . . , xl) + δ2
∂2φ

∂x21
+O(δ4) (3.11)

and after some algebraic manipulation, considering O(δ4) ≈ 0

∂2φ

∂x21
=
φ(x1 + δ, . . . , xl) + φ(x1 − δ, . . . , xl)− 2φ(x1, . . . , xl)

δ2
(3.12)

If the same procedure with the Taylor series expansions is applied for every variable x1, . . . , xl,
an approximation of Equation 3.8 can be obtained

L∑
l=1

∂2φ

∂x2l
=

1

δ2

[
φ(x1 + δ, . . . , xl) + . . .+ φ(x1, . . . , xl + δ) + φ(x1 − δ, . . . , xl) + . . .

+ φ(x1, . . . , xl − δ)− 2lφ(x1, . . . , xl)

]
= 0 (3.13)

and after more algebraic manipulation gives

φ(x1, . . . , xl) =
1

2lδ2

[
φ(x1 + δ, . . . , xl) + . . .+ φ(x1, . . . , xl + δ) + φ(x1, . . . , xl + δ) + . . .

+ φ(x1, . . . , xl − δ)
]

(3.14)

where the value of the field φ(x, y) at (x, y) is the average of the values of the points in the
immediate vicinity. For a 2-D environment, (x, y), and with a distance of 1 from the point
or cell to the next (i.e. δ = 1), the potential in a point is reduced to

φ(x, y) =
1

4
[φ(x+ 1, y) + φ(x, y + 1) + φ(x− 1, y) + φ(x, y − 1)] (3.15)
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Figure 3.7: Five points stencil from Equation 3.15.

also known as a five points stencil, represented in Figure 3.7.

The potential field stencils are calculated by the formulation of a BVP solved by numerical
methods, particularly relaxation. Considering a square grid of n × n, rows and columns
respectively, where every internal cell has a value of za,b, the four points stencil from the
Taylor series expansion of the Laplace equation is

za,b =
1

4
[za−1,b + za,b−1 + za,b+1 + za+1,b] (3.16)

The row of the cell is denoted by the subscript a and the column by b. Each equation can
be written as a linear combination of the value of every other cell in the grid, but with
coefficients zero in the terms that are not contained in the stencil, for example

z2,2 =
1

4
[0 · z1,1 + 1 · z1,2 + 0 · z1,3 + . . .+ 0 · z1,n + 1 · z2,1 + 0 · z2,2 + 1 · z2,3 + 0 · z2,4 + . . .

+ 0 · z3,1 + 1 · z3,2 + 0 · z3,3 + . . .+ 0 · zn,n] (3.17)

The set of equations that describes the value of each internal cell in the grid, expressed in
the form of the previous equation, can be grouped in vectors and matrixes,

z1,1
...
z2,2

...
zn,n


=



1 0 0 . . . 0 0 0 0 0 . . . 0 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 1
4 0 . . . 0 1

4 0 1
4 0 . . . 0 1

4 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 . . . 0 0 0 0 0 . . . 0 0 0 . . . 1





z1,1
...
z2,2

...
zn,n


(3.18)

This set of linear equations can be also written as

~z =
1

4
C~z (3.19)

where C is a matrix that indicates the terms that form the stencil of each internal cell in
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the grid by a magnitude of 1 or 0 if not. To obtain the values of the approximated grid
that now represents the 2-D plane, a boundary value problem is proposed where values
are assigned to ~z, including the edges and critical points (the obstacles and the goal). A
relaxation algorithm computes the updates for ~znew from ~zold by iterations, minimising the
total error until convergence to a threshold εth.

Relaxation algorithms include Jacobi, Gauss-Seidel, red-black ordering, and successive
over-relaxation (SOR). Two relaxation algorithms have been used frequently in the com-
putation of the stencils for the BVP: the Gauss-Seidel algorithm (Connolly et al., 1990;
Zelek, 1995; Trevisan et al., 2006; Vaščák, 2007), and SOR (Alvarez et al., 2003; Shi et al.,
2007; Silveira et al., 2010), the latter is presented below along with the Jacobi algorithm in
Algorithms 1 and 2. Pimienta et al. (2006) solved the BVP using the finite element method.
Other alternatives to the Laplace equation for the BVP include the Poisson equation (Ma-
soud, 2003a,b), the Navier-Stokes equation for viscous incompressible fluids (Louste and
Liegeois, 2000), the diffusion equation (Charifa and Bikdash, 2009) and the biharmonic
equation (Charifa and Bikdash, 2009).

Algorithm 1 Successive over-relaxation (SOR) algorithm for the BVP

1: Initialise ~zold with a guess, like za,b = 0.5,∀a, b. λSOR = 4

2+
√

4−(cos pi
a +cos pi

b )2

2: Apply boundary conditions to ~zold: za,b = 1 for all cells that are obstacles, za,b = 0 for
the goal, and za,b = 0.5 for all edges of the grid

3: Compute ~znew = ~zold + λSORC~zold

4: Compute error = 1
n2

∑
a,b

(
znewa,b − zolda,b

)
5: if error > εth then
6: ~zold ← ~znew
7: Repeat from 2
8: end if

Algorithm 2 Jacobi iteration algorithm for the BVP

1: Initialise ~zold with a guess, like za,b = 0.5,∀a, b
2: Apply boundary conditions to ~zold: za,b = 1 for all cells that are obstacles, za,b = 0 for

the goal, and za,b = 0.5 for all edges of the grid
3: Compute ~znew = C~zold

4: Compute error = 1
n2

∑
a,b

(
znewa,b − zolda,b

)
5: if error > εth then
6: ~zold ← ~znew
7: Repeat from 2
8: end if

3.3.3 Vector fields

Designing vector fields in a direct form allows the incorporation of rotational and more
complex forces to guide the motion of a robot in a reactive controller, or to compute a path
for a deliberative system by following the vectors in the field. Examples include incorpo-
rating rotational tangent forces to avoid collisions with obstacles or other robots in a multi-
agent system (Slack, 1993; Masoud, 1996; Haddad et al., 1998; Masoud, 2007a; Ohnishi and
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Imiya, 2008), incorporating vortex fields for the obstacles (McInnes, 2003; Cherubini and
Chaumette, 2010), using only attractive fields exerted by the obstacles towards the goal
(de la Paz López et al., 2009), and using multiple vectors to determine the attractive and
repulsive forces (Jing and Wang, 2004; Cen et al., 2007). Other proposals constructed vector
fields from other mathematical models, like the density of flow (Wong and Spetsakis, 2000).

Considering the same idea of incorporating additional features in the potential functions,
some researchers have proposed designing control laws based on vector potential fields
with rotational properties that allow correcting the path as the environment changes, when
kinematic and dynamic constraints are needed, as in the case of manipulators (Khatib, 1986;
Rimon and Koditschek, 1992; Masoud and Masoud, 2000). Vector potential fields can be
obtained from a BVP through the process in Subsection 3.3.2. Other approaches presented
the design of a control law considering a realistic dampening effect due to the inertia of a
robot, from a vector field (Masoud, 2007b, 2009). Huang et al. (2006) proposed a steering
control (angular acceleration) to avoid obstacles, considering attraction and repulsion as
functions of the angles and distances between the robot and obstacles or the goal.

The following subsections mention some proposals to deal with dynamic environments
within the reviewed literature on potential functions, the use of discretisations as a repre-
sentation of the environment, and finally the main challenges when implementing potential
functions for path planning: local minima, plateau regions, saddle points and ravines.

3.3.4 Planning for dynamic environments and information from sensors

Commonly used solutions for partially known environments (also referred to as dynamic
environments in the literature), with dynamic obstacles, previously unknown environ-
ments, and sensed information involving potential fields are: reactive approaches (bug-
like), and gathering more information from the environment with sensors and constantly
re-planning the path until the objective has been fulfilled (Bruce and Veloso, 2002; Gies-
brecht, 2004).

Reactive control systems have been used recurrently for navigation in a sensing based
setting (Koren and Borenstein, 1991; Vadakkepat et al., 2001; Mbede et al., 2002; McIsaac
et al., 2003), often combined with an occupancy grid representation, where obstacles and
free space are mapped into cells. Combined with potential functions, the actions taken by
the robot are dictated by following the forces of the potential field. If scalar functions are
used to represent the environment, the gradient is computed. The navigation actions are
implemented using a low level controller like neuro-fuzzy based (Mbede et al., 2002) or
PID (Birgersson et al., 2003). Using reactive potential functions based control systems has
the main disadvantage of a lack of look-ahead, which can lead to non-optimal paths and
oscillations in the navigation (Bruce and Veloso, 2002). An alternative is using an online
planning approach with updates to the path according to the incoming information from
the environment.

Also, direct control based approaches, i.e. control laws that incorporate potential forces,
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deal with sensed previously unknown environments. Deliberative systems derived from
scalar functions, solving the BVP and direct vector fields have been designed more fre-
quently in recent times to deal with dynamic obstacles and information from environments
from sensors. Examples of control laws that incorporate forces are mentioned in Weir
and Bott (2010); Cherubini and Chaumette (2010); Tan et al. (2010); Takahashi et al. (2010);
Pradhan et al. (2011).

3.3.5 Discrete potential fields

Grid representations simplify the elements in the environment, as obstacles might have a
complex geometry. Occupancy grids have been used to represent the elements of the en-
vironment, the obstacles and goal, for example in Koren and Borenstein (1991); Borenstein
and Koren (1991); Tsourveloudis et al. (2001); Wang et al. (2002); Birgersson et al. (2003);
Shem et al. (2008); Cherubini and Chaumette (2010); Zhang and Gao (2011). Other cell
representations include Haddad et al. (1998); Prestes et al. (2001). A potential field is calcu-
lated for cells in a grid, generally as scalar values, and then a path is found using discrete
gradient descent (steepest descent) or discrete search methods like the ones mentioned in
Subsection 3.1.6 (Bell, 2005; Choset et al., 2005). More grid discretisations are present in
the numerical solutions to the BVP for Laplace’s equation as in Subsection 3.3.2 (Connolly
et al., 1990; Alvarez et al., 2003; Pimienta et al., 2006; Vaščák, 2007; Silveira et al., 2010).

3.3.6 Challenges implementing potential functions

The main challenges when implementing artificial functions, and addressed by some re-
searchers, are the following (Al-Sultan and Aliyu, 1996; Ge and Cui, 2000; Zhu et al., 2006):

• The functions should not contain local minima.

• The functions should mimic obstacle surfaces, to maximise the free-space for the
path planning, but still being able to navigate through narrow passages without
oscillations.

• The influence of an obstacle should be limited to its vicinity, so that goals are reach-
able even with nearby obstacles.

• A scalar potential field should be described as a continuously differentiable function,
so the gradient can be computed.

Local minima are points in the surface of the potential field, where the gradient of all
the surrounding points descends towards them. Other problematic topologies that can
be considered as local minima are the plateau, a plane region surrounded by points with
descending gradient towards it, and saddle points, where the gradient is undefined but it
descends in some points around it so an exit is possible (Bell, 2005). Visual examples of the
mentioned problematic topologies are shown in Figure 3.8.
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Figure 3.8: Common problems when using potential functions: a local minimum on the left of the
graph, a plateau region, a saddle point at (0, 0) and a ravine problem.
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Two main groups of solutions to the problem of local minima in potential functions have
been proposed: incorporating search methods or random navigation to find a path that
leads out of local minima, or finding a navigation function with one local minimum only
(the goal). Within the first group are random walks (Barraquand et al., 1992; Chang, 1996;
Caselli et al., 2002), following walls (Yun and Tan, 1997; Zhu et al., 2009), depth-first (Al-
Sultan and Aliyu, 1996), temporal local minima (Bell, 2005), simulated annealing (Janabi-
Sharifi and Vinke, 1993; Zhu et al., 2006), and the wave front planner (Giesbrecht, 2004;
Choset et al., 2005).

The use of the Laplace equation and a BVP to compute an approximated vector or scalar
field (Subsection 3.3.2) has been proposed to solve the problems of local minima (Prestes
et al., 2001; Mbede et al., 2002; Masoud, 2002, 2003b; Alvarez et al., 2003; Vaščák, 2007).
Other approaches propose modifications in the design of the potential functions to achieve
only one local minimum, or at least reducing the overall number of critical points (naviga-
tion functions), include: using elliptical functions, cutting off obstacles from the surface, a
sphere approach to model obstacles and the environment (Koditschek, 1987), star space that
models any polygonal obstacle into spheres (Rimon and Koditschek, 1992; Choset et al.,
2005), Gaussian functions, harmonic functions (Connolly et al., 1990; Masoud, 2003a), and
quadratic functions (Khatib, 1986; Al-Sultan and Aliyu, 1996; Masehian and Amin-Naseri,
2004). Modifying the design of the potential field can reduce the presence of local minima
(Bell, 2005).

Other proposals outside of the two main groups include converting local minima into
virtual obstacles with a repulsion force (Park and Lee, 2003), the use of subgoals (Zou and
Zhu, 2003; Bell, 2005; Weir et al., 2006), or adding an extra force in the field to avoid falling
in the local minima (Ding et al., 2005; Lee et al., 2010).

The ravine problem or the presence of narrow passages between obstacles, illustrated in
Figure 3.8, could cause an unbounded bouncing navigation movement between the two
obstacle walls. This problem has been solved by using discrete approaches, mentioned in
the previous subsection (Bell, 2005).

3.3.7 Combining potential functions with other path planning methods

Potential functions for path planning have not been frequently combined with other path
planning methods (mentioned previously in Section 3.1). The few examples in the litera-
ture include using Voronoi diagrams (Masehian and Amin-Naseri, 2004) and graph search
(Warren, 1989). These combinations have been proposed to avoid the problem of local
minima inherent in the potential functions.

3.4 Discussion

Real life navigation problems require dealing with previously unknown, sensed environ-
ments, with incomplete information (partially observable) and dynamic components. When
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considering a path planning approach for autonomous navigation in dynamic environ-
ments, a constant update of the path is needed to succeed in the task of navigation. For
these reasons, the following path planning mechanisms have been considered for the de-
signs in this thesis:

• Applying a cell decomposition to the sensed partially visible environment allows a
representation of the environment that is not precise nor exact, but still gives enough
information on the locations of the obstacles and pursuers at an instant of time, when
the sensing is taking place. Furthermore, a cell decomposition can be interpreted as a
sample-based approach, where sensed points in the environment are used to obtain
a representation of the environment and subsequently an appropriate path.

• Using potential functions based methods to guide the decision making towards the
planning by assigning attraction and repulsion forces to the elements in the envi-
ronment. A grid based representation can be combined with potential functions
methods, as explained throughout the chapter.

Many other specific methods and algorithms, like Voronoi diagram based roadmaps, can
be adapted to solve the problem of navigation and escape from pursuers in a dynamic
environment. Nevertheless, potential functions are easier to understand and implement in
terms of geometrical analysis. Furthermore, many of the approaches on escape from pur-
suers and stealth navigation have been developed from potential field methods (Masoud,
2002, 2003a,b), thus comparisons on the evaluation on the approaches for the solution of
the problem of navigation and escape from pursuers can be drawn.

Although the problem of escape from pursuers has been studied for aircraft in a 3-D world
(Amin et al., 1997) and as part of pursuit-evasion games (computing strategies for both
pursuit and evasion simultaneously, reviewed in Chapter 6), the design of intelligent es-
cape from pursuit of ground vehicles in a 2-D plane has not been studied with the same
interest. Some of the only research efforts include the work in Masoud (2002, 2003a,b) and
Karaman and Frazzoli (2010), and the study of covert navigation in Marzouqi and Jarvis
(2006) from a path planning point of view. Covert navigation does not solve the problem
of escape from pursuit when the pursuers have discovered a robot and the robot is not
in hide. Why is there a lack of interest in researching the design of intelligent escape from
pursuit? Adding intelligent capabilities to a fully autonomous robot to make it react during
endangering situations allows implementing a form of self-preservation beyond avoiding
obstacles (Marzouqi and Jarvis, 2006). Applications in surveillance, search and rescue,
reconnaissance, guidance and interaction with humans and animals suggest that there is
an area of opportunity, for the implementation of evasion from pursuit as self-preservation
behaviours in the navigation.

The problem of evasion from pursuers has been studied by Masoud (2002, 2003a,b) using
a potential functions approach for the navigation and escape, but it is based on cluttered
environments. The solutions use a boundary value problem for the Laplace or Poisson
equations, and produce vector or scalar potential fields that can be used to compute a path
following the gradient descent or by incorporating them into a control law.
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The design of scalar fields from potential functions or from BVPs has many drawbacks
in terms of the presence of different kinds of local minima, the selection of parameters
regarding the strength of the forces of attraction and repulsion and their limits of action,
and dealing with complex geometries. Vector fields allow the incorporation of rotational
and vortex forces, which could help to achieve the desired actions of fleeing and proteanism
when navigating from the planning stage.

Finally, a high level control system is more desired than one that integrates a high level
and low level, like the ones presented in Khatib (1986) or Masoud and Masoud (2000),
as it can be adapted to any mobile robot without the need to know the equations that
model the exact platform (low level). The adaptation of a high level into a low level
control system that governs the physical components that allow the navigation following a
designed path becomes a shorter step if some of the constraints (like the size of the robot)
are considered during the planning of the path. The proposals contained in this thesis
contemplate considering kinematic constraints, but the premise is to design a high level
control system that can be used with any low level controller to achieve navigation and
escape from pursuers independently from the used mobile robot.

3.5 Concluding remarks

The chapter presented a brief literature review on the area of path planning, mentioning
the main groups of methods and their general properties: sensor-based bug algorithms,
roadmaps, cell decomposition, sampling-based methods, and potential functions. The
main discrete search algorithms used within the path planning methods were mentioned,
along with the main proposed models of the world for different kinds of environments.
This is followed by a summary on stealth navigation research, and other previous work on
evasion, from the path planning perspective.

The literature review illustrates the main differences between the path planning techniques,
being potential functions the one chosen for the design in this thesis in combination with
a discretisation in space and time of the sensing of the environment, inherent of different
kinds of sensors in robots. Potential functions have been used for stealth navigation and
evasion of aircraft, due to the advantages of this path planning technique over others
more computationally expensive. Nevertheless, different kinds of potential functions have
not been compared in an evasion task. Furthermore, the use of different path planning
techniques to tackle the problem of autonomous navigation and escape from pursuit is
limited to some examples.

Subsequently, the chapter presented a comprehensive literature review on potential func-
tions to illustrate the state of the art of the topic. The literature was analysed from different
characteristic features:

• A reactive or deliberative control approach for the navigation of a robot.

• The design of the potential functions or fields:
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– Scalar potential functions, where different proposed functions for obstacles and
the navigation goal are mentioned.

– Solutions to boundary value problems for the Laplace equation, used to com-
pute vector fields, or scalar fields through a numeric approximation.

– Vector fields from design, incorporating rotations and vortices, or for computing
control laws.

• Approaches that deal with dynamic sensed environments, where the information is
incomplete.

• Approaches that incorporate discretisation in the obtention of potential fields.

• Approaches that deal with the main challenge when implementing potential func-
tions: the presence of local minima, by modifying the design of navigation functions
or by incorporating different search methods.

The different potential functions offer solutions to the local minima problems. Some of
them have been chosen to be adapted to the designs presented in the thesis, due to the
simplicity of their calculation for the fast computation of solutions in a robotic platform.

Finally, a discussion of the presented literature review takes place, highlighting: (a) the rea-
sons behind the selection of a potential function based approach with a cell decomposition
sampling for the designs presented in the thesis, and (b) the characteristics, advantages
and disadvantages of the potential function methods reviewed towards the solution of the
problem of navigation and escape from pursuers.

The next chapter presents a first approach to the solution of the problem of navigation and
escape from pursuit. The problem to be solved with the designs is discussed first. Then,
proposals for the analysis of the environment using different kinds of potential functions
are described, discussed and exemplified. The path planning concepts regarding potential
functions provided in this chapter serve as the basis for the designs presented in Chapter 4.
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Chapter 4

Bio-inspired analysis of the
environment and path planning

This chapter presents the design of solutions to the problem of navigation and escape
based on a path planning approach using potential functions. The first part introduces
the reasoning behind the selection of the combined specific approaches, including the
definition of the problem, the use of potential functions in a discrete setting, and the bio-
inspired features.

Section 4.1 presents the definition of the problem solved in this thesis, including the main
elements and particularities that state the differences between the problem of escape from
pursuit and other similar problems like stealth navigation. Section 4.2 discusses the main
decisions regarding the characteristics of the control approach, the methods used in the
designs to solve the problem of navigation and escape from pursuers, and other basic
assumptions for pursuers, the environment and the validation of the results. The section
also includes the methodology followed for the designs.

Section 4.3 details the biologically inspired features added in the designs, gathered from
the analysis of related literature in Chapter 2. The features have been incorporated in two
different forms: a priori and a posteriori. The section also presents the general structure used
for the designs of solutions to the problem of navigation and escape from pursuers, from
the general methodology proposed in Section 4.2 and including the biologically inspired
features.

The second part of the chapter presents the detailed designs, divided in two main seg-
ments: the analysis of the environment with incorporated bio-inspired features, and then
the computation of a path. The analysis of the environment is contained in Section 4.4,
computing a representation that makes possible finding a navigation path that avoids ob-
stacles and capture by pursuers simultaneously from a proposed methodology described in
the corresponding subsections. Subsection 4.4.1 initialises the analysis of the environment
with the approximation of the sensed elements into a grid. Subsection 4.4.2 introduces
the computation of hideaways from the shadows cast by obstacles out of the sight from
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pursuers, representing bio-inspired refuges. Subsection 4.4.3 presents the computation of
a function of the distances between the different elements in the sensed environment, to
find the best locations away from pursuers. Subsection 4.4.4 introduces the computation
of a local navigation goal as a function of the distances to the pursuers and the possible
bio-inspired hideaways (refuges). Subsection 4.4.5 presents a proposal to compute bio-
inspired subgoals for a priori proteanism. Subsection 4.4.6 proposes how to update the
environment as the robot moves and the pursuers respond. Subsection 4.4.7 discusses the
use of a finer resolution grid.

Subsequently, the adaptation of different potential function approaches to the problem
of navigation and escape are presented in Section 4.5: discrete and popular potential
functions in Subsection 4.5.1, approximated solutions to a boundary value problem in
Subsection 4.5.2, and wave-front potential functions in Subsection 4.5.3. The subsections
include examples of resulting functions in randomly generated environments. Subsec-
tion 4.5.4 presents a comparison of the proposed modified potential functions.

Next, the methods for the computation of a path are presented. Section 4.6 describes the
approach to compute the path from the potential functions with steepest descent, including
the algorithm and visual examples. The section also describes the implementation of bio-
inspired proteanism a posteriori in a previously computed path.

Finally, Section 4.7 includes the discussion of the designs presented in the chapter, outlin-
ing their advantages, disadvantages and implementation challenges. The conclusions of
the chapter are presented in Section 4.8.

4.1 The navigation and escape problem

The problem of navigation and escape from pursuers has been defined, for the purposes
of this thesis, as consisting of a robot avoiding capture whilst also avoiding collision with
obstacles. In this thesis the problem is solved for a robot navigating in a 2-D environment,
but the proposals can be extended to 3-D for aerial vehicles. Capture means that the
robot is surrounded by pursuers, or when the distance from any pursuer to the robot is
minimum. A solution to the problem is a set of navigation actions that (a) avoid collision
with obstacles, and (b) increase the distance between the pursuers and the robot or achieve
getting out of the vision field of the pursuers.

The elements included in the problem are:

1. Environment: a locally observed portion of terrain, E(t), with no obstacles and np

pursuers. The environment is stochastic regarding the strategies adopted by the pur-
suers, as only some assumptions can be made about their behaviour from observation
(sensing), but without the certainty that they are true. The environment can extend
beyond the currently observed part.

2. Obstacles: assumed to be static elements in the environment that the robot needs to
avoid to prevent collisions.
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3. Robot (the prey): a mobile robot with limited sensing of its surroundings. The
robot needs to navigate according to what it senses if its memory is limited, and if
no mapping capabilities are included in parallel to the navigation and evasion from
pursuers. The robot navigates in a 2-D plane with maximum velocity, vmax, and
acceleration, amax.

4. Pursuers: other robots, animals, people or vehicles chasing the robot, i.e. navigating
towards it, or looking for it in the environment. They move with maximum velocity,
vmaxp .

Distances between the robot and any other object can be computed when the object is
observed by the robot. The robot decides what to do next in response to its analysis of
the environment. The environment, particularly the pursuers, responds to the actions of
the robot (Ring, 1994). Thus, the environment is considered dynamic.

The problem of navigation and escape from pursuers is particular and different to other
problems in the following aspects:

• It is not a problem that involves only avoiding collisions with obstacles or other
robots, but the pursuers try to chase and possibly destroy the robot.

• It is not a stealth problem as the robot is in direct sight of some of the pursuers,
and they can communicate the current position of the robot to all the pursuers in the
environment. Furthermore, the robot does not know the environment in its totality,
and it may be able to observe only parts of it, so it cannot plan a long distance stealth
path, but only respond to the current situation of the observed environment.

• If the pursuers were static observers, the problem of being detected and running
away could be solved simultaneously by navigating towards a hideaway and then
continuing in a stealth mode navigating behind obstacles. But pursuers can be other
intelligent enemy robots with mapping, planning, predicting and destroying capabil-
ities.

• Fleeing away from the pursuers in a straight line or any other predictable linear
movement is disadvantageous against intelligent pursuers that can do stealth pursuit,
motion camouflage, or any sort of interception.

Figure 4.1 shows a visual representation of three different problems: the problem of avoid-
ing obstacles only; the problem of stealth navigation with static observers; and the problem
of navigation and escape.

After stating the characteristics and elements of the problem that is solved through the
designs presented in this thesis, the next section includes an overview of the main deci-
sions made on the considerations, assumptions and approaches to solve the problem of
navigation and escape.
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Figure 4.1: The problem of avoiding obstacles, a stealth navigation problem and the problem of
navigation and escape from pursuers.

4.2 Approach to the solution of the problem

Many different alternatives are available to solve the problem of navigation and escape
from pursuers, coming from a broad range of subjects including control systems and com-
puter science. This section discusses the considered options and the decisions made re-
garding:

• The type of control approach.

• The main considerations for the problem: the characteristics and constraints of the
environment and the proposed solutions.

• The particulars of the designs, including which techniques and algorithms are suit-
able to solve the problem, and how to adapt them and assess their success.

The problem of navigation and escape can be considered a planning problem, but also a
game or a control law problem. It depends on the specifics of the desired solution: high
level or low level, for a particular physical configuration of a robot or for specific processing
and sensing capabilities. As not all the possible combinations can be explored in a short
period of time, two main approaches for the solution have been proposed, from path plan-
ning and game theory with reinforcement learning. Both try to fulfil the main objectives
of flexibility and universality for the implementation in different robotic platforms, and
computing solutions with available resources online.

4.2.1 Selecting a control approach: reactive or deliberative

Two main kinds of general architectures, reactive and deliberative (Chen et al., 2008), were
considered for the approach to the design of the control system, both illustrated and exem-
plified in Figure 3.6. A deliberative high level approach is more suitable for the solution of
the problem of navigation and escape for different robotic platforms, as a high level control
system can be later coupled to a low level control system that characterises the dynamic
and kinematic properties of every robot (Kim and Shim, 2003). The deliberative approach
for the designs accomplishes the objective of universality of the designs, mentioned in
the introductory chapter. Also, planning motions in advance is advantageous to achieve
hiding, disorienting the pursuers and paths that lead to specific locations, whereas react-
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ing to instantaneous information could lead to being herd towards a location, or merely
randomised navigation.

4.2.2 Considerations about the environment

Elements in a real life environment are continuous in geometry and motion. When contin-
uous environments are processed through sensors, a discrete representation of the environ-
ment in space and time is computed from the extracted information that can be approxi-
mated as continuous, or kept as discrete. Thus planning can be performed over continuous
or discrete environments (in both spatial and temporal dimensions).

Choosing between a continuous or a discrete model of the environment involves a trade-
off between accuracy combined with the amount of information available, and memory
capabilities (for processing and storing information). Using real life robotic platforms
with limited sensing capabilities eliminates the problem of dealing with large amounts
of data, and shifts it to the problem of succeeding in a task with limited information about
it. Considering an environment representation that comes from sparse sensed points, the
work presented in this thesis computes discrete navigation paths, that can be converted
into a continuous motion by coupling a lower level control system (e.g., a controller to go
from a point in the path to the next in a smooth motion).

Many previously proposed designs in path planning consider fully visible, previously
explored and mapped environments. But this assumption of previous information is not
realistic when robots are deployed in dynamic unknown environments, hence the need
to extend the process of design to work with limited information and generate solutions
accordingly. In the work presented in this thesis, the robot does not know anything about
the environment but it can build a local map or representation from sensed information.
The robot computes a map of the observed entities in the environment to decide what to
do to escape from the pursuers if they are in direct reach. The map is incomplete in a
continuous sense, as the sensors have a limited range, and some spaces cannot be observed
behind the obstacles or behind the pursuers. The map is not necessarily stored in memory,
as generating maps of the environment has not been considered strictly part of the solution
to the problem of navigation and escape. Therefore, the sensed map needs to be updated
as the robot moves around.

Also, generating designs that can be adapted to different kinds of sensors has been part of
the objectives in the work of the thesis. In this manner, solutions can be computed using
the same proposed mechanisms, but with different ranges of visibility and certainty of the
information from the environment.

4.2.3 Choosing an approach to solve the problem

The most crucial step towards the design of solutions to the problem of navigation and
escape is the selection of particular approaches. A wide range of options can be found in
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the fields of artificial intelligence from a computational perspective and control systems.
Three interesting possibilities have been selected, due to their significance in the study of
relations between pursuers and evaders, and other related problems like stealth navigation.
It is important to mention that most of the current research regarding the relations between
pursuers and evaders does not attempt to design intelligent evaders, and in the cases where
individuals are optimally designed, the main focus is on the pursuers, as mentioned in the
previous chapter. The three possibilities are described in the next paragraphs, followed by
a general methodology for the overall design of solutions.

Solutions from a path planning perspective Computing paths for collision avoidance is
a very broad area of research. Many specific algorithms have been generated to deal with
different characteristics of the navigation: dynamic and static obstacles, avoiding other
robots, coverage of an area, including a mapping or self-localisation while navigating,
covert navigation, reactive navigation, to mention some. The main techniques used in path
planning have been grouped in Section 3.1.

Although some research has been done for covert or stealth navigation, many of these
approaches and others found for the problem of evasion in cluttered environments use
a potential function approach (Ravela et al., 1994; Masoud, 2002; Birgersson et al., 2003;
Masoud, 2003a,b; Tews et al., 2004a,b). The advantages of potential functions over other
methods in terms of intuitive understanding of the main ideas, an easier computational
implementation and its success for sensing based navigation in dynamic environments
using different robotic platforms, dynamic and physical constraints, and terrain, make
extending the use of potential functions for the specific problem of navigation and escape
a viable solution. Also, the use of potential functions does not require a complex analysis
of the environment, compared to visibility graphs or Voronoi diagrams. Reviewed liter-
ature demonstrates an occupancy grid is enough to obtain a navigable path (Koren and
Borenstein, 1991; Borenstein and Koren, 1991; Tsourveloudis et al., 2001; Wang et al., 2002;
Birgersson et al., 2003; Shem et al., 2008; Cherubini and Chaumette, 2010; Zhang and Gao,
2011). For all these reasons, a path planning approach based on potential functions has
been considered in the computation of solutions to the problem of navigation and escape.

Solutions from a game theory perspective Pursuit-evasion games have been used in
many occasions to design control systems that effectuate individual and collective pursuit
(in a cooperative setting in the case of multi-agent systems). Evaders are traditionally
not studied or developed as much as pursuers from a design perspective, which does
not correspond to nature and real life situations, where animals and humans are capable
of deciding and using different strategies to achieve escape from pursuit. Studying the
evasion perspective offers new challenges for the design of more efficient pursuers. The use
of reinforcement learning in the solution of pursuit-evasion tasks allows the computation of
navigation strategies based on rewards or punishments given chosen actions, useful when
no model of the opponent (pursuers) is available.
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Solutions based on inspiration from biology The increasingly strong and popular area
of bio-robotics has demonstrated that biological natural processes are a useful source of
inspiration to create innovative solutions to problems, using ideas and mechanisms that
have been produced after long periods of evolution and might be more efficient for a
particular task. Biologically inspired features from anti-predator behaviours have been
considered in this thesis to produce a solution to the problem of navigation and escape,
making a robot act in a similar manner to a real prey. The ideas surrounding the biological
inspired features used in the designs are expanded in Section 4.3.

Methodology for the design of the solutions

A methodology for the designs presented in this thesis has been proposed. The design of
any system that allows obtaining a solution to the problem of navigation and escape from
pursuers has been divided into two main parts, inspired by the procedure for designing
planning algorithms by Hwang and Ahuja (1992a):

1. How to process the environment, based on the considerations explained in Subsection
4.2.2 and specifically for the selected approaches of path planning with potential
functions and pursuit-evasion games solved by reinforcement learning.

2. How to choose the actions to follow to fulfil the objectives of navigation and escape,
also based on path planning with potential functions and pursuit-evasion games
solved by reinforcement learning.

The next subsection presents a further exploration of the decisions regarding the particulars
of the path planning approach, including the use of potential functions and a discrete
environment representation. The selection of particulars for the game theory approach,
including the use of reinforcement learning for the solution of pursuit-evasion games from
the evasion perspective, is detailed in Chapter 7.

4.2.4 Path planning with potential functions and discrete environment

An optimal or suboptimal global path planning approach involves obtaining the best pos-
sible path according to the measurement of optimality and other constraints like time, for
the whole problem. But real life navigation could involve dealing with local portions of
the dynamic environment from the sensors (Zhu, 1991), where a navigation path is formed
by local solutions corresponding to the current knowledge of the environment. Joining
these local solutions, which could be optimal or suboptimal, would not necessarily result
in exactly the same optimal global solutions if the whole environment was known before
the deliberation took place. The designs proposed in this thesis are intended to solve the
problem of navigation and escape from pursuers for sensed local dynamic environments.

Following the methodology, the first step was selecting a representation of the environ-
ment, based on potential functions. The representation of the environment needs to cover
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the following requirements, considering environment information from sensors and poten-
tial functions as the main path planning method:

• The representation should support sensed, continuous, local, dynamic environments,
providing a practical and computationally inexpensive map of the entities in the
environment.

• The representation should make possible the incorporation of bio-inspired features to
improve proposed solutions to the problem of navigation and escape from pursuers.

• The representation needs to make possible the computation of a path that avoids
obstacles whilst also avoiding capture by pursuers, using a potential function based
approach, thus preventing local minima and any other situations that would prevent
computing a path.

Many different kinds of environment representations have been used in path planning,
all of them closely related to the information available, and other simultaneous task goals
like self localisation, coverage or mapping. Environments can be represented by polygons,
neural networks, surfaces, grids, topologic maps, hidden Markov models, and many other
options. In the stated problem of navigation and escape of this thesis, obtaining a complete
or accurate stored model of the environment is not contemplated, but only a representation
of the environment that allows computing a solution to the problem, as mentioned before.

Some of the considered representations for the designs were a neural network, polygons
and cell decomposition (exact or approximate). Some sensing mechanisms can only iden-
tify sections of the obstacles, limiting the available information to discrete samples in the
space of the environment. Most of the methods in path planning that deal with known
and unknown environments suggest some form of discretisation or sampling to represent
continuous environments and continuous robot configurations, as environments are not
necessarily discrete in origin (Bruce and Veloso, 2002; Choset et al., 2005; Marzouqi and
Jarvis, 2006). In order to obtain useful and fast representations from samples of the envi-
ronment provided by a sensing stage, a grid with exact or approximate cell decomposition
is a feasible option.

Occupancy grids and other grid representations have been used to solve the problem of
autonomous navigation, including in combination with potential function based path plan-
ning methods. They provide a reduction from a continuous model to samples of configu-
rations. This is particularly useful when a large number of configurations and information
from the elements of the environment is available, but processing needs to be done in a lim-
ited amount of time to provide a solution to autonomous navigation, and also when only
samples of configurations or information are available or required to be used. Although the
information of the environment from sensors might be discrete, navigation in the real world
is a continuous process. But computing a path from a discrete representation (in this case a
grid) does not necessarily lead to the production of a discrete navigation implementation,
as interpolation between nodes in a discrete path can be done in a low level tracking control
or in a more reactive layer (Wang et al., 2002; Huh et al., 2002).

Another advantage of mapping the environment using an approximate cell decomposition
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representation is its widespread use in conjunction with potential functions. The functions
mentioned in Subsection 3.3.1 can be calculated for sampled points in the environment
(including the gradient of the functions), to compute a path that connects the gradient
descent of the functions towards a goal. Subsection 3.3.2 shows the computation of scalar
potential fields based on a boundary value problem (BVP) for harmonic functions, where
an approximated solution to the BVP can be achieved if approximated to a grid and then
using a numerical method. Grid approximated potential fields save computation time
when it is crucial for the success of the task, as it is in the case of navigation and escape,
where moving away from the pursuers is vital for the robot in question. Vector potential
field representations can be used in a discrete way, as scalar fields, if samples of the vectors
in some points of the environment are taken and used to compute a path.

As mentioned previously, artificial potential functions are a path planning mechanism to
map the environment that deals with the requirements of flexibility (for adaptation to
different sensorial platforms), versatility (i.e., the same map can be used with different
algorithms like search for path planning, or reinforcement learning as a reward function),
adaptability (i.e. being easily updated if the environment changes), and easy implementa-
tion.

From all the literature reviewed in Chapter 3 concerning the different forms to compute po-
tential functions, and a discrete grid based representation, the following particular options
were considered for the designs:

• Popular quadratic attraction and repulsion functions (Equations 3.2 and 3.4, respec-
tively). The gradient can be computed mathematically.

• Computing an approximation of BVP with harmonic functions and different bound-
ary conditions, from numerical methods like SOR. These functions guarantee the
absence of local minima mathematically.

• Wave-front expansions, that contain only one global optimum value.

Experimentation allows comparing the different configurations used for the potential func-
tions, in terms of their extensibility to the problem of navigation and escape from pursuers.
Pursuers need to be incorporated into the potential functions, as well as the bio-inspired
features, and not all the potential function implementations might be up to the require-
ments.

The processing of the environment is studied later in this chapter, followed by the compu-
tation of a path, along with examples to illustrate the proposals. The evaluation of results
from simulations when pursuers are simulated simultaneously is presented in Chapter 5.

The second step in the methodology mentioned in Subsection 4.2.3 is the design of the
computation of a path, i.e. how to select the navigation actions that guide the robot to avoid
collisions with obstacles and being captured (reached) by pursuers. The computation of a
path depends on the representation of the environment, as the latter provides the necessary
information. A potential field from discretised potential functions would provide a discrete
set of magnitudes or vectors to compute a path from an initial position to the goal avoiding
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obstacles, by connecting the available cells or samples following the minimisation of the
magnitude or the direction of the resulting forces.

Steepest descent, a discrete version of gradient descent (Johnson and Picton, 1994), has been
commonly used to compute a path for potential functions. Nevertheless, if local minima
are present, steepest descent might not compute a path that leads to the desired navigation
goal. Adding other heuristics and different search methods have been proposed, as men-
tioned in Section 3.3.6, to solve the problem of local minima due to the geometry of the
obstacles and the complexity of the environment. When escaping from pursuers in a sensed
local dynamic environment, heuristics differ from those of simple navigation in previously
known environments, as priorities change and navigation goals might do. Following the
steepest descent is enough if the design of the potential functions does not give any margin
for local minima, and if the heuristics are formulated in a way that is compatible with
the search method. Otherwise, a different implementation of a search method is needed
according to the proposed heuristics.

Other added features in the path planning include an updating of the path or navigation
strategy according to the availability of the information from sensors in a dynamic en-
vironment, and using probability maps to identify unknown parts of the environment.
The first feature allows dealing with a completely unknown dynamic environment, and
eliminates the need of storing a map of the whole environment. Using probabilities to
represent uncertainty is a more realistic approach for stochastic situations, as what lies
behind the visible parts of the environment cannot be predicted accurately. In order to
fulfil a navigation and escape task with dynamic pursuers in a dynamic environment, the
planning has to be updated online whilst the actions take place, as the restrictions and the
suitable goal may change.

