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Abstract 

This thesis is focused on the topic of competing risks survival analysis. The first 
chapter provides an introduction and motivation with a brief literature review. Chapter 2 
considers the fundamental functional of all competing risks data: the crude incidence 
function. This function is considered in the light of the counting process framework 
which provides powerful mathematics to calculate confidence bands in an analytical 
form, rather than bootstrapping or simulation. 

Chapter 3 takes the Peterson bounds and considers what happens in the event 
of covariate information. Fortunately, these bounds do become tighter in some cases. 
Chapter 4 considers what can be inferred about the effect of covariates in the case 
of competing risks. The conclusion is that there exist bounds on any covariate-time 
transformation. These two preceding chapters are illustrated with a data set in chapter 5. 

Chapter 6 considers the result of Heckman and Honore (1989) and investigates 
the question of their generalisation. It reaches the conclusion that the simple assumption 
of a univariate covariate-time transformation is not enough to provide identifiability. 

More practical questions of modeling dependent competing risks data through 
the use of frailty models to induce dependence is considered in chapter 7. A practical 
and implementable model is illustrated. 

A diversion is taken into more abstract probability theory in chapter 8 which 
considers the Bayesian non-parametric tool: P61ya trees. The novel framework of this 
tool is explained and some results are obtained concerning the limiting random den­
sity function and the issues which arise when trying to integrate with a realised P61ya 
distribution as the integrating measure. 

Chapter 9 applies the theory of chapters 7 and 8 to a competing risks data set 
of a prostate cancer clinical trial. This has several continuous baseline covariates and 
gives the opportunity to use a frailty model discussed in chapter 7 where the unknown 
frailty distribution is modeled using a P61ya tree which is considered in chapter 8. 

An overview of the thesis is provided in chapter 10 and directions for future 
research are considered here. 
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Chapter 1 

Introduction 

Survival analysis is concerned with time-to-event studies. These commonly arise In 

medical trials where the interest is in how long patients survive under different conditions; 

they also have applications in reliability studies in the field of engineering where the 

question may be how long, or how much use can be obtained, from a component; 

another common use is in econometrics where the interest is in the duration of a person's 

employment or unemployment. The common theme is a random variable distributed on 

the positive reals, which may be observed exactly, or may be censored where the data 

only tells that the random variable is greater than an observed cut-off point. A natural 

extension to this framework is to observe the cause of failure as well as the time of 

failure. For example, in a medical study we observe that the patient may die from several 

possible diseases. One way of modeling such data is to assume that each individual has 

a vector of latent failure times (T1 , ... ,Tk ) for each of the possible causes of failure, 

labeled 1, ... ,k, and that we observe the earliest of the 'Ti, s . The meaning of the term 

competing risks is that once the earliest failure has occurred it is no longer possible to 

observe any of the other failure times. As a concrete example, once a patient has died 
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from lung cancer we have no opportunity of knowing when they would have died from 

heart failure. 

This thesis is concerned with developing practical tools for the analysis of such 

data sets. 

In any statistical analysis the initial steps should be to perform exploratory anal­

ysis, where we try to obtain a general picture of the data and spot any gross features. 

In competing risks this should manifest itself in the examination of the crude incidence 

curves. This is the estimation of the function of time, t, and cause, k, 

Qk(t) = lP{failure time < t n cause = k}, 

this is clearly what the data tells, and makes no assumptions about the existence of 

latent failure times and any inter-dependence. In practice the tool most commonly, and 

erroneously, used is the Kaplan-Meier estimate which, to have any interpretation, relies 

on an assumption that the latent failure times are independent. It can be speculated that 

the reason for this is the lack of software to calculate the crude incidence as opposed to 

the abundance of software for the Kaplan-Meier estimate, along with a lack of variance 

estimates, confidence intervals, and confidence bands. The theory of counting processes 

is used in chapter 2 to derive a suitable estimator for the crude incidence function along 

with its asymptotic properties. To use martingale and stochastic process theory to 

describe a univariate random variable may seem excessive but the payoff is that it is 

easy to form variance estimates and confidence intervals. In addition it is possible to form 

confidence bands, in other words, probability statements about the entire incidence curve 

rather than statements about a single point, which was previously impossible without 

the use of counting process theory. The purpose of the chapter is to present together in 

one place the counting process theory applied to competing risks and as such it is not 

particularly novel. 
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Within the latent failure time framework it is natural to ask what dependence 

structure exists, and to consider what is the marginal distribution of the failure times, as 

this could lead to inference about the effect of an intervention which removed a cause of 

failure, such as the introduction of a vaccine. However this is the fundamental problem 

with competing risks data. As proven in Crowder (2001), there are infinitely many joint 

distributions which could give rise to a specified set of crude incidence functions; in 

particular given a joint distribution and its crude incidence functions it is always possible 

to construct another joint distribution that exhibits independence between the latent 

failure times and has identical crude incidence functions. 