Finally, it is important to clarify that the purpose of the high level control system is not
necessarily optimal in terms of shortest distances to a goal, as maximising the chances of
survival for a robot could involve following suboptimal or randomised navigation strate-
gies.

4.2.5 Modelling the pursuers

For the purposes of the thesis, it is assumed that pursuers have explored the environment
previously, but at the same time they have limited sensing capabilities regarding their own
surroundings. It is also assumed that they can communicate to each other the detection of
a robot.

Pursuers are necessary as an objective of the designs presented in this thesis is to create a
control system that achieves navigation and escape from them, regardless of the kind of
pursuer that is encountered in the environment. Two main kinds of pursuers have been
considered for the designs of an escaping robot, from the literature review:

1. Pursuers that follow the evader, trying to shorten their distance to the evader at all
times.
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2. Pursuers that try to predict the evader according to their observations, and then
move towards that location, i.e., interception tasks (Anderson and McOwan, 2003;
Glendinning, 2004; Justh and Krishnaprasad, 2006; Park et al., 2009, 2010).

4.2.6 Simulations and implementation

Graphic simulations in MATLAB have been proposed and implemented to validate the
proposed designs through statistics. The different potential functions, along with the com-
putation of paths incorporating the bio-inspired features, are compared and evaluated
under different configuration of obstacles and pursuers.

No model of the dynamics of the robot is assumed, but a perfect translation and rotation
of coordinates, as the high level designs are intended for any physical platform, being
coupled by a low level control system that approximates the path according to the physical
and dynamic constraints of the robot. But the simulations consider different velocities of
navigation for both the robot and the pursuers.

4.3 Bio-inspiration for navigation and escape

The following ideas, directly inspired by biological behaviours, have been used to solve the
problem of navigation and escape from pursuers:

Innate behaviours A system that performs actions of escape from the first interaction
with pursuers in the life of the robot is needed, to provide an equivalence to innate be-
haviours in animals and representing the self-survival capabilities of real live beings. Es-
caping has been chosen as the response to pursuit over any kind of counter-attack as it is
frequently observed in nature.

Responding to pursuers An action needs to be performed to escape pursuers as soon
as pursuers are detected in the environment (responsive actions) or if pursuers are likely
to exist in the environment (prevention actions). Broom and Ruxton (2005) proposed a
model for the start of the chase-evasion motions according to the distances of detection and
the opponent change of mode from normal movement to chase or evasion. But the robot
might not have any previous information on the maximum velocity nor the intelligence
capabilities of the pursuers due to the lack of previous experience, thus an immediate action
that maximises the chances of the robot to avoid capture is needed.

Hideaways as navigation goals Literature on anti-predator individual behaviours re-
viewed in Chapter 2 indicates that animals use refuges to prevent predation, providing
an inspiration to design temporary refuges behind obstacles as a possible temporary navi-
gation goal for the problem of navigation and escape (Caro, 2005). A hideaway (or refuge)
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is a blockage in the direct view between the pursuers and the robot, and it is a temporary
solution to the problem of pursuit. When the navigation has a global goal or location that
the robot needs to reach, using different hideaways along the path becomes a covert or
stealth navigation.

A hideaway in a continuous 2-D location (x, y) has been proposed in this thesis as a func-
tion of the line of sight of pursuers, the certainty in the knowledge of the environment, the
distance to the robot, the distances to the pursuers, and the distance to the global navigation
goal if it exists. Then,

h(x, y) = f(sight, certainty, d(h(x, y), robot), d(h(x, y), p), d(h(x, y),goal)) (4.1)

where a measure of the sight of the pursuers and the certainty of their information are
included, d(h(x, y), robot) is the distance from the hideaway to the robot, d(h(x, y), p) is the
distance between the hideaway and the p = 1, ..., np pursuers, and d(h(x, y),goal) is the
distance between the hideaways and the navigation goal. The computation of hideaways
can be performed as part of the analysis of the environment, considering the corresponding
grid of elements observed by the robot. The hideaways as temporary goals should be
incorporated then into the computation of the potential functions.

Proteanism in the navigation Proteanism can be observed in different species as a natural
anti-predator behaviour (Caro, 2005), as mentioned in Subsection 2.2.1. It provides a tool
to improve the escape against intelligent pursuers that are able to model the navigation of a
simple escaping robot (e.g., long linear motions), by incorporating a degree of randomness.
The randomness in the navigation increases the complexity of a simple prey reaction like
running in the same line of motion as the pursuer, where other pursuers that know this
could intercept the robot, as illustrated in Figure 2.3. Protean navigation also provides a
change in the perspective of the environment, that serves to discover new regions through
the sensing that could help to the escape.

Furuichi (2002) proposed a model of chase-evasion motions of two animals in a two di-
mensional setting that considers vector forces to indicate the direction and magnitude of
displacement (Subsection 2.2.3 and Figure 2.5). Proteanism has been incorporated as a
random unitary vector that modifies the direction of motion and creates circular patterns
when the pursuer is close (Furuichi, 2002). Also, many co-evolutionary studies have shown
proteanism as a result of the interactions between two species (Miller and Cliff, 1994; Miller,
1997). Co-evolution is computationally expensive to compute online optimal strategies for
navigation and evasion. Adaptive control systems are more desirable than others calcu-
lated offline, as the environment could change abruptly and the previous parameters could
not be valid anymore.

Proteanism in a specific continuous 2-D location, (x, y), is proposed as a function of the
distances between the location and the pursuers, p = 1, ..., np, the distance between the
location and a local goal of navigation for the sensed local part of the environment, the
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energy of the robot, and other characteristics of the pursuers like velocity. Thus

proteanism(x, y) = f(d((x, y), p), d((x, y), LG(x, y)), energy, othersp) (4.2)

where d((x, y), p) is the distance between a location and the pursuers, d((x, y), LG(x, y)) is
the distance between a location and a local navigation goal, and the other parameters are
the same as for the hideaways equation. A measure of the energy of the robot is included in
the equation, along with a measure of other parameters and characteristics of the pursuers,
othersp.

Two forms of incorporating the proteanism into the designs are proposed here: (a) a pri-
ori within the representation of the environment, and (b) a posteriori once the optimal or
suboptimal path has been computed. Proteanism can be incorporated a priori as subgoals
between the current location and the local goal (guided proteanism), or guiding the robot
to a temporary random location if there is no other navigation goal, in the computation
of scalar potential functions. The subgoals can be interpreted as reaction forces valid for
intervals of time (Furuichi, 2002). The idea of incorporating subgoals into the potential
functions has been previously proposed as a solution for local minima problems (Masoud,
2003a; Jing and Wang, 2004; Bell, 2005; Weir et al., 2006; Cen et al., 2007; Tan et al., 2010),
but their usage, design and computation have a new meaning in this thesis.

General structure of the designs All the proposed designs follow the process for plan-
ning algorithms by Hwang and Ahuja (1992a), mentioned previously: how to process the
environment first, and then how to deliberate the actions, both with added biologically
inspired features. Figure 4.2 shows a schematic of the components drawn in both desig
steps, incorporating the bio-inspired features from Section 4.3. The dashed lines correspond
to the variations in the designs, including the use of proteanism a posteriori to enhance a
discrete path.

The next section describes the proposed analysis of the environment, which computes a
discrete representation of a sensed environment, evaluates the elements, chooses a local
goal from bio-inspired hideaways and distances, chooses subgoals for a protean navigation,
and results in potential functions that are used to compute an adequate path.

4.4 Analysis of the environment

The analysis of the environment involves computing a suitable representation from the
available information. As stated before, the information is provided by sensors in a dis-
crete form, where the elements of the environment are identified by an approximate cell
decomposition. Using samples from sensors reduces the amount of data to process for
continuous environments (Bruce and Veloso, 2002), and if sparse discrete sensing is used to
identify the elements in the environment, sampling is obliged. Cell decompositions (grids)
proportionate a representation of the environment that can be used in conjunction with
potential functions, to translate obstacles and pursuers into sets of points (interpreted as
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Figure 4.2: Schematic of the elements in the proposed designs with bio-inspired features. The
dashed lines represent variations in the proposals compared to the methodology by Hwang and
Ahuja (1992a).

the centroids of the cells in a grid). Then, respective potential functions can be used to
compute a navigation strategy, as done by Luo and Yang (2008).

The proposed procedure to analyse the environment includes a series of steps, detailed and
exemplified in the following subsections:

1. Approximating the environment as a grid, where elements are identified and ap-
proximated to cells according to the dimensions of the robot (Subsection 4.4.1). For
design purposes, it is assumed that the robot has general innate pursuer recognition,
as young animals do when they are born and have not had the chance to learn.

2. Computing the possible hideaways (bio-inspired refuges) as shadows considering all
the cells in the environment (Subsection 4.4.2).

3. Computing a measure of the distances between any possible free space cell and the
pursuers, and free cells and the position of the robot (Subsection 4.4.3).

4. Computing a total function in terms of the distances and the hideaways that allows
choosing a local navigation goal (Subsection 4.4.4).

5. Computing bio-inspired proteanism through subgoals, considering the local naviga-
tion goal and the identification of elements (Subsection 4.4.5).

6. Computing the corresponding potential functions (Section4.5) for the subsequent path
planning.

4.4.1 Approximation of sensed elements into a grid

A grid is built with cells of dimensions n × n, where n is the longest dimension of a
robot (length or width) in a 2-D plane. This selection of cell size allows sampling possible
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navigation configurations of the robot considering its dimensions. The total number of
cells in the grid depends on the range of visibility or sensing of the robot, and cells that
are added out of the range of sensing to predict probable elements and more probable free
space. The grid represents a temporal and spatial discretisation of the planning task, as the
environment is sampled in a discrete instant of time, and represented in a discrete manner.

Obstacles and pursuers are approximated within the chosen size of the cells (i.e., if any
part of the obstacle or pursuer is contained in a cell, the cell becomes part of the obstacle
or pursuer), to favour the avoidance of collisions and the elimination of ravine problems.
Any cell in the grid can be an obstacle, a pursuer, a known free space, or unknown (out of
the reach of the sensors or occluded behind obstacles and pursuers). It has been assumed
that: (a) the robot is able to differentiate and recognise pursuers and obstacles; and (b) the
robot is a cell in the centre of the grid of its own sensing when its view is of 360 degrees.
The robot is allowed to move from cell to cell if they are contained in the free space, i.e. not
occupied by probable obstacles and pursuers.

Probabilities are assigned to every cell in the grid according to the sensed information. A
cell with centroid in (a, b) has all of the following probabilities:

P(a,b) =


P(a,b)(p) ∈ [0, 1] of being a pursuer
P(a,b)(o) ∈ [0, 1] of being an obstacle
P(a,b)(Fs) ∈ [0, 1] of being free space

(4.3)

where the probabilities P(a,b)(p) and P(a,b)(o) are mutually exclusive, thus P(a,b)(Fs) = 1−
P(a,b)(p) or P(a,b)(Fs) = (1−P(a,b)(o)) correspondingly. This means an obstacle cannot be a
pursuer, nor a pursuer can be an obstacle. The probability of being free space gets smaller if
the cell is probably an obstacle or a pursuer. If the identification of an element is considered
to be accurate, P(a,b)(p) = 1 if the cell is part of a pursuer, P(a,b)(o) = 1 if the cell is part of
an obstacle or P(a,b)(Fs) = 1 if the cell belongs to the free space.

In order to determine the probabilities in the unknown cells, it is possible to perform some
predictions about the environment. For example, the adjacent cells behind obstacles and
pursuers are more likely to be part of the obstacles and pursuers than more distant cells.

Figure 4.3 shows an example of the discrete analysis of the environment using a grid of
11 × 11 cells, where the range of sensing is approximately 3 · size cells. The approximated
discrete environment contains a maximum of 5 randomly placed square obstacles with
a maximum size of 9 cells each, and a maximum of 2 randomly placed pursuers with a
maximum size of 4 cells each. A probability of P(a,b)(o) = 0.5 or P(a,b)(p) = 0.5 has been
assigned to unknown cells behind obstacles and pursuers, respectively, and the resulting
probability of the guessed cells of being free space is also 0.5, considering that if P(a,b)(p) >

0 then P(a,b)(o) = 0, or if P(a,b)(o) > 0 then P(a,b)(p) = 0. This means that a cell cannot
probably be an obstacle and a pursuer simultaneously in the example. The sensing in the
example has an error of 1% detecting the elements in the environment, due to parameters
in the algorithm.

75



BIO-INSPIRED ANALYSIS OF THE ENVIRONMENT AND PATH PLANNING

(a) Environment (b) Sensing and identification

(c) Extension of elements

Figure 4.3: Randomly generated discrete environment, the representation of the sensing and
identification of elements, and extension of the identified obstacles and pursuers to the unknown cells
by assignation of probabilities to the adjacent cells behind the elements. Obstacles in black, pursuers
in grey, free space in white, unknown in light grey with a U, extended pursuers and obstacles cells in
grey with a G, and the robot in the centre.
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4.4.2 Computing bio-inspired hideaways

The inspiration behind the idea of hideaways has been explained in Section 4.3. Hideaways
are the shadows behind the obstacles and out of the line of vision or sensing of the pursuers
physically. It is assumed that a robot in a hideaway cannot be seen by the pursuers with
occluded vision line, and therefore reaching that location is a temporary solution to the
problem of navigation and escape.

A cell can be a hideaway if it lies behind an obstacle and it is out of the line of vision
of a pursuer. The best hideaways are the ones that intersect for all the pursuers in the
same location, as that would mean none of the visible pursuers are able to see that part
of the space. The computed hideaways change according to the motions of the robot and
pursuers, thus they need to be recomputed along with the environment representation to
obtain a path that suits the current environment state.

Considering the equation presented in Section 4.3, a hideaway can be defined as

h(x, y) = f(sight, certainty, d(h(x, y), robot), d(h(x, y), p), d(h(x, y),goal)) (4.4)

where the sight can be computed as a value that indicates the amount of intersection
of the shadows for all the pursuers, wh(a, b) for all the cells in the environment, (a, b).
The certainty of the information is given by P(a,b)(Fs), to consider free space cells as the
hideaways. If the navigation has no global goal, then

h(a, b) = f(wh(a, b), P(a,b), d((a, b), robot), d((a, b), p)) (4.5)

where a cell is a hideaway according to the computed shadows and the distances between
a cell and the robot, d((a, b), robot), and between a cell and the pursuers, d((a, b), p).

The value wh(a, b) of each cell can be calculated using the proposed procedure:

1. Calculating the angle between a probable obstacle cell and a probable pursuer p
(computing the centroid of the pursuer according to the respective probable pursuer
cells).

2. Locating the angle in one of eight sectors, or the vertical and horizontal lines, as
shown in Figure 4.4. The shapes of the shadows cast by an obstacle from the per-
spective of a pursuer have been approximated by triangles shown in Figure 4.4 or
lines, a set of cells in the discrete environment.

3. The shadows behind all obstacles (ko probable obstacle cells) are computed for all the
np pursuers, and their intersections are accumulated, so that every cell in the grid
that is not an obstacle or a pursuer has a value of

wh(a, b) =


1 if intersects np pursuers
p
np

if intersects for p pursuers

0 if never a shadow

(4.6)
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Figure 4.4: Division of the environment in sectors according to the angle between a pursuer
(represented by a white circle) and obstacles (represented by black circles), and approximated
corresponding triangular or linear shadows.

The cells with maxwh(a, b) are the best hideaways, h∗(a, b), as they are out of the sight of
more pursuers in the sensed environment. An example of the computation of wh(a, b) for
the environment in Figure 4.3(a) is shown in Figure 4.6(a).

4.4.3 Computing distance functions

As part of Equation 4.5 regarding the distances, functions of the distances between pur-
suers (centroids of probable pursuers) and free cells, and distances between the robot (in
the centre of the grid) and free cells are computed for every cell (from their centroid) using
the proposed equation:

wd(a, b) = g (d((a, b), robot)) ·
np∏
p=1

f(d((a, b), p)) (4.7)

where g (d((a, b), robot)) is a function of the Euclidean distance between the robot (in the
centre of the grid of its own sensing) and a free cell, and f(d((a, b), p)) is a function of the
Euclidean distances between a pursuer p and a free cell for all np pursuers. The functions
f and g can have any shape, but they are distributed radially within all the points in space.
Linear functions have been used for the simulations presented in this thesis, as shown in
Figure 4.5:

f(d((a, b), p)) =
1√

2Dgrid

d((a, b), p) (4.8)

g (d((a, b), robot)) = −d((a, b), robot)√
2Dgrid

+ 1 (4.9)
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Figure 4.5: Linear functions for the distance between a cell and a pursuer or a cell and the robot
(if no pursuers are detected), and for the distance between a cell and the robot in the presence of
pursuers.

(a) wh(a, b) (b) wd(a, b)

Figure 4.6: Computed values for the shadows in every cell, wh(a, b), for the environment in Figure
4.3(a), and the function of the distances, wd(a, b), for every cell. Probable obstacles and pursuers
indicated with OC, and the robot in the centre.

whereDgrid is the width of the grid, d((a, b), p) is the Euclidean distance between a pursuer
and any free cell, and d((a, b), robot) between the robot and any free cell, respectively.

The function wd(a, b) has large values for the cells that are far from pursuers and closer to
the robot. Its maximum is the best location far from pursuers. If no pursuers are sensed in
the environment at a determined time, the function only quantifies the distances between
cells and the robot, and the maximum is a free cell in the edge of the observed environment
to favour exploration,

wd(a, b) =

{
g (d((a, b), robot)) ·

∏np

p=1 f(d((a, b), p)) if pursuers
f (d((a, b), robot)) if no pursuers

(4.10)

An example of the computation of wd(a, b) is presented in Figure 4.6(b), for the randomly
generated environment of Figure 4.3(a), and the functions f and g.

79



BIO-INSPIRED ANALYSIS OF THE ENVIRONMENT AND PATH PLANNING

4.4.4 Selecting a local navigation goal

The local goal of navigation, LG, is a planned location to reach according to the perceived
information in the moment of sensing. If hideaways can be computed, the robot should
try to reach the best one. Otherwise, a location far away from the pursuers is chosen as a
temporary solution. Then,

LG =

{
h∗(a, b) if h(a, b) 6= ∅
w∗d(a, b) otherwise

(4.11)

where
h∗(a, b) = max

∀(a,b)

(
wh(a, b) · P(a,b)(Fs) · wd(a, b)

)
(4.12)

is the best hideaway, as explained in Subsection 4.4.2; and

w∗d(a, b) = max
∀(a,b)

wd(a, b) (4.13)

is a location that leads far from the pursuers as a function of the distances between pursuers
and the cells, and the cells and the robot as explained in Subsection 4.4.3. An example of
the computation of a local goal from the hideaways is shown in Figure 4.7, for a randomly
generated discrete environment of 11 × 11 cells, with a maximum of 5 randomly placed
obstacles with a maximum size of 9 cells each, and a maximum of 2 randomly placed
pursuers with a maximum size of 4 cells each. A sensing range of 3 · size cell has been used
to identify the elements in the environment, with a probability of 0.5 for extended pursuers
and obstacles. Another example of the computation of a local goal when no hideaways are
available is shown in Figure 4.8 for a similarly generated random discrete environment.

4.4.5 Bio-inspired a priori guided proteanism through subgoals

As part of the bio-inspired features added to the designs of solutions to the problem of
navigation and escape from pursuers, proteanism has been incorporated to the navigation
to provide randomness in the path that could cause confusion to the pursuers, and would
improve local minima problems. Proteanism is used when pursuers are detected in the
environment, as collision avoidance does not solve the problem of escape from pursuit.

The use of guided subgoals is inspired by anti-predator proteanism behaviours (from Caro
(2005); Furuichi (2002); Nolfi and Floreano (1999)), and subgoal based navigation (e.g., in
Bell (2005)). The robot chooses a subgoal, and then navigates towards it. Then, another
subgoal is chosen, and the robot moves towards it, repeating this process until the robot has
reached a hideaway or local goal, or the pursuers have desisted in their chase after some
time. The produced motion plan is not optimal in terms of taking the shortest distance
towards a goal, but it is intended to enhance the possibilities of survival of the robot in
the environment. The proposed implementation of the guided subgoals is equivalent to
the random direction change in Furuichi (2002), but the proteanism is oriented towards the
local goal, according to the elements in the environment.
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(a) Extended, sensed environment (b) wh(a, b)

(c) wd(a, b) (d) h∗(a, b)

Figure 4.7: Computed wh(a, b), wd(a, b) and LG as h∗(a, b) (probable obstacle and pursuer cells
indicated with OC and the LG as X) for an extended, sensed, randomly generated environment
(obstacles in black, pursuers in grey, free space in white, unknown in light grey with a U, extended
pursuer and obstacle cells in grey with a G, and the robot in the centre).
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(a) Extended, sensed environment (b) wd(a, b)

(c) w∗d(a, b)

Figure 4.8: Computed wd(a, b) snf LG as w∗d(a, b) (probable obstacle and pursuer cells indicated
with OC and equidistant local goals as X), for an extended, sensed, randomly generated environment
(obstacles in black, pursuers in grey, free space in white, unknown in light grey with a U, extended
pursuer and obstacle cells in grey with a G, and the robot in the centre).
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Figure 4.9: Illustration of the sampling of subgoals for bio-inspired proteanism.

The following procedure has been proposed to compute the proteanism subgoals, illus-
trated in Figure 4.9:

1. Drawing a circle of radius rsg centred in the current robot location.

2. Calculating the distance between the robot and LG: d(robot, LG), and the angle with
the horizontal, α.

3. Computing subgoals as samples on the circle every kθ radians, with exact location in[
sgx

sgy

]
=

[
rsg · cos θ · cosα− rsg · sin θ · sinα
rsg · sin θ · cosα+ rsg · cos θ · sinα

]
(4.14)

4. Eliminating the samples that fall in a probable pursuer or obstacle cell.

5. Computing the angles between the pursuers (centroid of the probable pursuer cells)
and the robot, ωp, for each one of the np pursuers. Eliminate the subgoals that
approximate those angles.

6. Choosing a subgoal that is in the semi-circle closer to the local goal randomly, but if no
subgoals are available, then choosing from the other semi circle (opposite direction to
the local goal). This would mean that obstacles are occluding a direct route towards
the local goal.

Figure 4.10 shows an example of the computation of subgoals with θ = π
12 and rsg = 2

cells, for a randomly generated environment with the same characteristics as the others in
this chapter.

General proteanism

Guided proteanism previously presented is convenient when local or global navigation
goals are defined, and they need to be reached as a specific purpose of the navigation task,
as it is finding a hideaway. Nevertheless, if the only purpose of the navigation is avoiding
capture by pursuers, a general proteanism like the one presented in Furuichi (2002) can be
used.
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(a) Extended, sensed environment (b) h∗(a, b) and available subgoals

Figure 4.10: Computed LG as h∗(a, b) (probable obstacle and pursuer cells indicated with OC and
the LG as X) and all subgoals, after eliminations in steps 4 and 5 of proposed procedure, as green
circles, for an extended, sensed, randomly generated environment (obstacles in black, pursuers in
grey, free space in white, unknown in light grey with a U, extended pursuer and obstacle cells in grey
with a G, and the robot in the centre).

A more general implementation of proteanism a priori involves all remaining probable
subgoals being considered in the random selection, so no priority is given to the ones closer
to the local goal, as there is not a local goal. The object of the implementation of a more
general proteanism is just to avoid capture when the pursuers are closer or when the robot
is surrounded by pursuers, in a more reactive manner. If the pursuers are left behind, the
robot could commute to keep navigating towards a local goal.

Subgoals as vectors

The attraction exerted by the subgoals to incite the proteanism clearly can be interpreted
as a force, as in Furuichi (2002). The force has a unitary direction vector that leads towards
the subgoal, with a magnitude given by the allowed displacement in the next navigation
motion. Thus,

~Fsg = Fsg · ~u (4.15)

where Fsg is the magnitude of the force (e.g., 1 cell), and û is the unitary direction vector
pointing in the direction of the subgoal. ~u would be selected favouring a range of angles
towards the local goal, and avoiding angles that could cause collisions with obstacles or
leading directly towards pursuers. In general proteanism, as in Furuichi (2002), ~u would
take any direction.

4.4.6 Updating the environment representation

The environment changes as the robot moves and senses different parts of the elements in
the environment, and the pursuers update their locations following their own strategies.
This means the need for updating the analysis of the environment, the local goal, the
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subgoals (at least the most immediate one), and then the potential functions or heuristics
used to compute a new path accordingly.

If the environment is increasingly complex, and the robot can perform fast sensing and
computation of a path following the analysis of the environment, resampling the sens-
ing for shorter intervals of space and time would be convenient. This would produce a
more continuous path that still avoids collisions, but changes the local goal and the future
subgoals according to the new information of the environment. But those assumptions
cannot be made for all the robotic physical platforms, as their sensing capabilities are
different. If the environment is like the randomly generated ones with static obstacles, the
updating could be performed in more separated intervals of space and time, for example
after reaching a subgoal, or after reaching the local goal.

Another consideration for the updates is the velocity of the pursuers. If they are faster
than the robot, more randomness in the navigation motions could increase the chances of
avoid capture. Consequently, updates to modify the local goal, and the subgoals, could be
performed more often than when pursuers are far away or comparatively slower.

4.4.7 Modifying the resolution of the grid

The proposed 11 × 11 grid is the result of assuming a basic sparse sensing with an array
of sensors that allows performing a sweeping of the surroundings of the robot as men-
tioned in Subsection 4.4.1. Such a discrete sample of the environment leads to a discrete
environment representation, accordingly. Nevertheless, the resolution of the grid can be
modified artificially to generate more samples, or by sensing using other kinds of devices
that provide more samples and measures of the environment like a camera.

In the literature, many approaches for robotics path planning consider the sensing and act-
ing of robots in continuous environments, or grids with high resolutions (e.g., 100×100 cells
in Trevisan et al. (2006)). This involves developing continuous models of the environment
where obstacles and other entities are represented by shapes and lines. Using more realistic
sensing capabilities implies imperfect discrete information, particularly basic sensors like
bumpers, infrared or ultrasonic. When using cameras, although the obtained image is the
collection of discrete pixels, more information from the environment is collected and more
continuous approximated environment representations can be computed.

As the designs presented in this project are intended for robots with different ranges of
sensing capabilities, it has been important using different representations in terms of grid
resolutions to compare the performance of the proposals. The analysis of the environment
described in this chapter can be performed for the new high resolution grid, coming from
artificially extending the environment, or from a higher resolution sensing (e.g., using a
camera).

The original 11 × 11 grid can be extended artificially into a higher resolution grid by
dividing the cells in smaller parts, with the corresponding probabilities for the different
sensed elements. Adjacent cells around identified or probable obstacles and pursuers
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(a) Extended, sensed elements (b) Increasing the resolution

Figure 4.11: Modification of the resolution of the grid with extension of obstacles and pursuers
to avoid collisions, for an extended, sensed, randomly generated environment (obstacles in black,
pursuers in dark grey, free space in white, unknown in light grey and the robot in the centre).

can become part of the obstacles and pursuers, so the robot is limited against moving its
centroid towards those locations and avoiding collisions. Figure 4.11 shows the resizing of
the grid into a higher resolution one, by dividing each original cell into 9 new cells.

The next section presents the computation of different kinds of potential function approaches,
to obtain a function to compute a solution to the problem of navigation and escape from
pursuers in the form of a path.

4.5 Potential functions for navigation and escape

The following subsections present the modification of different potential functions to use
them for a final representation of the environment (including pursuers and a priori pro-
teanism) to compute a solution to the problem of navigation and escape from pursuers
in the form of a path: discrete potential functions, approximation of a boundary value
problem (for the Laplace equation and for a perturbation equation), and wave-front po-
tential functions. Subsection 4.5.4 presents a comparison of the resulting characteristics of
the functions, according to the proposed modifications for the problem of navigation and
escape from pursuers and a discrete representation from the analysis of the environment.

4.5.1 Discrete potential functions

A first approach to the solution of the problem of navigation and escape from pursuers was
choosing popular functions in the discrete setting mentioned earlier in the chapter. Source
or repulsion functions were used for the obstacles and the pursuers from the modified
FIRAS function (Khatib, 1986) to incorporate the effect of equidistant goal and obstacles,
i.e. when an obstacle and the goal are equidistant in a line from the location of the robot,
which causes oscillations in the resulting path (Wang et al., 2002; Ding et al., 2005; Hui
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and Pratihar, 2008; Zhu et al., 2009; Lee et al., 2010; Tan et al., 2010; Takahashi et al., 2010;
Pradhan et al., 2011). The sink or attraction function, for the local goal or the subgoal in turn
when using protean navigation, was chosen to be the quadratic function also proposed by
Khatib (1986).

The mentioned modified FIRAS repulsion functions for the obstacles and pursuers, limiting
the influence of the repulsion force to the distance d0, formulated for a 2-D grid with cell
centroids in (a, b), have the form

Ur(a, b) =

 1
2Ki

(
1

d((a,b),i) −
1
d0

)2
d((a, b), LG) if d((a, b), i) < d0

0 otherwise
(4.16)

where d((a, b), i) is the Euclidean distance between a cell in the environment and a probable
obstacle or pursuer cell i; d((a, b), LG) is the Euclidean distance between a cell and the local
goal; and Ki is a constant to regulate the magnitude of the repulsion.

The attraction function for the local goal or subgoals is defined as

Ua(a, b) =
1

2
Klg · d((a, b), LG)2 (4.17)

where Klg is a constant to regulate the magnitude of the attraction by the local goal. When
using subgoals, the distance is replaced by d((a, b), SG), where SG is the corresponding
active subgoal.

The total potential of each cell is given by

Ut(a, b) =

ko∑
io=1

Ur(a, b) +

kp∑
ip=1

Ur(a, b) + Ua(a, b) (4.18)

for ko obstacle cells and kp pursuer cells. The free cells do not produce any attraction or
repulsion, but they are influenced by the other elements in the sensed environment.

Figure 4.12 shows an example of the resulting potential functions for the identified el-
ements and the local goal from the best hideaways, in a randomly generated discrete
environment of the same characteristics as the others in this chapter. The parameters used
for the functions are: Klg = 0.1, Ki = 1, do = 1 cell and cropping the maximum potential
values to 1000 for visualisation.

The main disadvantage of using the potential functions presented in this section is the
possibility of finding local minima when computing the path, despite the quadratic prop-
erties of the attraction function and the modification to the FIRAS function when obstacles
and the goal are equidistant to the robot. Solutions to the problem of local minima, as
mentioned in Subsection 3.3.6, include changing the use functions, or modifying the search
method. Other approaches to compute a representation based on potential functions are
presented in the following sections, starting with numerical solutions to harmonic func-
tions from a boundary value problem that guarantee no local minima by design.
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(a) Extended, sensed environment (b) h∗(a, b)

(c) Total potential, Ut(a, b) (d) Discretised gradient of Ut(a, b)

Figure 4.12: Computed LG as h∗(a, b) (probable obstacle and pursuer cells indicated with OC and
the LG as X), mesh plot of the total potential for each cell and contour plot of the discretised gradient,
for an extended, sensed, randomly generated environment (obstacles in black, pursuers in grey, free
space in white, unknown in light grey with a U, extended pursuer and obstacle cells in grey with a
G, and the robot in the centre).
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4.5.2 Approximation of a boundary value problem

An alternative potential function based final representation of the environment to compute
a path is a discrete approximation of a BVP, solving a differential equation using numerical
methods, boundary conditions, and given initial values. This alternative has been pre-
sented previously in Subsection 3.3.2. The Dirichlet initial boundary conditions are the
most popular in the literature on path planning with potential functions (Connolly, 1994;
Prestes et al., 2001; Alvarez et al., 2003; Vaščák, 2007; Pimienta et al., 2006). These conditions
contemplate the following:

• The boundary of the goal is given a low potential value (φgoal = 0).

• The boundary of the obstacles and the limits of the known environment (walls) are
given a high potential value (φo = 1). If the robot is performing an exploration task,
and the limits of the known environment are open, the boundary potential value is
low (φgoal = 0.1) (Trevisan et al., 2006).

• The initial value of every other cell is given so that φgoal > φ > φo.

Other optional boundary conditions include the Newman, where the normal vectors to the
obstacles and the limits of the environment (walls) are also given an initial condition of
φ′o = c, where c is a constant (Shi et al., 2007).

Using harmonic equations (like Laplace) guarantees the absence of local minima math-
ematically. On the other hand, adequate boundary conditions need to be proposed to
perform specific tasks like obstacle avoidance. Also, the many possibilities of iterative algo-
rithms to compute the numerical approximations of the harmonic equations have different
performances, in terms of the number of stencils of the approximation and the convergence
to a solution with minimum error.

A first approach to the use of a BVP contemplates Dirichlet conditions to solve the Laplace
equation as in Subsection 3.3.2. Subgoals are introduced and commuted for the local goal,
to achieve the implementation of a priori proteanism. A second approach contemplates the
implementation of a priori proteanism through a perturbation in the differential equation
solved by the BVP with Dirichlet conditions. The perturbation has the purpose of guiding
the resulting slope of potential values in the grid towards a specific direction (Silveira et al.,
2010). Both approaches are presented in the following subsections.

Laplace equation and Dirichlet boundary conditions only

The first approach adds the pursuers as Dirichlet boundary conditions to solve the Laplace
equation,

∇2φ = 0 (4.19)

The Taylor approximation of the Laplace equation, presented in Subsection 3.3.2, involves
approximation of the continuous 2-D navigation plane of the robot into cells. The harmonic
potential function described by the Laplace equation becomes a grid, and the potential
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values of each inner cell, (a, b), can be computed as the average of the adjacent cells (stencil),

φ(a, b) =
1

4
[φ(a+ 1, b) + φ(a, b+ 1) + φ(a− 1, b) + φ(a, b− 1)] (4.20)

The stencils are computed using iterative numerical methods, from boundary conditions
for the different elements in the environment: the obstacles, the goal, the limits of the
considered environment, and the pursuers. Pursuers can be incorporated in the same
way as obstacles, with a high potential value like φp = 1 for all the probable pursuer
cells, and φo = 1 for all probable obstacle cells. For the local goal or subgoal in turn that
substitutes the local goal, a low potential value can be given, φgoal = 0. For all the other
cells, any initial value φgoal > φ > φo is given. The unknown limits of the grid need to
have a boundary value φgoal > φ > φo, so that they are considered for the planning. But
when using general proteanism, the boundaries of the grid can be used to attract the robot
to unexplored regions to get away from pursuers, thus φ = 0 (Prestes et al., 2001). The
final potential values of the grid are computed using the Jacobi or SOR iterative methods,
presented in Subsection 3.3.2.

An example of the resulting potential functions is shown in Figure 4.13, with the conditions
mentioned above for the pursuers, obstacles and the local goal (no subgoals), and an initial
value of any other cell of φ = 0.25. The limits of the grid have a boundary value of φ = 0.1.
The potential values were calculated using Jacobi and SOR iterative methods, respectively.

The examples using the original 11 × 11 grid from the proposed discrete sensing illustrate
the problem of iterative approximation methods when using low resolution grids. The
computed potential discrete surfaces converge to the final result after 2 iterations for the
Jacobi, and after 1 iteration for SOR. The obtention of an almost equipotential surface in the
free space zone increases the difficulty of computing a path using only steepest descent, and
another parameter like the distance to the goal needs to be considered in the path planning
step.

Figure 4.14 shows the computation of the potential values from approximations to the
Laplace equation using Jacobi and SOR iterative methods, for a higher resolution grid of
1/3 of the original size per side.

Dynamic perturbations for bio-inspired proteanism

A perturbation can be introduced to the potential functions to modify the slope of the dis-
crete gradient (similar to Neumann initial conditions), by adding it to the Laplace equation,

∇2φ = εp~V · ∇φ (4.21)

where εp is the strength of the perturbation, and ~V = [Vx1 , . . . , Vxl
] is the perturbation in l

dimensions (Trevisan et al., 2006). The magnitude of the perturbation is unitary, |~V | = 1.

As in Subsection 3.3.2 for the Laplace equation, the Taylor series expansions about the point
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(a) Sensed environment (b) h∗(a, b)

(c) φ(a, b) from Jacobi iterative method (d) ∇φ(a, b) from Jacobi iterative method

(e) φ(a, b) from SOR iterative method (f) ∇φ(a, b) from SOR iterative method

Figure 4.13: Computed LG as h∗(a, b) (probable obstacle and pursuer cells indicated with OC and
the LG as X), for a sensed, randomly generated environment (obstacles in black, pursuers in grey,
free space in white, unknown in light grey with a U, extended pursuer and obstacle cells in grey with
a G, and the robot in the centre). Mesh plot of the total potential for each cell and contour plot of the
gradient using Jacobi and SOR iterative methods.
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(a) High resolution sensed environment (b) h∗(a, b)

(c) φ(a, b) from Jacobi iterative method (d) ∇φ(a, b) from Jacobi iterative method

(e) φ(a, b) from SOR iterative method (f) ∇φ(a, b) from SOR iterative method

Figure 4.14: Computed LG as h∗(a, b) (probable obstacle and pursuer cells indicated with OC and
the LG as X), for a high resolution, sensed, randomly generated environment (obstacles in black,
pursuers in grey, free space in white, unknown in light grey with a U, extended pursuer and obstacle
cells in grey with a G, and the robot in the centre). Mesh plot of the total potential for each cell and
contour plot of the gradient using Jacobi and SOR iterative methods.
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x1 for φ(x1 + δ, . . . , xl) and φ(x1 − δ, . . . , xl) results in

φ(x1 + δ, . . . , xl) = φ(x1, . . . , xl) + δ
∂φ

∂x1
+

1

2
δ2
∂2φ

∂x21
+

1

6
δ3
∂3φ

∂x31
+O(δ4) (4.22)

φ(x1 − δ, . . . , xl) = φ(x1, . . . , xl)− δ
∂φ

∂x1
+

1

2
δ2
∂2φ

∂x21
− 1

6
δ3
∂3φ

∂x31
+O(δ4) (4.23)

The two expansions are subtracted,

φ(x1 + δ, . . . , xl)− φ(x1 − δ, . . . , xl) = 2δ2
∂2φ

∂x21
+O(δ4) (4.24)

and after some algebraic manipulation, considering O(δ4) ≈ 0,

∂φ

∂x1
=
φ(x1 + δ, . . . , xl)− φ(x1 − δ, . . . , xl)

2δ
(4.25)

If the same procedure with the Taylor expansions is applied for every variable x1, . . . , xl,
an approximation of the gradient,∇φ, can be obtained in the form of

L∑
l=1

∂φ

∂xl
=

1

2δ

[
φ(x1 + δ, . . . , xl) + . . .+ φ(x1, . . . , xl + δ)− φ(x1 − δ, . . . , xl)− . . .

− φ(x1, . . . , xl − δ)
]

(4.26)

Substituting the approximations of the Laplace equation (Equation 3.12 in Subsection 3.3.2)
and the gradient (Equation 4.26) into Equation 4.21 results in

1

δ2

[
φ(x1 + δ, . . . , xl) + . . .+ φ(x1, . . . , xl + δ) + φ(x1 − δ, . . . , xl) + . . .

+ φ(x1, . . . , xl − δ)− 2lφ(x1, . . . , xl)

]
=
εp
2δ
~V ·
[
φ(x1 + δ, . . . , xl) + . . .

+ φ(x1, . . . , xl + δ)− φ(x1 − δ, . . . , xl)− . . .− φ(x1, . . . , xl − δ)
]

(4.27)

from where, after some algebraic manipulation,

φ(x1, . . . , xl) =
1

2l

[
1

δ2

[
φ(x1 + δ, . . . , xl) + . . .+ φ(x1, . . . , xl + δ) + φ(x1, . . . , xl + δ) + . . .

+ φ(x1, . . . , xl − δ)
]
− εp

2δ
· ~V
[
φ(x1 + δ, . . . , xl) + . . .+ φ(x1, . . . , xl + δ)

− φ(x1 − δ, . . . , xl)− . . .− φ(x1, . . . , xl − δ)
] ]

(4.28)

For a 2-D environment defined as cells with location, (a, b), with a distance of 1 from the
point or cell to the next (i.e. δ = 1), and a perturbation ~V = [Va, Vb], the potential in a point
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is reduced to

φ(a, b) =
1

4

[
φ(a+ 1, b) + φ(a, b+ 1) + φ(a− 1, b) + φ(a, b− 1)

]
− εp

8

[
Va · [φ(a+ 1, b)− φ(a− 1, b)] + Vb · [φ(a, b+ 1)− φ(a, b− 1)]

]
(4.29)

Grouping terms, Equation 4.29 becomes

φ(a, b) =

(
1

4
− εpVa

8

)
φ(a+ 1, b) +

(
1

4
+
εpVa
8

)
φ(a− 1, b) +

(
1

4
− εpVb

8

)
φ(a, b+ 1)

+

(
1

4
+
εpVb
8

)
φ(a, b− 1) (4.30)

where the sum of all coefficients of the stencil equals 1 (Prestes et al., 2001).

As in the previous subsection, the Dirichlet boundary conditions are the following: φp = 1

for all the probable pursuer cells, φo = 1 for all probable obstacle cells, φgoal = 0 for the
local goal, any initial value φgoal > φ > φo for all the other cells, and a boundary value
of φgoal > φ > φo for the limits of the grid, so that they are considered for the planning.
When using general proteanism, the limits of the grid can have a boundary value of φ = 0

to favour the exploration of new parts of the global environment as a possible navigation
strategy away from pursuers (Prestes et al., 2001).

The discrete potential values for each cell produce surfaces (of the potential values) and
contours (of the gradient), have an identical shape to the ones obtained without incorpo-
rating a perturbation in the Laplace differential equation (previous subsection) when the
perturbation is directed towards the local goal or subgoal in turn. The next subsection
presents another alternative method to compute potential functions that guarantee mathe-
matically the existence of a global minimum in the potential values of the grid.

4.5.3 Wave-front potential functions

The wave-front method allows computing potential functions in a grid, avoiding the pres-
ence of local minima. Starting from all free space cells with a value of 0, a value is given
to a cell, and then it is propagated with increments or decrements towards the remaining
adjacent cells that still have a value of 0, until all the grid is covered (Choset et al., 2005). A
path can be computed using steepest descent from any cell in the free space.

A wave-front potential function can be computed based on the local goal, LG, by assigning
a value (e.g. 1) to the corresponding cell, and then propagating it. The local goal is
computed as the best final location in the sensed part of the environment, according to
functions of distance between the pursuers and the robot, and the probable hideaways
behind obstacles. Propagating the local goal allows guiding the robot towards that location
avoiding local minima problems. The resulting propagated potential values (from the local
goal) are analogous to a cost function of the distance between any cell in the free space
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(a) Extended, sensed environment (b) Wave-front potential function

Figure 4.15: Wave-front potential function with origin (minimum value) in the local goal (marked
as X), showing the values of the free space cells (obstacles in black, and pursuers in grey), form an
extended, sensed, randomly generated environment (obstacles in black, pursuers in grey, free space
in white, unknown in light grey with a U, extended pursuers and obstacles cells in grey with a G, and
the robot in the centre).

of the grid to the local goal. Figure 4.15 shows the computation of a wave-front potential
function for a local goal.

Proteanism (a priori) can be implemented by substituting the local goal by the current active
subgoal and recomputing the wave-front propagation. This mechanism also works for
general proteanism, where no local goal is computed, but subgoals guide the robot away
from pursuers in a protean manner.

An alternative form to implement the escape from the pursuers without computing the
local goal, and without considering proteanism can be achieved by assigning the pursuer
cells a high value (e.g., 100), and then computing their decreasing propagation. The total
of all the different wave-front propagations for the pursuer cells can be computed as the
maximum of the values for each cell,

φwf (a, b) = max
∀kp

φkp(a, b) (4.31)

where kp are the pursuer cells, and φkp(a, b) is their corresponding wave-front propaga-
tions. Then, steepest descent can be applied to guide the robot far from the pursuers.

4.5.4 Comparison of the used potential functions

Table 4.1 presents a summary of the main characteristics of the potential functions ex-
plained before, used in the designs for autonomous navigation and escape from pursuits.
First impressions indicate the possibility of different kinds of local minima problems de-
pending on the location of obstacles and pursuers in the grid.
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Table 4.1: Comparison of the main characteristics of the used potential functions.

NAME CHARACTERISTICS EXPECTATIONS
Discrete potential
functions

Modified FIRAS potential functions
for obstacles and pursuers and a
quadratic function for the local goal
or subgoals, discretised to the cen-
troids of the cells in a grid

Local minima problems in cells
near obstacles; computationally
cheap to calculate and update.

BVP for Laplace’s
equation with
Dirichlet conditions

Use of Laplace’s equation and re-
laxation numerical methods to com-
pute a discrete approximation of
the potential function, with a global
minimum in the goal or subgoal,
and other initial conditions for ob-
stacles (highest values), edges of the
grid, and any other cell.

A global minimum in the grid,
but with the possibility of lo-
cal minima problems due to
the presence of flat surfaces
(plateau) in the free space; com-
plexity of the computation de-
pends on size of the grid and
convergence conditions.

BVP for Laplace
and perturbation
equation with
Dirichlet conditions

Use of Laplace’s equation with an
added perturbation, and relaxation
numerical methods to compute a
discrete approximation of the po-
tential function, with a global min-
imum in the goal or subgoal, and
other initial conditions for obstacles
(highest values), edges of the grid,
and any other cell.

A global minimum in the grid,
but with the possibility of lo-
cal minima problems due to
the presence of flat surfaces
(plateau) in the free space; sim-
ilar results to the Laplace equa-
tion without perturbation.

Wave-front potential
functions

A wave-front expansion is used
from the local goal or subgoal
(global minimum) towards the
other cells in the grid, then
assigning higher values to obstacle
cells.

A global minimum in the grid,
but with the possibility of local
minima problems near obstacle
cells depending on their loca-
tion; computationally cheap.
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4.6 Planning the path

The search method that computes the path from the scalar potential functions that represent
the environment is the last step in the computations towards the solution to the problem
of navigation and escape from pursuers. The flow diagram in Figure 4.16 shows an update
of Figure 4.2, incorporating the different decisions that need to be made before planning
the high level path according to the analysis of the environment, where the dashed lines
indicate the optional feature of computing a higher resolution representation of the sensed
environment. These decisions involve: (a) the commutation from normal navigation avoid-
ing obstacles to escape from pursuers when they have been detected in the environment;
(b) the addition of proteanism through subgoals or basing the navigation only on the com-
puted local goal in terms of distances and possible hideaways; and (c) the use of general
proteanism instead of computing a local goal and combining it with guided proteanism.
The process of analysis and planning is updated according to new information from the
environment.

The most common form in the literature to compute a path when using potential functions
to represent the environment is following the gradient descent, or steepest descent for a
discrete approach as inKoren and Borenstein (1991). Other search methods include depth-
first based on a sphere (Al-Sultan and Aliyu, 1996), subgoals (Bell, 2005), and optimisation
of an original random path (Warren, 1989). Subgoals are already implemented when using
proteanism, in both guided or general form, and connections between the commuted sub-
goals need to be done also by a search method. A modification of steepest descent has been
considered as the search method behind the connection of a location and the local goal, or
the different subgoals commuted in the proteanism.

The following paragraphs present a simple model of the robot, where a path can be com-
puted as a set of cells (e.g., coordinates of the centroids) from a start to an end in the locally
sensed part of the environment. The steepest descent algorithm for potential functions
is also presented, adding some examples using a local goal and guided proteanism (sub-
goals). Then, the modification to minimise distances for equal potential values is presented.

Simple model of the robot Considering a very simple model of the robot, as a cell in the
grid, its position is given by the triple [x, y, θr], where (x, y) is the location measured with
respect to a general frame of reference (e.g., distances from an origin). θ is the direction
of the robot, and when planning for coordinates in the plane, θ is assumed to point in the
direction of the next displacement. The robot moves with a maximum velocity of vmax,
thus the maximum displacement that it can perform in a straight line, in a unit of time with
that velocity, is

xmax = vmax · t (4.32)

where t is the interval of time. The motion of the robot can be considered deterministic
for environment purposes. In real life, the motions of the robot are not limited to straight
lines joining cells in a grid, as the steering constraints need to be considered, and the result
can be stochastic (i.e., without certainty that the robot will move exactly to the locations
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Figure 4.16: Flow diagram of all the steps and decisions in the analysis of the environment and
path planning according to the presence of pursuers, the application of proteanism, and the kind
of proteanism (guided or general). The dashed line represents the option of computing a higher
resolution representation of the sensed environment. Through the selection of proteanism or not, a
subgoal based (protean path) and a steepest descent only can be computed.
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given by the path). A path given by sets of coordinates that represent cells in a grid can be
tracked according to the real capabilities of the robot, serving as a general guide to how the
general motion should happen, but not specific to all instants of time, as the tracking can
be performed by a low level control.

Steepest descent The gradient descent of a continuous function is used to find a global
optimum (minimum) by an iterative algorithm. Starting from a configuration in the space,
vk, every iteration computes a new configuration that is closer to the optimum,

vj+1 ← vj − αGDf ′(vj) (4.33)

where f ′(vj) = ∇f(vj) is the gradient of the function f(vj), and αGD is a variable step size
for the approximation towards the optimum (Johnson and Picton, 1994). In discrete search
spaces, the gradient is approximated by

∇f ≈ f(vj+1)− f(vj) (4.34)

where vj is a configuration of a discrete set (Johnson and Picton, 1994). The step size is
fixed to the distance between the discrete configurations in the space. Every iteration, the
neighbour configurations, V = {v1,j , ..., vu,j}, are examined to determine which one leads
one step closer to the global optimum,

vj+1 ← min
∀vu,j∈V

f(vu,j) (4.35)

Figure 4.17 shows an example of a path towards a local goal computed by steepest descent,
without subgoals, using the discrete potential functions mentioned in Section 4.5.1 with
parameters Kg = 0.1, Ki = 1, do = 1 cell and a maximum value of 1000. The approximated
discrete environment contains a maximum of 5 square randomly placed obstacles with a
maximum size of 9 cells each, and a maximum of 2 square randomly placed pursuers with a
maximum size of 4 cells each. They have been sensed with a radius of 3 cells, and extended
with a probability of 0.5 as previous examples.

Figure 4.18 shows an example of the calculation of a path that connects subgoals using
steepest descent. The subgoals were generated for rsg = 2 cells and a sampling angle of
θ = π

12 , up to a maximum of 10 subgoals. The steepest descent from a subgoal to the
other was computed from the discrete potential functions in Section 4.5.1 with parameters
Kg = 0.1, Ki = 1, do = 1 cell and a maximum value of 1000. The environment has the same
characteristics as the example in Figure 4.17.

Adding the distance minimisation Steepest descent minimises the potential function
values within the adjacent cells, but when those values are equal, another decision criterion
can provide a better option than selecting one of the equal value cells randomly, which
might lead directly towards a pursuer. Thus, minimising the distance towards the local
goal, or active subgoal has been added to the steepest descent algorithm.
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(a) Randomly generated discrete environment (b) Extended, sensed environment

(c) h∗(a, b) (d) Path from steepest descent

Figure 4.17: Computed LG as h∗(a, b) (probable obstacles and pursuers cells indicated with OC and
the LG as X) and resulting path using steepest descent (sensed obstacles in black with an O, sensed
pursuers in grey with a P, extended probable obstacles in black, extended probable pursuers in grey,
and the LG as X), for a randomly generated discrete environment, extended and sensed (obstacles in
black, pursuers in grey, free space in white, unknown in light grey with a U, extended pursuers and
obstacles cells in grey with a G, and the robot in the centre).
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(a) Randomly generated discrete environment (b) Extended, sensed environment

(c) h∗(a, b) (d) Path from steepest descent and subgoals

Figure 4.18: Computed LG as h∗(a, b) (probable obstacles and pursuers cells indicated with OC
and the LG as X) and resulting path using steepest descent and subgoals (sensed obstacles in black
with an O, sensed pursuers in grey with a P, extended probable obstacles in black, extended probable
pursuers in grey, theLG as X and subgoals as circles), for a randomly generated discrete environment,
extended and sensed (obstacles in black, pursuers in grey, free space in white, unknown in light grey
with a U, extended pursuers and obstacles cells in grey with a G, and the robot in the centre).
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Considering Equation 4.35, the next navigation action is computed as the action (motion
towards an adjacent cell) that minimises the potential within the surrounding cells. If
moving to more than one surrounding cells minimises the potential (different actions), the
cell that minimises the distance to the local goal (while also minimising the potential) is
chosen instead,

vj+1 =

{
minφ(a, b) if MP = {one action}
min d(MP,LG) if MP = {different actions}

(4.36)

where MP is the subset of adjacent cells that minimise the potential of the current robot
location in the grid, with size 1 if only one action achieves the minimisation, or larger than
one if different actions minimise the potential. d(LG,MP ) is the distance between the local
goal (or correspondingly an active subgoal being used for guided or general proteanism)
and the centroid of a cell in the subset MP .

A posteriori proteanism The paths generated by search methods like steepest descent
are optimal and predictable if the locations of the obstacles, the pursuers, the goal and the
robot are known or can be computed. Pursuers with embedded intelligence that allows
them to predict probable optimal trajectories of a robot are a real challenge to avoid. Thus,
generating a path with some degree of randomness that deviates from the predictable
optimum but still takes the robot far from pursuers is needed.

The implementation of subgoals to obtain a deviation from the original steepest descent
obtained path could not be enough when the pursuers are closer. a posteriori enhancement
has been proposed in this thesis to increase the complexity of the movements whilst doing
the planned navigation continuous motion. An easy form to understand and implement
the proteanism is through adding noise to a whole path, or sections of it, to avoid long,
constantly linear motions. Dynamic parameters (velocity, acceleration, steering) can be
considered when designing the noise. Unfortunately, the new path is not optimal in terms
of distance or time towards a navigation goal, and the consumed energy to perform a
protean motion can be more than linear motions towards the goal.

4.7 Discussion

The definition of the problem of navigation and escape stated for the work presented in this
thesis is based on general concepts of 2-D navigation. There are similarities between this
problem and the problems of stealth navigation, and the problem of simple navigation, but
the presence of a dynamic threat provides a need for a response that motivates the designs
presented in the chapter. Also, the problem of escape in 3-D (particular to aircraft) involves
different kinds of possible strategies to achieve a solution, as changing the altitude can be
used to avoid obstacles, and even avoid capture or interception by the pursuers.

The problem can become more complex when adding localisation and mapping, as the
robot needs to store additional information and use it to make decisions. Knowing the
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environment from exploration and mapping brings advantages of more information and
certainty, that can be used to generate larger and more complete paths. Nevertheless, any
robot that is deployed in a random place without knowing it in advance might encounter
threats and its integrity depends on its capability to respond and try to preserve itself. Even
when the robot can learn to respond to the environment, some innate capabilities against
immediate threats can be the difference between being destroyed and succeeding in its task.

Considering the ideas of self-preservation, as part of designing mobile robots for any kind
of task, a general high level approach allows universality in hardware platforms. That is,
the analysis of the environment can be adapted to different sensing capabilities, and the
path can be adapted to different kinds of hardware, intrinsically in the low level control to
follow a path. The size of the grid can be rescaled according to the resolution of the sensing
(e.g., using a camera, using a laser sensor that sweeps around), and the certainty of the
information can be reproduced as probabilities. Nevertheless, the sensing has to be able to
detect pursuers coming from any direction, just as humans and animals can turn around
to see their surrounding. The capabilities of the sensing dictate the updates in the analysis
of the environment and the computed path. The ability of sensing and the possibility of
recognition of the different elements of the environment are basic requirements for the
success in the navigation and escape.

In this thesis, the performance of the algorithms has been demonstrated through simula-
tions, as implementation in real robots along with low level controllers represents another
major challenge. The discrete path that is obtained can be connected through continu-
ous motion according to real dynamic constraints. Having more information from the
environment (through finer sensing) leads to higher resolution grids with more identified
elements, and produces a path that approximates to higher continuity and accuracy. On
the other hand, more sensors and better quality of information comes at a higher financial
cost, as besides the sensing, accommodating the devices could require modifications to
conventional robotic platforms available in the market.

Following the same line of adaptability to different hardware capabilities, a variety of
potential functions have been considered for the path planning. They have been adapted
to the problem of navigation and escape from pursuers, to provide a wide range of options
to compute potential values according to the desired performance and any other additional
requirements of a future task (like exploration, or area coverage). The different potential
functions have been evaluated to compare their performances under similar constraints in
simulations. Other alternative potential functions, like vector potential fields are useful for
the final representation of the environment and path planning, as instead of using steepest
descent, following the forces leads to the formulation of a navigation path. Nevertheless,
investigating those more complex potential functions is a matter for future research.

Another aspect that has been proposed to solve the problem of navigation and escape, in
a way to promote its adaptability, is the computation of subgoals. Proteanism has been
implemented as both guided (e.g. when animals perform zig-zag motions, but also move
towards their nest) and general (moving anywhere possible without any other temporal
purpose but to avoid capture), to complement any other task requirement like a global ob-
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jective of navigation, or simple exploration. The chosen implementation of the proteanism
does not intend to mimic the real behaviour of any animal species for now, but it generalises
the biological concept in a more basic context for its application in 2-D navigation over a
robotic platform (generally more limited in motion capabilities than an animal of any kind).
The two implementations can be used in conjunction with any of the potential functions.

Finally, the implementation of a posteriori proteanism has been proposed tentatively as
an alternative to provide a measure against pursuers, by enhancing any computed path
through random motions. Using a posteriori proteanism does not depend on the proposed
analysis of the environment and consequent computation of a path through steepest de-
scent. This alternative does not necessarily lead away from pursuers, but only prevents the
predictability of linear motion.

4.8 Concluding remarks

The chapter started by presenting the particularities of the problem of navigation and
escape from pursuers, including the different elements that form it, and its differences
to other widely studied navigation problems. Then, the main ideas behind the proposed
approach to the solution of the problem are presented:

• A deliberative control approach through a set of high level path planning algorithms.

• The different considerations about the elements of the environment that have been
used to delimit the proposed designs, principally the use of sensors in real life, and
their limitations of providing information about the environment.

• The use of different solutions from a path planning and game theory perspectives,
the latter combined with reinforcement learning, and both in conjunction with bio-
inspired features from feasible individual evasion mechanisms.

• The methodology for designing path planning algorithms, by dividing the process in
the analysis of the environment and the proper planning stage where the actions in
the plan are chosen.

• The use of different potential functions that have different properties regarding the
presence of local minima, the computational easiness and the representation of the
elements in the environment.

The two different bio-inspired features incorporated in the designs are presented: the use
of refuges as a temporary navigation solution against capture, and the use of proteanism
(random motions) in the navigation to confuse intelligent pursuers and delay the capture
as much as possible. The implementation of both are based on general behavioural models
adaptable to robotics, but not particular to any animal species.

Subsequently, the chapter presented a proposal for the analysis of the environment from
sensed local elements, identifying pursuers, obstacles and free space in a discrete grid. The
proposed analysis also provides information about the distances and possible hideaways,
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locating the best possible location according to the sensed environment (the local goal). A
final representation is computed in the form of potential functions, for which the following
have been considered and adapted for the computation of paths to solve the problem of
navigation and escape from pursuers:

• Discrete potential functions, based on the modified FIRAS function and a quadratic
goal.

• Solutions to the Laplace differential equation using a BVP and Dirichlet boundary
conditions, through an approximation by numerical methods (Jacobi and SOR itera-
tive methods).

• Solutions to the for the Laplace with perturbation differential equation through a
boundary value problem, also with Dirichlet boundary conditions and an approxi-
mation by numerical methods.

• Wave-front potential functions, where the potentials become a function of the dis-
tance to the navigation objective.

A modified version of the steepest descent search method is presented, where the distances
to the navigation objective (local goal or subgoal) are considered when more than a possible
following motion action has the same potential value. This modification allows simplify-
ing the computation of paths that lead to the navigation objective following the discrete
potential functions, and also minimising the distances.

Finally, the discussion of the chapter highlights certain aspects of the proposed designs
and adaptations of the potential functions to the problem of navigation and escape. Some
of the most important aspects include the extension of the analysis of the environment to
different sensing capabilities, and to other more broad navigation objectives according to
the task that the robot needs to perform. The main novel aspects of the designs presented
in this thesis have been introduced in this chapter: using bio-inspired behaviours to solve
a navigation problem, in the form of hideaways to guide the navigation and randomly
selected subgoals to produce protean motions. The main advantages of the designs in this
chapter are:

• The discrete and local representation of the environment allows considering possible
limited knowledge due to the sensing capabilities.

• The proposals allow the extension of the grid to any shape and resolution, according
to the sensing capabilities of the robot, and the use of adequate potential functions
from the proposed options (adaptability).

• The pursuers are considered as part of the environment.

• The bio-inspired aspects of hideaways and proteanism allow constructing anti-predator
behaviours from path planning techniques, to offer alternative solutions to the previ-
ously proposed based on complete knowledge of the adversary.

• The chosen representation of the environment and the path planning based on poten-
tial functions are computationally cheaper than other combinations.
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The next chapter presents different series of simulations, to evaluate the proposed general
approach for the environment analysis based on local sensing, and the path planning using
potential functions, under different parameters. Combinations of updates in the envi-
ronment, changes in the resolution of the grid, computation of the proteanism, and the
presence of elements are some of the main parameters variated in the simulations. Also,
the different potential functions described in this chapter as options for the computation of
the path are evaluated.
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Chapter 5

Simulations with bio-inspired
paths and pursuers

The previous chapter presented the proposed designs to solve the problem of navigation
and escape from pursuers, for robots that navigate in a 2D plane (like ground vehicles), and
therefore need preventing collisions with fixed obstacles whilst avoiding capture. The anal-
ysis of the environment, resulting in potential functions to produce a navigation strategy in-
corporating bio-inspired features and proteanism, is evaluated to analyse the performance
of different variations. The variations include incorporating proteanism in the planning of
the motion or not, different updating times of both the analysis of the environment and
planning and changes in the resolution of the grid.

The main features to evaluate are:

1. Success of the proposed environment analysis (from sensing to computing the poten-
tial functions), by analysing the computation of paths that reach a chosen objective.

2. The different proposed variations within the environment analysis (potential func-
tions).

3. The proposed a priori proteanism implementation, compared to traditional steepest
descent paths towards a chosen objective, in the increase of the survival time of the
robot.

4. Navigation towards a dynamic reasoned objective according to the demands of the
task: collision avoidance and escape from pursuers, compared against random navi-
gation (general proteanism).

The used parameters for all simulations in this chapter are mentioned in Section 5.1, in-
cluding the main features of the environment, and any other constant used for the sensing,
a priori proteanism, and potential functions. The section also describes the programming of
the pursuers (followers).

Different groups of simulations were designed and performed to evaluate the proposed

107



SIMULATIONS WITH BIO-INSPIRED PATHS AND PURSUERS

path planning schemes for navigation and escape from pursuers in a 2-D plane. The groups
of simulations are presented in sections throughout the chapter:

1. Simulations with static environments (by not updating the sensing) to evaluate the
computation of paths that lead to a specified location, using the different kinds of po-
tential functions, the proposed environment analysis, and a priori proteanism through
subgoals (Section 5.2).

2. Simulations to evaluate the proposed environment analysis and path planning when
simulating the update in the sensing (as it would happen in a real life task) while
the robot navigates in the environment and detects different elements. The evaluated
features include the performance of the different kinds of potential functions, and the
performance when using a priori proteanism. Pursuers are also simulated, with three
different velocities in terms of the velocity of the robot (Section 5.3).

3. Simulations with static environments (as in Section 5.2) and a higher resolution grid
(by dividing the original grid from sensing), to compare the performance of the al-
gorithms when the resolution is changed and the path is approximated to a more
continuous one (Section 5.4).

4. Simulations to evaluate the performance of the proposals (as in Section 5.3) but using
a higher resolution grid (Section 5.5).

5. Simulations to compare the success of a general proteanism (random navigation)
approach against the use of a guided proteanism approach (towards the local goal),
simulating the motion of the pursuers for different velocities (Section 5.6).

Each section contains flow diagrams of the computations, along with visual examples
of the resulting paths for the randomly generated environments, a statistical analysis of
the results on the success of the paths, and comments about the results. A more general
discussion of all the results is presented in Section 5.7, followed by the conclusions of the
chapter in Section 5.8.

5.1 Parameters for the simulations

The previous chapter shows several examples of the computed resulting features of the
environment analysis, including the local goals from functions in terms of the shadows
and the distances, and finally the representation in terms of potential values. The same
procedures were used to compute the results shown in the simulations contained in this
chapter.

The simulations have been divided into two main areas according to the kind of pro-
teanism:

1. Guided proteanism, using a local goal, LG, to guide the robot towards a better loca-
tion according to its circumstances. These simulations have been divided according
to the resolution of the used grid, into:
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Table 5.1: Variation of parameters for the validating simulations.

FEATURE VARIATIONS

Environment Different environments with obstacles, randomly distributed.

Sensing Different extensions of the sensing by adding probable elements or just based on
the information from sensing.

Grid resolution Using different resolutions of the grid from sensed and probable elements.

Computation of paths Paths with and without proteanism in the presence of pursuers, and the modified
gradient descent search method.

Presence of pursuers Different numbers of pursuers in the environment, randomly located. Pursuers
with different dynamic capabilities in terms of their velocity of navigation.

Proteanism Calculation of proteanism in different forms: long reaching or short reaching by
varying the radius rsg .

Updating computations Updates of the environment after different intervals of time, measured as naviga-
tion steps.

(a) Low resolution grid

(b) High resolution grid

Both sets of simulations with different grid resolutions include the variation of
the update of the analysis of the environment. Simulations with no updates of
the environment analysis after the initial sensing were performed to evaluate
the reachability of a local goal, LG. Then, simulations with updates of the
sensing and planning every certain number of navigation steps according to the
grid resolution were performed to analyse a more realistic scenario. Different
numbers of pursuers randomly placed were used in the simulations.

2. General proteanism, where the only objective of navigation is the prolongation of the
time before capture by random motions away from pursuers.

All the sets of simulations included variations of the computation of subgoals, by increasing
their radius of placement according to the resolution of the grid. Varying the value of the
radius alters the length of duration of each subgoal in terms of distances. The tradeoff
between planning in advance for many navigation steps and using unpredictability in the
motion due to the randomness of switching subgoals constantly, needs to be considered to
define an adequate value for the radius. Table 5.1 summarises the variations of the main
features in the simulations, as explained.

The simulations were run for all the potential functions of interest: popular potential func-
tions (modified FIRAS and quadratic goal), solutions to differential equations (harmonic
and with perturbation) by a BVP (approximated numerically by Jacobi and SOR iterative
methods) and potential functions from a wave-front expansion, in an environment repre-
sented as a grid. The results were compared to determine the performance of the different
potential functions under variations in the proposed sensing and planning approach. Table
5.2 presents a summary of all the values used for the varied parameters in the simulations,
including the different potential functions.
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Table 5.2: Values used for each variable in the simulations.

VARIABLE VALUES

Iterations 1000 (randomly generated environments) for simulations without
updating the sensing for low resolution grids, 100 for the high
resolution case. 100 for simulations updating the sensing and the
pursuers for the low resolution, and 50 for the high resolution case.

Low resolution grid Grid of 11× 11 cells

High resolution grid Grid of 33× 33 cells

Obstacles Five square obstacles, four times larger than the dimension of the
robot, randomly placed in the environment.

Sensing Sensing performed with a maximum radius of 3 · size robot and an
incremental angle of π

12
radians.

Extension of the sensing For extended sensing, a probability of 0.5 was used for the adjacent
cells behind sensed obstacles and pursuers. For unextended sensing,
the probability of those adjacent cells is 0.

Computation of a priori proteanism The following values for the radius (and consequently commutation)
were used: rsg = size cell × {2, 3, 4, 5, 6} for the low resolution
grid, and rsg = new size cell × {3, 6, 9, 12, 15, 18} for a higher
resolution grid. Samples on the circle were taken each π/12 radians.
A maximum of 10 subgoals were allowed for the low resolution grid,
and a maximum of 10 × div = 30 subgoals were allowed for higher
resolution grids obtained from dividing the original grid in div = 3
segments.

Pursuers Pursuers were considered of the same size as the robot. The number
of pursuers, randomly placed in the environment at the start of
each experiment are: 1, 2, 3, 4, 5, 10. Different velocities were also
considered for the pursuers, measured from the velocity of the robot:
vp = vr, 2vr,

1
2
vr .

Updating computations Simulations without updates of the first sensing were used to assess
if the robot is able to compute a path that leads to a local goal in the
case of the guided proteanism. Simulations with updates were used
to assess the success of the escape, for every 1,2,3,4,5,6 navigation
steps for low resolution grids, and 3,6,9,12,15,18 navigation steps for
high resolution grids (same distances as in low resolution grids).

Potential functions Kg = 0.1, Ki = 1, do = 1cell, and a maximum potential value of
1000 in a cell.

Approximated solution to a BVP for
the Laplace equation

Dirichlet boundary conditions: φo,p = 1 for all the probable pursuer
and obstacle cells; φgoal = 0 for the local goal; φ = 0.2 for the limits
of the grid with guided proteanism. Initial value of φ = 0.2 for any
other cell.

Approximated solution to a BVP for
the Laplace equation with perturba-
tion

Same boundary conditions. εp = 0.1, perturbation as a unitary
vector towards the local goal when using guided proteanism.

Wave-front potential functions Starting value from local goal of 0, and increasing in steps of 1 unit.
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(a) 1 pursuer (b) 2 pursuers (c) 3 pursuers

(d) 4 pursuers (e) 5 pursuers (f) 10 pursuers

Figure 5.1: Examples of randomly generated environments with obstacles and different amounts of
pursuers, for the simulations.

Generated environments

Square scenarios with 5 obstacles randomly placed were used for the simulations in this
chapter, containing 1, 2, 3, 4, 5, and 10 pursuers. The original size of the generated obstacles
is of 4 times the size of the robot (of 1 cell of the original sensing grid, 11 × 11 cells). The
original size of the generated pursuers is the same as the robot (1 cell). Examples of these
generated environments are shown in Figure 5.1, for all the numbers of pursuers. Although
the location of the elements is random originally, the elements are approximated to an
occupancy grid as part of the sensing simulation, as shown in Figure 5.2 for the same
environments as Figure 5.1. The simulation structures generated randomly distributed
environments, according to the specified number of pursuers, to compute and compare
different paths. These computer generated environments were used in all the simulations
presented in the chapter.

It is evident that 10 pursuers in the grid, very close to the robot and in combination with
the obstacles, can lead to surrounding the robot without escape possibilities. Neverthe-
less, analysing scenarios with different numbers of pursuers, and in possibly the worst
case scenarios, allow a better evaluation of the performance of the proposals in complex
environments.
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(a) 1 pursuer (b) 2 pursuers (c) 3 pursuers

(d) 4 pursuers (e) 5 pursuers (f) 10 pursuers

Figure 5.2: Examples of approximations for the randomly generated environments of Figure 5.1 into
occupancy grids.

Pursuers

For the simulations presented in this chapter, follower pursuers with three different ve-
locities were implemented. A follower pursuer is an entity that tries to get closer to the
robot trying to escape, also avoiding collision with obstacles. Thus, the next navigation
movement of a pursuer is defined as

vj+1 = min
(a,b)∈A

d(robot, p) (5.1)

where A is the set of possible actions for the pursuer, translated as nine possible motion
actions to its adjacent cells, (a, b); and d(robot, p) is the Euclidean distance between the
robot and the pursuer (considering their centroids as their current position). The possible
motion actions are: right, left, front, back, front right, front left, back right, back left and
staying in the same location.

The next sections present the results of all the series of simulations performed to evaluate
the proposals described in the previous chapter.

5.2 Guided proteanism, low resolution grid, no updates

The simulations presented in this section have the following objectives:

1. Evaluating the generation of paths that reach the computed local goal (i.e. that would
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reach a location away from the pursuers, and possibly a hideaway from some of the
pursuers), without falling in local minima of any sort.

2. Analysing which potential function, from all the analysed options (mentioned in
Chapter 4), reaches the local goal more successfully depending on the number of
pursuers in the environment.

3. Analysing the effect of the subgoals (a priori proteanism) in computing different paths
to the ones resulting from traditional steepest descent. It is expected that using
smaller values of the radius to compute the subgoals, rsg , leads to more difference
in the two types of paths.

4. Evaluating the effect (positive or negative) when extending the sensing of obstacles
and pursuers by predicting if adjacent cells are part of obstacles or pursuers.

The specific parameters used for the simulations in this section, from Table 5.2, correspond
to 1000 random repetitions (with 1000 randomly generated environments), and the rest are
as indicated for low resolution grids. The robot starts an experiment in the centre of the
grid, and it moves from cell to cell. The velocity of the pursuers is not considered in the
simulations of this section.

In order to evaluate the differences of the paths, the mean of the discrete Fréchet distance or
DFD (Eiter and Mannila, 1994) and the root-mean-square error or RMSE, along with their
standard deviations were computed for all the simulations. Both measures are presented
in Appendix A. The success of the paths was considered positive if the local goal was
reached by a determined path, or negative if not reached, for both kinds of paths. All
the simulations produced one steepest descent path, but not necessarily a protean path,
so the total success of the steepest descent paths was computed over the total number of
simulations. The total success of the protean paths was accounted only for the number of
simulations that produced a protean path.

The flow of the computations for the analysis of the environment and path planning used
in the simulations of this section is shown in Figure 5.3, a modified version of Figure 4.16
according to the objectives and experiment settings described.

Subsection 5.2.1 shows some visual examples of computed paths for different kinds of
potential functions, highlighting the main findings. In Subsection 5.2.2, the similarities in
the computed paths, protean (subgoal based) or not (steepest descent only), are evaluated
by means of the DFD and RMSE, the results are shown in the form of tables. Subsection
5.2.3 presents the evaluation of the success reaching the local goal, for protean and steepest
descent paths using different potential functions, in the form of comparative graphs of the
statistics.

5.2.1 Visual examples of computed paths

The following visual examples show examples of paths computed with and without pro-
teanism (subgoals), for 2 pursuers and a radius of computation for the subgoals of rsg = 2
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Figure 5.3: Flow diagram of the computations for the simulations to evaluate the success to reach
the local goal, for low resolution grids, without updating the sensing from the environment, and
calculating the statistics to compare both paths (steepest descent only and subgoal based). By not
using the proteanism, a steepest descent only path is computed.
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(a) Reaching the local goal (b) Local minima in steepest descent
path

(c) Oscillations due to enclosure (d) Local minima in steepest descent
path

Figure 5.4: Computed paths using steepest descent (solid red), and updated subgoals and steepest
descent (dashed green), with subgoals as circles, and discrete potential functions; sensed obstacles in
black with an O, sensed pursuers in grey with a P, extended probable obstacles in black, extended
probable pursuers in grey, and the LG as X.

navigation steps. Figure 5.4 shows paths computed using modified FIRAS and quadratic
goal discrete potential functions. Figures 5.5 and 5.6 show examples using a BVP for the
Laplace equation, solved with Jacobi and SOR iterative methods, respectively. Figure 5.7
shows some examples computed with wave-front potential functions. More examples are
provided in Appendix B.

The discrete potential functions from modified FIRAS function and a quadratic goal pre-
sented local minima problems when used without the subgoals, as expected according
to the reports from the literature. The wave-front potential functions also revealed local
minima problems due to the geometry of the obstacles when the subgoals are not being
used. The use of subgoals evidences an improvement in avoiding local minima, as it causes
the change of the potential values of the whole grid, guiding the navigation more smoothly
around obstacles.

Another evident problem is the oscillation of the paths when enclosed by pursuers and
obstacles, as it might not be possible to escape out of the enclosure even with the subgoals.
But this problem is not expected from the start in realistic scenarios.

The final problem encountered after a visual inspection is that some paths computed from
a BVP for any of both equations, Laplace or perturbation, reach the local goal and then
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(a) Failing to reach local goal (b) Oscillations due to enclosure

Figure 5.5: Computed paths using steepest descent (solid red) and updated subgoals and steepest
descent (dashed green), with subgoals as circles, and a BVP for Laplace’s equation with Dirichlet
conditions and Jacobi iterative method; sensed obstacles in black with an O, sensed pursuers in grey
with a P, extended probable obstacles in black, extended probable pursuers in grey, and the LG as X.

(a) Failing to reach local goal (b) Oscillations due to enclosure

Figure 5.6: Computed paths using steepest descent (solid red), and updated subgoals and steepest
descent (dashed green), with subgoals as circles, and a BVP for Laplace’s equation with Dirichlet
conditions and SOR iterative method; sensed obstacles in black with an O, sensed pursuers in grey
with a P, extended probable obstacles in black, extended probable pursuers in grey, and the LG as X.

(a) Local minimum in steepest descent
path

(b) Oscillations due to enclosure

Figure 5.7: Computed paths using steepest descent (solid red), and updated subgoals and steepest
descent (dashed green), with subgoals as circles, and wave-front potential functions; sensed obstacles
in black with an O, sensed pursuers in grey with a P, extended probable obstacles in black, extended
probable pursuers in grey, and the LG as X.
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continue moving away. A criterion that enforces a stop in the computation of the path
after reaching the local goal is needed for the use of these potential functions, to save some
time in the total deliberation. This problem becomes less important as the path would
be recomputed constantly with the updating of the sensing in a real application of the
algorithms.

5.2.2 Differences in guided protean paths and steepest descent only paths

In this subsection, the differences in the guided protean path with respect to a path com-
puted towards a local goal were measured statistically from two criteria: the DFD, a mea-
sure of the similarity between discrete curves (Eiter and Mannila, 1994), and the RMSE,
a measure of the dispersion over a guideline. A maximum of 10 subgoals were allowed
in the computation of a protean path, and all the other parameters correspond to the
mentioned in Table 5.2 and the beginning of the section, for low grid resolutions. The
tables corresponding to the different used potential functions are included in Appendix D.

The values of DFD and RMSE in Tables D.1 to D.6 in Appendix D, decrease from left to
right according to the radius of computation of the subgoals, rsg , being more evident for
environments with less pursuers and using approximations to harmonic equations. This
means that the protean paths are significantly different to the ones computed with steepest
descent when the subgoals are computed using a smaller radius rsg . Commuting the
subgoals closely in terms of navigation steps means increasing the randomness in the path.
Longer commutations (larger rsg) make the subgoal based path converge into a steepest
descent path. The results are similar with and without extending the sensed obstacles and
pursuers to the adjacent cells.

5.2.3 Success computing paths that reached the local goal

This section presents the results of the relative success of the paths reaching the local
goal, computed as mentioned previously, with parameters from Table 5.2 for simulations
considering low resolution grids and without updating the sensing of the environment (the
speed of the pursuers is not relevant).

Figures 5.8 and 5.9 show the success of steepest descent based and protean or subgoal based
paths, correspondingly, when the identified elements in the environment are extended to
adjacent cells. Figures 5.10 and 5.11 show the success when the elements in the environ-
ment are not extended to adjacent cells, for the same kinds of paths. The legends in the
plots correspond to the following potential functions: FIRAS to the FIRAS and quadratic
goal potential functions, BVP Jacobi and BVP SOR to the solution to the Laplace equation
by a BVP and Jacobi or SOR iterative methods, PBVP Jacobi and PBVP SOR to the solution
to the Laplace with perturbation equation by a BVP and Jacobi or SOR iterative methods,
and Wave-front to wave-front potential functions.