However this assumes our data form a homogeneous sample, whereas in reality 

data sets are rarely of this form and in the case of randomised control trials typically have 

covariates and treatments. In addition expert opinion and theory from the relevant dis­

cipline may provide reasons for assuming a particular dependence structure. With extra 

data and assumptions we can make headway against the problem of non-identifiability. 

In chapter 3 we consider what can be said about the marginal distribution of the 

latent failure times in the context of two-armed randomised trial. With a homogeneous 

sample there exist an upper and lower bound between which a marginal distribution 

must lie. These bounds are invariant of sample size and, typically, are too far apart 

to be of practical use. They represent what the marginals are under the most extreme 

possible forms of dependence and were published in Peterson (1976). However if the 

difference between the two-arms of a trial can be described by a transformation on the 

time scale, and this transformation is known then we can improve these bounds in some 

regions. This is a new and valuable result. 

Having considered what can be inferred if a time transformation is known, chap­

ter 4 considers what can be said about an unknown time transformation in the case of 
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competing risks, in a two-armed trial. It turns out that there are also a set of bounds, 

which, given the examples considered, could be of practical use. This also is a new and 

valuable result. 

In chapter 6 the question of identifiability is considered in depth. The starting 

point is the important result in Heckman and Honore (1989) who show that the non­

identifiability problem goes away if two assumptions are made: first, that the time trans­

formation has a diagonal derivative matrix; second, that the influence of the covariates 

can be represented through the proportional hazards structure. Here we demonstrate 

that, assuming we know the underlying dependence structure such as the Copula rep­

resentation, then we can identify a generalised covariate-time transformation without 

assuming a proportional hazards structure. A second theorem of chapter 6 shows that 

we can go in the other direction: given a general covariate-time transformation, we can 

identify the dependence structure. Unfortunately we cannot then tie these two theorems 

together and obtain identifiability with a generalised covariate-time transformation; an 

extra assumption, such as proportional hazards, is needed. These three theorems are 

new and shed light on what exactly is the boundary between identifiability and non­

identifiability in terms of data and assumptions. 

In chapter 7 we return to the world of practical applications of the identifiability 

result. In particular we focus on assuming any dependence is due to some unobserved 

covariate which would give conditional independence. This is effectively a random effects 

or frailty model where dependence is induced by having to 'integrate out' the unobserved 

frailty. In practice this integration is problematic since it can be over a dimension that is 

proportionally increasing with the size of the data set. Hence there are a large number 

of possible methods that approximate the integral in a manner that is amenable to 

its subsequent maximisation. These are surveyed in this chapter 7. A minor novel 
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development is proposed in the algorithm for maximising the likelihood that uses the 

interval bisection algorithm rather than the Newton-Raphson algorithm. 

Throughout chapter 7 it is assumed that the unobserved frailty variables are 

distributed according to a prespecified parametric family of distributions such a log­

normal or gamma. However, the effect of this assumptions needs to be considered. 

Chapter 8 considers a novel Bayesian infinite-parametric distribution: a P61ya tree. This 

can be used in place of the parametric frailty distribution. The new results presented 

here concern how to perform integration with respect to a P61ya tree and how to set 

the parameters so as to give a clear interpretation of the strength of the prior. 

In chapter 9 we use the tools considered in chapters 7 and 8 to analyse a ran­

domised control trial with several competing risk end-points and a sufficient number 

of covariates to permit identifiability. Both classical parametric and Bayesian infinite­

parametric analyses are presented and compared. 

The last chapter provides an overview of the thesis and considers possible areas 

for future research. 
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Chapter 2 

Asymptotic bounds on the crude 

incidence function 

2.1 Introduction and Motivation 

Given a data set, any competent statistician initially tries to look at the data in an 

exploratory fashion making as few assumptions as is possible. The aim being to detect 

gross features of the data, to spot outliers and data-entry errors, and to formulate a 

general problem. In competing-risks survival analysis the basic tool that should be used is 

the crude incidence function, also known as the sub-distribution function (Crowder 2001) 

or occurrence probability. This is defined as the probability of observing failure from a 

specified cause before a fixed time. As such it is clearly estimable from a competing 

risks data set and has a meaning that is easily interpretable by non-statisticians, by 

statements such as, "Given a hundred patients we expect x of them to die of prostate 

cancer before 2 years." 