The graphs from Figures 5.8, 5.9, 5.10 and 5.11 indicate that the best performing potential
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(a) 1 pursuer (b) 2 pursuers

(c) 3 pursuers (d) 4 pursuers

(e) 5 pursuers (f) 10 pursuers

Figure 5.8: Relative success (in percentage) of steepest descent based paths and different potential
functions reaching the local goal, when varying the radius of computation of subgoals for protean
paths. Obstacles and pursuers are extended to adjacent cells.
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(a) 1 pursuer (b) 2 pursuers

(c) 3 pursuers (d) 4 pursuers

(e) 5 pursuers (f) 10 pursuers

Figure 5.9: Relative success (in percentage) of subgoal based paths (protean) and different potential
functions reaching the local goal, when varying the radius of computation of subgoals for protean
paths. Obstacles and pursuers are extended to adjacent cells.
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(a) 1 pursuer (b) 2 pursuers

(c) 3 pursuers (d) 4 pursuers

(e) 5 pursuers (f) 10 pursuers

Figure 5.10: Relative success (in percentage) of steepest descent based paths and different potential
functions reaching the local goal, when varying the radius of computation of subgoals for protean
paths. Obstacles and pursuers are not extended to adjacent cells.
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(a) 1 pursuer (b) 2 pursuers

(c) 3 pursuers (d) 4 pursuers

(e) 5 pursuers (f) 10 pursuers

Figure 5.11: Relative success (in percentage) of subgoal based paths (protean) and different potential
functions reaching the local goal, when varying the radius of computation of subgoals for protean
paths. Obstacles and pursuers are not extended to adjacent cells.
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functions are the modified FIRAS and quadratic goal, followed closely by the wave-front
functions. This result is consistent for all the different numbers of pursuers in the simu-
lations. The success of the steepest descent based paths is approximately constant for the
different values of rsg , as shown in each one of the individual plots in Figures 5.8 and 5.10.

Figures 5.9 and 5.11 show that the best values for the radius to compute the protean paths
are of 2 or 3 cells in the grid, consistent for the different potential functions. It is possible to
observe that the subgoal based paths perform better than the steepest descent only paths
in reaching the local goal, as the randomness of their computation prevents falling and
staying in local minima.

The extension of the sensed pursuers and obstacles in the grid to adjacent cells according to
predictions was found to cause more local minima problems, as it can be observed from the
difference in the success between Figures 5.8 and 5.10, and Figures 5.9 and 5.10. The success
is reduced when extending the environments according to predictions. The extension
of elements in the environment reduces the available free space, and thus reducing the
possibilities of escaping from enclosures formed by pursuers and obstacles. The problem
became more evident with the largest number of pursuers (10), due to the formation of
more enclosures in the grid.

5.3 Guided proteanism, low resolution grid, sensing updates

The simulations presented in this section have the following objectives:

1. Evaluating if the proposed approaches (the environment analysis, and the steepest
descent only and subgoal based path) prevent the capture of a robot in the window
of time of the test (20 navigation steps), for different velocities of pursuers looking to
capture greedily.

2. Analysing which one of the potential functions prevents the capture more success-
fully for the different numbers of pursuers and velocities.

3. Evaluating the effect of the updates of the sensing (measured in navigation steps) in
the prevention of capture by pursuers with different velocities.

The success of a path with respect to the other is considered if any of two conditions occur:
if the robot is captured some navigation steps later compared to the other path, or if the
robot is not captured at all. The average of the capture time (measured in navigation steps)
for 100 randomly generated environments is computed as another form to evaluate the
performance of the proposals. The simulations have been performed for different numbers
of pursuers with velocities of vp = vr, 2vr,

1
2vr, different times of updating the environment

sensing and a low resolution grid, as specified in Table 5.2.

The flow of the computations for the simulations in this section is shown in Figure 5.12.

Subsection 5.3.1 shows an example of the computation of both paths, steepest descent and
protean. Subsection 5.3.2 presents the evaluation of the success avoiding capture, in the
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Figure 5.12: Flow diagram of the computations for the simulations to evaluate the success avoiding
capture while pursuers move, for low resolution grids, and updating the sensing. Both paths,
steepest descent only and subgoal based (protean) are computed independently in the simulations,
but following the flow of processing shown in the diagram, as the consequences of the navigation
strategies in terms of navigation and motion of the pursuers are different.
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form of comparative graphs of the statistics.

5.3.1 Visual examples of computed paths

This subsection presents an example of a steepest descent path and a subgoal based path
computed with modified FIRAS and quadratic goal potential functions, when the environ-
ment sensing is updated after every navigation step. The pursuers (two) move according
to their own strategies and a velocity of vp = vr. A radius of rsg = 2 navigation steps was
used to compute the subgoals. The robot starts a path in the centre of the grid, and other
parameters were selected considering Table 5.2 for a low resolution grid.

Figure 5.13 presents the first 4 steps of the cycle sensing-path planning, including the
sensed environment, and the resulting navigation for the subgoal based path only and
the pursuers. The final concentrated paths (including the steepest descent only) are also
shown including the navigation of the pursuers. More examples of the concentrated paths,
with different velocities for the pursuers, are shown in Appendix B.

5.3.2 Success of computed paths

As mentioned before and for both paths, steepest descent only and subgoal based (protean),
success occurs when a robot avoids capture in 20 navigation steps, or if the robot is captured
some time later than with the other path computed simultaneously. The parameters used
in the simulations are as specified in Table 5.2 for low resolution grids and sensing updates
at different navigation steps, and pursuers with different speeds.

Significant statistics on the success of the paths are presented in the form of compara-
tive graphs, separated according to different times of updating the sensing (after 1, 3 and
6 navigation steps), the velocity of the pursuers, and then the number of pursuers in the
simulations. Figures 5.15 and 5.16 show the results for 1 pursuer, Figures 5.17 and 5.18
for 3 pursuers, and Figures 5.19 and 5.20 for 10 pursuers, respectively, all for updates of
the sensing every 1, 3 and 6 navigation steps only. The figures separate the success of the
steepest descent based paths from the subgoal based paths accordingly. Other statistics for
2, 4 and 5 pursuers are shown in Appendix E. The legends in the plots correspond to the
same potential functions as in previous sections.

A visual inspection of the graphs of results of this subsection and in Appendix E show that
the most successful potential function resulted to be the steepest descent with modified
FIRAS and quadratic goal potential functions, followed by steepest descent wave-front.
This result holds true for all the numbers and speeds of pursuers and variations in the
sensing updates. Nevertheless, the BVP for Laplace equation solved with Jacobi iterative
method achieves equivalent success for environments with 4 pursuers. Also, protean paths
(subgoal based) become more successful in the interaction with 10 pursuers, compared
to steepest descent only paths. A greater variation in the performance of the different
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(a) Sensed environment (b) Subgoal based motions

(c) Sensed environment (d) Subgoal based motions

(e) Sensed environment (f) Subgoal based motions

(g) Sensed environment (h) Subgoal based motions

Figure 5.13: Updates in the sensing and computed respective paths towards the local goal, for the
subgoal based path. On the left: sensed obstacles in black, sensed pursuers in dark grey and unknown
cells in light grey and a U. On the right: motions in dashed green, sensed obstacles in black, sensed
pursuers in grey.

125



SIMULATIONS WITH BIO-INSPIRED PATHS AND PURSUERS

(a) Steepest descent path (b) Subgoal based path

Figure 5.14: Concentrated paths simulating the navigation of the robot and the pursuers with
a velocity of vp = vr , and updating the sensing after every navigation motion. Steepest descent
path in red and corresponding pursuers in magenta; subgoal based path in green and corresponding
pursuers in blue; obstacles in black.

potential functions occurs when few pursuers are present, and decreases as the number
of pursuers grows and when their velocity increases.

The following results arise, considering the results in the previously mentioned graphs (in
the section and in the appendices):

• For slower and fewer pursuers (1 or 2), updating the sensing more frequently leads
to better results. This can be interpreted as a need to detect the pursuers and to react
accordingly, as soon as possible.

• For larger numbers of pursuers (more than 2) and regardless of their speed, updating
the sensing frequently does not improve the success. This can be interpreted as the
overall reduction of success avoiding capture due to the cluttering of the environ-
ment, and consequently a very fast capture is performed by the pursuers regardless
of the chosen navigation method of the robot (protean or not).

• For faster and fewer pursuers, the same effect of better results with less frequent
updates is observed.

The best radius for computing the subgoal based paths is rsg = 2, for all numbers of
pursuers, their different speeds, and the potential functions. This is evident from a visual
inspection of Figures 5.16, 5.18 and 5.20 showing the subgoal based paths. The proteanism
allows reducing unsuccessful paths due to local minima problems from the potential func-
tions, thus avoiding oscillations in the same cell near obstacles and promoting constant
motion away from pursuers (through the guidance of the proteanism towards a local goal).
A compromise between the radius of the computation of subgoals and the updates of
the environment sensing is needed if using protean paths, to achieve the desired effect of
apparent randomness in the navigation. For example, updates every 2 navigation steps are
not too far in success terms from performing updates every navigation step, and the effect
of proteanism in success is greater for a radius of 2 navigation steps. Infrequent updates
(e.g., every four navigation steps) could be used when the processing speed is limited, or if
the sensed environment has not changed radically and the path is still valid.
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Figure 5.15: Success of steepest descent paths for 1 pursuer, different sensing updates (measured in
navigation steps) and speeds. The horizontal axis corresponds to the values of rsg and the vertical
axis is the percentage of success.

127



SIMULATIONS WITH BIO-INSPIRED PATHS AND PURSUERS

(a
)

1
st

ep
,v
p
=
v
r

(b
)

3
st

ep
s,
v
p
=
v
r

(c
)

6
st

ep
s,
v
p
=
v
r

(d
)

1
st

ep
,v
p
=

2
v
r

(e
)

3
st

ep
s,
v
p
=

2
v
r

(f
)

6
st

ep
s,
v
p
=

2
v
r

(g
)

1
st

ep
,v
p
=

1 2
v
r

(h
)

3
st

ep
s,
v
p
=

1 2
v
r

(i
)

6
st

ep
s,
v
p
=

1 2
v
r

Figure 5.16: Success of subgoal based paths for 1 pursuer, different sensing updates (measured in
navigation steps) and speeds. The horizontal axis corresponds to the values of rsg and the vertical
axis is the percentage of success.
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Figure 5.17: Success of steepest descent paths for 3 pursuers, different sensing updates (measured
in navigation steps) and speeds. The horizontal axis corresponds to the values of rsg and the vertical
axis is the percentage of success.
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Figure 5.18: Success of subgoal based paths for 3 pursuers, different sensing updates (measured in
navigation steps) and speeds. The horizontal axis corresponds to the values of rsg and the vertical
axis is the percentage of success.
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Figure 5.19: Success of steepest descent paths for 10 pursuers, different sensing updates (measured
in navigation steps) and speeds. The horizontal axis corresponds to the values of rsg and the vertical
axis is the percentage of success.
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Figure 5.20: Success of subgoal based paths for 10 pursuers, different sensing updates (measured in
navigation steps) and speeds. The horizontal axis corresponds to the values of rsg and the vertical
axis is the percentage of success.
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Statistics of the times of capture (measured as navigation steps for a maximum possible of
20 in an experiment) were computed for the same parameters as in the previous graphs
of the subsection. Figures 5.21 to 5.23 present some of the results in the form of box plots
that show the distributions of the averages of the time of capture, for the different potential
functions. The graphs correspond to the same numbers of pursuers and updates shown
previously in Figures 5.15 to 5.19. Subgoal based paths are indicated as SG and steepest
descent paths are indicated as SD in the figures, for all the different potential functions.
Other box plots are shown in Appendix E.

The results shown in Figures 5.21 to 5.23 confirm the combination of steepest descent
with modified FIRAS and quadratic goal potential functions as the best option for the
problem of navigation and escape from pursuers, followed by steepest descent and wave-
front potential functions. These potential functions allowed the average largest navigation
segments before capture, compared to the rest.

The reduction of the chances to escape caused by the increase in the number of pursuers
can be observed, as there is less free space to move to in the grid to avoid capture and
obstacles simultaneously. When the pursuers are slower, the robot is able to navigate for
longer, and the contrary when the pursuers are faster, as proven in visibility based studies
of the influence of the velocities in the capture and evasion (Klein and Suni, 2010).

5.4 Guided proteanism, high resolution grid

The main objective of this section is comparing the performance of the proposed environ-
ment analysis and path planning computed previously in Section 5.2 when the resolution
of the grid is modified (in this case, artificially increased), concerning the reaching of the
local goal. The comparisons include the following aspects:

• The best potential function in terms of success reaching the local goal for the different
numbers of pursuers.

• If the radius of computation of the subgoals (rsg) has the same effect on the differences
of the paths as in the low resolution grids, according to the means of the DFD and
RMSE.

The same measures and parameters as in Section 5.2 were used to compute the statistics.
Other parameters for the simulations were used as explained in Table 5.2, for high resolu-
tion grids and without updating the sensing (the speed of the pursuers is not considered).
The robot starts an experiment in the centre of the grid, and it moves from cell to cell.
Obstacles and pursuers are not extended to adjacent cells, as results in previous sections
indicate that extending the elements does not improve the performance of the paths.

An additional step was incorporated to the processing flow shown in Figure 5.3, where the
cells of the sensed elements in the environment are divided and adjusted into a finer grid,
as in the dashed parts in diagram of Section 4.6, Figure 4.16.
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Figure 5.21: Capture times (in terms of navigation steps) for 1 pursuer, different sensing updates
(measured in navigation steps) and speeds. The horizontal axis corresponds to the used potential
functions, and the vertical axis is the average of navigation steps before capture in 100 simulations.
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Figure 5.22: Capture times (in terms of navigation steps) for 3 pursuers, different sensing updates
(measured in navigation steps) and speeds. The horizontal axis corresponds to the used potential
functions, and the vertical axis is the average of navigation steps before capture in 100 simulations.
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Figure 5.23: Capture times (in terms of navigation steps) for 10 pursuers, different sensing updates
(measured in navigation steps) and speeds. The horizontal axis corresponds to the used potential
functions, and the vertical axis is the average of navigation steps before capture in 100 simulations.
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(a) Successful paths, rsg = 3 (b) Local minimum in steepest descent
path, rsg = 3

(c) Successful paths, rsg = 9 (d) Local minima in both paths, rsg = 9

Figure 5.24: Computed paths using steepest descent (solid red), and updated subgoals and steepest
descent (dashed green), with subgoals as circles, and discrete potential functions for a high resolution
grid; sensed obstacles in black, sensed pursuers in grey, and the LG as X.

Subsection 5.4.1 shows some visual examples of computed paths for different kinds of
potential functions, highlighting the main findings. Subsection 5.4.2 presents the statistics
of the differences between the steepest descent and the subgoal based paths (measured
again through the DFD and RMSE), in the form of tables. Subsection 5.4.3 presents the
evaluation of the success of the paths reaching the local goal, in the form of comparative
graphs of the statistics.

5.4.1 Visual examples of computed paths

This subsection presents visual examples of computed paths towards a local goal, with and
without proteanism (subgoals), and for different potential functions and environments.
The examples use two pursuers and a radius for the computation of subgoals of rsg =

3, 6 and 9 navigation steps. Other parameters have been specified in Table ??, for high
resolution grids.

Figure 5.24 shows the resulting paths using modified FIRAS and quadratic goal discrete
potential functions, and Figure 5.25 using a BVP for the Laplace equation solved with the
Jacobi iterative method. More examples can be found in Appendix C.
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(a) Local minima in both paths, rsg = 3 (b) Local minima in both paths, rsg = 3

(c) Local minima in both paths, rsg = 6 (d) Local minima in both paths, rsg = 9

Figure 5.25: Computed paths using steepest descent (solid red), and updated subgoals and steepest
descent (dashed green), with subgoals as circles, and a BVP for Laplace equation with Dirichlet
conditions and Jacobi iterative method; sensed obstacles in black, sensed pursuers in grey, and the
LG as X.
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The results presented in the previous figures demonstrate the same problems noted for
the low resolution simulations in Section 5.2: the presence of local minima in the steepest
descent paths using discrete potential functions (modified FIRAS and quadratic goal) and
wave-front expansions. It is also seen that the resulting paths using subgoals have more
deviations and navigation loops than the steepest descent only paths.

On the other hand, the paths computed using solutions to the Laplace and Laplace with
perturbation equations by a BVP solved with Jacobi iterative methods show problems of
equal potential values in the grid for the free space cells (as mathematically there is only a
global minimum in the location of the goal). These problematic potential functions cause
many of the paths to lead towards a location near an edge of the grid, but not necessarily
towards the local goal as expected. It is the same case for both paths, steepest descent and
subgoal based.

5.4.2 Differences in guided protean paths and steepest descent only paths

Differences in the guided protean path with respect to a path computed towards a local
goal were measured statistically from the same two criteria used for the simulations in
Subsection 5.2.2: DFD and RMSE, and a maximum of 30 subgoals for the protean path. The
corresponding tables of results have been added in Appendix D. The parameters used to
compute the statistics have been presented in Table 5.2, for high resolution grids.

The statistics in the higher resolution grid reinforce the results in Subsection 5.2.3 regarding
the effect of the radius of computation of subgoals, as the protean paths are significantly
different to the ones computed with steepest descent when the subgoals are computed for
a smaller radius. The results for solutions to the Laplace and Laplace with perturbation
equations by a BVP and Jacobi or SOR iterative methods indicate the production of almost
identical paths for all the values of rsg , as the DFD and RMSE values are comparatively
smaller. The tables also confirm that the similarity of the paths increases with the value of
rsg , as the subgoal based paths have less randomness in their constitution.

5.4.3 Success of computed paths

This subsection presents the statistical results of the success of the paths trying to reach
the local goal, for both protean and steepest descent only paths, and different conditions
in the environment. The parameters for the simulations are the same as for the previous
subsection, from Table 5.2 for high resolution grids and no updates in the sensing, and the
velocity of the pursuers is not relevant in this subsection.

The graphs in Figures 5.26 and 5.27 present the results for the steepest descent paths and
the subgoal based paths, correspondingly, using the different potential functions. The
legends in the plots correspond to the following potential functions: FIRAS to the FIRAS
and quadratic goal potential functions, BVP Jacobi and BVP SOR to the solution to the
Laplace equation by a BVP and Jacobi or SOR iterative methods, PBVP Jacobi and PBVP
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(a) 1 pursuer (b) 2 pursuers

(c) 3 pursuers (d) 4 pursuers

(e) 5 pursuers (f) 10 pursuers

Figure 5.26: Plots of the success of reaching the local goal for steepest descent paths using the dif-
ferent kinds of potential functions, in percentage over the total of randomly generated environments
(100). The horizontal axis corresponds to the values or rsg and the vertical axis is the percentage of
success.

SOR to the solution to the Laplace with perturbation equation by a BVP and Jacobi or SOR
iterative methods, and Wave-front to wave-front potential functions.

The same potential functions were found to perform better for all numbers of pursuers as in
Subsection 5.2.3: the modified FIRAS and quadratic goal were best, followed closely by the
wave-front potential functions. The success of those potential functions is better (according
to the percentages) for the higher resolution grid (artificially computed from the original
sensing), particularly for the larger numbers or pursuers. The simulations with a higher
resolution grid highlighted the differences between the best performing potential functions
and the rest, evident in the visible gaps in the plots (Figures 5.26 and 5.27).

The best radii for the computation of subgoals in combination with the modified FIRAS
and quadratic goal potential functions, are 6 and 9 units (measured in the size of a cell in
the 33 × 33 grid), and equivalent to the 2 and 3 found in Subsection 5.2.3 for the 11 × 11
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(a) 1 pursuer (b) 2 pursuers

(c) 3 pursuers (d) 4 pursuers

(e) 5 pursuers (f) 10 pursuers

Figure 5.27: Plots of the success of reaching the local goal for subgoal based paths using the different
kinds of potential functions, in percentage over the total of randomly generated environments (100).
The horizontal axis corresponds to the values or rsg and the vertical axis is the percentage of success.
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grid. Additionally, the subgoal based paths perform better than the steepest descent only
paths as expected, as the randomness allows avoiding local minima problems.

5.5 Guided proteanism, high resolution, sensing updates

The main objective of the simulations in this section is comparing the previous results
of success avoiding capture (in Section 5.3), when the resolution of the grid is modified.
As before, the number of pursuers and their velocity was varied in the simulations. The
environment sensing is updated after an interval of time, and the path towards a local goal
is also updated accordingly. The compared aspects include:

• The performance of the potential functions for the different combinations of pursuers.

• The effect of the update timing in the success to avoid capture.

The success of a path with respect to the other is measured as in the simulations in Section
5.3, considering the cases where the robot is not captured in 30 navigation steps, or if a path
leads to a latter capture respect to the other simultaneously computed. The parameters for
the simulations in this section have been mentioned in Table 5.2, for high resolution grids,
sensing updates, and pursuers with velocities of vp = vr, 2vr,

1
2vr.

Subsection 5.5.1 shows an example of the computation of both paths, steepest descent and
protean. Subsection 5.5.2 presents the evaluation of the success in avoiding capture, in the
form of comparative graphs of the statistics.

5.5.1 Visual examples of computed paths

This subsection presents some resulting paths computed when the environment sensing is
updated, for two pursuers with speeds of vp = 2vr,

1
2vr, sensing updates every 3 navigation

steps, rsg = 6 and modified FIRAS and quadratic goal potential functions. Figure 5.28
shows the computed paths. More examples are shown in Appendix C.

5.5.2 Success of computed paths

The success of computed paths avoiding the capture of the robot is presented in this sub-
section, computed in the same manner as Subsection 5.3.2, but for a maximum of 30 nav-
igation steps. The parameters used in the simulations have been included in Table 5.2,
for high resolution grids and sensing updates. The experiments use modified FIRAS and
quadratic goal, BVP for the Laplace and Laplace with perturbation equations solved by
Jacobi iterative method, and wave-front potential functions.

Significant statistics are presented in the form of comparative graphs, according to different
sensing updates (3, 9 and 18 navigation steps), numbers of pursuers, and their velocities.
Figures 5.29 and 5.30 show the results for 1 pursuer, Figures 5.31 and 5.31 for 3 pursuers,
and Figures 5.33 and 5.34 for 10 pursuers, respectively. The plots have been separated

142



SIMULATIONS WITH BIO-INSPIRED PATHS AND PURSUERS

(a) Steepest descent path, vp = 2vr (b) Subgoal based path, vp = 2vr

(c) Steepest descent path, vp = 1
2
vr (d) Subgoal based path, vp = 1

2
vr

Figure 5.28: Paths simulating the navigation of the robot and the pursuers, and updating the sensing
after 3 navigation steps, for a higher resolution grid. Steepest descent paths in red and corresponding
pursuers in magenta; subgoal based paths in green and corresponding pursuers in blue; obstacles in
black.
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according to the kind of path computed, steepest descent or subgoal based. Other graphs
for 2, 4 and 5 pursuers are shown in Appendix E. The legends in the plots correspond to
the same potential functions as in previous sections.

As in the results presented in Section 5.3, the most successful potential function, in general
for all examined numbers of pursuers, is the modified FIRAS and quadratic goal, followed
by the wave-front one, in combination with the steepest descent computation of the path.
In higher resolution grids, the computed success for the different combinations of potential
functions and steepest descent or subgoals to compute the paths is quite diverse, compared
to the results for low resolution grids. Subgoal based paths, particularly with modified FI-
RAS and quadratic goal, and wave-front potential functions, improve their overall success
compared to low resolution grids.

In the higher resolution grids, the percentages of success are higher than in low resolution
grids. This has been interpreted as the availability of more possible motion configurations,
and thus the possibility to avoid capture for longer in terms of navigation steps.

Comparing the results in Section 5.3, the following conclusions can be drawn:

• For fewer pursuers (1, 2 or 3), updating the sensing more frequently leads to better
results. The same observation was made for the low resolution grids and slow pur-
suers, but in the case of higher resolution grids, increments in the performance due
to frequent sensing has extended up to 3 pursuers, and all the speeds (fast and slow).

• For larger numbers of pursuers (more than 3) and regardless of their speed, updating
the sensing less frequently has a similar effect or improves the results compared to
frequent updates. The same observation was also made for the low resolution grids.

The best radius for computing the subgoal based paths is rsg = 6 cells (equivalent to 2 in
low resolution grids), for all numbers of slower pursuers, and the best potential functions:
modified FIRAS and quadratic goal, and wave-front. This condition changes for faster
pursuers, where the radius shifts to between 9 and 12 cells. It can be interpreted as a sign
of the need for a straighter motion towards a location away from pursuers, to improve the
possibilities to escape capture.

Statistics of the times of capture were also computed as in Subsection 5.3.2, for a maximum
of 30 navigation steps. Figures 5.35 to 5.37 present some of the results in the form of box
plots, for the different used potential functions. As previously, the results for 1, 3 and 10
pursuers are shown, for sensing updates of 3, 9 and 18 navigation steps. Other box plots
for 2,3, 4 pursuers are shown in Appendix E.

The plots of the capture times measured in navigation steps confirm the dominance of
the modified FIRAS and quadratic goal, combined with steepest descent, as the most suc-
cessful potential functions. Exceptionally, wave-front potential functions, also combined
with steepest descent, are the most successful in the case of 10 pursuers present in the
environment. The average capture times for all the different potential functions become
almost identical when the pursuers in the experiment are faster than the robot, for more
than one pursuer.
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Figure 5.29: Success of steepest descent paths for 1 pursuer and a higher resolution grid, for different
sensing updates (measured in navigation steps) and speeds. The horizontal axis corresponds to the
values of rsg and the vertical axis is the percentage of success.
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Figure 5.30: Success of subgoal based paths for 1 pursuer and a higher resolution grid, for different
sensing updates (measured in navigation steps) and speeds. The horizontal axis corresponds to the
values of rsg and the vertical axis is the percentage of success.
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Figure 5.31: Success of steepest descent paths for 3 pursuers and a higher resolution grid, for differ-
ent sensing updates (measured in navigation steps) and speeds. The horizontal axis corresponds to
the values of rsg and the vertical axis is the percentage of success.
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Figure 5.32: Success of subgoal based paths for 3 pursuers and a higher resolution grid, for different
sensing updates (measured in navigation steps) and speeds. The horizontal axis corresponds to the
values of rsg and the vertical axis is the percentage of success.
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Figure 5.33: Success of steepest descent paths for 10 pursuers and a higher resolution grid,
for different sensing updates (measured in navigation steps) and speeds. The horizontal axis
corresponds to the values of rsg and the vertical axis is the percentage of success.
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Figure 5.34: Success of subgoal based paths for 10 pursuers and a higher resolution grid, for different
sensing updates (measured in navigation steps) and speeds. The horizontal axis corresponds to the
values of rsg and the vertical axis is the percentage of success.
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Figure 5.35: Capture times (in terms of navigation steps) for 1 pursuer, a higher resolution
grid, different sensing updates (measured in navigation steps) and speeds. The horizontal axis
corresponds to the used potential functions, and the vertical axis is the average of navigation steps
before capture in 50 simulations.
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Figure 5.36: Capture times (in terms of navigation steps) for 3 pursuers, a higher resolution
grid, different sensing updates (measured in navigation steps) and speeds. The horizontal axis
corresponds to the used potential functions, and the vertical axis is the average of navigation steps
before capture in 50 simulations.
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Figure 5.37: Capture times (in terms of navigation steps) for 10 pursuers, a higher resolution
grid, different sensing updates (measured in navigation steps) and speeds. The horizontal axis
corresponds to the used potential functions, and the vertical axis is the average of navigation steps
before capture in 50 simulations.
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Figure 5.38: Flow diagram of the computations for the simulations to evaluate the success avoiding
capture while pursuers move, for low resolution grids, and updating the sensing. Both paths,
steepest descent only and subgoal based (protean) are computed independently in the simulations,
but following the flow of processing shown in the diagram, as the consequences of the navigation
strategies in terms of navigation and motion of the pursuers are different.

The results with the higher resolution grids confirm the consequences of the variations in
the number of pursuers and their speed. Faster pursuers and in larger quantities capture
the robot more frequently in the environments, due to the cluttering in combination with
obstacles, and the coverage of larger portions of the free space. Consequently, in local
environments with only one pursuer around, the possibility of escaping is much higher
than with more pursuers.

5.6 General proteanism, high resolution, sensing updates

The objective of this section is evaluating the performance of an entirely random con-
structed path (that would still avoid collisions against obstacles) through a more general
computation of subgoals, mentioned in Section 4.4.5. Figure 5.38 presents the flow of the
computations for the general protean path.

The success of general proteanism paths for different parameters is compared with steepest
descent only paths and guided proteanism paths, the latter both towards a local goal that
changes according to updates in the sensing. In the simulations of this section, the success
is defined as avoiding capture before 30 navigation steps.

The parameters for the simulations have been defined in Table 5.2, for high resolution grids
and sensing updates. Modified FIRAS and quadratic goal potential functions were used to
compute the simulations in this section, as they offered the highest success in previous
sections.

Subsection 5.6.1 presents some visual examples of computed paths, using the proposed
steepest descent, guided proteanism and general proteanism approaches. Subsection 5.6.2
presents a statistical analysis of the success, through comparative graphs.
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(a) Steepest descent path, vp = 2vr (b) Subgoal based path, vp = 2vr (c) General protean path, vp = 2vr

(d) Steepest descent path, vp = 1
2
vr (e) Subgoal based path, vp = 1

2
vr (f) General protean path, vp = 1

2
vr

Figure 5.39: Concentrated paths (protean general and guided, steepest descent) simulating the
navigation of the robot and the pursuers, and updating the sensing after 3 navigation steps, for
a higher resolution grid. Steepest descent paths in red and corresponding pursuers in magenta,
subgoal based paths in green and corresponding pursuers in blue, and general protean paths in
orange and corresponding pursuers in cyan; obstacles in black.

5.6.1 Visual examples of computed paths

This subsection presents some examples of computed paths for 2 pursuers with vp = vr,
sensing updates every 3 navigation steps, rsg = 6 for general and guided proteanism and
modified FIRAS and quadratic goal potential functions. Other parameters were used as
indicated in Table 5.2. Figure 5.39 shows the examples, and more have been added in
Appendix C.

5.6.2 Success of computed paths

This subsection presents a comparison of the performance of a general protean path and
the other two proposals, steepest descent and guided proteanism towards a local goal. The
success is computed only on base of the avoidance of capture for a maximum of 30 naviga-
tion steps, for environments with different numbers of pursuers and their velocities. Other
parameters for the simulations were selected according to Table 5.2 for high resolution
grids with sensing updates. Modified FIRAS and quadratic goal were used to compute the
paths.

Significative statistics on the success of the paths are presented in Figure 5.40 for 1 pursuer,
Figure 5.41 for 3 pursuers, and Figure 5.42 for 10 pursuers, respectively, and for sensing

155



SIMULATIONS WITH BIO-INSPIRED PATHS AND PURSUERS

updates of 3, 9 and18 navigation steps. Results for 2, 4 and 5 pursuers are shown in
Appendix E. The legends in the plots are: Steepest descent, Subgoals and General protean,
for the three respective kinds of paths.

The measurement of the success in the series of simulations shown in this section allowed
the analysis of the absolute performance of the three different kinds of paths, protean
guided, protean general and steepest descent only, to find the most successful implemen-
tation against capture by pursuers. The avoidance of capture for 30 navigation steps with
each different path was used as the measure of success, without including a comparison of
the performance between each other as previously done in Sections 5.3 and 5.5.

Only modified FIRAS and quadratic goal potential functions were evaluated as they demon-
strated to be the best option according to the relative success measured in the previous sec-
tions of simulations. Steepest descent based paths resulted in better avoidance of capture
for the different numbers of pursuers and their velocities, compared to any kind of pro-
teanism, guided or general. Guided paths, both protean and steepest descent, performed
better than general proteanism (or random navigation).

When only one pursuer is present in the environment, the avoidance of capture is more
likely, even for a fast pursuer. For more than one pursuer, the success avoiding faster
or equivalent speed pursuers reaches the lowest values. This particular feature is closely
related to the reported analysis of capture with multiple pursuers at different speeds, par-
ticularly popular in visibility-based or graph theory solutions to pursuit-evasion games. A
small local environment with more and faster pursuers decreases dramatically the possi-
bilities to escape capture, even when using proteanism. On the other hand, when dealing
with slower pursuers and despite their number, more possibilities to avoid capture are
available, noted in the percentages in the corresponding figures.

Statistics of the times of capture were also computed. Figures 5.43 to 5.45 present some of
the results in the form of box plots, for the same numbers of pursuers and updates. As
previously, the results for 1,3,10 pursuers and sensing updates of 3,9,18 navigation steps
are presented. Other box plots for 2,3, 4 pursuers are shown in Appendix E.

The computed times of capture are the same as the ones in Section 5.3, for the steepest
descent only and guided proteanism (subgoals) based paths. General proteanism did not
improve the average time of capture for any number of pursuers or the differences on their
speeds. Nevertheless, it is possible to appreciate that guided subgoals improve or show an
equivalent performance to steepest descent only paths when the pursuers are faster (more
notorious in the case of 1 pursuer).

The steepest descent only paths are ideal to deal with pursuers of equivalent speed or
slower, whereas guided subgoal based paths offer a reasonable solution when the pursuers
are faster. Although for more than 1 pursuer, if the robot is fast enough, its chances of
survival improve dramatically. A randomised navigation strategy without a clear goal
does not exactly provide a better solution than one that mixes a dynamic local navigation
goal and some randomness in the deliberation of a path.
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Figure 5.40: Success of the paths for 1 pursuer and a higher resolution grid, for different sensing
updates (measured in navigation steps) and speeds. The horizontal axis corresponds to the values of
rsg and the vertical axis is the percentage of success.
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Figure 5.41: Success of the paths for 3 pursuers and a higher resolution grid, for different sensing
updates (measured in navigation steps) and speeds. The horizontal axis corresponds to the values of
rsg and the vertical axis is the percentage of success.
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Figure 5.42: Success of the paths for 10 pursuers with different velocities in a higher resolution
grid, for different sensing updates (measured in navigation steps) and speeds. The horizontal axis
corresponds to the values of rsg and the vertical axis is the percentage of success.
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Figure 5.43: Capture times (in terms of navigation steps) for 1 pursuer and a higher resolution
grid, for different sensing updates (measured in navigation steps) and speeds. The horizontal axis
corresponds to the used potential functions, and the vertical axis is the average of navigation steps
before capture in 50 simulations.
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Figure 5.44: Capture times (in terms of navigation steps) for 3 pursuers and a higher resolution
grid, for different sensing updates (measured in navigation steps) and speeds. The horizontal axis
corresponds to the used potential functions, and the vertical axis is the average of navigation steps
before capture in 50 simulations.
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Figure 5.45: Capture times (in terms of navigation steps) for 10 pursuers and a higher resolution
grid, for different sensing updates (measured in navigation steps) and speeds. The horizontal axis
corresponds to the used potential functions, and the vertical axis is the average of navigation steps
before capture in 50 simulations.
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5.7 Discussion

The restriction in the amount of information from the environment due to the limits in
sensing in a real robot means that the analysis of the environment needs to be updated
to collect the new information as the robot moves. Therefore, an iterative process of the
analysis of the environment and computation of a path is necessary. The grid occupancy
representation used in this thesis for the proposed analysis of the environment has some
disadvantages if the observed areas are quite reduced or closely blocked, and most of the
space adjacent to the robot or behind current obstacles is unknown. Also, the use of a
discretisation in the form of a grid restricts the computation of continuous paths to discrete,
but this problem can be solved by techniques like smoothing or interpolation.

The randomly generated environments used for the simulations containing several pur-
suers and obstacles (cluttered environments) are not a realistic representation of many
tasks of navigation for robots, but an exaggeration or worst-case scenario. The presence
of numerous elements restricts the free space, and consequently the viability of a path
that guarantees the escape from pursuers. Nevertheless, the generated environments with
different numbers of pursuers are useful to evaluate the performances of the proposals.
More simulations with complex, more realistic and wider environments are desirable to
complement the evaluation presented in this chapter.

The paths generated through steepest descent and proteanism (subgoals) had expected
characteristics. Both kinds of paths became more different when closer subgoals (smaller
radius) were introduced in the protean paths, causing the visible zig-zag deviations or
randomness. The differences in the paths were analysed by computing the DFD and the
RMSE as analytic measures.

Subgoal based paths are better against the problem of local minima for static environments,
but steepest descent functions are much better when the environment sensing is updated
as the robot navigates and the elements in the environment change. This means that local
minima problems become trivial when constant updates of the sensing and path planning
are performed, and the changes in the path lead to the avoidance of a straight path by
responding to the motion of the pursuers. If the environment was completely known in
advance, a fixed path could be planned from a location to another, and then, the subgoals
could help to avoid local minima problems due to the potential functions representation,
as other authors have proposed (Bell, 2005). Nevertheless, the use of the subgoals in such
a fixed path would also lead to a navigation similar to a bang-bang steering control that
oscillates along the path, when the subgoals are computed and commuted closely enough.
The optimal radius for computing the subgoals depends on the physical characteristics of
the robot itself (particularly the size and the steering capabilities), as shown when changing
the resolution of the grid, where the subgoals should not be too close to the current location
of the robot, nor as far as the limits of the environment (otherwise it becomes an almost
linear motion towards outside of the local environment).

Other solutions to the problem of local minima encountered in the paths for static envi-
ronments would involve using different potential functions to the ones proposed in the
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designs, like potential vector fields. They would allow incorporating rotational motions
around obstacles to avoid collisions, and they would facilitate the computation of a path
by substituting the search method with the physics of following the flow in the field.

Finding when it is necessary to perform the updates for sensing depends on the knowledge
of the environment and the capabilities of the robot: if the environment is known (e.g. from
mapping), and models of the pursuers are available, then sensing updates are not that nec-
essary to compute paths for navigation and escape. On the other hand, if the environment
is entirely unknown, sensing is needed more frequently to guarantee collision avoidance
and feedback about the pursuers responses. Also, if the pursuers can be modelled, from
information, and the rest of the environment does not change radically in time, the sensing
can become more sparse in time.

According to the results presented throughout the chapter, the best combinations of pa-
rameters for the proposed designs are:

• For few pursuers in the local sensed environment, a continuous update of the sensing,
interpreted as a state of alert, is necessary to detect the pursuer as soon as possible
and start an action to prevent capture. Steepest descent only computed paths show
the best performance in general over the paths computed based on subgoals for high
and low resolution grids, for both faster and slower pursuers.

• For many pursuers in close proximity, updates are not as necessary in a continuous
manner to find any threat in the environment for low resolution grids representing
the environment, as many pursuers are detected from the first sensing. The chances
to avoid capture at all are much reduced in this kind of situation, but proteanism has
proved to be useful to delay the capture for at least a couple of steps for low resolution
grids regardless of the speed of the pursuers.

Other important results are the following:

• For low resolution grids, the modified FIRAS and quadratic goal and the wave-
front potential functions perform well reaching the local goal (particularly if using
subgoals rather than only steepest descent).

• The solutions to harmonic equations (Laplace and Laplace with perturbation), through
a boundary value problem and Dirichlet conditions, present problems. The potential
values are distributed in flat surfaces along the free space in just a couple of iterations
of the numerical methods, and although there is only one minimum located in the
goal, the flat patches cause a problem with the steepest descent search method. The
resulting paths lead towards the edges of the grid, sometimes away from pursuers,
but not towards a local goal.

• An improvement in the performance of the BVP solutions for the Laplace and Laplace
with perturbation equations with iterative numerical methods is present when in-
creasing the resolution of the grid.

• Modified FIRAS and quadratic goal potential functions, followed by the wave-front
function, wre found to be the best when interacting with pursuers and updating the
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environment sensing. Both functions are easy to compute for grids, and they do not
present the problems observed with other methods in the boundaries of the local
environment that is being processed.

• In general, higher resolution grids (in this case artificially modified for the simula-
tions) produce an increase in the relative success of the paths compared with low
resolution grids, as the robots are able to navigate for equivalent distances or for
longer.

Avoiding capture entirely is not possible when faster and many pursuers are in close prox-
imity. The results on absolute success in the last section of simulations confirm that. Visi-
bility based analysis of pursuit-evasion games have reported that evaders would require a
velocity of at least 1 + 5

np
4 −3

the velocity of the np pursuers, to avoid capture by multiple
pursuers in an obstacle free environment (Klein and Suni, 2010). Thus, the only options
that the robot has to avoid capture for longer are to use obstacles and any other trick to
avoid being too predictable.

The model used for the pursuers in the simulations in this chapter is a simple version of
greedy navigation. More complex behaviours incorporating communication and coopera-
tion, and interception capabilities need to be explored in order to validate the performance
of proposed designs.

5.8 Concluding remarks

Five groups of simulations to assess the proposed solutions to the problem of navigation
and escape from pursuers, described in Chapter 4, were presented. The effect of variations
of parameters and characteristics of the environment analysis and path planning with
potential functions served to evaluate the performance of the generated paths, for different
randomly generated environments. A summary of the values and variations used in the
simulations is presented, followed by the simulations.

The first two groups of simulations evaluated the performance of the analysis of the envi-
ronment and path planning for a low resolution grid representing the elements (pursuers,
obstacles and free space). Visual examples of computed paths illustrate the computation
of the paths. An analysis without updating the environment allowed verifying that the
planned paths lead to a desired location in the environment, according to the mapping
of the environment into the different potential functions. Then, an analysis with sensing
updates (simulated) is performed, along with simulated pursuers of different velocities, to
evaluate the computed paths in a more realistic setting.

The subsequent two groups of simulations evaluate the same parameters as the previous
two, but for a higher resolution grid. The values of the parameters are adjusted in terms of
the new resolution of the grid, to compare the results from both resolutions. More visual
examples of the paths are presented.

In the final group of simulations, a more general protean approach is compared to the
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guided planning proposals, also in a higher resolution grid, with simulated pursuers, and
the same parameter variations. The analysis presented throughout the chapter allow se-
lecting the best combinations of potential functions and other computation parameters
according to the most relevant characteristics of the environment: the pursuers.

The discussion of the results highlights the main findings throughout the simulations,
with respect to the analysis of the environment and its limitations, the performance of
the steepest descent and subgoal based paths, and the limitations of the simulations. A
summary of the best alternatives and their parameters, from the ones proposed in Chapter
4, for the computation of paths as a solution to the problem of navigation and escape is
included.

The main results include: modified FIRAS and quadratic goal as the best of all potential
functions, lower radius of computation of subgoals to achieve the highest success when
using protean paths, steepest descent paths performing better than protean paths except
in cluttered environments, higher resolution grids increasing the success of the computed
paths and the unavoidable capture when the environment is cluttered by pursuers. Local
minima problems are present in complex geometries and discrete environments, thus the
need to find alternatives that deal with all their different varieties. More simulations with
complex and realistic environments (including the behaviour of pursuers) are needed in
order to continue the validation of the proposed designs in this thesis.

The next chapter presents a comprehensive literature review on pursuit-evasion games
and reinforcement learning, with main focus on proposed methods to compute strategies
for evasion from unknown pursuers, and for mobile robotics. Different kinds of solutions
to pursuit-evasion games are reviewed, along with the main characteristics and considera-
tions for the implementation of reinforcement algorithms.
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Chapter 6

Pursuit-evasion games and
reinforcement learning

The navigation and escape problem has been analysed from two different perspectives in
this thesis:

1. As a path planning problem, where an optimal trajectory of navigation is found
according to the characteristics of the environment, different kinds of constraints, and
a possible goal.

2. As a pursuit-evasion game, where the opponents are the pursuers (traditionally the
other way around), and a navigation strategy is computed by optimising the payoff
or value of the game, according to the state of the environment and the respective
actions of the pursuers (from sensing).

This chapter reviews the concept of pursuit-evasion games from a game theory perspective,
the main groups of proposed solutions to pursuit-evasion games, and the concepts and
main algorithms from the area of reinforcement learning.

Pursuit-evasion games are introduced in Section 6.1, including their definition and com-
mon characteristics from reviewed literature. Pursuit-evasion games provide a different
side to the solution of the problem of escape from pursuers, although research normally
focuses on designing strategies for the pursuers, not for the evaders. Pursuit-evasion
games have been solved using numerous techniques from artificial intelligence, including
reinforcement learning, and multi-agent systems cooperation mechanisms. This section
also mentions some of the main variations of pursuit-evasion games according to the char-
acteristics of the players in the game, followed by some examples of applications to the
solution of real life problems.

Section 6.2 presents a summary of different methodologies that have been used to solve the
pursuit-evasion games and the use of reinforcement learning algorithms. Also, particular
interest has been paid to finding examples of games where the evaders display an intelli-
gent behaviour, different from a simple reactive navigation, or a randomised movement
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without a goal, as a source of inspiration to the development of strategies for naviga-
tion and escape from pursuers. Subsection 6.2.1 summarises the solutions to pursuit-
evasion games as differential games. Subsection 6.2.2 mentions other proposed forms to
compute controllers for pursuit. Subsection 6.2.3 presents some examples of co-evolved
strategies for pursuit and evasion using genetic algorithms. Subsection 6.2.4 explores
the use of visibility-based analysis (also called graph search methods) to represent and
compute solutions of pursuit-evasion games. Subsection 6.2.5 presents some examples of
the use of probabilistic representation of the environment due to incomplete information
and the consequent optimal search computation of strategies for pursuit. Subsection 6.2.6
mentions some of the main proposals to solve multi-player pursuit-evasion games.

Subsequently, Section 6.3 presents a brief overview of reinforcement learning, starting with
its definition. This section includes some examples of the use of reinforcement learning for
autonomous navigation, including the extension of the navigation strategies to multi-robot
systems from multi-agent reinforcement learning methods. Section 6.4 briefly summarises
the main algorithms used for reinforcement learning: Monte Carlo, temporal difference
(including Q-learning, Sarsa and the actor-critic architecture), temporal difference with
eligibility traces and function approximation for continuous and large data action-state
space sets. Subsection 6.4.4 presents the options to select the parameters used within
reinforcement learning, including popular action selection mechanisms that promote ex-
ploration and exploitation in the search for computed optimal strategies or policies, and
the use of dynamic parameters to vary the speed of the learning. Subsection 6.4.5 mentions
some applications of reinforcement learning algorithms to the computation of navigation
and evasion strategies.

Finally, Section 6.5 discusses the solutions to pursuit-evasion games proposed in literature,
towards the design of strategies for navigation and escape from pursuers, and the use of
reinforcement learning for path planning as an alternative to the potential functions used
in Chapters 4 and 5. Section 6.6 presents the concluding remarks of the chapter.

6.1 Pursuit-evasion games

Game theory is an area of knowledge that studies definitions and solutions of games, which
are interactions between different players. The applications of game theory include poli-
tics, economics, psychology, operations research, communications, manufacture, planning,
scheduling, computer science, statistics, evolutionary biology and ecology. Many kinds
of games have been researched in detail since the 1950s, to model and find a solution to
real life problems. Pursuit-evasion games are one of the popular testbeds in distributed
artificial intelligence for the evaluation of cooperation strategies (Isaacs, 1965).

In pursuit-evasion games, the players are pursuers and evaders. Considering a finite
two-dimensional environment, X , divided into square cells, the main elements of pursuit-
evasion games are (Isaacs, 1965; Hespanha et al., 2000; Vidal et al., 2002):

• A set of cells, ko ⊂ X , containing a number of no fixed obstacles.
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• A set of cells, kp ⊂ X , occupied by the np pursuers.

• A set of cells, ke ⊂ X , occupied by the ne evaders.

Pursuers and evaders are allowed to move to cells in X in which there is no other pursuer,
evader or obstacle. Each pursuer collects information aboutX at discrete time instants. The
collected information y(t) is a triple < p(t), e(t), o(t) >, where p(t) denotes the measured
positions of the pursuers (as cells), e(t) is a set of cells where evaders are detected and o(t)
is the set of cells of detected obstacles. Y is defined as the sequence of collected information
{y(1), ..., y(N)} taken up to time N .

Considering xp(t) ∈ p(t) and xe(t) ∈ e(t) as the estimated positions of a pursuer p and
evader e at time t, respectively, evader e is captured by pursuer p at time t if

d(xp(t), xe(t) ≤ dm (6.1)

where d(·, ·) is a metric in X and dm is a pre-specified capture distance. Captured evaders
are removed from the game. The capture time of all evaders is defined as t∗ = max t∗e ,
where t∗e, e = {1, ..., ne} is the time instant at which evader e is captured.

Strategies for pursuers and evaders can be computed according to the objectives and char-
acteristics of the game. In order to achieve capture, a pursuit policy is a function

g(y(t)) , p(t+ 1) = [x1(t+ 1), ..., xnp
(t+ 1)] (6.2)

given the historical sequence of collected information until a time t, y(t), and the desired
position of all the [1, . . . , np] pursuers at a future time t+ 1:

p(t+ 1) , [x1(t+ 1), ..., xnp
(t+ 1)] (6.3)

In the policy, the pursuers decide the next movement for the next discrete time instant.

Pursuit-evasion games can have the following characteristics:

• The games can be of type zero-sum, a competitive game where the interests of the
players are in conflict and the strategies are optimal, or non-zero sum where cooper-
ation takes place, some players win and others lose and the computed strategies are
mixed (Vlassis, 2007).

• A game can contemplate a scenario with one pursuer-one evader, or multi-player
with increased complexity of the strategies. Multi-agent systems theory concepts can
be used in the solution of multi-player games (Liu and Jin, 2009).

• The games can be continuous, considering the models of the pursuer and evader for
continuous motion, or discrete, considering discrete models of the possible naviga-
tion actions like in visibility-based solutions (Yavin, 1986), or in matrix representa-
tions (Shinar and Silberman, 1995; Gurel-Gurevich, 2009).

• Complete information (the history of the game is known) or imperfect information
(the evader and the pursuer do not know the action selected by the opponent until
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it has been implemented) can be available for the solution of the game. If the infor-
mation is incomplete, predictions and models of the opponent can be used to try to
solve the games (Gurel-Gurevich, 2009).

• A traditional pursuit-evasion game is zero-sum (competitive), with perfect infor-
mation (fully observable, knowledge of past actions), deterministic and sequential.
Optimal strategies can be computed for the pursuers and evaders. Some of the most
common assumptions of traditional pursuit-evasion games are: all payoffs (cost func-
tions) are known, all players are rational and the rules of the game are common
knowledge (Isaacs, 1965; Gurel-Gurevich, 2009).

• A more modern approach of the games contemplate stochasticity of the elements and
incomplete or imperfect information (due to sensing and its disadvantages in terms of
noise and uncertainty in realistic applications, and the unavailability of prior models
of the opponents), discrete and simultaneous (anticipating opponent, as opponent
would also anticipate the selection of an action). Also, multi-player games have been
popular. Cooperation and negotiation mechanisms lead to mixed strategies and non-
zero sum results (Başar and Olsder, 1999; Vlassis, 2007; Gurel-Gurevich, 2009; Liu and
Jin, 2009).

• In pursuit-evasion games, the evaders frequently act according to: (a) the maximi-
sation of the time of capture by computing a control law, (b) reaction to the action
of the pursuer from a controller or from sensor-based path planning, (c) a set of
deterministic fixed rules, or (d) unpredictable intelligence (Lim et al., 2004).

Some of the principal variations of pursuit-evasion games involve different added prob-
lems, like limited information, more kinematic constraints, a need for short-term actions,
cooperation and coordination:

• Homicidal chauffeur: considering steering capabilities of the pursuer and evader
(Isaacs, 1965; Yavin, 1988; Miloh and Pachter, 1989; Glizer, 1999).

• Princess and monster (also called hunter and rabbit): considering different velocities
for the pursuer and the evader (Isaacs, 1965; Adler et al., 2003).

• Lion and man: the environment is bounded, and the solution depends on the initial
locations of the players (Karnad and Isler, 2008).

• Multi-pursuers: adding concepts of multi-agent systems (Liu and Jin, 2009).

• Herding: guiding the evader towards a specific location for its capture (Bopardikar
et al., 2009; Khalafi and Toroghi, 2011).

Prey-pursuit games have been used for the design and control of autonomous robots and
unmanned vehicles in different tasks (Vieira et al., 2009; Desouky and Schwartz, 2009; Vidal
et al., 2002; Hespanha et al., 2000; Li and Cruz, 2007; Lachner et al., 1998; Vidal et al., 2001;
Kim et al., 2001; Murrieta-Cid et al., 2007; Chung et al., 2011; Ni and Yang, 2011)), ship
collision avoidance tasks (Miloh and Pachter, 1989), and the design of anti-missile defence
strategies by intercepting the missiles (Shinar and Silberman, 1995; Yang and Yang, 1996;
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Shinar and Shima, 1996; Lipman et al., 1997; Shinar and Shima, 2002; Shima and Shinar,
2002).

6.2 Solutions to pursuit-evasion games

Solutions to the games can be separated into two categories according to Isaacs (1965):
(a) games of a kind, where the objective is finding if solutions to the pursuit-evasion game
exist, i.e. if the evader can be captured by the pursuer, and under which circumstances; and
(b) games of degree, where the objective is finding a strategy or solution for the pursuer or
for the evader.

The main groups of solutions to pursuit-evasion games are presented in the following
subsections (Luo et al., 2008):

• Control laws can be computed directly from differential games by using optimisa-
tion theory concepts, when the models of the environment, pursuers and evaders
are known (Subsection 6.2.1). Controllers can also be computed from learning and
interaction with the environment, using techniques from intelligent control theory
when no models are available (Subsection 6.2.2).

• Co-evolved strategies for pursuit and evasion using genetic algorithms (Subsection
6.2.3).

• Visibility-based analysis starts by representing the problem as a graph (generally a
grid), and then searching for solutions (Subsection 6.2.4).

• For more realistic applications to pursuit-evasion games, probabilistic analysis com-
putes solutions considering the stochasticity of the information and the models of the
environment, pursuers and evaders (Subsection 6.2.5).

• Solutions from a multi-agent systems perspective have been proposed when more
than two players are contemplated in a pursuit-evasion game (Subsection 6.2.6).

6.2.1 Differential games

When models of the environment and the players are available (in the form of differential
equations), a solution to the game can be computed by optimisation theory. The optimal
strategies (or control laws) for the pursuer and the evader result from the corresponding
minimisation or maximisation of a cost function related to the differential model (e.g., the
capture time). The strategies can be computed for both players at the same time. For
example, Leondes and Mons (1979) computed optimal strategies for pursuers with perfect
information about the environment, and evaders with noisy measurements of the state and
the environment. Yavin (1986) computed optimal strategies for the pursuer receiving noisy
measurements of the location of the evader, and the evader with perfect information. Li
and Cruz (2007) solved a stochastic differential pursuit-evasion game, with imperfect and
partial information and extension to realistic applications in robotics. Bhattacharya et al.
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(2009) computed strategies for the pursuer and the evader when obstacles are present, by
incorporating the obstacles as part of the boundaries of the environment.

Strategies for one player can be computed if the strategy of the other player is known.
For example, de Villiers et al. (1987) computed a feedback evasion law for the evader.
Cherkasov and Yakushev (2002) computed an optimal navigation for an evader, consid-
ering a pursuer performing a proportional navigation strategy. Lim et al. (2004) and Shinar
et al. (2010) performed a worst-case analysis to predict the behaviour of an intelligent
evader, and then computed a control strategy for the pursuer. Abramyants et al. (2004)
developed control laws for a pursuer that detects and classifies targets (as evaders could
use false targets to distract a pursuer) and then captures the evader. Galloway et al. (2007)
computed a control law for pursuit from stochastic differential equations, considering an
evader with a specific steering control.

Other researchers have been interested in analysing the characteristics of the optimal so-
lutions, like the conditions of capture (games of kind). Meier (1969) and Mizukami and
Eguchi (1977) studied the capture region when the evader is faster than the pursuer using
geometric methods. Yavin (1987) computed the optimal conditions for pursuit and the
corresponding control laws when the evader uses a false target strategy to distract the
pursuer. Bernhard and Pourtallier (1994) studied the feasibility of capture of an evader
when getting information about it is costly in time for the pursuer. Cardaliaguet (1997)
characterised the victory of each player in a pursuit-evasion game in a geometric form.
Glizer (1999) considered the steering capabilities of the pursuer and evader and their speed
to find if capture is possible for slower evaders.

Numerical solutions to the differential equations can be computed by means of a bound-
ary value problem, and approximated with numerical methods (Pachter and Yavin, 1981;
Yavin, 1988; Raivio and Ehtamo, 1997; Lachner et al., 1998; Hong-yan and Zhi-qiang, 2010)
or neural networks (Pesch et al., 1995) trained from previously computed optimal strate-
gies.

Current areas of research in differential games are (Buckdahn et al., 2011): the presence
of state constraints; the use of stochastic differential equations; dealing with incomplete
information; solutions to non-zero sum games; and using long-time average to reduce the
complexity of the differential games. Biological inspiration has been used in recent years
as part of the differential modelling. Fuchs et al. (2010) developed optimal control strate-
gies for a pursuer and two evaders that cooperate (biologically inspired), by using a cost
function that captures the cooperative behaviour of the evaders in a 2-D navigation plane.
Hong-yan and Zhi-qiang (2010) modelled a pursuer and an evader as a fish school each
(considering the minimum turning radius in the confrontation), solved with numerical
methods.
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6.2.2 Controllers

Other different control solutions (controllers) have been proposed. The use of intelligent
controllers (fuzzy, neural networks) makes it possible to compute a pursuit strategy from
the interaction of the pursuer with the evader and the environment through sensing (Lim
et al., 2004). Jeong and Lee (1999) designed a fuzzy logic controller for pursuit from the
optimisation provided by a genetic algorithm from the interaction with an evader. Desouky
and Schwartz (2009) designed a fuzzy controller for pursuit that adjusts its parameters from
interacting with the environment: an optimal strategy is computed first using Q-learning,
and then it is used to compute the parameters of the controller with genetic algorithms,
considering the Q-learning strategy as training data. Chung and Liu (2010) developed a
steering fuzzy logic controller, with parameters computed from genetic algorithms, for a
mobile robot working as a pursuer, for a trajectory of an evader known a priori.

6.2.3 Co-evolution of strategies

Pursuit and evasion strategies have been developed from co-evolution using genetic algo-
rithms. The idea comes from a biological inspiration on predator-prey interactions (Miller
and Cliff, 1994). Wahde and Nordahl (1998b) co-evolved pursuers and evaders represented
as neural networks for environments with and without obstacles and boundaries, reporting
the emergence of protean behaviours in the evaders. Kim and Tahk (2001) proposed formu-
lating a pursuit-evasion game as a constrained min-max problem, and solving it by using
Lagrange multipliers to handle the constraints and co-evolutionary computation. Tay et al.
(2008) co-evolved pursuer and evader strategies (in the form of combinations of actions to
form steering strategies) in an environment with boundaries and obstacles, using chemical
genetic programming.

6.2.4 Visibility-based analysis (graph search)

The state space in which pursuers and evaders move can be represented as a graph, where
lines and vertices indicate possible motions (Chung et al., 2011). Pursuers and evaders
move along lines considering constraints on their velocities, visibility and obstacles in the
environment. Some researchers have developed randomised strategies for pursuit. For
example, Adler et al. (2003) and Dumitrescu et al. (2010) developed randomised algorithms
in a grid (the shape of the graph) with hiding from the line of sight of the evaders, when
both the pursuers and evaders have limited vision. Isler et al. (2005) developed randomised
algorithms for the capture of an unpredictable evader in polygonal environments. Suzuki
and Zylińsky (2008) designed randomised and deterministic algorithms in 3D applied to
a robotic multi-pursuer game, including forming a trap for the evader, and hiding before
capture.

On the other hand, visibility-based analysis has also been used to find the conditions
of capture of the evader under different constraints like occupation of vertex and edges,
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lack of information about the evader, limited motion of the pursuers and different speeds
(Dawes, 1992; Neufeld, 1996; Isler et al., 2006; Nisse and Suchan, 2008; Fomin et al., 2008;
Fomin and Thilikos, 2008; Brass et al., 2009; Fomin et al., 2010; Scott and Stege, 2010). The
results are often given in terms of the necessary number of pursuers for capture.

6.2.5 Probabilistic analysis

From a more realistic perspective, the representation of the players and the environment
in the game can be built into a probabilistic model (probability map, Gaussian proccess,
Markov decision process), considering incomplete information, noise and stochasticity com-
ing from sensing or predictions (Chung et al., 2011). For probabilistic models of the evader
and the environment, strategies of pursuit can be computed as a greedy search towards
capture, or the strategies can be learned by reinforcement learning.

Ficici and Pollack (1999) computed a statistical model of the evader, then the pursuer
computed a path towards the evader, whilst the evader evolved a neural network based
controller. Hespanha et al. (2000) used receding horizon control to compute the optimal
policies for a pursuer and an evader in a Markov modelled game. Ishiwaka et al. (2003)
modelled a multi-pursuer game as a decentralised partially observable Markov decision
process (POMDP), and each pursuer computes its own strategy with Q-learning. Chung
and Furukawa (2009) proposed the use of particle filters to detect and model evaders in
the environment, and then pursuers evaluate the information about the evaders to choose
which evader to capture.

Other authors preferred computing a discrete probability map. Kim et al. (2001), Vidal
et al. (2002) and Kim and Shim (2003) computed navigation greedy policies for robots from
probability functions or maps. Antoniades et al. (2003) proposed computing probability
maps of the evaders combined into a single reward function, dividing the map to avoid
overlap of pursuing the same evaders, and then computing policies using search methods
(within adjacent cells, or in the whole map to compute pursuit policies) in a multi-player
game. Zheng et al. (2007) used a discrete (grid) probability map of the environment,
and proposed a search algorithm to find and capture pursuers that avoids many visits
to the same cells by pursuers. Huang et al. (2009) proposed building a probabilility map
of the environment and the evader, computing a pursuit policy from searching the map
considering the kinematic characteristics of the pursuer. Kwak and Kim (2010) used a
probability map to represent a multi-player game in 2-D, using the maximisation of the
probability of capture (global-max) as pursuit policies.

Table 6.1 shows a comparison of the main characteristics of the groups of solutions to
pursuit-evasion games for single pursuer-single evader games, presented in the previous
subsections.
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Table 6.1: Comparison of groups of solutions to pursuit-evasion games for single agents.
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6.2.6 Multi-agent systems approach

The extension of one pursuer-one evader games to multi-players was introduced in the
1980s by Benda (Liu and Jin, 2009). Many of these games consider finding pursuit strategies
from a multi-pursuer perspective, rather than evasion. Different combinations of elements,
from single agent groups of solutions and multi-agent systems, have been used to solve
multi-player games:

• Incorporating concepts of multi-agent systems to the solution of the game, particu-
larly communication between players, cooperation and negotiation, coalitions. Ex-
amples of the use of communications are: communication of information from sens-
ing the environment (Vidal et al., 2001; Zhao and Jin, 2005; Fan et al., 2009), mixing
direct and indirect (sharing rewards) communication between pursuers (Sun et al.,
2003) and sharing individually computed policies (Zhao and Jin, 2005). Other ex-
amples of coordination through negotiation techniques and forming coalitions are:
voting to combine individual decisions of the pursuers into a joint pursuit strategy
(Partalas et al., 2007), a bidding mechanism to form coalitions of pursuers to chase an
evader collectively (Cai et al., 2008) and the formation of alliances between the pur-
suers to chase a detected evader in formation, controlling their navigation strategies
through a neural network (Ni and Yang, 2011).

• Using multi-agent reinforcement learning to compute optimal strategies for pursuit
from stochastic models of the environment. Tamakoshi and Ishii (2001) used Q-
learning with function approximation in the form of a normalised Gaussian network
for the strategies of the pursuers. Quian and Hirata (2003) proposed a Q-learning
automaton algorithm to compute the strategies for the pursuers. Kaya and Alhajj
(2002), Gültekin and Arslan (2002), Kaya and Alhajj (2003), Kaya and Alhajj (2004)
and Watanabe and Takahashi (2007) estimated a fuzzy model of other pursuers and
evaders, and computed the best strategy using Q-learning. Ishikawa et al. (2008)
proposed a model of internal rewards to guide the strategies of the pursuers.

Also, multi-player pursuit-evasion games has been one of the popular testbeds for
multi-agent reinforcement learning algorithms (Panait and Luke, 2005). Kilic and
Arslan (2002) and Duman et al. (2005) proposed a fuzzy version of Q-learning for and
evaluated it for a pursuit task. Meng et al. (2005) proposed a combination of Nash-
Q-learning, correlated equilibrium (CE) Q-learning and hill-climbing algorithms and
evaluated it through pursuit strategies.

• Decomposing the multi-player game into simpler ones of one pursuer-one evader or
various pursuers-one evader. For example, Li and Cruz (2006) and Li et al. (2007)
computed suboptimal solutions from differential equations iteratively over limited
look-ahead intervals. Wang et al. (2002) divided a multi-player game into multi-
pursuer single-evader games, using a formation control law to surround an evader
and avoid collisions between pursuers. Schenato et al. (2005) proposed the use of a
sensor network to predict the behaviour of the evaders and assign an evader to a pur-
suer, then each pursuer plans a path to avoid collisions and capture the corresponding
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evader. Cai et al. (2009) proposed the formation of different coalitions of pursuers
that would chase a single evader each. Vieira et al. (2009) proposed decomposing
a multi-player game into various multi-pursuer single-evader games, solved by a
graph search approach and considering a communication network for coordination
within the multi-pursuers. Kwak and Kim (2010) divided a probability map so that a
pursuer would focus on an evader accordingly.

• Other approaches for multi-pursuers include the combination of intelligent control
concepts, swarms and formations and geometrical analysis. Nitschke (2003) evolved
neural network controllers to compute cooperative behaviours for pursuit. Kopparty
and Ravishankar (2005) computed lines towards the evader and avoiding obstacles in
a multi-pursuer setting (geometrical algorithms). Bopardikar et al. (2007) used multi-
pursuers maintaining a formation (according to their detection radius) to perform
a sweeping pattern to find an evader, and then change the formation to capture it.
Hládek et al. (2008) proposed a centralised entity giving suggestions for the locations
of the pursuers according to a fuzzy model of the environment. Jin and Qu (2010)
coordinated the locations of the pursuers as a polygon formation (intersecting circles
of capture) to surround a faster evader. Bopardikar et al. (2009) also used formations
of pursuers with limited sensing capabilities to herd evaders. Fan et al. (2009) used
communication of last observed locations of evaders and ant inspired motions (ant
swarms) to follow evaders with mini-robots (e-Puck) and considering their limited
sensing capabilities.

The next section reviews the topic of reinforcement learning, previously mentioned as
part of the computation of strategies and control systems for pursuit in a pursuit-evasion
context.

6.3 Reinforcement learning

The concept of reinforcement learning comes from psychology studies on the process of
conditioning, where a behaviour is favoured if a stimulus is given after its performance.
This idea has been adapted to machine learning, where a decision maker (also frequently
called agent) learns to select actions that maximise a reward given by the environment
(Sutton and Barto, 1998). Reinforcement learning has been applied to solve several kinds
of problems in artificial intelligence, game theory, control, decision making and planning,
among others.

The milestones of reinforcement learning are presented in Table 6.2, with emphasis on the
different mathematical models. The mathematical background of reinforcement learning
comes from its modelling as a Markov decision process (MDP), numerically solved using
dynamic programming algorithms.

A discrete MDP is defined as a triplet < S,A, P0 >, where S is the set of possible discrete
states and A is the discrete set of actions performed by the decision maker. P0 is the
state transition probability kernel, which assigns to each state-action pair, (s, a) ∈ S × A,
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Table 6.2: Milestones of reinforcement learning

YEAR CONTRIBUTIONS

1911 Studies on trial and error learning by Thorndike (Sutton and Barto, 1998).

1950-1959 Bellman equation is developed in control theory as a relation between the dynamics of the system
and a value function. Markov decision processes (MDPs) are introduced. Trial and error learning
is studied in computer science by Minsky. Learning with temporal-difference is developed by
Samuel (Sutton and Barto, 1998).

1960-1969 The policy iteration method is proposed to solve MDPs. Reinforcement learning is formally used
in engineering (as part of artificial intelligence) for credit assignment problems (Sutton and Barto,
1998).

1970-1979 Learning automata are developed. Reinforcement learning and temporal-difference are joined by
Klopf and Sutton. Classifier systems are developed by Holland. The actor-critic architecture
is proposed. Learning for neural networks is done with reinforcement learning. Temporal-
difference is used as a prediction method separated from control systems. Q-learning is proposed
by Watkins (Sutton and Barto, 1998).

a probability measure over S × R. The state transition probability kernel assigns: (a) a
probability for a transition from state s to a new state, s′, when choosing an action a, and
(b) an immediate reward function, ρ : S × A → R, which assigns a reward when choosing
a determinate action in a determinate state in a discrete instant of time (Sutton and Barto,
1998; Hespanha et al., 2000; Buşoniu et al., 2006; Vlassis, 2007; Szepesvári, 2010).

When performing action a, the state of the environment changes from s to s′ in a time step t

with a probability of P (s′, s, a), and receives a reward

r(t) = ρ(s′, s, a) (6.4)

The actions are selected according to a policy, π, that can be deterministic or stochastic. A
deterministic policy is a direct mapping from states to actions π : S → A, and a stochastic
policy is a mapping to probability distributions π : S ×A → [0, 1].

Thus, the problem of learning is finding a policy, π : s → a, such that starting at state s0,
and selecting a series of actions, a goal is reached in a minimum of i steps. A discounted
reward is maximised over time,

R(t) =

∞∑
i=0

γir(t+ i+ 1) (6.5)

where γ ∈ (0, 1) is the discount rate. To find the optimal policy in terms of the reward,
iterative methods from dynamic programming using Bellman optimality equations are
used. A value function for S (the states) can be defined as an accumulation of rewards
obtained when following a policy π given a starting state, s0,

V π(s) = Eπ {R(t)|s} = Eπ


∞∑
j=0

γjr(t+ j + 1)|s

 (6.6)

where Eπ is the expected value. Likewise, a value function for the taken action in s when
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Estimating V (s) or Q(s, a) Computing an optimal policy π∗
-
-

6

Figure 6.1: The reinforcement learning problem: estimating the state or action-state values, and then
computing an optimal policy. Solid line: estimation of the value functions first, and then computing
the optimal policy. Dashed line: estimation and computing the policy iteratively in time.

following a policy π can be defined as

Qπ(s, a) = Eπ {R(t)|s, a} = Eπ


∞∑
j=0

γjr(t+ j + 1)|s, a

 (6.7)

The Bellman equations (or dynamic programming equations) give a value to the states or
action-state pairs from the expected reward, recursively (in terms of the future actions),

V π(s) =
∑

a∈A(s)

π(s, a)
∑
s′∈S′

P (s′, s, a) [ρ(s′, s, a) + γV π(s′)] (6.8)

Qπ(s, a) =
∑
s′∈S′

P (s′, s, a) [ρ(s′, s, a) + γV π(s′)] (6.9)

The optimal policies that maximise the value or action-value functions can be defined as

V ∗(s) = max
π

V π(s) (6.10)

Q∗(s, a) = max
π

Qπ(s, a) (6.11)

Substituting the optimal values in the Bellman equations, results on the Bellman optimality
equations,

V ∗(s) = max
a∈A(s)

∑
s′

P (s′, s, a) [ρ(s′, s, a) + γV ∗(s′)] (6.12)

Q∗(s, a) = max
a∈A(s)

∑
s′

P (s′, s, a)

[
ρ(s′, s, a) + γ max

a′∈A(s′)
Q∗(s′, a′)

]
(6.13)

Thus, the optimal policy is a set of actions that delivers the optimal value or action-value
function, from the rewards obtained from the transitions to future states. When the value
or action-value functions are not known, the problem becomes finding an estimation or
prediction of the functions, and then computing the optimal policy, as shown in Figure
6.1. The policies can be deterministic (selecting an action for a state) or stochastic (as
probabilities of selecting actions for a state).

Reinforcement learning is different from other forms of learning for the following reasons
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(Sutton and Barto, 1998; Smart and Kaelbling, 2002):

• Reinforcement learning is used when no analytic solution of the model of the environ-
ment is available, if the environment is a model of the reality, or when environment
information is available only through interaction with it.

• No knowledge of the MDP is needed to solve the problem of reinforcement learning,
only the rewards.

• Exploration and exploitation take place in the learning, according to the requirements
of design.

• Reinforcement learning can be applied to solve stochastic problems.

• Algorithms for online (learning while performing real actions with the current pol-
icy) and offline learning (learning first, then performing real actions accordingly) are
available.

• Dealing with different amounts of data is possible through generalisation, sampling
and approximation (using neural networks to calculate and store the value functions,
instead of a look-up table for smaller state or action-state space).

• Convergence to an optimal solution has been proved for some algorithms, like Q-
learning for single agent cases and MDP (Sutton and Barto, 1998; Gosavi, 2008).

• In robotics, reinforcement learning allows computing a high level policy with the
right formulation of the reward.

6.4 Reinforcement learning algorithms

Reinforcement learning algorithms consider the mathematical theory presented in the pre-
vious section, evaluating the selection of actions for specific states to compute an optimal
policy. Dynamic programming allows performing value iteration and policy iteration to
compute the evaluation of a policy and the computation of a new one, respectively, for
several episodes and steps recursively. An episode consists of a series of steps (state →
action→ reward) from a initial condition to a terminal condition or state (Szepesvári, 2010).

The different proposed algorithms try to compute good approximations of the value func-
tions, and optimal policies according to the requirements of the task, in terms of availability
of models, available information from the environment, computational cost, required speed
of the deliberation, risks of exploration of actions, among others. The main differences
between the algorithms are: how to compute the value functions (using future predictions,
considering visited states or action-state pairs), when to update the current policy, dealing
with the curse of dimensionality and large sets of data and if the algorithm is for one agent
or many (multi-agent reinforcement learning).
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6.4.1 Monte Carlo

In Monte Carlo algorithms, the value or action-value functions are estimated as an average
of the results after each episode in the game. The every-visit Monte Carlo algorithm com-
putes the value function evaluation for an episode (all the steps, visiting states and actions
in multiple occasions), while first-visit Monte Carlo computes the value function evaluation
after the first visit of all the states and actions. Monte Carlo algorithms do not perform any
prediction of future actions and state transitions (Sutton and Barto, 1998; Szepesvári, 2010).

6.4.2 Temporal difference (TD)

Temporal difference algorithms use predictions (bootstrap) to compute the estimate of the
value or action-value functions (V (s) or Q(s, a)). The algorithms can be offline (or off-
policy) when the value or action-value function of a policy is being estimated while the
policy changes, or online (or on-policy) when a policy that is being evaluated (through
computing and estimate of its value or action-value function) (Sutton and Barto, 1998;
Gosavi, 2008; Szepesvári, 2010).

TD(0) algorithms, like Q-learning and Sarsa (shown in Algorithms 3 and 4) consider only
the next step for their bootstrapping (single step predictions), while TD(λ) algorithms
consider several steps in the bootstrap (multiple step predictions). λ ∈ [0, 1] is a weight
for the contribution of the rewards resulting from every transition of states at each step
(Sutton and Barto, 1998; Peeters et al., 2007). In Monte Carlo, λ = 1, and in TD(0), λ = 0.

The main algorithms within temporal difference are (Sutton and Barto, 1998; Gosavi, 2008;
Szepesvári, 2010):

1. Q-learning: an algorithm that does not require a stochastic model of the environment,
but only knowledge about the rewards and the observation of the transitions to the
next state. It is useful for non-stationary systems and goals. The policy is updated
offline, as the used policy could change while other is being evaluated (the value
function is being computed). Q-learning has been widely used throughout the litera-
ture due to the simplicity of the value function updates, but its major drawback is the
extrapolation of the algorithm when dealing with a continuous action-state space by
means of function approximation. The tabular version for the Q-learning algorithm is
shown below, using α as the learning rate (determining the speed of the processing),
γ the discount rate (weighting the previously received rewards) and Q(s′, a′) as the
action-state value for the actions for the next predicted state. The tabular version of
Q-learning is presented in Algorithm 3.

2. Sarsa: an online method, where the evaluated policy (by computing its value func-
tion) is unique during the length of the evaluation. This algorithm is a contemporary
of Q-learning. The tabular version of the Sarsa algorithm is presented in Algorithm
4, for the same learning parameters as Q-learning.

3. Actor-critic architecture: the critic performs an evaluation of a policy (computing
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Algorithm 3 Q-learning

Initialise Q(s, a) with zeros
repeat

Initial state s
repeat

Select action a for s using an action selection method
Simulate a, obtain reward r and observe next state s′

Update: Q(s, a)← (1− α)Q(s, a) + α[r + γmaxa′∈A(s′)Q(s′, a′)]
s← s′

until s is the goal
until a number of iterations
The policy is selected from maxa∈A(s)Q(s, a) for all s ∈ S

Algorithm 4 Sarsa

Initialise Q(s, a) with arbitrary values
repeat

Initial state s
repeat

Select action a for s using an action selection method
Simulate a, obtain reward r and observe next state s′

Select action a′ for s′ using an action selection method
Update: Q(s, a)← (1− α)Q(s, a) + α[r + γQ(s′, a′)]
s← s′

until s is the goal
until A number of iterations

the value or action-value function) using algorithms like Sarsa(λ) or least-square
temporal difference-Q(λ). The actor improves the policy in a greedy manner from
the computed function by the critic (where the best actions for a state are the maximi-
sation of V (s) orQ(s, a)), or including some exploration using ε-greedy or Boltzmann
probabilities to select actions randomly. This architecture is useful in partial observ-
able domains, to compute stochastic policies.

6.4.3 Eligibility traces and function approximation

Eligibility traces allow modulating the effect of the history or the predictions of visited
states and action-state pairs, by assigning weights (Sutton and Barto, 1998; Szepesvári,
2010). Eligibility traces can be accumulative, or replaced by a fixed value after a number
of occurences. They speed up the learning, and they can be applied to both tabular and
function approximation based algorithms.

When the state space is large or infinite, the value or action-value functions can be ap-
proximated by a set of parameters (weights) and features (basis functions) that map the
action-state pairs, for example

Q(s, a) = ωTψ (6.14)

where ωT is the transpose of the weights, and ψ is the set of basis functions. The ba-
sis functions that can be employed include polynomial, Fourier, wavelet, tensor product
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constructions (like radial basis functions), binary features (like state aggregation) and tile
coding. Gradient temporal difference algorithms can be used to compute the estimate of
the value or state-value functions to guarantee the convergence to the optimal values.

When the dimensionality of the state space, S, is large (curse of dimensionality), interpolators
and function approximations can be used including: discretisation of the continuous state
spaces (Santamaria et al., 1997), neural networks (ten Hagen and Kröse, 2000; Gosavi, 2008),
fuzzy logic (Berenji, 1994; Glorennec, 1994), kernel smoothing methods (Gosavi, 2008) and
decision trees (Szepesvári, 2010).

Other approaches to solve the problems of dimensionality, amount of data, different tim-
ing of processes, and decentralised processing include hierarchical reinforcement learning
and multi-agent reinforcement learning algorithms. Hierarchical architectures have been
proposed to deal with temporal abstractions, where the time between a decision and the
next is a random variable (semi-Markov decision processes, SMDP). Q-learning and Sarsa
algorithms can be applied to solve SMDP, along with the use of hierarchies consisting of
macro-actions for large scale planning and problem solving. The use of macro-actions
allows the computation of partial policies that rule more primitive actions (subsets of the set
of states, S), and that are valid for different durations of time. Hierarchical reinforcement
learning can be applied to simultaneous processes (concurrent actions), coordination of
multi-agent systems, and to preserve the memory (in a structural form) of sequences of
actions (Barto and Mahadevan, 2003).

Multi-agent reinforcement learning algorithms consider decentralised and hybrid com-
putation of policies, complemented by the use of coordination techniques (negotiation,
cooperation, alliances) and indirect and direct communication (e.g., distributed rewards,
sharing knowledge). Some examples of multi-agent reinforcement learning applications to
multi-robot navigation have been mentioned in Section 6.3. Current challenges to target
in multi-agent reinforcement learning algorithms include dealing with partial observable
Markov decision processes (POMDP) and the lack of information about the environment,
the presence of irrational opponents, and continuous and large sets of information (Yang
and Gu, 2004).

6.4.4 Variations in the key features of the algorithms

Real life applications call for dealing with the curse of dimensionality and continuous
supply of information, and also to find the best combination of parameters in an algorithm
to provide a solution to a specific task. The following paragraphs present a summary of
the possible variations proposed in the literature for the reinforcement learning algorithms.
The parameters that need to be selected include the action selection mechanism, the balance
between exploration and exploitation in the search for the optimal policy, other learning
parameters (including the learning rate and discount rate), and the reward function.
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Action selection mechanisms

This stage in a reinforcement learning algorithm allows a degree of exploration of the pos-
sible actions in the steps of an episode, to find an optimal policy from interactive learning.
Exploration of alternatives allows maximising the knowledge and identifying a system. A
balance between exploration and exploitation is important, as it allows computing other
policies that could lead to the global optimal as a result of the exploration, and at the same
time produces policies that are useful for a task. Three main action selection mechanisms
have been recurrently used (Sutton and Barto, 1998; Gosavi, 2008; Szepesvári, 2010):

• Greedy action selection: this method selects the action with the highest value for the
current or future state,

a∗ = max
a∈A(s)

Q(s, a) (6.15)

where a∗ is the optimal action selected from the best action values of all possible
actions for that state s. The method performs exploitation and does not leave room
for exploration, which could lead to local maxima problems and the computation of
suboptimal strategies. For this reason, although it is more computationally costly,
exploration is an essential part of the other action selection methods.

• ε-greedy action selection: a probability ε is used to balance the exploration and
exploitation, being decreased as the process of learning evolves towards the optimal
policy. The corresponding action for state s is defined as

a =

{
a∗ with probability 1− ε
random action with probability ε

(6.16)

where a∗ is the optimal action from Equation 6.15 and ε is limited to the range [0, 1].

• Soft-max action selection: the ε-greedy method chooses equally between the actions
for the current state, which could be inconvenient as the worst actions (in terms of
their values) can be selected with the same probability as the best ones. To overcome
this situation, the soft-max action selection method distributes probabilities to all
possible actions for a state, ranked according to their utility (Q value), based on a
Gibbs or Boltzmann distribution:

P (a) =
eQ(s,a)/τ∑

b∈A(s) e
Q(s,b)/τ

(6.17)

where P (a) is the probability for an action a from the set of possible actions for state
s, b ∈ A(s); and τ is a varying parameter known as the temperature, that modifies the
randomness of the action selection. High temperatures allow exploration, and values
closer to zero lead to exploitation.
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Learning parameters

Learning parameters also help to deal with balancing the exploration and exploitation,
and provide the settings for the learning (the speed of the learning, and sometimes the
convergence to a solution). Static parameters have been traditionally used throughout the
literature, but dynamic parameters allow more control of the learning process.

• Fixed learning parameters: traditionally, the learning parameters (like the learning
and discount rates) are normally set to a fixed value within a range, and they are not
modified during the process of learning. Some optimal ranges for the parameters
have been suggested in popular literature (Sutton and Barto, 1998). Normal ranges of
parameters are: 0 ≤ γ ≤ 1 for the discount rate, and 0 ≤ α ≤ 1 for the learning rate.
Small values of the learning rate, α, and the discount factor, γ, allow a great degree
of exploration, whilst values of almost 1 imply exploitation. For the action selection
mechanism, a large value of ε (within [0, 1]) or a large temperature, τ , cause a random
behaviour in selecting actions.

• Dynamic learning parameters: the principal target of using dynamic learning pa-
rameters has been favouring exploration at the beginning and then transitioning
smoothly towards merely exploitation by reducing the rates. Proposed forms have
been used to modify the learning parameters along the with learning, for exam-
ple a selection by fuzzy logic according to the needs of exploration or exploitation
(Akbarzadeh et al., 2003), exponential decay functions to transition the parameters
(particularly the learning rate and ε or τ in the action selection mechanism) from
exploration towards exploitation (Sutton and Barto, 1998), and genetic algorithms to
compute the best values for all the tabular Q-learning parameters in a specific task
(Kamei and Ishikawa, 2004, 2006).

Reward functions

The design of the reward function for the learning is an important part of a reinforcement
learning algorithm, as it can speed up the process of computing the estimate of the value
or action-value functions and thus improving a policy (or strategy). Shaping the reward
function can be done by incorporating prior knowledge about the task, incorporating other
estimators and sources of information (internal or external), and even decomposing the
reward function as needed (Matarić, 1994; Laud and DeJong, 2003; Marthi, 2007).

6.4.5 Applications of reinforcement learning to navigation

Reinforcement learning has been used to compute navigation strategies (as another form
to perform path planning and control) for robotics based on its previously mentioned
characteristics. For example, ten Hagen and Kröse (2000) used an actor-critic configuration
for a robot following a line without information about the system, based on a one layer
feed forward artificial neural network function approximation. Smart and Kaelbling (2002)
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proposed computing the approximated value function (neural network) of the action-state
space first with a fixed policy, and then upgrading the policy for autonomous navigation
from learning via Q-learning. Yang et al. (2004) proposed the use of Q-learning with neural
network based function approximation for the navigation of a mobile robot, where the
weights and parameters of the neural network are computed from the interaction with
the environment. Altahhan et al. (2008) used Sarsa (λ) with function approximation based
on radial basis functions to compute a navigation strategy from visual information of the
environment. Jaradat et al. (2011) proposed using Q-learning to train a robot for navigation
in dynamic environments by limiting the number of possible states.

Also, an extension of multi-agent reinforcement learning algorithms is their application in
multi-robot navigation tasks, like RoboCup, area sweeping, tracking targets, multi-pursuit
(mentioned in Section 6.1) and transportation (Buşoniu et al., 2008). Some examples that
compute navigation strategies (or policies) include: Fujii et al. (1998) employed the com-
munication of sensed information about the environment from a robot to the other, then
learning navigation actions to avoid collisions between robots; Asada et al. (1999) used
system identification techniques (local predictive models) embedded in a robot to learn the
actions of other robots and then to compute a navigation strategy with Q-learning; Melo
and Ribeiro (2008) proposed an estimation of the policies of other robots from history, and
the formation of a joint control navigation policy (from individual decisions) sharing the
same reward function.

6.5 Discussion

A tendency to compute strategies for the pursuit and not the evasion was observed in the
literature review of the present chapter. This situation is evident throughout the different
solutions to the games, but is particularly evident in the multi-player case. For example,
the use of cooperation to achieve pursuit, or the use of reinforcement learning, where
distributed and joint strategies are computed mostly for the pursuit, or pursuit is used
to evaluate the multi-agent reinforcement learning algorithms. Different examples of the
design of strategies for the pursuers were mentioned throughout Section 6.2, as well as few
exceptions towards the design of evaders and other attempts (e.g., Antoniades et al. (2003),
Cherkasov and Yakushev (2002)). Other efforts on the design of evasion are presented in
Section 3.2 using path planning techniques, in Subsection 6.2.1 as part of the solution to
differential equations for both parties and in Subsection 6.2.3 as part of the co-evolution
of pursuers and evaders. The result of differential games, visibility-based analysis, co-
evolution and other multi-agent systems approaches lead to pursuit controllers or strate-
gies developed for fixed evasion strategies, or the other way around, leaving little room for
adaptation to radical changes in the opponent (maybe the result of intelligence, learning,
evolution and adaptation). The evaders commonly do not have an adaptive control system
that allows navigation with collision avoidance, and simultaneously avoiding capture by
multiple pursuers. Also, the multi-evader case with fewer pursuers has not been studied
as extensively as the multi-pursuit case, representing future opportunities to extend the
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research of this thesis.

Games of kind, in combination with visibility-based analysis, provide a tool to evaluate the
feasibility of the evasion according to the capabilities of the pursuers. Incorporating the bio-
inspired ideas of refuges and proteanism into the navigation strategies of the evaders could
be reflected in the analysis of the necessary conditions to avoid capture. Nevertheless,
the strategies used by the pursuers are not known, or could not be possible to predict
accurately.

In robotic systems, the information provided can be incomplete and dynamic, as it is
acquired from sensing, and the environment can change. Then, a stochastic model of the
environment becomes a better option than a precise deterministic model (Chung et al.,
2011). Sometimes, when designing strategies for the navigation of robots and other real
life applications, only one side of the strategies or behaviours (pursuers or evaders) is
developed and the other part is expected to be unknown along with the rest of the environ-
ment. In this thesis, the selection of reinforcement learning to solve a pursuit-evasion game
from the evasion perspective contemplates both situations: the availability of stochastic
information of the system, from locally sensed sparse information, and the interest of
developing only the strategies for the evader from a worst-case scenario with respect to the
pursuers as their real capabilities and strategies are unknown. The proposed solution to a
pursuit-evasion game using reinforcement learning does not end with computed strategies
for both the pursuer and the evader, but only for the latter one.

Reinforcement learning sometimes has been used to learn navigation strategies for robotics,
instead of conventional path planning techniques, due to its advantages. Reinforcement
learning does not require a complex model of the environment, but information about the
allowed actions, the transitions of the states and the rewards provided by the environment
after performing an action. Considering a navigation scenario in 2D, as in Chapter 4, the
actions are adjacent cells in the free space, the state transitions according to the motion
of the robot and the predictions from the pursuers, and the rewards can be extended
from the proposed analysis of the environment in Section 4.4. A tabular reinforcement
learning approach can be used considering the characteristics of the proposed analysis of
the environment, but it could be updated to a function approximation if the action-state
space increases (with a finer sensing, and for more precise allowed motions). The expected
result of the combination of the concepts of the pursuit-evasion game, with reinforcement
learning, is a learned navigation strategy for the evader, that will be updated according to
the changes in the environment, and the available processing capabilities.

Deliberating a navigation policy for the problem in this thesis is performed as a simulated
process of interaction with the environment, where the learning happens from the state
transitions predicted considering a worst-case scenario for the pursuers and the motion
of the robot. Even in real life implementations, the learning (computation of a navigation
policy) cannot be performed from trial and error from direct interaction, as robots could
not afford to be captured and the tasks cannot be restarted as simulations do. Also, the
parameters of the learning that affect the speed of deliberation (learning rate, discount
rate, reward functions, episodes, terminal state) need to be selected in such a way that the
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implementation can be used realistically, possibly at an optimality cost. All these consid-
erations are used for the designs presented in the next chapter, where the same problem
of navigation and escape from pursuers as in Chapter 4 is solved through navigation
plans drawn from a tabular Q-learning algorithm. Q-learning has been selected due to
its popularity for robotic navigation tasks.

6.6 Concluding remarks

The chapter presented a brief literature review on pursuit-evasion games, mentioning a
general definition, their main characteristics, and the principal methods used to solve the
games considering variations in the characteristics of the pursuers, evaders and environ-
ment. Many examples were given to illustrate the different methods, highlighting the lack
of design of evasion strategies independently from the design of pursuit strategies.

Subsequently, the chapter continued with a brief literature review of reinforcement learn-
ing, introducing the mathematical background for the computation of optimal policies
from the value functions of selecting actions and receiving rewards or punishments from
the environment due to the consequences of that action. The most popular algorithms
were mentioned, their extensions from discrete to continuous spaces for more realistic
applications, and key aspects to select (parameters) within the algorithms. Examples of
reinforcement learning applied to robot navigation and in a multi-robot (multi-agent) con-
text were presented.

The literature review of this chapter focused in general on the following aspects:

• Analysing the characteristics of intelligent evaders involved in pursuit-evasion games,
and how their strategies for navigation are designed independently from pursuers,
to find inspiration for the designs presented in this thesis.

• Analysing examples of realistic applications of pursuit-evasion games to autonomous
robots, including the limitations on the sensing and available information.

• Finding about the use of reinforcement learning for the computation of autonomous
navigation strategies for robots, specifically for evasion (escape from pursuers) tasks.

• How to modify a reinforcement learning algorithm to make it more efficient in real
life tasks, particularly for the problem of navigation and escape to solve in this thesis.

Previous and current research has focused on pursuit, or pursuit and evasion depending
on the knowledge or predictions of each other. Evasion individually from pursuit, and
without available information from the opponent (the pursuer) has not been studied with
the same interest.

Finally, a discussion of the literature review was performed, with emphasis on the findings
about the design of evaders independently from pursuers, the advantages and disadvan-
tages of the available methods to solve pursuit-evasion games in the context of autonomous
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navigation for robots, and the advantages of the use of reinforcement learning for com-
puting navigation strategies (policies) that include the escape from pursuers and other
challenges of that implementation.

Reinforcement learning allows the computation of strategies (or control laws) from explo-
ration of actions (noise). Some reinforcement learning algorithms do not need a model of
the system to work, as interaction and reward functions are enough to determine the best
strategy to perform. This aspect is important to consider in the design of control systems
when the strategy of the pursuers is completely unknown and a model is nor available, as
learning to avoid collisions and escape simultaneously could be achieved. Many variations
of reinforcement learning algorithms with particular characteristics are available to choose
from according to the requirements of the task.

The next chapter presents the formulation of a pursuit-evasion game from the evasion
perspective, and considering the problem of navigation and escape to be solved throughout
this thesis. Subsequently, the computation of a navigation policy (or strategy) based on
tabular Q-learning with dynamic learning parameters is proposed, derived from the anal-
ysis of the environment presented in Chapter 4 and as a substitute for the path planning
approach presented previously.
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Chapter 7

Autonomous navigation and
escape using reinforcement
learning

Another way to perform the computation of solutions to the pursuit evasion game de-
scribed in Section 4.1 is presented in this chapter, from the concepts presented in Chapter 6.
Learning navigation strategies for a problem, where a model of the environment is not
available, is possible through reinforcement learning.

Reinforcement learning has been previously used to solve some autonomous navigation
problems (in the sense of collision avoidance) for previously unknown environments, due
to its comparative advantages. These include dealing with environments whose mathemat-
ical model is unknown, but observations about the transitions as a consequence of actions
and obtained rewards can be used to obtain information to learn an optimal strategy.

Also, the use of reinforcement learning is of interest as it has been previously applied to
solve pursuit-evasion games, but mostly from the pursuit perspective. Exploring its coun-
terpart, evasion, is proposed as another form to offer solutions to the problem of navigation
and escape from pursuers. Section 7.1 complements the definition of the problem given in
Section 4.1, from a game theory and reinforcement learning perspective.

Section 7.2 presents the design of solutions to the problem from learning navigation strate-
gies. The section starts with the presentation of the analysis of the environment in Sub-
section 7.2.1, a complement from the one proposed for path planning techniques in Chap-
ter 4. Subsequently, all the chosen parameters and features in combination with a tabular
Q-learning algorithm, for the reinforcement learning approach, are presented in Subsec-
tion 7.2.2. The chosen features include: the action selection mechanism for the learning
process; the learning parameters such as the learning rate, discount factor, exploration-
exploitation balance, and number of iterations; the shaping of the reward function from
a biologically inspired perspective; and the policy improvement process. The proposed
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ranges of operation of the parameters are evaluated experimentally in Subsection 7.2.3,
for a single static environment, to reassure the computation of convergent strategies (also
called policies) in a reasonable amount of time.

Section 7.3 evaluates the proposed Q-learning algorithm through simulated Monte Carlo
simulations with randomly generated environments. The main feature to evaluate is the
computation of navigation strategies that try to prevent the capture, when the sensing
of the environment is updated. The statistical success of the resulting strategies when
updating the sensing of the environment and simulating the motion of pursuers is eval-
uated. The simulations replicate the statistical analysis performed in Chapter 5 for the path
planning approach. Visual examples of the computed strategies are presented to illustrate
the computations.

Finally, Section 7.4 presents a discussion highlighting the main characteristics of the pro-
posed solutions to the problem of navigation and escape from pursuit using reinforcement
learning, and the main results from the simulations. Section 7.5 presents the concluding
remarks of the chapter.

7.1 The problem from a game theory and reinforcement learn-

ing perspective

Considering the definition of the problem of navigation and escape from pursuers in Sec-
tion 4.1, the contained elements in the environment can be extended to a game form:

1. Environment: the locally observed terrain with no obstacles and np pursuers, E. The
environment is stochastic regarding the strategies adopted by the pursuers, as only
some assumptions can be made about their behaviour, but without the certainty that
they are true. The environment can extend beyond the currently observed part.

2. Obstacles: assumed to be static, the robot needs to avoid collisions with the obstacles.

3. Evader: the robot that wants to escape, by finding a navigation strategy according to
the other elements in the environment.

4. Pursuers: assumed to be stochastic. No previous accurate model that describes their
real behaviour is known, but selecting a specific model from the literature could be
used to predict them in the computation of the strategies (e.g., worst-case scenario).

The information of the environment is assumed to come from a sensing and identification
process. The approximate relative location of the obstacles and pursuers in the local envi-
ronment is known (with or without absolute certainty, represented by a probability) if they
are within the range of sensing and not obstructed by others. The relative location is given
in terms of the distances from the elements to the robot.

The main characteristics of a game, according to the problem, are:
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• The objective of the game is computing an evasion strategy according to the available
information.

• The game is characterised by multiple pursuers, a single evader and multiple static
obstacles.

• The information is incomplete (partially observable), as only some elements are ob-
served during the sensing, and the information might not be as accurate as in games
with complete information.

• Pursuers and the evader compute and execute their strategies simultaneously. A
worst-case analysis can be considered for the prediction of pursuers and state transi-
tions.

• No differential model of the environment (including the pursuers) is available, as the
robot platforms for the evader and pursuers are unknown.

• The sensed number of pursuers in the local environment can be less than the total
number of pursuers in the global environment.

A solution to this kind of game, where the evader does not know the strategy followed
by pursuers, nor the entirety of the environment, is the computation of a strategy (set of
navigation steps) that prevents capture as long as possible. Preventing capture is done
in terms of increasing the distance between the pursuers and the robot (evader), or by
using possible hideaways. The strategy is computed from simulations, in the sense that
the process of trial and error of actions is not performed in reality. The robot computes
imaginary interactions with pursuers, from a designated model (e.g., worst-case scenario),
and when the strategy is ready, it can be implemented in reality to achieve the planned
motions.

7.2 Solving the game using reinforcement learning

Reinforcement learning has been chosen for the computation of strategies as a solution to
the problem of navigation and escape due to the following advantages, particular to the
Q-learning algorithm:

• Reinforcement learning is unsupervised, as the learning is performed from trial and
error of actions and the evaluation of the consequent states.

• Reinforcement learning does not require a differential model of the environment and
its elements, but only a transition kernel (that contains the transition probabilities and
the reward function).

• Q-learning and other popular reinforcement learning algorithms have been used in
autonomous navigation learning tasks and pursuit-evasion games previously, but
focusing on pursuit strategies.
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Figure 7.1: Schematic of the elements in the proposed designs for computing navigation strategies
with reinforcement learning.

• The convergence of an MDP Q-learning algorithm for one agent has been proved, so
optimal strategies can be computed within the correct set of learning parameters.

The proposed use of reinforcement learning follows the decisions regarding the control
strategy and solutions to the problem described in Section 4.2. A strategy is a high level
control system, consisting of a series of discrete navigation targets. The computed strate-
gies need to be updated as the environment changes, when the robot observes different
parts of it, and the pursuers react to the actions of the robot (sometimes in a different way
than predicted). The robot computes a new simulated interaction with the pursuers, and
consequently a new strategy that considers the recent information and the true location of
the pursuers. The environment representation, states and allowed actions are considered
discrete.

The solutions based on reinforcement learning proposed in this chapter are divided as
follows for their design, according to the methodology by Hwang and Ahuja (1992a), and
illustrated in Figure 7.1:

1. A biologically inspired analysis of the environment that uses the same structure as
the one presented in Chapter 4, to identify the elements from the sensing, and then
computing a local goal and the relevant reinforcement learning parameters.

2. The particularities of the Q-learning algorithm that learns the navigation strategy:
selecting features like the action selection mechanism, shaped reward functions and
other learning parameters.

A realistic implementation of autonomous navigation involves a need for short-term ac-
tions (Luo et al., 2008), thus the learning process should be fast enough to provide a strategy
for navigation. The next subsections describe the design of the analysis of the environment
and the selection of parameters for a Q-learning algorithm. The selection of the features and
parameters in a Q-learning algorithm dictates the speed of the computation of a strategy,
and helps to find a global optimal strategy within the available possibilities if enough
exploration is provided, thus forming an important part of the design of the learning.
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7.2.1 Biologically inspired analysis of the environment

A cell-decomposition representation of the environment into an occupancy grid, like the
one proposed in Chapter 4, has been considered to map the identified elements. The best
location for the robot in a sensed environment is calculated in terms of the distances to
all the pursuers, and from the concept of hideaways. The procedure and equations in
Section 4.4 are the same:

1. Approximating the environment into a grid, where elements are identified and ap-
proximated to cells according to the dimensions of the robot, and independent prob-
abilities are assigned according to the accuracy of the information: P(a,b)(o) if a cell is
a probable obstacle, P(a,b)(p) if a cell is a probable pursuer, and P(a,b)(Fs) if the cell is
probable free space.

2. Computing the possible hideaways (bio-inspired refuges) as the shadows considering
all the cells in the environment, whideaway .

3. Computing a measure of the distances between any possible free space cells and the
pursuers and the position of the robot, wdistances.

4. Computing a total function in terms of the distances and the hideaways that allows
choosing a local navigation goal, LG.

Some of the functions computed in the analysis of the environment have been used for the
features in the Q-learning algorithm, like the measure of the distances in step 3 and the
local goal location for the reward function. The selection of features and parameters, and
the shaping of the reward function are presented in the following subsection.

7.2.2 Parameters for the Q-learning algorithm

The tabular Q-learning algorithm, shown in the previous chapter (Algorithm 3), has been
selected for the learning of the navigation strategy (or policy) π∗, as the states and actions
are discretised in a grid form. The main features and parameters that need to be deter-
mined for Q-learning include: the action selection mechanism and its own parameters; the
learning rate (α), the discount factor for the rewards (γ), the total number of iterations or
episodes (from the initial state to the terminal), the rate of decrease of the parameters and
the reward function. The selection of all these features and parameters affect the balance
between exploration and exploitation of actions to find an optimal policy, and the speed of
the computations, as mentioned previously.

Action selection mechanism

An ε-greedy action selection policy (Sutton and Barto, 1998) was selected for the com-
putations, as it allows a balance between exploration and exploitation. As mentioned in
Section 6.4.4, an action (from the allowed actions for a state, A = A(s)) is selected with the
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following probabilities:

P (a) =

{
1− ε if a = a∗

ε
A otherwise

(7.1)

The exploration is decreased in a linear form, like ε
iter , according to the number of episodes

(or iterations) of the learning, to shift towards exploitation of the optimal values (Even-Dar
and Mansour, 2003).

The action selection mechanism considers the allowed actions for a state, A(s), as those
leading to free space and not towards collision with obstacles or pursuers. The actions that
would produce collisions are pruned from the setA(s) before assigning the probabilities, ε.

Dynamic learning parameters

The process of learning a navigation strategy can be very slow depending on the parame-
ters of the algorithm. In the task of navigation and escape from pursuers, a faster learning is
needed according to a major threat by pursuers. Therefore, the parameters for the learning
need to be adjusted according to the demands of the task. Dynamic selection of parameters
is proposed from a measure denominated global danger.

A measure of global danger, D, has been defined in terms of the available information
from the sensing, corresponding to the distances or relative locations of the pursuers within
range. The number and speed of pursuers should determine how urgent the computation
of a strategy becomes. For a total of np pursuers,

D =

np∑
p=1

dangerp
np

(7.2)

where the individual contribution to the danger by a pursuer, dangerp, is a function of the
distances between the p pursuer and the robot,

dangerp =

{
1

d(p,robot) if d(p, robot) > 0

1 if d(p, robot) = 0
(7.3)

where d(p, robot) is the Euclidean distance between a pursuer and the robot. When D

is close to a value of 1, the pursuers are in adjacent cells to the robot and the danger is
maximum. Thus an action is needed immediately and any deliberation demands a fast
computation.

The use of fixed sets of parameters, chosen from the resulting global danger, D, is pro-
posed. The sets of parameters have been selected from experimentation, as presented in
Subsection 7.2.3, considering the need for convergence to a usable navigation solution after
the learning, regardless of the speed in the learning. The initial parameters are decreased
or increased in a linear form, like γ + γ

20·iter , to shift the learning from exploration to
exploitation as the number of iterations increases (Even-Dar and Mansour, 2003).
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Table 7.1: Table of rewards (Reward 1) for actions and resulting states.

FEATURE REWARD OR PUNISHMENT

Collision with an obstacle or pursuer, by reaching a cell occupied
by an obstacle or pursuer

−1000

Reaching the local goal cell 1000

Navigating to a cell that is closer to the local goal 10

Staying in the same cell before reaching the local goal 0

Navigating to a cell that is further away from the local goal −10
Reaching the limits of the grid without reaching the local goal 0

Shaping the reward function

Some authors have proposed incorporating relevant information in the reward function to
facilitate and accelerate the learning (Matarić, 1994). With this purpose in mind, a first idea
contemplates the use of simple responses to the presence of obstacles and pursuers in the
environment and the motion towards a local goal. Constant rewards and punishments are
assigned to the actions according to the state transition as shown in Table 7.1.

A second proposal is the combination of information from the elements in the environment
(the presence of obstacles and pursuers, and the distances), similar to a potential function.
The elements in the reward function include:

• A reward is necessary to guide the robot away from all pursuers simultaneously.

• A punishment should be given if the robot gets too close to obstacles or pursuers.

• If a local goal is available, the reward function should teach the robot to reach it by
reinforcing the motion towards it.

The proposed shaped reward function is the result of weighted components of the ele-
ments,

Rt = Rc +RLG (7.4)

where Rc penalises the closeness of the robot to any obstacle or pursuer to prevent col-
lisions, and RLG rewards the distance towards the local goal. The penalisation against
collisions is defined as

Rc =

{
−1000 if d(robot, pursuer or obstacle cell) ≤ dc

0 otherwise
(7.5)

if the robot is in a circular region from the centre of any obstacle or pursuer cell, with radius
dc and a distance between the robot and the cell of d(robot, pursuer or obstacle cell). The
reward for the distance towards the local goal is the inverse quadratic attractor potential
function (Subsection 4.5.1),

RLG =
2

KLG · d((a, b), LG)2
(7.6)

where d((a, b), LG) is the distance between a cell and the chosen local goal, and KLG

regulates the magnitude of the attraction. The selection of the local goal proposed in
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Chapter 4 depends on a function of the distances to all the probable pursuers, as well as
the biologically inspired concept of refuges in the form of hideaways behind obstacles that
block the line of sight of pursuers. Thus, a navigation towards the local goal (which is up-
dated according to the sensing of new elements in the environment and the new positions
of the pursuers) would lead to a location away from all the pursuers simultaneously, and
maybe reaching a hideaway.

Improving the policy

The strategy for the navigation towards the local goal, i.e. away from pursuers and possibly
towards a hideaway, is computed through the resulting action-value function, Q(s, a),
from the iterative learning process, as explained earlier. For each state s, the action that
maximises the value of Q(s, a) is the optimal policy,

π∗(s) = max
a∈A(s)

Qπ(s, a) (7.7)

Updating the navigation and escape strategy

When the environment changes due to the observation of new elements from the new
location of the robot, the last choice of local goal could need to be updated along with the
navigation strategy. Thus, the learning process is repeated to compute a newer strategy,
as many times as needed, and according to the available computational resources. This
process is implemented in an equivalent manner to the updates for the path planning in
Subsection 4.4.6.

7.2.3 Empirical selection of ranges of operation of the parameters

The main objective of the simulations presented in this subsection is to identify the ranges
of operation for the learning parameters in the Q-learning algorithm, considering the pro-
posed reward functions. The identification of the parameters that correspond to a desired
performance of the learning provided fixed sets according to the needs of the task, in terms
of the measure of global danger D introduced before.

The simulations consisted of evaluating the root-mean-square error (RMSE) and the total
deliberation time of the learned navigation strategy towards the local goal while one of the
parameters is varied and the other fixed, comparing that learned strategy with an optimal
strategy. This process is repeated for all the strategies, and the average of the RMSE and
the deliberation time is computed. The RMSE is explained in Appendix A. The optimal
strategies for comparison were computed starting in the centre of the grid, for both reward
functions proposed in Subsection 7.2.2, and is shown in Figure 7.2 (Sutton and Barto, 1998).

The parameters used to compute the optimal strategies are: 10000 iterations, allowing
exploration with ε = 0.5, α = 0.1, γ = 0.6, and linear decreasing or increasing from
exploration to exploitation. It is possible to observe that for the tabular reward function, the
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(a) Tabular reward function (b) Potential-like reward function

Figure 7.2: Optimal strategies for the two proposed reward functions and a fixed environment: the
tabular reward function and the potential-like reward function.

Table 7.2: Evaluation of the effect of the parameters in the computation of a strategy.

PARAMETER AND VARIATION SET 1 SET 2 SET 3

Learning rate α [0.1, 0.9] at intervals of 0.1 0.5 0.3 0.1

Discount rate γ [0.6, 0.9] at intervals of 0.1 0.999 0.8 0.6

Exploration probability ε [0, 0.5] at intervals of 0.1 0.1 0.25 0.5

Number of iterations {50, 100, 500, 1000, 5000} 500 1000 5000

optimal navigation strategy is a direct route to the local goal, whereas the second path leads
to less efficient navigation in terms of the shortest distances to the goal. The convergence
properties of tabular Q-learning allow the assumption that the resulting path, after all the
iterations, is close to the optimal.

The settings for the simulations are:

• A discrete, randomly generated 2-D environment, consisting of a grid of 11×11 cells,
5 obstacles, and 2 pursuers.

• 100 repetitions of each experiment, keeping the same parameters (varied and fixed),
to compute the average of the RMSE and the average of the deliberation time.

• For the potential-like reward function, dc = 1.5 cells, KLG = 0.001 and RLG has been
limited to a maximum of 1000.

• Variation of one parameter at a time, while the other were fixed in one of the sets
shown in Table 7.2.

Figures 7.3 and 7.4 show the average of the RMSE and the average of the deliberation time,
according to the variation of parameters for the tabular reward function and the potential-
like, respectively. Reward 1 corresponds to the tabular reward function, whereas Reward 2
to the potential-like function (Rt).

The parameters in set 1 corresponds to the exploitation of the optimal values in the learning
process and the computation of the strategies, and to a fast computation of the results in
less iterations. The set 3 corresponds to the initial random exploration of many state-action
pairs, and experimentation through a large number of iterations, before computing the
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Figure 7.3: Average of the RMSE respect to the optimal solution according to the variation of the
learning parameters (α, γ, ε and the number of iterations), using the sets 1 to 3 (first to last rows) as
fixed. The horizontal axis corresponds to the value of the variable, and the vertical axis to the average
of the RMSE.
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Figure 7.4: Average of deliberation time according to the variation of the learning parameters (α, γ,
ε and the number of iterations), using the sets 1 to 3 (first to last rows) as fixed. The horizontal axis
corresponds to the value of the variable, and the vertical axis to the average of the deliberation time
in seconds.
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Table 7.3: Parameters according to the value of global danger, D.

PARAMETER D < 0.2 D ≥ 0.2

Learning rate α 0.5 0.6

Discount rate γ 0.7 0.6

Exploration probability ε 0.5 0.3

Number of iterations 100 50

optimal strategy after a long time. The set 2 represents a balance between exploration and
exploitation, by using parameters between the specifications of sets 1 and 3.

The results in Figure 7.3 show that the RMSE decreases considerably when more explo-
ration and a larger number of simulations take place, for both kinds of reward functions.
The average RMSE for the simulations with parameters from set 2 is intermediate to the
results from sets 1 and 3. It has been noted, from both figures, that the results for the
tabular reward function (Reward 1) improve both the RMSE and the deliberation time of
the potential-like function.

Extreme peaks in the average deliberation time are observed for ε and the number of
iterations, in Figure 7.4. The peak for ε = 0 occurs when the other parameters are set for a
slower learning and with exploration (set 3), whereas the peak for the number of iterations
(of 5000) occurs when the fixed parameters are set for exploitation (set1). This indicates that
the selection of parameters needs to be consistent with the expectations of exploitation of
exploration in the learning. Furthermore, a balance between exploration and exploitation
through the selection of appropriate learning parameters leads to adequate results in the
convergence to an optimal strategy, and at the same time, within a reasonable time.

The results in Figure 7.4 of the average deliberation time were mainly considered to pro-
pose two different sets of parameters according to a threshold of danger, D = 0.2, where if
the danger is less, more exploration takes place. But if the danger is more, priority is given
to exploitation, considering some exploration to achieve a good solution. The selected sets
of parameters for both sides of the threshold are shown in Table 7.3.

Another proposed option to compute dynamic parameters is the use of functions limited
to a selected range of operation. In related publications, similar simulations to evaluate the
ranges of operation with respect to the visits to all state-action pairs, and the total delibera-
tion time were computed (Araiza-Illan and Dodd, 2010). Useful ranges of operation for the
learning parameters (α, γ, ε, and the number of iterations) were identified, and exponential
functions proposed in terms of the same measure of D, from Subsection 7.2.2.

7.3 Simulations

The simulations presented in this section have the following objectives:

1. Evaluating if the proposed reinforcement learning approaches (the computed nav-
igation strategies) prevent the capture of a robot in the window of time of the test
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(20 navigation steps), for different velocities of pursuers looking to capture greedily.

2. Analysing which one of the reward functions prevents the capture for the different
numbers of pursuers and velocities.

3. Evaluating the effect of the updates of the sensing (measured in navigation steps) in
the prevention of capture by pursuers with different velocities.

The success of a path occurs when the robot avoids capture in 20 navigation steps, or if
capture happens later (in navigation steps) than with the other path corresponding to the
other reward function.

The parameters for the simulations in this section are:

• 50 randomly generated environments.

• Low resolution grid of 11× 11 cells.

• The sensed obstacles and pursuers are not extended to adjacent cells.

• 1 to 5 and 10 pursuers, with velocities of vp = vr, 2vr,
1
2vr.

• The sensing is updated every 1, 2, 3, 4, 5 and 6 navigation steps, equivalent to a cell
per step.

• The robot starts an experiment in the centre of the grid, and it moves from cell to cell.

• Both reward functions, the one from Table 7.1, and the potential-like. For the potential-
like reward function, dc = 1.5 cells,KLG = 1,andRLG has been limited to a maximum
of 1000.

• The tabular reward function from

• The learning parameters used in the Q-learning algorithm, as shown in Table 7.3,
from the value of D.

The flow of the computations for the simulations in this section is the same as Figure 7.1.

Significant results are presented in the form of comparative graphs, according to numbers
of pursuers, and their velocities. Figure 7.5 shows the results on the success for 1, 3 and
10 pursuers, with updates every 1 to 6 navigation steps. Also, the average of the time of
capture in navigation steps, for the same numbers of pursuers, are shown in Figure 7.6,
according to the Other graphs for 2, 4 and 5 pursuers are shown in Appendix E. The
legends correspond to the two different reward functions, as in the previous simulations in
this chapter.

The results indicate that for few pursuers (1 pursuer) or many (4, 5 and 10 pursuers), both
reward functions perform similarly in terms of the computed measure of success. For
2 and 3 pursuers, the tabular reward function performs better comparatively than the
potential-like reward function. Also, when the pursuers are slower or fewer (1 pursuer),
updating the sensing in the environment more frequently provides the best results. For
faster and more pursuers, the update of the sensing does not make a big impact in the
success, nor the steps before capture.
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Figure 7.5: Success of the strategies for 1, 3 and 10 pursuers with different velocities. The horizontal
axis corresponds to the sensing updates (in navigation steps) and the vertical axis is the percentage
of success.
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Figure 7.6: Capture times (in terms of navigation steps), for 1, 3 and 10 pursuers with different
velocities. The horizontal axis corresponds to the sensing updates (in navigation steps) and the
vertical axis is the average of capture time (also in navigation steps), for 50 simulations.
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7.4 Discussion

Reinforcement learning was chosen for the designs presented in this chapter due to its
previous use for solutions to the problem of general autonomous navigation, as well as
its use for solutions to pursuit-evasion games, but from a pursuit perspective. The main
advantage of reinforcement learning for the particularities of the problem is that no math-
ematical model of the environment is required to compute a strategy, but only rewards
from the transition of the states after selecting actions. Nevertheless, knowledge about the
possible actions, the transitions, and states are needed. This knowledge is provided by the
analysis of the environment from sensed local information, proposed in Chapter 4.

The proposed implementation of the learning is based on simulating the interaction with
the pursuers and the environment to compute a navigation strategy, before the real one
takes place. The same simulating process used to evaluate the path planning approach has
been adapted to be coupled with the reinforcement learning to compute a navigation strat-
egy. The biologically inspired environment analysis computes the local navigation goal,
a representation of the current state and the possible navigation actions accordingly. The
global structure repeats the same process as the path planning proposals, but exchanging a
priori proteanism plus steepest descent search for a tabular Q-learning process to compute
a navigation strategy.

Differences between the tabular Q-learning approach and others from the literature include
the dynamic selection of learning parameters, based on an assessment of the identified pur-
suers in the environment. The learning parameters (α, γ, ε and the number of iterations) are
chosen according to the presence of pursuers, to favour a fast computation of the optimal
strategy that also balances exploration and exploitation. Favouring a faster deliberation
time, the proposed shaping of the reward functions incorporates the pursuers, as well as
the local goal computed previously. The results from the simulations to select appropriate
learning parameters with the two proposed reward functions show that for this task of
navigation and escape, a good balance between exploration and exploitation is needed to
compute reasonable strategies in a small amount of time.

The simulations to evaluate the performance of the proposed Q-learning based approach
when interacting with pursuers in randomly generated environments, are of similar char-
acteristics to the ones in Chapter 5. The results of the evaluation of success in avoiding
capture show that the reinforcement learning approach does not perform as well as the
path planning with potential functions for similar simulations (with the same randomly
distributed environments and sensing) in low resolution grids, pursuers of different speeds
and updating the environment sensing. This situation is more evident in the results on the
average time before capture. Comparing Figures 5.21, 5.22 and 5.23 from Chapter 5 with
7.6 from this chapter, the later are equal or lower and thus the success of the strategies from
reinforcement learning is lower. Also, reinforcement learning based navigation strategies
are more computationally expensive than deliberating a path, and consume more time in
their computation.
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7.5 Concluding remarks

This chapter started by presenting an extension of the problem of navigation and escape
from pursuers from Section4.1, to the pursuit-evasion games domain, for its solution through
reinforcement learning algorithms. Then, the main components of the designs are pre-
sented:

• A biologically inspired analysis of the environment to compute a local navigation
goal, based on the distances to pursuers and possible hideaways, as presented previ-
ously in Chapter 4.

• The selection of parameters for a tabular Q-learning algorithm, including: the action
selection mechanism, the learning parameters, the reward function, the policy im-
proving method, and the updates of the deliberation process according to the changes
in the environment. The values for the learning parameters were chosen from exper-
imentation, through evaluating the average RMSE and the average deliberation time
when varying one parameter at a time.

Subsequently, simulations to evaluate the success of the computed navigation strategies
were presented. The effects of the different reward functions and update of the sensing
served to evaluate the performance of the generated strategies avoiding capture for longer.
The results are presented in the form of comparative charts.

The discussion of the results highlights the main features of the presented designs, as well
as the findings through the simulations. The proposed reinforcement learning approach
is briefly compared to the path planning approach presented in Chapter 4 and evaluated
in Chapter 5, in terms of the success. Results show that the path planning approach with
potential functions is better in terms of navigation time before capture compared to the
reinforcement learning approach. Nevertheless, the reinforcement learning algorithms
are easier to program, apply and understand. Also, the simple tabular reward function
(Reward 1) resulted more successful compared to the potential-like function (Reward 2).

The next chapter presents a description of the implementation of some of the proposed
algorithms in a real robotic platform, the e-Puck. The sensing and low level control system
used to couple the high level planning with the robot are detailed, along with some visual
examples of the results.
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Chapter 8

Implementation on real robots

This chapter demonstrates the implementation of the algorithms proposed in Chapter 4
on a robotic platform. The work was done in collaboration with Charles Winter, under the
SURE research program in the Department of Automatic Control and Systems Engineering.

The e-Puck robot has been chosen to represent both the robot and the pursuers, and a small
environment was built to evaluate the performance of the implementation. Section 8.1
presents the characteristics of the used robotic platform. The main features of the e-Puck
are described, highlighting its comparative advantages over other commercially available
robots.

Section 8.2 describes the global control system implemented in the robot. The control sys-
tem has been divided into the stages of sensing, deliberating and moving. The procedure
for the sensing using the camera embedded in the robot, the parameters for the planning
of the motion according to the proposals in Chapter 4, and the implementation of the real
movement are presented.

Section 8.3 shows some examples of the performance of the robot with one pursuer and the
environment with obstacles. Subsection 8.3.1 describes the implementation of the control
system for the navigation of the pursuers, and Subsection 8.3.2 shows the results through
images of the motion.

Finally, Section 8.4 presents the discussion of the results, highlighting the main findings on
the implementation of the sensing and low level motion control. Section 8.5 presents the
concluding remarks of the chapter.

8.1 Physical characteristics of the e-Puck robot

The main characteristics of the e-Puck, relevant to the implementation presented in this
chapter are (Mondada et al., 2009):

• Size: a diameter of 75 mm.
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• Motion: 2 motors with PID control integrated.

• Available long distance sensors: an integrated camera, with a resolution of 40 × 40

pixels at 4 frames per second. Odometer for the position in the plane.

• Communication: Bluetooth module integrated, for the communication with MAT-
LAB running in a PC to process the sensing and to perform the planning of a naviga-
tion path.

• Programming: the micro-controller can be programmed in C or assembly language
through MPLAB, to perform the sensing, communicate with MATLAB and then exe-
cute the motion.

The main advantages for the use of this robotic platform include:

• The robots come pre-assembled from the factory, sensors included.

• Extensive documentation for the programming of the robot is available online.

• Low level libraries are available for the control of the camera and motors.

• The protocol for the Bluetooth connection with a computer is integrated in the soft-
ware.

• The control of the motors is performed by indicating the speeds and time according
to the difference between the desired position and the odometer information.

• The size of the robot allows performing simulations in reduced spaces.

On the other hand, the main disadvantages are:

• The price per unit without adding accessories.

• The limitations of the sensing, as the camera only covers an angle of 53 degrees.
Thus, the sensing of the elements behind and to the sides of the robot involves a
discontinuity in a linear motion and a delay in time.

8.2 Global control system

The robot obeys a global process to solve the problem of autonomous navigation and es-
cape from pursuers, divided in three stages: sensing, deliberating the navigation plan and
moving accordingly. The process is repeated as the observed regions of the environment
change due to the motion of the robot. The stages of the sensing and moving involve an
interaction between the high level control system that performs the planning, and the low
level control in charge of the interaction with the hardware (camera and motors). Figure
8.1 shows the process as a flow diagram.

The following subsections present the three stages, Subsection 8.2.1 the sensing of the
elements, Subsection 8.2.2 the planning of the motion, and Subsection 8.2.3 the motion
following the path, correspondingly.
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SENSING PLANNING MOVING

UPDATING

- - -

Figure 8.1: Flow diagram of the global control system.

(a) RGB (b) Greyscale (c) Binary

Figure 8.2: Transformation of an image from RGB to greyscale and binary formats.

8.2.1 Sensing the elements in the environment

The robot takes a total of 8 colour snapshots of its surroundings with a maximum reach
of 3 times the size of the robot, approximately, to have a complete range of vision. The
images are transferred to MATLAB, to execute an analysis that generates an occupancy
grid of the elements in the local observed environment. The environment around the robot
is assumed to consist of dark blue obstacles, red pursuers, and white floor and walls that
limit the space.

The analysis of the images from the camera consists of the following steps for each image:

1. Analysing the brightness and colour composition of an image. The image is mapped
from a RGB format to the format Lb · c1 · c2, where Lb indicates the level of brightness
of the image; c1 is a value from −10 to 10, with −10 being a fully green image, and 10
being a fully red image; and c2 is a value from −10 to 10 on a scale of yellow to blue.
The resulting value of c1 from an image is compared with a predetermined threshold.
If the threshold is exceeded, this indicates the presence of a pursuer.

The distance between the pursuer and a robot is determined from the brightness of
the image, Lb. The brightness is significantly higher if there is a distance between
the pursuer and the robot, due to the whiteness of the floor. Empirically calculated
thresholds for the brightness has been used to determine the approximate values of
the distances.

2. The image is transformed into a greyscale format, and then into a binary image (black
and white), as shown in Figure 8.2. The dark pixels in the image are assigned a value
of zero, and light colour pixels a value of 1. If the resulting average value for all the
pixels in the image is high enough, an obstacle is present.
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The distance between the obstacle and the robot is determined from the transposition
of the image and the average of black and white of all the columns of pixels. The
number of columns from left to right, with a high average, correspond to the amount
of white above the object, and it can be compared to empirical measures to determine
the value of the distance.

3. When no obstacles or pursuers are identified in an image, it indicates the presence of
free space only. This can be computed analytically by comparing the average value
for all the pixels in the binary image, as the value should be low due to the whiteness
of the floor.

The computed distances from all the images are mapped into a grid of 6×6 cells, indicating
the presence of obstacles, pursuers, free space or unknown space. The occupancy grid is
used by the planning algorithm to deliberate a navigation path. The set of probabilities for
each cell is considered to be hard (1 for the corresponding detected element), according to
the presence of obstacles, pursuers and free space.

8.2.2 Planning algorithm

The planning process to compute a navigation path has been described in Chapter 4. The
following general steps are executed, from the occupancy grid map computed in the sens-
ing:

1. Computing the function of the distances wd, the function of the intersection of shad-
ows, wh, and selecting a local goal accordingly.

2. Computing guided subgoals towards the local goal, for a priori proteanism.

3. Building the potential functions, from modified FIRAS and quadratic goal, according
to the pursuers, obstacles and subgoals.

4. Deliberating the path from steepest descent with distances, by commuting the sub-
goals in the potential functions.

The path towards the local goal (except if local minima problems appear in the potential
functions) is used to guide the robot until the new sensing takes place and a newer path is
computed.

8.2.3 Low level control for the movement

The path deliberated by the planning algorithm is produced in terms of cartesian coordi-
nates. A transformation into polar coordinates (angle and displacement) takes place before
they are sent back to the robot, via Bluetooth, to be implemented in the low level control.

The motion from one cell to the next is executed by two different motions:

1. First, turning to the right angle. A proportional control decides the amount of turning
needed to correct the angle of the robot, θr, by calculating the time a fixed speed in
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the wheels is applied to execute the rotation. A speed of [1000,−1000] for the motors
on the left and right, respectively, is needed for a full speed, clockwise turn around
the axis at the geometrical centroid of the robot.

2. Then, executing the displacement towards the centroid of the target cell. A maximum
speed of [1000, 1000] is sent to the two motors (left and right) for a fixed length of time,
to achieve the displacement of one cell in the grid at a time. The time is calculated
from the difference between the odometer reading and the desired location.

The following section shows some examples where the motion of the robot is executed
according to the sensed elements in the environment.

8.3 Examples of the navigation of the robot

In order to verify the correct performance of the proposed global control system according
to the simulations, some experiments were recorded and the results are presented visually
in this section. An autonomous pursuer that follows the robot around was programmed to
complement the interactions with the environment.

8.3.1 Programming the pursuer

The pursuer receives the current location of the robot at all times, but it will only pursue if
the robot is within sensing distance (3 cells, same as the robot). The objective of the pursuer
is to follow the robot, by moving to a location within the adjacent cells that minimises the
distance to the robot. The pursuer is able to avoid collisions by eliminating the unavailable
adjacent cells from the minimisation of the distance process, and when the robot is invisible
as it is behind an obstacle, the pursuer does not move. The motion is executed following
the same low level control for the robot, by turning first and then displacing towards the
corresponding cell.

8.3.2 Examples

In the simulations, a path based on guided subgoals is computed when the pursuer is
detected, with a radius for the subgoals of rsg = 2 and using modified FIRAS and quadratic
goal potential functions. Other parameters include Kg = 0.1, Ki = 1, do = 1cell, and
a maximum potential value of 1000. The pursuer has the same velocity as the robot.
The environment consists of a surface of 6 × 6 cells, surrounded by walls, with scattered
obstacles of a single cell size.

The first example, Figure 8.3, shows the resulting path when the sensing is updated every
4 navigation steps, and the second example, Figure 8.4 for updates every 2 navigation
steps. The examples, and some other simulations, show that performing updates of the
sensing closer in intervals of time led to better paths to avoid capture for longer.
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(a) First motion (b) Second motion (c) Third motion

(d) Fourth motion (e) Fifth motion (f) Global paths

Figure 8.3: Example of the motion of a robot in an enclosed environment, for vp = vr , and the global
followed paths in the grid; path of the robot in green, path of the pursuer in blue, with their final
positions indicated by the squares (light grey is the robot, and dark grey is the pursuer); obstacles in
black.

(a) First motion (b) Second motion (c) Third motion

(d) Fourth motion (e) Fifth motion (f) Sixth motion

(g) Seventh motion (h) Global paths

Figure 8.4: Example of the motion of a robot in an enclosed environment and global followed paths
in the grid; path of the robot in green, path of the pursuer in blue, with their final positions indicated
by the squares (light grey is the robot, and dark grey is the pursuer); obstacles in black.
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8.4 Discussion

The simulations of the interactions with pursuers and obstacles demonstrate that the plan-
ning algorithm works in the implementation presented in this chapter. The robot moves
towards locations away from pursuers and around or behind obstacles according to the
sensing. Closer updates of the sensing produce better results for few pursuers in a low
resolution grid, as the results in the simulations from Section 5.3 confirm.

The implementation of the sensing was limited by the available capabilities in the robot,
as the camera only covers a small angle, and the acquisition of each image requires time.
A different array of sensors, like a combination of cameras and ultrasonic sensors, would
allow improving the speed of the sensing and processing, but this improvement can result
quite expensive. The analysis of the environment can be adapted to work with beam
sensing in fewer directions, to use the available camera in the robot, and reducing the time
of computation.

The e-Puck platform comprises several disadvantages caused by the limited capabilities
provided sensors, thus complicating the computation of the analysis of the environment.
Also, following the identification of colours is a lengthy and inefficient process if computed
every time for all the images from the sensing. Other alternatives are training a neural
network to analyse the composition of the pixels in an image and determine the presence
of elements accordingly. Also, the identification of elements in the grid did not consider
the presence of walls in whiter colour as obstacles, which needs to be addressed as part of
the sensing.

The overall motion of the robots is performed in a reasonable amount of time, as the low
level control for the motors produces fast motions. However, a smoother motion would be
more desirable, by joining the discrete planned path with a more continuous optimised one.
Using the centroids of the cells as desired constraints for the motion, the optimisation of a
continuous path could consider the dynamic constraints of the robot, in terms of steering
and maximum speed.

In terms of the simulations, the environment was a limited sample of what it would be a
realistic task. Nevertheless, a larger space with more complex obstacles and more pursuers
with different behaviours is needed to assess the performance of the robot. A last form
to improve the deliberation is the implementation of all the algorithms directly in the
microcontroller, eliminating the communication with the computer to reach MATLAB.

8.5 Concluding remarks

This chapter demonstrated the implementation of some of the proposed designs in a robotic
platform, the e-Puck. The main characteristics, advantages and disadvantages of the robot
from the perspective of the application to the problem of navigation and escape from
pursuers, presented in this thesis, were highlighted.
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Subsequently, the proposed sensing process to identify the elements (obstacles, pursuers,
free space and unknown cells) from images taken in an environment purposely built was
presented. The coupling between the sensing, the proposed algorithms for the planning
of a navigation path according to the objectives, and the low level control of the motion
was explained. Visual examples of the resulting navigation, with one pursuer following
the robot in the built environment, illustrated the functioning of the global control system.

Finally, the discussion highlights the main findings that confirm expected results from the
simulations. The robot performs the motions according to the analysis and deliberation
from the sensing through MATLAB, although the process of sensing to achieve a 360 de-
grees recognition of the surroundings is very slow. Possible improvements for the im-
plementation are briefly mentioned, including the use of different sensors, implementing
the algorithms directly in the microcontroller and training a neural network to perform
the recognition of elements in the environment. Some of the proposed improvements to
the platform to facilitate the sensing and processing can result quite expensive, but some
software solutions in the form of changes to the environment analysis could help to avoid
higher costs.

The next chapter presents the global conclusions of the thesis, highlighting the main con-
tributions and the results from the proposals to solve the problem of navigation and escape
from pursuers. Also, possible extensions of the project to future work are explained.
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Conclusions

This thesis presented different solutions to the problem of navigation and escape from
pursuers, to avoid collisions with obstacles and prevent the capture for as long as possi-
ble. The solutions incorporated biologically inspired features in the form of refuges (hide-
aways) and proteanism (through subgoals for navigation). An analysis of the environment
that incorporates the bio-inspired features was proposed, considering available sensed
information, to compute local navigation goals. Two different approaches were proposed
to compute paths or navigation strategies: path planning with potential functions and a
modified steepest descent, and reinforcement learning with tabular Q-learning.

This chapter presents the final conclusions of the thesis, and possible future work to extend
the project beyond its current frontiers. Throughout this thesis, the following topics were
reviewed:

• Bio-robotics, with emphasis in the concepts of biologically inspired robotics and bio-
mimetics, the degrees of inspiration incorporated in previous robotics projects, and
areas of application through several examples. This part of the literature review
allowed setting the context of the biological inspiration for the project.

• Mathematical ecology and behavioural biology, focusing on finding models of indi-
vidual anti-predator motion behaviours that could be used directly along with control
systems or other algorithms for autonomous navigation in robotics. Some features
found in the review of anti-predator behaviours (like refuges and proteanism) and a
couple of models, served as inspiration for the designs of solutions to the problem of
navigation and escape from pursuers.

• Path planning methods, with emphasis in potential functions. The review allowed
a comparison between different path planning methods, reaffirming the adequacy
of potential functions for the design of solutions to the problem: potential functions
do not require a complex geometrical analysis of the environment, they are fast and
easy to implement and understand, and they can deal with environments of local
incomplete information like the ones in the problem. From this review, different par-
ticular function implementations were chosen for the designs, trying to minimise the
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problems of local minima previously reported in literature. Also, the search method
of gradient descent was chosen considering the particularities of the environments of
the problem.

• Pursuit-evasion games, focusing on proposed solutions to the evasion side, indepen-
dently from the pursuit and for discrete, limited information environments. The use
of reinforcement learning and the design of controllers for individual navigation were
of particular interest.

• Reinforcement learning, considering an overview of the main algorithms, their de-
sign characteristics and features, and their use for autonomous navigation. Tabular
Q-learning was chosen from the review, due to its advantages with respect to the par-
ticularities of the environment of the problem. The learning parameters were selected
in a biologically inspired manner (particularly the reward function), considering their
importance in the performance of the learning algorithm.

The designs have been inspired by the concept of intelligent evasion, a fusion of proteanism
from the model of Furuichi (2002) and other studies on: co-evolution of navigation in
prey and predator, evasion strategies as a response to pursuit in pursuit-evasion games
(Pachter and Yavin, 1986; Amin et al., 1997; Murrieta-Cid et al., 2007; Karaman and Fraz-
zoli, 2010; Shinar et al., 2010), path planning against pursuit (Masoud, 2002, 2003a,b) and
stealth navigation. Proposing a predefined form to avoid pursuit and collisions provides a
simplistic equivalence to the abstract concept of innate self-preservation behaviours, that could
be commuted or discarded when the robot has developed its own mechanisms, behaviours
or controls to guarantee its success when interacting with the environment.

The problem of navigation and escape was stated from two perspectives: (a) path planning,
and (b) as part of a pursuit-evasion game, both when the environment is locally observed,
discretely sensed and with incomplete information. Also, the pursuers are unknown but
the robot might be able to use a worst-case scenario to analyse and predict their behaviour.
From those perspectives, two main groups of designs to compute solutions to the problem,
in terms of navigation plans or strategies, were proposed:

1. Path planning with potential functions.

2. Reinforcement learning with tabular Q-learning.

Different variations were proposed and compared from an evaluation: kinds of potential
functions, frequency to update the sensing of the environment, the computation of pro-
teanism (guided, general, long or short reaching), kinds of reward function, and parameters
for the learning. A statistical analysis of the success of computed paths in navigation and
escape, for a simulated setting, allowed comparing the variations previously mentioned,
and in general the performance of the proposals. The following subsections present the
final conclusions for the main components of the designs:

• The analysis of the environment (Section 9.1).

• The solutions using path planning with potential functions and a priori proteanism
(Section 9.2).
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• The solutions using Q-learning and shaped reward functions (Section 9.3).

9.1 Biologically inspired analysis of the environment

The analysis of the environment performs the following actions:

• Produces a probability map for the sensed elements in the environment, identifying
the components into pursuers, obstacles, free space or unknown space, in a discrete
form.

• Extends probable obstacles and pursuers, according to the criteria of the designer.

• Increases the resolution of the grid artificially, towards a more continuous represen-
tation and computation of the navigation

• Computes a local goal for navigation in the locally sensed environment, from func-
tions of distances to pursuers, to move away, and biologically inspired hideaways.

• Implements biologically inspired a posteriori proteanism, by computing randomly
selected subgoals towards the local goal.

• Converts the occupancy grid, the local navigation goal and or the subgoals into a
potential functions based representation.

The proposed analysis of the environment has the following advantages with respect to
the problem of autonomous navigation and escape, considering locally sensed information
only:

• Allows the integration of sample-based information from the sensing, into an approx-
imate cell decomposition or occupancy grid representation. This reduces the need of
large amounts of data to compute a more precise geometrical representation of the
obstacles, thus being able to deal with information from basic sensors like infrared or
ultrasonic, instead of high resolution cameras and complex image processing.

• Also, the proposed probabilities for each cell allow integrating the inaccuracy of the
information provided by the sensing.

• The use of a grid representation, like the proposed, can be adapted to different path
planning methods, depending on the resolution of the grid and through a geometrical
processing. For example, information coming from a fine resolution grid can be
transformed into connections of lines for a visibility based analysis, and graph theory
can be used to search for optimal solutions.

• The computation of local navigation goals as functions of distances to pursuers and
possible hideaways provides general guidance for the navigation of the robot in the
local environment. The local goals are convenient to decompose a longer global
navigation task into dealing with locally available information at a time.

• A natural reaction to pursuit is navigating as fast as possible in the same direction
as the pursuit is taking place. This would guarantee an escape if the evader is faster
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than the pursuer. Otherwise, another alternative to pursuit is changing the angle of
the linear motion abruptly to make the pursuer steer and waste time by correcting
its motion again towards the evader (Isaacs, 1965). The problem increases its degree
of complexity when multiple pursuers are around, coming from different parts of
the environment. The proposed analysis of the environment offers the computation
of the best location to move in terms of trying to avoid the pursuers by moving to
a place far away from all of them at the same time, and at the same time trying to
seek temporal refuge behind obstacles. This combination of concepts mixes stealth
navigation with evasion ideas and anti-predator behaviours.

• The use of subgoals to lead towards a local goal accomplishes two main functions
in one. Subgoals help to prevent local minima problems recurrently reported in
literature review for potential functions (Bell, 2005), besides being a convenient im-
plementation for the a priori proteanism.

• The representation of the environment can be used in combination with any robotic
platform and sensing capabilities, by modifying the shape of the grid and the resolu-
tion of the cells accordingly.

The biologically inspired analysis of the environment is advantageous in terms of the
intrinsic generality of its design. The analysis can be adapted for its application to different
robotic platforms, to deal with locally sensed environments when no previous information
is available. Also, the analysis can be extended to other path planning techniques, and
different kinds of models for its use in control theory. The implementation of the analysis
is easy to understand, and computationally fast.

The following aspects of the analysis of the environment can be improved:

• The analysis of the environment does not contemplate a mechanism to achieve the
identification of threats from obstacles or other not dangerous elements. This step
can be improved by proposing a recognition algorithm, that classifies the elements in
the environment into static or dynamic obstacles and possible threats.

• Other kind of environment representations can be used from the acquisition of data,
without prior conversion into a grid, like an exact cell decomposition according to
the observed geometries, or Voronoi diagrams (Choset et al., 2005). Different envi-
ronment representations naturally lead to the use of alternative path planning algo-
rithms.

• If robotic navigation behaviours are to be implemented to approximate specific or
general animal anti-predator behaviours, more mathematical and conceptual models
are needed, extending the work by Furuichi (2002) and Broom and Ruxton (2005).

9.2 Path planning solutions

The proposed path planning solutions considered the biologically inspired analysis of the
environment mentioned previously, and also the following:
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• The use of potential functions to compute a value for each cell in the analysis of
the environment, in terms of the presence of obstacles, pursuers, the local goal and
a priori proteanism (subgoals). A search method deliberates the path by following
the optimal values. Potential functions in a discrete representation do not require a
complex analysis of the geometries in the environment.

• A modification to the steepest descent search method, to consider the shortest dis-
tances as a second criterion when the values of the available choices are equal. Eval-
uating the distances is useful for different kinds of local minima problems commonly
encountered in potential functions for path planning.

• Three main kinds of paths were proposed to result from the combination of the
analysis of the environment and search method: guided protean, general protean and
steepest descent only. Each one of them depending on the optional use of subgoals,
replacing temporarily the local navigation goal, to prevent a strictly linear navigation
towards the local goal.

The performance of the proposed paths was evaluated through a simulation process, with
randomly generated environments and pursuers modelled as followers. Variations in the
number of pursuers, their velocities, updates of the sensing, grid resolutions and radius of
computation of subgoals, were analysed to deliberate the best combinations according to
the simulated characteristics of the environment. The relative and absolute success of the
paths and other statistics on the navigation steps before capture, served as the basis for the
evaluations.

The results indicate that the ideal combination of parameters, particularly the updates of
the sensing and computation of subgoals to increase the success avoiding capture, depends
on the number of pursuers and their velocity. For few pursuers, a more constant update
of the sensing is needed to detect and respond to the threats. For many pursuers (in a
cluttered environment), protean paths are a good resource to avoid capture, although it is
almost impossible to escape. A balance in the frequency of the sensing updates and the use
of a computed path is needed, to use the latter in a more efficient manner.

Steepest descent paths, in combination with modified FIRAS and quadratic goal potential
functions, performed better than any other combination, for all numbers of pursuers, their
different velocities, and the updates in the environment. The visual examples showed that
some resulting paths are more linear, and others more protean, according to the presence of
pursuers, and the randomness of the subgoals. The proposed computed paths work better
in higher resolution grids, according to the analysis. The computed paths are not entirely
successful, as the simulations demonstrated. This situation makes evident the dependence
of the avoidance of capture not only on the number of pursuers, or their speed, but also the
initial locations of the pursuers, and even the location of the obstacles.

The proposed paths, based on potential functions, have the following advantageous fea-
tures towards the solution to the problem of navigation and escape from pursuers:

• Potential functions are conceptually and computationally easy to implement, provid-
ing with a fast deliberation of the paths according to the analysis of the environment.
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• The use of subgoals when computing a path serves two main purposes: changing the
direction of the motion of the robot to disorient pursuers and preventing the presence
of local minima problems in the potential functions.

• The discrete resulting path can be interpreted as moving towards a region. Contin-
uous paths that connect the regions or general points in the grid can be computed
considering the kinematic and physical characteristics of a robot, by coupling a low
level smoothing control system. On the other hand, increasing the resolution of the
grid artificially can be used to compute more continuous paths, as needed according
to the robotic platforms.

Some proposed improvements for the path planning using potential functions are:

• A structure that chooses between steepest descent only or subgoal based paths, fre-
quent or sparse sensing updates and the effect of the proteanism (due to the radius for
computation of the subgoals). This structure can be implemented as a control system
to deal with different situations in the environment. The ideal parameters would
be chosen according to the number of pursuers, their locations, and their probable
velocities.

• Another aspect that can be improved is the smoothness of the final path, which could
be added as part of the path planning instead of leaving it to a low level control
system. a posteriori proteanism, and kinematic considerations could be added for a
smoother and improved path.

• More information about the pursuers is needed, coming from the environment anal-
ysis to identify an approximation of their velocities that would determine the charac-
teristics of the computed path.

• Several options can be used to substitute the potential functions presented in Chap-
ter 4. Strong candidates are vector potential fields incorporating more complex be-
haviours like rotations around obstacles. Other related path planning methods from
the ones mentioned in Chapter 3 can be used to evaluate their performance compared
to potential functions in the particular task of navigation and escape from pursuit.

• The information from the environment analysis and the resulting paths can be stored
in memory, to create a library of previous situations and reuse improved solutions.
This recycling would lead to a more efficient deliberation process.

• Different simulations to evaluate the path planning proposals are needed, including
more realistic and extended environments.

9.3 Reinforcement learning solutions

The proposed reinforcement learning solutions also considered the biologically inspired
analysis of the environment mentioned previously, along with the following:
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• A tabular Q-learning algorithm to compute a navigation strategy, from simulated
interactions with the environment. Q-learning calculates the action-value function
for all the combinations of visited action-state pairs, through predicting the follow-
ing state transitions after choosing an action in a determinate state and receiving a
reward.

• The selection of the initial learning parameters for the Q-learning algorithm (the
learning rate, the discount rate, the probability for exploration and the number of
iterations or episodes) are selected according to a measure of the danger in the envi-
ronment, in function of the distances from the robot to all the identified pursuers in
the local environment. The selection of dynamic parameters allows the computation
of strategies favouring exploration or exploitation, with the consequent reduction in
the total deliberation time, as required by the presence of threats in the environment.

• Two different reward functions were proposed, based on the computation of the local
navigation goals in the biologically inspired analysis of the environment. The first
reward function incorporates the interaction with the elements in the environment,
as the consequence of the transition state, in the form of an if-else structure (shown in
a tabular form). The second reward function has been based on potential functions,
and incorporates functions of the distance to the local goal and the pursuers and
obstacles in the environment.

The ranges of operation for the parameters have been determined from experimentation,
by computing the average RMSE and the average deliberation time when varying some
parameters at a time. The simulations also revealed the importance of the balance between
exploration and exploitation for the task of computing navigating strategies that lead to-
wards a local goal.

As previously, the performance of the proposed strategies was evaluated through a simula-
tion process, with randomly generated environments and pursuers modelled as followers.
Variations in the number of pursuers, their velocities and updates of the sensing, were
analysed to deliberate the best combinations according to the simulated characteristics of
the environment. The relative success of the paths, for the different reward functions, and
statistics on the navigation steps before capture, served as the basis for the evaluations.

Compared to path planning, the navigation strategies use more time in the computations.
Furthermore, the success of the paths computed with reinforcement learning is lower than
the path planning paths, in terms of the number of navigation steps before capture.

The reinforcement learning proposed approach has the following advantages, with respect
to the problem of navigation and escape from pursuers:

• Intrinsic to reinforcement learning, one of the advantages is that no mathematical
model of the environment or elements is needed to compute the optimal strategies,
but information about the state transitions and the corresponding reward. This situ-
ation is ideal to deal with previously unknown environments, from which only some
information is available through local sensing.
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• Tabular Q-learning can be extended to deal with more data, from higher resolution
grids or a more complex sensing source, by means of function approximation tech-
niques.

• Reinforcement learning algorithms, like the tabular Q-learning, are easy to under-
stand and implement computationally.

The reinforcement learning approach can be improved in the following ways:

• A more biologically based approach to avoid pursuit, similar to Furuichi (2002), can
be considered for the reward functions, to substitute the need for a local navigation
goal and promote the use of proteanism according to the conditions in the environ-
ment. Consequently, the approach could change from the computation of navigation
strategies towards a goal, to a more reactive form to deal with pursuit.

• Other reinforcement learning algorithms, like Sarsa (λ) or an actor-critic architecture,
can be used to substitute Q-learning, based on a similar dynamic selection of pa-
rameters and the same reward functions. The evaluation of different reinforcement
learning approaches in the solution to the same problem of navigation and escape
would allow producing the best combinations according to the requirements of the
task.

• Additional improvements include smoothing the final strategy, and acquiring more
information about the pursuers, as mentioned before for the path planning approach.

9.4 Implementation in robots

The demonstration of the path planning approach in a robotic platform, the e-Puck, re-
quired the following additions:

• A program for the micro-controller in the robot, to perform the sensing of the envi-
ronment through taking 8 photos with the camera included as part of the hardware
of the robot. The photos are transferred to MATLAB for the extraction of elements
and distances.

• A program to process the images from the sensing, identifying pursuers, obstacles,
free space and their relative distances (with respect to the robot). An analysis of
colours and brightness is used for the identification of the elements, and the output
is an occupancy grid to be used in the environment analysis described in Chapter 4.

• A low level control that receives the coordinates (x, y) of the following cell in the
path (its centroid), and feeds the robot the corresponding output signal in terms of
the speed of the two wheels, and the time to sustain that speed. The robot executes
the motion in two steps: correcting the angle first and then a displacement in the
direction of that angle, for the approximate length of a cell.

The simulations with the robot show that the elements are identified correctly, and the
occupancy grid is computed accordingly. Nevertheless, the capabilities of the camera are
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not fully used, as no information about the geometry and other features of the pursuers are
considered in the analysis. Also, the procedure to acquire information about the surround-
ings at once is limited due to the small angle of range in the camera. A different array of
sensors would provide with an equivalent amount of information in less time, and without
the need to stop and move the entire robot to perform the sensing.

The communication between the robot and MATLAB, via Bluetooth, transmits the sensed
images from the robot and receives a path in return relatively fast. The resulting motion
towards the cells specified in the path is also fast, using the full capabilities of the robot in
speed terms, and is accurate for a maximum of 8 navigation steps, after which a correction
in the location of the robot is needed. However, physical constraints can be considered
to smooth the path from the path planning processing, towards a continuous motion that
changes the angle whilst moving towards the target location.

9.5 Main achievements

The main achievements of the work presented in this thesis are the following:

• The development of a biologically inspired analysis of the environment, where infor-
mation is processed to determine a local navigation goal, a priori proteanism and a
representation of the environment.

• A proposal to consider not only a location away from all pursuers simultaneously as
a local goal for navigation to solve the problem of escape, but considering biologically
inspired temporal refuges behind obstacles to try to improve the chances of avoiding
capture.

• A proposal to implement a priori and a posteriori proteanism as part of the autonomous
navigation of a robot, and to solve the problem of escape from pursuers.

• A different use of subgoals in navigation, not only to solve the problem of local
minima in potential functions for path planning, but to compute a priori proteanism.

• The use of two different approaches to propose solutions to the problem of navigation
and escape from pursuers:

– A path planning perspective, based on potential functions.

– A reinforcement learning perspective, based on tabular Q-learning.

• The incorporation of pursuers into different kinds of potential functions, as well as
the subgoals for guided a priori proteanism.

• A modification of traditional steepest descent search method, to compute the path
planning from the potential functions environment representation, by incorporating
a second criterion based on the distances to the local goal or currently active subgoal,
to facilitate the computations.
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• The selection of learning parameters for a reinforcement learning algorithm based on
the closeness of threats, to deliberate a navigation strategy as soon as possible.

• The shaping of reward functions to facilitate the computation of navigation strategies,
from the concept of local navigation goals to navigate far away from pursuers, and
biologically inspired refuges.

• The design of simulation tools in MATLAB for the sensing acquisition, the deliber-
ation and the pursuers, to evaluate the performance of the proposals from a visual
perspective.

• The proposal of an evaluation system of paths and navigation strategies, from the
simulated sensing and interaction with pursuers in randomly generated environ-
ments. The evaluation system is based on a statistical analysis of the success of the
paths avoiding capture in a threshold of navigation steps.

• The generation of control systems for navigation and escape from pursuers that can
be used for different robotic platforms.

• The demonstration of the functioning and implementation of the proposed path plan-
ning control system in a robotic platform, the e-Puck. A sensing processing and a low
level control were proposed to be coupled with the biologically inspired environment
analysis and the path planning based on potential functions.

9.6 Future work

The following subsections detail three main areas of possible future work to extend the
proposals of this thesis to a specific robotic platform, a more complete simulator that allows
evaluating the proposals, and towards multi-robot systems.

9.6.1 A solution to navigation and escape specific to a physical robot
model

The work presented in this thesis can be improved by considering the characteristics of a
specific robotic platform to be used in another real life task, with a design based on the
same elements in the control system described in Chapter 8. The proposed improvements
are:

• Taking better advantage of the capabilities of the sensing hardware, in terms of the
extraction of information. When more information is available, mathematical models
can be computed and used in the deliberation process to improve the responses for
the navigation and escape from pursuers. The representation of the environment
needs to reflect as much available information as possible, but considering the com-
putational cost and time limitations.
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• Considering relevant internal variables of the robot as part of the sensing, like the
state of the battery, when they affect the performance of the navigation.

• Using self-localisation and mapping (SLAM) as part of the sensing, to accumulate
more knowledge about the environment in memory. The accumulation of knowledge
would lead to navigation strategies that consider more options in terms of future
possible locations for the robot, but also has a computational cost by increasing the
configuration space and requiring more memory.

• Applying smoothing techniques considering the physical characteristics and kine-
matic limitations specific to the robot hardware, to improve the discrete paths.

• Improving the architecture of the control system according to the requirements of
the task, as the combination of collision avoidance and escape from pursuers with
exploration, area sweeping or transportation could require a different set of actions.
The proposed navigation and escape solutions can form part of a modular or hierar-
chical structure that switches between modes of operation according to the current
objectives. Furthermore, the proposals of this thesis could be implemented as part
of the pre-defined responses when the environment is previously unknown, for a
control structure that learns behaviours or actions from the interactions with the
environment.

• Implementing proteanism in a different form, combined with stealth navigation to
complement the bio-inspired notion of refuges, according to the chosen environment
representation.

• Incorporating mechanisms to model the pursuers to predict their behaviour, when no
previous information about them is available. Mathematical models of the pursuers
can be built along with the sensing of the environment, and modified online accord-
ing to the observations from the interactions. Another proposal is a global model
that concentrates the characteristics of different kinds of pursuers from the literature
(like the ones in differential pursuit-evasion games) can be designed and embedded
a priori.

A global criterion to guide the design of the different stages in the control system (sensing,
deliberating and moving or acting), is the specific needs and challenges of the environment.
For example, if the robot is deployed in an area where the pursuers and obstacles are of
certain type, like surveillance in a floor of a building, the design of the control system
can contemplate the use of a predefined solution. If the robot was to be deployed for
exploration in another planet, a more robust and complex system that adapts to the new
challenges in the environment would be a better solution, to let it learn from its interactions.
A comparative study of all the available options for the structure components in a control
system for more autonomous navigation and escape from pursuers is needed, to find the
best alternatives and improve them as much as possible in combination with other real
life tasks like surveillance, search and rescue, cleaning, or recognition. A start of such a
comparative study can be found in Amin et al. (1997).
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9.6.2 Improving the methodology to evaluate solutions to the problem

Ideally, a more complete simulator would lead to a better evaluation of any approach to
the solution of the problem of autonomous navigation and escape from pursuers. The
characteristics of an ideal simulator would be:

• The use of structured environments and terrains, where the obstacles have complex
geometries, and its extension is not necessarily limited by walls.

• Allowing a better visual representation of the motion of the robot with respect to
its environment including the steering angles, velocities (linear and angular) and
accelerations.

• A set of predefined pursuer behaviours, from common pursuit strategies from the
literature, to be able to combine them in the same environment and assess the perfor-
mance of the navigation and resulting behaviours caused by the pursuit.

• Incorporating many other modular path planning, machine learning and control sys-
tems components, programmed previously. This would allow assembling different
combinations of control structures, to observe the consequent navigation behaviours
due to the interaction with the artificially created environment.

• Having a visual interface where paths or navigation strategies computed with differ-
ent methods are compared through relevant statistics, for the same simulated envi-
ronment. The user would be able to input the characteristics of the statistical analysis,
like number of samples, measures to assess the differences between the paths and
measures of the success in both avoiding collisions and avoiding capture by pursuers.

Some of the proposals to improve the simulating environment have been inspired in other
available robotics simulators, and the modularity of toolboxes in software like MATLAB or
LabVIEW (Ponce-Cruz and Ramı́rez-Figueroa, 2009).

9.6.3 Extension to multi-robot systems

The proposed solutions to the problem of navigation and escape from pursuers can be
directly extended to the multi-robot systems domain, by adding multi-agent systems con-
cepts (Weiss, 1999; Wooldridge, 2002). Some suggestions are listed next:

• Communication between the robots that conform the multi-robot system, to share
information about the environment or about themselves (like their relative location,
or the result of their own decision processes) and for coordination purposes. Some
multi-robot control systems do not need communications, as each robot obeys its own
control system and decides according to its own observations. Nevertheless, commu-
nications offer an easier alternative than modelling and predicting the behaviour of
other robots that form part of the multi-robot system.

• Coordination and negotiation mechanisms to decide on individual local goals of nav-
igation, the grouping of the robots into coalitions and the division of the tasks. A
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coordination and communication mechanism is needed if the robots decide about
their own navigation considering the decisions of the other robots, in a cooperative
form. Popular coordination and negotiation mechanisms include bidding and voting
(Partalas et al., 2007). The formation of coalitions simplify the task of navigation, by
creating hierarchies for the planning. The task of escaping from multiple pursuers
can be divided in simpler tasks, where a pursuer is assigned to a group of escaping
robots, trying to maximise the chances of avoiding capture by being in a group.

• Swarm concepts like formations and clustering can be incorporated to facilitate the
coordination of the navigation, as some robots could follow a leader that decides the
main escape strategy. The use of leader-follower hierarchies and the separation of
the whole population of robots in the system into groups, allows the incorporation of
biologically inspired group behaviours like mobbing or group proteanism.

Considering multi-robot systems, or the presence of allies in the environment, increases
the complexity of the collision avoidance. The allies are dynamic entities, with their own
intelligence and motion capabilities. Thus, the multi-robot system needs constant commu-
nication between the robots to know of the actions of others, or keeping a model of the
behaviour of the other robots and considering predictions about their navigation in the
deliberation process. Otherwise, avoiding collisions with the allies without knowing about
their actions leads to more pressure in the sensing stage.
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Assessment of similitude between two
curves

Discrete Fréchet distance

The discrete Fréchet distance is a measure of similarity between two curves (the paths)
(Eiter and Mannila, 1994). Consider two polygonal curves, Path1 and Path2, with q1 and
q2 relevant points (vertices) each. The coupling of the curves is defined as a sequence
(PathA1,PathB1), (PathA2,PathB2), ..., (PathAq1 ,PathBq2). The length of the coupling is
defined as

||L|| = max
i=1,...,ql

d(PathAi,PathBi), (A.1)

where L is the longest link between the two curves, d(PathAi,PathBi) is the distance be-
tween the points in the polygons and ql is the maximum number of points in any of both
curves (q1 or q2). Thus, the Fréchet distance between the two curves is

δDF (PathA,PathB) = min ||L|| (A.2)

or the minimum of all possible links between the curves. The algorithm used to compute
the discrete Fréchet distance, from Eiter and Mannila (1994), is shown next.

Root-mean-square error

The root-mean-square error is a measurement of the accumulated difference between the
points of the subgoal based protean path and the steepest descent only path,

RMSE =

√∑ql
m=1 (d(PathAm,PathBm))

2

ql
(A.3)
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Algorithm 5 Discrete Fréchet distance algorithm

1: Initialise G(j, k) = −1∀j, k as a matrix of q1 × q2 dimensions, j = 1, ..., q1 points in
PathA, k = 1, ..., q2 points in PathB

2: G(1, 1) = d(PathA1,PathB1)
3: for j = 1 : q1 do
4: G(j, 1) = max{G(j − 1, 1), d(PathAj ,PathB1)}
5: end for
6: for k = 1 : q2 do
7: G(1, k) = max{G(1, k − 1), d(PathA1,PathBk)}
8: end for
9: for j = 2 : q1 and k = 2 : q2 do

10: G(j, k) = max{min{G(j − 1, k), G(j − 1, k − 1), G(j, k − 1)}, d(PathAj ,PathBk}
11: end for
12: Fréchet distance = G(q1, q2)

where ql is the largest number of points from any of the two paths, q1 for PathA, and q2 for
PathB accordingly.
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Additional visual examples for a low
resolution grid

This appendix presents additional examples of computed paths, for a low resolution grid,
in environments with two pursuers and different potential functions. The examples com-
plement the simulations and results from Sections 5.2 and 5.3.

(a) Successful paths (b) Successful paths

(c) Successful paths (d) Successful paths

Figure B.1: Computed paths using steepest descent (solid red) and updated subgoals and steepest
descent (dashed green), with subgoals as circles and modified FIRAS and quadratic potential
functions; sensed obstacles in black with an O, sensed pursuers in grey with a P, extended probable
obstacles in black, extended probable pursuers in grey, and the LG as X.
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Continuation of Figure B.1
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Figure B.2: Computed paths using steepest descent (solid red) and updated subgoals and steepest
descent (dashed green), with subgoals as circles, and a BVP with Dirichlet conditions and Jacobi
iterative method; sensed obstacles in black with an O, sensed pursuers in grey with a P, extended
probable obstacles in black, extended probable pursuers in grey, and the LG as X.
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Figure B.3: Computed paths using steepest descent (solid red) and updated subgoals and steepest
descent (dashed green), with subgoals as circles, and a BVP with Dirichlet conditions and SOR
iterative method; sensed obstacles in black with an O, sensed pursuers in grey with a P, extended
probable obstacles in black, extended probable pursuers in grey, and the LG as X.
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(a) Successful paths (b) Local minima in steepest descent
path

(c) Local minima in protean path (d) Oscillations due to enclosure

Figure B.4: Computed paths using steepest descent (solid red) and updated subgoals and steepest
descent (dashed green), with subgoals as circles, wave-front potential functions; sensed obstacles in
black with an O, sensed pursuers in grey with a P, extended probable obstacles in black, extended
probable pursuers in grey, and the LG as X.
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(a) Steepest descent path (b) Subgoal based path

(c) Steepest descent path (d) Subgoal based path

(e) Steepest descent path (f) Subgoal based path

Figure B.5: Concentrated paths simulating the navigation of the robot and the pursuers with a
velocity of vp = vr , and updating the sensing after every navigation motion. Steepest descent paths
in red and corresponding pursuers in magenta; subgoal based paths in green and corresponding
pursuers in blue; obstacles in black.
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(a) Steepest descent path (b) Subgoal based path

(c) Steepest descent path (d) Subgoal based path

(e) Steepest descent path (f) Subgoal based path

Figure B.6: Concentrated paths simulating the navigation of the robot and the pursuers with a
velocity of vp = 2vr , and updating the sensing after every navigation motion. Steepest descent paths
in red and corresponding pursuers in magenta; subgoal based paths in green and corresponding
pursuers in blue; obstacles in black.
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(a) Steepest descent path (b) Subgoal based path

(c) Steepest descent path (d) Subgoal based path

(e) Steepest descent path (f) Subgoal based path

Figure B.7: Concentrated paths simulating the navigation of the robot and the pursuers with a
velocity of vp = 1

2
vr , and updating the sensing after every navigation motion. Steepest descent paths

in red and corresponding pursuers in magenta; subgoal based paths in green and corresponding
pursuers in blue; obstacles in black.
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Additional visual examples for a high
resolution grid

This appendix presents additional examples of computed paths, for a low resolution grid,
in environments with two pursuers and different potential functions. The examples com-
plement the simulations and results from Sections 5.4, 5.5 and 5.6.

(a) Oscillations due to enclosure,
rsg = 3

(b) Local minima problems, rsg = 3

(c) Local minima problems, rsg = 6 (d) Local minima problems, rsg = 9

Figure C.1: Computed paths using steepest descent (solid red), and updated subgoals and steepest
descent (dashed green), with subgoals as circles, and a BVP for Laplace equation with Dirichlet
conditions and Jacobi iterative method; sensed obstacles in black, sensed pursuers in grey, and the
LG as X.
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Figure C.2: Computed paths using steepest descent (solid red) and updated subgoals and steepest
descent (dashed green), with subgoals as circles and modified FIRAS and quadratic potential
functions for a highr resolution grid; sensed obstacles in black, sensed pursuers in grey, and the
LG as X.
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(a) Successful paths, rsg = 3 (b) Successful paths, rsg = 6

(c) Successful paths, rsg = 9 (d) Local minima in steepest descent
path, rsg = 3

(e) Local minima in steepest descent
path, rsg = 6

(f) Local minima in steepest descent
path, rsg = 9

Figure C.3: Computed paths using steepest descent (solid red), and updated subgoals and steepest
descent (dashed green), with subgoals as circles, and wave-front potential functions; sensed obstacles
in black, sensed pursuers in grey, and the LG as X.
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(a) Steepest descent path (b) Subgoal based path

(c) Steepest descent path (d) Subgoal based path

(e) Steepest descent path (f) Subgoal based path

Figure C.4: Concentrated paths simulating the navigation of the robot and the pursuers with a
velocity of vp = vr , and updating the sensing after every navigation motion, for a higher resolution
grid.Steepest descent paths in red and corresponding pursuers in magenta; subgoal based paths in
green and corresponding pursuers in blue; obstacles in black.
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(a) Steepest descent path (b) Subgoal based path

(c) Steepest descent path (d) Subgoal based path

(e) Steepest descent path (f) Subgoal based path

Figure C.5: Concentrated paths simulating the navigation of the robot and the pursuers with a
velocity of vp = 2vr , and updating the sensing after every navigation motion, for a higher resolution
grid. Steepest descent paths in red and corresponding pursuers in magenta; subgoal based paths in
green and corresponding pursuers in blue; obstacles in black.
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(a) Steepest descent path (b) Subgoal based path

(c) Steepest descent path (d) Subgoal based path

(e) Steepest descent path (f) Subgoal based path

Figure C.6: Concentrated paths simulating the navigation of the robot and the pursuers with a
velocity of vp = 1

2
vr , and updating the sensing after every navigation motion, for a higher resolution

grid. Steepest descent paths in red and corresponding pursuers in magenta; subgoal based paths in
green and corresponding pursuers in blue; obstacles in black.
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(a) Steepest descent path (b) Subgoal based path (c) General protean path

(d) Steepest descent path (e) Subgoal based path (f) General protean path

(g) Steepest descent path (h) Subgoal based path (i) General protean path

Figure C.7: Concentrated paths (protean general and guided, steepest descent) simulating the
navigation of the robot and the pursuers with vp = vr , and updating the sensing after 3 navigation
steps, for a higher resolution grid. Steepest descent paths in red and corresponding pursuers in
magenta; subgoal based paths in green and corresponding pursuers in blue; general protean paths in
orange and corresponding pursuers in cyan; obstacles in black.
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(a) Steepest descent path (b) Subgoal based path (c) General protean path

(d) Steepest descent path (e) Subgoal based path (f) General protean path

(g) Steepest descent path (h) Subgoal based path (i) General protean path

Figure C.8: Concentrated paths (protean general and guided, steepest descent) simulating the
navigation of the robot and the pursuers with vp = 2vr , and updating the sensing after 3 navigation
steps, for a higher resolution grid. Steepest descent paths in red and corresponding pursuers in
magenta; subgoal based paths in green and corresponding pursuers in blue; general protean paths in
orange and corresponding pursuers in cyan; obstacles in black.
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(a) Steepest descent path (b) Subgoal based path (c) General protean path

(d) Steepest descent path (e) Subgoal based path (f) General protean path

(g) Steepest descent path (h) Subgoal based path (i) General protean path

Figure C.9: Concentrated paths (protean general and guided, steepest descent) simulating the
navigation of the robot and the pursuers with vp = 1

2
vr , and updating the sensing after 3 navigation

steps, for a higher resolution grid. Steepest descent paths in red and corresponding pursuers in
magenta; subgoal based paths in green and corresponding pursuers in blue; general protean paths in
orange and corresponding pursuers in cyan; obstacles in black.
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Tables of resulting DFD and RMSE to
compare computed paths

This appendix presents the rest of the tables of resulting DFD and RMSE for low and high
resolution grids, corresponding to Subsections 5.2.2 and 5.4.2.

For low resolution grids, Table D.1 presents the statistics for the modified FIRAS and
quadratic potential functions. Tables D.2 and D.3 present the results of a BVP for Laplace
equation with Jacobi and SOR iterative methods, respectively. Tables D.4 and D.5 continue
with the results of a BVP for the perturbation equation with Jacobi and SOR iterative
methods for 2, 5 and 10 pursuers, as the results are quite similar to the ones from the
Laplace equation. Table D.6 presents the statistics for the computed paths with wave-front
potential functions.

For high resolution grids, Table D.7 presents the statistics for the modified FIRAS and
quadratic potential functions. Tables D.8 and D.9 present the results of a BVP for Laplace
equation with Jacobi and SOR iterative methods, respectively, for 2, 5 and 10 pursuers.
Tables D.10 and D.11 continue with the results of a BVP for the perturbation equation with
Jacobi and SOR iterative methods for 2, 5 and 10 pursuers. Table D.12 presents the statistics
for the computed paths with wave-front potential functions. Only some of the statistics
are presented to illustrate the evaluation of the performance for all potential functions, as
previous results show that using a BVP for the Laplace and perturbation equations does
not produce the best results.
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Table D.1: DFD and RMSE for modified FIRAS and quadratic potential functions.

PU
R

SU
ER

S rsg AND SUBGOAL COMMUTATION

EXTENDED SENSING UNEXTENDED SENSING

2 3 4 5 6 2 3 4 5 6

1

µ DFD 23.404 24.284 24.207 15.298 0.132 23.814 24.692 24.096 16.101 1.259

Sd DFD 24.698 27.584 27.953 23.120 2.493 25.242 27.888 25.909 24.020 7.243

µ RMSE 7.119 7.432 7.692 5.205 0.034 8.303 8.442 8.568 5.620 0.508

Sd RMSE 8.427 9.091 9.734 8.369 0.769 9.367 10.195 10.191 9.161 3.303

2

µ DFD 23.729 24.615 23.626 23.573 24.261 23.760 24.518 23.906 24.584 23.651

Sd DFD 19.341 19.395 19.249 18.679 19.843 18.346 18.447 18.122 18.013 18.429

µ RMSE 7.004 6.977 6.656 7.461 7.326 8.071 8.091 7.925 8.106 8.060

Sd RMSE 6.781 6.776 6.609 7.266 7.232 7.178 7.305 6.952 7.150 7.353

3

µ DFD 23.943 25.395 25.398 20.681 10.838 24.729 24.989 25.152 19.864 10.868

Sd DFD 17.342 18.800 18.843 21.565 20.720 16.472 17.791 18.958 21.373 20.826

µ RMSE 7.031 8.126 8.696 6.849 3.855 7.999 8.223 8.210 6.583 3.909

Sd RMSE 6.563 7.554 8.028 8.743 8.306 6.642 7.270 7.880 8.263 8.248

4

µ DFD 24.971 25.140 25.984 21.944 14.161 25.767 25.675 25.326 12.558 20.822

Sd DFD 16.326 17.509 18.730 21.001 22.620 16.868 16.453 18.314 21.443 20.777

µ RMSE 7.186 7.974 8.156 7.069 4.760 7.769 8.235 8.368 3.934 6.946

Sd RMSE 6.175 7.148 7.591 8.095 8.913 6.368 7.026 7.749 8.120 8.350

5

µ DFD 24.734 25.590 26.229 19.540 12.163 25.270 25.855 25.336 19.142 11.617

Sd DFD 16.461 17.534 18.941 20.549 20.962 16.068 17.208 19.050 20.800 20.550

µ RMSE 6.858 7.898 8.305 6.463 4.259 7.683 8.081 8.112 6.314 3.987

Sd RMSE 6.165 7.211 7.883 8.036 8.276 6.291 6.883 7.732 8.112 8.117

10

µ DFD 24.423 26.410 26.630 27.193 21.108 28.514 27.964 28.490 28.903 21.857

Sd DFD 16.428 18.233 19.351 21.343 23.673 17.764 17.085 19.241 22.601 24.399

µ RMSE 5.942 7.027 6.803 6.920 5.962 7.410 7.225 7.524 6.653 5.896

Sd RMSE 5.787 7.028 7.469 7.808 8.846 6.396 6.481 7.411 7.752 8.764
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Table D.2: DFD and RMSE for BVP for Laplace equation with Dirichlet boundary condi-
tions and Jacobi iterative method.

PU
R

SU
ER

S rsg AND SUBGOAL COMMUTATION

EXTENDED SENSING UNEXTENDED SENSING

2 3 4 5 6 2 3 4 5 6

1

µ DFD 42.126 28.719 18.457 4.8928 0 40.024 23.847 13.379 5.070 0.220

Sd DFD 50.155 41.460 32.086 16.392 0 46.468 36.675 28.695 16.890 4.300

µ RMSE 8.930 4.111 2.021 0.330 0 8.434 3.061 1.906 0.279 0.015

Sd RMSE 12.898 8.122 5.398 1.853 0 12.459 7.025 5.667 1.834 0.220

2

µ DFD 42.751 28.275 18.122 7.289 2.082 41.045 23.675 14.068 4.182 1.476

Sd DFD 37.353 34.991 29.280 20.741 12.707 37.650 32.748 27.782 15.370 10.679

µ RMSE 8.777 4.338 2.012 0.598 0.061 7.913 3.087 1.307 0.319 0.038

Sd RMSE 11.448 8.152 4.949 4.118 0.551 11.525 6.872 4.084 2.268 0.443

3

µ DFD 42.161 31.029 18.952 8.256 2.735 40.425 23.979 2.342 5.668 1.707

Sd DFD 33.840 33.284 29.279 20.477 13.211 32.712 32.257 14.172 18.919 10.983

µ RMSE 8.064 3.670 1.473 0.394 0.1064 7.914 3.328 0.071 0.474 0.088

Sd RMSE 10.314 7.228 3.766 1.800 1.005 11.328 7.558 0767 3.095 0.986

4

µ DFD 41.252 29.019 20.953 11.026 4.772 41.687 25.210 15.353 6.379 1.887

Sd DFD 30.902 32.138 30.305 25.001 18.627 31.998 33.288 27.791 20.421 11.369

µ RMSE 8.450 2.825 1.841 0.405 0.106 7.491 2.662 1.371 0.281 0.098

Sd RMSE 10.807 5.641 5.236 1.803 0.916 11.018 6.688 4.042 1.995 0.926

5

µ DFD 42.470 28.544 18.542 9.439 2.754 40.330 24.056 13.940 5.926 2.821

Sd DFD 30.846 32.617 29.805 23.027 13.627 30.755 31.389 27.273 19.086 14.913

µ RMSE 7.309 3.219 1.787 0.617 0.1761 6.936 3.072 0.979 0.440 0.087

Sd RMSE 9.551 6.392 5.051 3.459 1.370 10.434 6.775 3.801 2.567 0.781

10

µ DFD 41.894 29.274 17.980 9.902 4.691 42.527 24.828 14.180 7.915 3.600

Sd DFD 27.557 31.015 27.407 23.261 17.392 29.606 32.820 27.797 23.093 16.998

µ RMSE 5.563 1.690 0.905 0.462 0.068 4.763 1.878 0.904 0.459 0.069

Sd RMSE 7.542 4.338 2.857 2.616 0.709 9.062 5.637 3.682 2.935 0.722

249



APPENDIX D

Table D.3: DFD and RMSE for BVP for Laplace equation with Dirichlet boundary condi-
tions and SOR iterative method.

PU
R

SU
ER

S rsg AND SUBGOAL COMMUTATION

EXTENDED SENSING UNEXTENDED SENSING

2 3 4 5 6 2 3 4 5 6

1

µ DFD 31.140 6.060 3.968 1.361 0.027 29.448 6.006 3.989 1.575 0.064

Sd DFD 41.104 14.684 11.289 6.300 0.595 38.538 15.472 10.808 5.671 0.832

µ RMSE 8.950 1.199 0.300 0.040 0 7.832 1.293 0.297 0.061 0

Sd RMSE 12.691 3.247 1.375 0.758 0 11.808 4.300 1.635 0.527 0

2

µ DFD 29.512 5.623 3.712 1.715 0.188 30.102 5.372 3.286 1.443 0.108

Sd DFD 31.542 13.479 11.731 6.537 1.668 32.501 13.010 9.721 6.860 1.055

µ RMSE 7.192 1.164 0.283 0.083 0.025 6.588 1.044 0.272 0.097 0

Sd RMSE 9.644 3.364 1.326 0.700 0.517 9.622 3.226 1.377 0.808 0

3

µ DFD 29.224 5.599 2.731 1.2634 0.288 26.403 4.212 2.331 1.176 0.211

Sd DFD 28.458 13.956 7.731 4.912 1.922 28.275 11.979 7.084 5.194 1.556

µ RMSE 7.698 1.076 0.344 0.051 0.007 6.847 0.846 0.339 0.061 0.007

Sd RMSE 9.639 3.193 1.668 0.435 0.202 9.594 2.955 1.631 0.708 0.200

4

µ DFD 28.283 5.649 2.587 1.407 0.174 27.405 4.498 2.755 1.339 0.263

Sd DFD 26.572 14.140 9.462 7.424 1.372 28.236 13.240 9.753 5.381 1.672

µ RMSE 6.841 1.122 0.276 0.092 0.005 6.360 0.874 0.256 0.080 0

Sd RMSE 8.773 3.444 1.370 0.834 0.136 9.120 2.868 1.434 0.845 0

5

µ DFD 25.287 4.230 2.052 1.193 0.248 25.564 4.247 2.339 0.919 0.217

Sd DFD 25.550 11.472 7.920 6.515 3.493 25.615 11.512 9.211 4.331 1.631

µ RMSE 6.491 0.908 0.292 0.076 0 6.026 0.934 0.284 0.030 0.014

Sd RMSE 8.933 3.087 1.552 0.800 0 8.738 3.073 1.578 0.383 0.435

10

µ DFD 23.222 3.861 1.709 0.636 0.422 23.288 2.904 1.614 1.006 0.465

Sd DFD 22.093 11.749 8.471 5.000 4.729 24.719 10.495 8.470 6.858 3.732

µ RMSE 3.981 0.615 0.100 0.009 0.015 3.239 0.517 0.217 0.026 0.006

Sd RMSE 6.511 2.500 0.0771 0.168 0.277 6.519 2.258 1.380 0.328 0.176

Table D.4: DFD and RMSE for BVP for perturbation equation with Dirichlet boundary
conditions and Jacobi iterative method.

PU
R

SU
ER

S rsg AND SUBGOAL COMMUTATION

EXTENDED SENSING UNEXTENDED SENSING

2 3 4 5 6 2 3 4 5 6

2

µ DFD 41.193 29.872 19.813 10.850 2.039 40.993 26.721 16.420 8.024 1.436

Sd DFD 36.977 35.289 30.870 25.438 10.665 35.754 34.742 29.816 22.607 10.056

µ RMSE 7.654 4.582 2.163 0.747 0.109 7.815 3.502 1.879 0.736 0.190

Sd RMSE 9.980 8.135 5.744 3.445 0.885 11.403 7.611 5.810 3.751 2.277

5

µ DFD 41.775 31.607 21.298 9.972 4.306 41.567 25.806 15.812 7.945 4.005

Sd DFD 30.650 32.984 29.907 23.074 16.250 31.663 32.591 27.932 22.189 16.217

µ RMSE 7.583 3.396 1.844 0.716 0.296 7.204 3.198 1.790 0.520 0.415

Sd RMSE 10.195 7.038 4.124 3.416 2.018 10.977 7.379 5.885 2.598 2.994

10

µ DFD - - - - - 46.449 31.316 22.7024 15.497 12.639

Sd DFD - - - - - 29.725 33.829 31.458 27.073 26.672

µ RMSE - - - - - 5.985 2.570 2.095 1.583 1.450

Sd RMSE - - - - - 9.991 6.374 6.321 4.856 5.087
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Table D.5: DFD and RMSE forBVP for perturbation equation with Dirichlet boundary
conditions and SOR iterative method.

PU
R

SU
ER

S rsg AND SUBGOAL COMMUTATION

EXTENDED SENSING UNEXTENDED SENSING

2 3 4 5 6 2 3 4 5 6

2

µ DFD 30.175 5.728 4.200 1.830 0.178 28.683 5.756 4.152 2.266 0.457

Sd DFD 33.201 13.785 12.853 7.054 2.540 30.802 13.879 11.091 9.225 3.019

µ RMSE 8.039 1.192 0.466 0.152 0.009 7.353 1.183 0.473 0.113 0.018

Sd RMSE 10.397 3.515 2.589 1.047 0.250 10.205 3.608 2.129 1.107 0.356

5

µ DFD 27.609 5.971 2.848 1.680 0.973 27.861 6.526 3.711 1.649 0.557

Sd DFD 27.321 14.211 8.532 6.584 7.138 27.890 15.871 11.426 7.755 4.254

µ RMSE 6.640 1.192 0.400 0.206 0.137 6.194 1.218 0.461 0.148 0.026

Sd RMSE 9.164 3.751 1.727 1.890 1.350 9.109 3.778 2.284 1.342 0.483

10

µ DFD - - - - - 25.619 6.772 4.428 3.344 2.533

Sd DFD - - - - - 29.606 17.656 14.157 11.798 11.452

µ RMSE - - - - - 3.571 0.939 0.723 0.480 0.254

Sd RMSE - - - - - 7.012 3.582 2.980 2.386 1.567

Table D.6: DFD and RMSE for wave-front potential functions

PU
R

SU
ER

S rsg AND SUBGOAL COMMUTATION

EXTENDED SENSING UNEXTENDED SENSING

2 3 4 5 6 2 3 4 5 6

1

µ DFD 26.083 23.864 24.019 14.996 0.469 28.320 26.196 23.430 13.372 3.109

Sd DFD 29.575 26.931 27.572 22.972 6.388 31.560 29.490 28.654 22.198 13.154

µ RMSE 7.432 7.383 7.542 4.750 0.092 8.786 8.678 7.928 4.668 0.987

Sd RMSE 9.025 9.198 9.951 7.969 1.162 10.397 10.525 10.656 8.480 4.692

2

µ DFD 31.719 30.807 28.936 20.999 10.752 32.869 29.666 28.126 20.897 9.496

Sd DFD 26.745 26.272 27.013 26.511 24.567 26.270 25.942 25.192 26.053 22.134

µ RMSE 8.538 8.498 8.765 6.725 2.964 9.739 9.296 9.275 6.700 2.603

Sd RMSE 8.262 8.631 9.724 9.764 7.884 8.843 9.538 9.573 9.712 7.373

3

µ DFD 35.244 33.976 31.655 26.625 16.355 34.787 34.049 31.288 25.269 15.655

Sd DFD 25.018 26.134 25.834 28.240 27.455 23.226 25.234 24.978 26.960 27.125

µ RMSE 9.779 9.592 9.556 8.061 4.488 9.835 9.624 9.280 7.685 4.182

Sd RMSE 8.724 9.140 9.852 9.698 9.283 8.308 8.954 9.392 9.772 9.030

4

µ DFD 36.559 36.835 33.142 27.894 20.467 38.173 35.151 34.417 27.371 19.076

Sd DFD 23.235 25.070 24.544 26.302 29.060 23.411 23.988 24.961 27.736 28.151

µ RMSE 8.919 9.882 9.359 8.158 5.201 10.365 10.020 9.704 7.810 4.464

Sd RMSE 8.106 8.826 9.087 9.439 9.349 8.496 8.773 9.210 9.555 8.741

5

µ DFD 34.028 34.073 30.428 23.722 15.398 37.753 32.853 32.489 23.826 18.911

Sd DFD 21.807 23.791 23.953 25.369 26.298 22.343 22.537 23.750 26.191 29.547

µ RMSE 9.256 8.922 8.774 7.483 4.436 10.218 9.508 9.236 6.954 4.913

Sd RMSE 8.124 8.420 9.026 9.576 9.223 8.164 8.862 9.134 9.051 9.567

10

µ DFD 42.462 42.389 40.082 36.819 33.697 43.524 42.059 41.555 37.488 33.940

Sd DFD 23.676 24.249 25.086 25.061 29.221 23.005 24.037 24.425 26.798 30.762

µ RMSE 9.996 9.484 9.895 9.717 8.428 10.821 10.456 10.557 9.544 7.852

Sd RMSE 8.142 8.505 9.070 9.180 10.228 8.291 8.691 9.194 9.691 10.532
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Table D.7: DFD and RMSE for modified FIRAS and quadratic potential functions.

PURSUERS

rsg AND SUBGOAL COMMUTATION

3 6 9 12 15 18

1

µ DFD 16.877 26.743 25.617 27.221 24.639 14.365

Sd DFD 17.318 32.112 31.439 28.442 29.849 25.589

µ RMSE 6.310 7.188 6.813 7.504 7.291 4.550

Sd RMSE 6.543 9.357 9.282 8.842 9.432 8.974

2

µ DFD 21.520 22.689 24.965 26.054 24.272 18.217

Sd DFD 20.202 19.118 18.584 24.495 23.926 26.519

µ RMSE 6.123 6.995 8.080 7.432 7.016 4.811

Sd RMSE 5.357 6.058 7.555 8.809 9.277 8.782

3

µ DFD 20.692 23.983 28.291 27.206 26.537 21.361

Sd DFD 14.019 17.449 19.159 18.990 22.308 25.802

µ RMSE 6.427 7.423 8.064 9.144 7.461 5.536

Sd RMSE 4.971 6.820 7.357 8.085 8.898 8.417

4

µ DFD 21.828 29.265 26.862 26.535 26.459 19.408

Sd DFD 17.762 20.766 17.357 19.026 20.675 22.302

µ RMSE 6.073 7.775 7.051 7.950 8.156 5.734

Sd RMSE 4.401 6.131 6.414 7.744 8.711 8.726

5

µ DFD 21.193 26.177 25.658 25.240 21.377 22.288

Sd DFD 12.765 17.806 17.317 20.981 20.984 25.362

µ RMSE 6.091 7.146 8.138 6.441 6.178 6.508

Sd RMSE 4.140 5.792 7.315 7.136 8.276 9.043

10

µ DFD 19.908 26.217 28.770 29.347 27.962 33.318

Sd DFD 16.260 19.270 22.456 19.767 22.296 25.671

µ RMSE 4.810 7.613 6.231 7.486 6.640 7.680

Sd RMSE 4.542 6.219 7.346 7.617 8.114 10.034

Table D.8: DFD and RMSE for BVP for Laplace equation with Dirichlet boundary condi-
tions and Jacobi iterative method.

PURSUERS

rsg AND SUBGOAL COMMUTATION

3 6 9 12 15 18

2

µ DFD 2.616 1.625 0.321 0.506 0.847 0.637

Sd DFD 7.863 5.824 1.316 2.316 3.735 2.557

µ RMSE 1.147 0.265 0.068 0.009 0 0

Sd RMSE 2.020 0.849 0.301 0.051 0 0

5

µ DFD 2.729 0.816 0.438 0.190 0.036 0.076

Sd DFD 7.427 3.479 1.720 0.944 0.340 0.487

µ RMSE 1.262 0.286 0.122 0.035 0 0

Sd RMSE 2.420 1.069 0.486 0.237 0 0

10

µ DFD 2.565 0.557 0.101 0.144 0.469 0.468

Sd DFD 8.620 1.780 0.571 0.811 0.469 0.468

µ RMSE 0.786 0.223 0.028 0.015 0 0

Sd RMSE 2.417 0.942 0.195 0.146 0.047 0.067
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Table D.9: DFD and RMSE for BVP for Laplace equation with Dirichlet boundary condi-
tions and SOR iterative method.

PURSUERS

rsg AND SUBGOAL COMMUTATION

3 6 9 12 15 18

2

µ DFD 3.801 1.254 1.514 1.176 0.047 0.897

Sd DFD 9.190 3.593 5.092 5.801 0.369 3.682

µ RMSE 1.265 0.462 0.114 0.010 0 0

Sd RMSE 2.314 1.190 0.504 0.066 0 0

5

µ DFD 2.755 0.869 0.303 0.199 0.858 0.036

Sd DFD 9.317 4.184 1.580 1.490 5.205 0.341

µ RMSE 0.965 0.314 0.055 0 0 0

Sd RMSE 2.325 1.553 0.323 0 0 0

10

µ DFD 1.387 1.051 0.261 0.198 0.081 0.181

Sd DFD 2.373 5.362 1.505 1.143 0.572 0.181

µ RMSE 0.564 0.353 0.055 0 0 0

Sd RMSE 1.476 1.304 0.331 0 0 0

Table D.10: DFD and RMSE for BVP for Laplace with perturbation equation with Dirichlet
boundary conditions and Jacobi iterative method.

PURSUERS

rsg AND SUBGOAL COMMUTATION

3 6 9 12 15 18

2

µ DFD 2.942 1.337 0.960 0.667 0.604 1.225

Sd DFD 6.356 5.535 2.870 5.053 3.960 7.901

µ RMSE 1.354 0.171 0.183 0.015 0 0.082

Sd RMSE 2.809 0.679 0.576 0.083 0 0.708

5

µ DFD 2.509 1.664 1.618 0.880 0.179 0.230

Sd DFD 4.798 6.152 8.166 4.718 1.127 1.005

µ RMSE 1.336 0.468 0.191 0.057 0.007 0.074

Sd RMSE 2.815 2.072 0.720 0.346 0.063 0.710

10

µ DFD 2.273 0.516 0.200 0.411 0.483 0.724

Sd DFD 5.721 1.358 0.921 1.929 1.979 3.863

µ RMSE 0.795 0.282 0.085 0.131 0.080 0.017

Sd RMSE 1.656 1.071 0.491 0.708 0.459 0.125

Table D.11: DFD and RMSE for BVP for Laplace with perturbation equation with Dirichlet
boundary conditions and SOR iterative method.

PURSUERS

rsg AND SUBGOAL COMMUTATION

3 6 9 12 15 18

2

µ DFD 3.144 2.364 1.307 0.339 0.305 0.508

Sd DFD 6.052 7.815 5.030 2.364 2.356 1.567

µ RMSE 1.607 0.291 0.210 0 0.061 0.099

Sd RMSE 3.469 0.870 0.869 0 0.531 0.804

5

µ DFD 3.381 1.845 0.363 0.148 0.311 0.103

Sd DFD 10.828 8.198 1.321 0.840 1.687 0.682

µ RMSE 0.810 0.274 0.232 0.035 0 0

Sd RMSE 1.767 0.800 0.918 0.207 0 0

10

µ DFD 3.193 0.744 1.947 0.920 0 0.216

Sd DFD 9.445 1.796 10.620 7.599 0 0.981

µ RMSE 1.063 0.351 0.429 0.329 0.298 0.405

Sd RMSE 2.086 1.158 1.420 1.412 1.054 1.205
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Table D.12: DFD and RMSE for wave-front potential functions.

PURSUERS

rsg AND SUBGOAL COMMUTATION

3 6 9 12 15 18

1

µ DFD 19.673 25.638 28.680 28.278 24.341 11.297

Sd DFD 21.905 27.392 30.052 30.706 33.269 22.005

µ RMSE 5.640 7.575 6.968 8.401 5.851 3.977

Sd RMSE 6.381 9.223 8.877 10.126 9.625 10.569

2

µ DFD 31.631 35.999 40.994 35.345 39.793 19.203

Sd DFD 28.661 29.180 36.495 33.820 30.226 31.074

µ RMSE 8.741 9.100 9.505 9.289 11.520 5.286

Sd RMSE 8.106 8.253 10.007 10.089 12.187 10.012

3

µ DFD 35.329 40.756 44.965 34.625 37.266 28.079

Sd DFD 30.483 32.324 28.545 25.528 26.160 32.503

µ RMSE 9.096 11.713 11.734 10.979 10.787 8.091

Sd RMSE 6.919 9.985 9.115 10.434 11.553 11.278

4

µ DFD 48.460 42.119 44.658 41.893 38.284 32.801

Sd DFD 33.267 27.860 28.480 28.970 30.147 33.638

µ RMSE 11.732 9.299 9.756 9.820 10.565 9.199

Sd RMSE 8.378 7.426 9.035 9.415 10.131 11.884

5

µ DFD 35.761 37.110 32.409 34.724 31.891 28.695

Sd DFD 26.479 26.286 24.077 26.049 27..813 31.569

µ RMSE 8.535 8.196 8.158 10.146 7.361 8.631

Sd RMSE 6.448 7.461 7.461 7.938 10.442 12.027

10

µ DFD 47.066 50.504 54.591 51.277 46.336 43.263

Sd DFD 31.458 28.936 25.353 27.689 27.269 29.052

µ RMSE 10.018 10.134 12.084 8.898 10.312 7.948

Sd RMSE 8.420 8.815 9.444 8.240 10.835 9.854
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Appendix E

Additional statistical results

Figures E.1, E.2, E.3, E.4, E.5 and E.6 show additional results on the success of avoiding
capture for the computed paths and pursuers in different numbers and velocities, in a low
resolution grid. Figures E.7, E.8 and E.9 show more box plots for the times of capture in
terms of navigation steps, for the same simulations on success of the paths. These figures
complement Subsection 5.3.2.

Posteriorly, Figures E.10, E.11, E.12, E.13, E.14 and E.15 show additional results on the
success of avoiding capture for the computed paths and pursuers in different numbers and
velocities, in a high resolution grid. Figures E.16, E.17 and E.18 show more box plots for
the times of capture in terms of navigation steps, for the same simulations on success of the
paths. These figures complement Subsection 5.5.2.

Figures E.19, E.20 and E.21 show additional results on the success of avoiding capture
for different kinds of paths and pursuers in different numbers and velocities, in a high
resolution grid. Figures E.22, E.23 and E.24 show more box plots for the times of capture in
terms of navigation steps, for the same simulations on success of the paths. These figures
complement Subsection 5.6.2.

Finally, Figure E.25 shows additional results on the success in avoiding capture for the
reinforcement learning strategies, for the two proposed reward functions, and pursuers in
different numbers (2, 4 and 5) and velocities. Figure E.26 shows the corresponding times of
capture for the same numbers of pursuers.
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Figure E.1: Success of steepest descent paths for 2 pursuers, different sensing updates (measured in
navigation steps) and speeds. The horizontal axis corresponds to the values of rsg and the vertical
axis is the percentage of success.
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Figure E.2: Success of subgoal based paths for 2 pursuers, different sensing updates (measured in
navigation steps) and speeds. The horizontal axis corresponds to the values of rsg and the vertical
axis is the percentage of success.
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Figure E.3: Success of steepest descent paths for 4 pursuers, different sensing updates (measured in
navigation steps) and speeds. The horizontal axis corresponds to the values of rsg and the vertical
axis is the percentage of success.
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Figure E.4: Success of subgoal based paths for 4 pursuers, different sensing updates (measured in
navigation steps) and speeds. The horizontal axis corresponds to the values of rsg and the vertical
axis is the percentage of success.
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Figure E.5: Success of steepest descent paths for 5 pursuers, different sensing updates (measured in
navigation steps) and speeds. The horizontal axis corresponds to the values of rsg and the vertical
axis is the percentage of success.
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Figure E.6: Success of subgoal based paths for 5 pursuers, different sensing updates (measured in
navigation steps) and speeds. The horizontal axis corresponds to the values of rsg and the vertical
axis is the percentage of success.
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Figure E.7: Capture times (in terms of navigation steps) for 2 pursuers, different sensing updates
(measured in navigation steps) and speeds. The horizontal axis corresponds to the used potential
functions, and the vertical axis is the average of navigation steps before capture in 100 simulations.
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Figure E.8: Capture times (in terms of navigation steps) for 4 pursuers, different sensing updates
(measured in navigation steps) and speeds. The horizontal axis corresponds to the used potential
functions, and the vertical axis is the average of navigation steps before capture in 100 simulations.
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Figure E.9: Capture times (in terms of navigation steps) for 5 pursuers, different sensing updates
(measured in navigation steps) and speeds. The horizontal axis corresponds to the used potential
functions, and the vertical axis is the average of navigation steps before capture in 100 simulations.
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Figure E.10: Success of steepest descent paths for 2 pursuers, a higher resolution grid, different
sensing updates (measured in navigation steps) and speeds. The horizontal axis corresponds to the
values of rsg and the vertical axis is the percentage of success.
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Figure E.11: Success of subgoal based paths for 2 pursuers, a higher resolution grid, different
sensing updates (measured in navigation steps) and speeds. The horizontal axis corresponds to the
values of rsg and the vertical axis is the percentage of success.
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Figure E.12: Success of steepest descent paths for 4 pursuers, a higher resolution grid, different
sensing updates (measured in navigation steps) and speeds. The horizontal axis corresponds to the
values of rsg and the vertical axis is the percentage of success.
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Figure E.13: Success of subgoal based paths for 4 pursuers, a higher resolution grid, different
sensing updates (measured in navigation steps) and speeds. The horizontal axis corresponds to the
values of rsg and the vertical axis is the percentage of success.
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Figure E.14: Success of steepest descent paths for 5 pursuers, a higher resolution grid, different
sensing updates (measured in navigation steps) and speeds.The horizontal axis corresponds to the
values of rsg and the vertical axis is the percentage of success.
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Figure E.15: Success of subgoal based paths for 5 pursuers, a higher resolution grid, different
sensing updates (measured in navigation steps) and speeds.The horizontal axis corresponds to the
values of rsg and the vertical axis is the percentage of success.
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Figure E.16: Capture times (in terms of navigation steps) for 2 pursuers, a higher resolution
grid, different sensing updates (measured in navigation steps) and speeds. The horizontal axis
corresponds to the used potential functions, and the vertical axis is the average of navigation steps
before capture in 50 simulations.
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Figure E.17: Capture times (in terms of navigation steps) for 4 pursuers, a higher resolution
grid, different sensing updates (measured in navigation steps) and speeds. The horizontal axis
corresponds to the used potential functions, and the vertical axis is the average of navigation steps
before capture in 50 simulations.
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Figure E.18: Capture times (in terms of navigation steps) for 5 pursuers, a higher resolution
grid, different sensing updates (measured in navigation steps) and speeds. The horizontal axis
corresponds to the used potential functions, and the vertical axis is the average of navigation steps
before capture in 50 simulations.
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Figure E.19: Success of the paths for 2 pursuers, a higher resolution grid, different sensing updates
(measured in navigation steps) and speeds. The horizontal axis corresponds to the values of rsg and
the vertical axis is the percentage of success.
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Figure E.20: Success of the paths for 4 pursuers, a higher resolution grid, different sensing updates
(measured in navigation steps) and speeds. The horizontal axis corresponds to the values of rsg and
the vertical axis is the percentage of success.
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Figure E.21: Success of the paths for 5 pursuers, a higher resolution grid, different sensing updates
(measured in navigation steps) and speeds. The horizontal axis corresponds to the values or rsg and
the vertical axis is the percentage of success.
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Figure E.22: Capture times (in terms of navigation steps) for 2 pursuers, a higher resolution
grid, different sensing updates (measured in navigation steps) and speeds. The horizontal axis
corresponds to the used potential functions, and the vertical axis is the average of navigation steps
before capture in 50 simulations.
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Figure E.23: Capture times (in terms of navigation steps) for 4 pursuers, a higher resolution
grid, different sensing updates (measured in navigation steps) and speeds. The horizontal axis
corresponds to the used potential functions, and the vertical axis is the average of navigation steps
before capture in 50 simulations.
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Figure E.24: Capture times (in terms of navigation steps) for 5 pursuers, a higher resolution
grid, different sensing updates (measured in navigation steps) and speeds. The horizontal axis
corresponds to the used potential functions, and the vertical axis is the average of navigation steps
before capture in 50 simulations.
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Figure E.25: Success of the strategies for 2, 4 and 5 pursuers with different velocities. The horizontal
axis corresponds to the sensing updates (in navigation steps) and the vertical axis is the percentage
of success.
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Figure E.26: Capture times (in terms of navigation steps), for 2, 4 and 5 pursuers with different
velocities. The horizontal axis corresponds to the sensing updates (in navigation steps) and the
vertical axis is the average of capture time (also in navigation steps), for 50 simulations.
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C. Szepesvári. Algorithms for reinforcement learning. Morgan & Claypool, 2010.

M. Takahashi, T. Suzuki, H. Shitamoto, T. Moriguchi, and K. Yoshida. Developing a mobile
robot for transport applications in the hospital domain. Robotics and Autonomous Systems,
58(7):889–899, 2010.

H. Tamakoshi and S. Ishii. Multiagent reinforcement learning applied to a chase problem
in a continuous world. Artificial Life and Robotics, 5(4):202–206, 2001.

301



BIBLIOGRAPHY

F. Tan, J. Yang, J. Huang, T. Jia, W. Chen, and J. Wang. A navigation system for family
indoor monitor mobile robot. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 5978–5983, Taipei, Taiwan, 2010.

J.L. Tangorra, S.N. Davidson, I.W. Hunter, P.G.A. Madden, G.V. Lauder, H. Dong,
M. Bozkurttas, and R. Mittal. The development of a biologically inspired propulsor for
unmmaned underwater vehicles. IEEE Journal of Oceanic Engineering, 32(3):533–550, 2007.

J.C. Tay, C.H. Tng, and C.S. Chan. Environmental effects on the coevolution of pursuit and
evasion strategies. Genetic Programming and Evolvable Machines, 9(1):5–37, 2008.
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