However at present, the crude incidence function is competing, in the scientific 
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literature, with the Kaplan-Meier estimate (Kaplan and Meier 1958) where all causes 

other than one of interested are treated as censored observations. The problem with this 

is that it implicitly makes untestable and, a priori, unlikely assumptions of independence 

between latent failure times. Perhaps more clearly, the use of the Kaplan-Meier estimate 

assumes that the censoring mechanism acts independently of the failure time, but this 

is a strong assumption in the competing risks setting. If independence does hold then 

the Kaplan-Meier estimate can be interpreted as the marginal survival distribution of 

the multivariate latent failure time distribution. This is less simple to convert into plain 

English statements for non-statisticians. 

I would speculate that the major reason for the current prevalence of incorrectly 

using the Kaplan-Meier estimate is its widespread availability in most statistical software 

packages. Three years ago in 2000 the author was unaware of any software which 

calculated estimates for the cumulative incidence. Only since 2002 has there been 

software available in R (Ihaka and Gentleman 1996) that computes such estimates. 

The major point of this chapter is to consider the mathematical properties of the 

conventional estimator and to put confidence intervals and confidence bands on these 

estimates. Most of the theoretical mathematical work on counting processes should be 

credited to Aalen (1978), with important summary monographs in Andersen, Borgan, 

Gill and Keiding (1993) , Fleming and Harrington (1991), and Jacobsen (1982). The 

major aim is to present the proofs and results concerning the crude incidence together in 

a self-contained unit rather than the partial results spread across the statistical literature. 

The work produced here on confidence bounds is an improvement on the current practice 

of simulation or bootstrapping as it is easier to calculate. Also, there is a danger that if a 

non-statistician is presented with a set of pointwise confidence intervals for an estimated 

function, then he or she will incorrectly interpret it as a confidence band, since the 
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(Bayesian) question "What is the probability that the curve lies in this region 7" is far 

more natural than trying to consider each time-point in turn and pretending to ignore 

the remaining time points. 

The mathematical properties of the standard estimator of the crude incidence 

function (Prentice and Kalbfleisch 1978) are consistency and weak convergence to a 

Gaussian process. These mathematical results can be used to derive confidence intervals 

for the value of the crude incidence at individual time points and confidence bands 

for time intervals, both of which are valuable additions to the statistical tool under 

consideration, and a practical example is presented at the end of the chapter. 

The mathematical part of the chapter uses the theory of counting processes, as 

exemplified in Andersen et al. (1993) and Fleming and Harrington (1991), to represent 

the competing risks data set. Then martingale theory is used to prove consistency in 

conjunction with Lenglart's inequality. To prove weak convergence, the martingale cen­

trallimit theory is used, but the real benefit of the counting process/martingale approach 

is the ease with which we can derive variance/covariance matrices for estimators when 

they are in the form of stochastic integrals. 

2.2 Definitions 

To start with, we will not be concerned with covariates and shall assume that the 

data form a homogeneous sample from a multivariate density on the positive reals, 

(Til, . .. ,Iik), i = 1, ... ,n, which represent the the latent failure times from k causes 

of failure on a sample of n individuals. The data are observed in the form (7imln , Gi , 6i), 

where 7imin = min(Til"" ,Iikl Ud and Gi = arg min(Iil,'" ,Iik) X 6i , 6i = J(Ui = 

7imin ), where Ui is a censoring variable. From this we wish to define a set of count­

ing processes (Nil(t), ... , Nik(t)), and (l'il(t), ... ,l'ik(t)), where Nik(t) = J(Tik < 
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t,Ci = k) and Yik(t) = J(t < Timln). Because we are restricting attention to a com­

peting risks setting, the value of Yij(t) is identical for all j, so henceforth we will just 

refer to Yi(t). Intuitively, Nij(t) starts at zero and jumps to one at time ~j = Ti
mln 

if the cause of failure C = j, if not it remains at zero for all time; the process Yi(t) 

indicates if the individual remains observed at time t. We are interested in estimating 

the function Fj (t) which is defined as IP{Tmm < t, C = j}. 

Next we define the process Mij = Nij - J; YidAj , where Aj(t) represents the 

cumulative cause-specific hazard, J; Aj(s)ds, Aj(t) = limh-tO lP(t < Ti
min < t+h, Ci = 

jlTi
mln > t)/h, for all i. It will be shown that Mij are square integrable orthogonal 

martingales, and much use of this will be made to study the asymptotic properties of 

the conventional estimates from the competing risks literature. To finish this section of 

definitions we will define N-j = I:r=l Nij , Y = I:r=l Yi the number of patients still at 

risk, and M-j = I:r=l Mij , similarly M .. , and N .. are defined as summation over causes, 

j = 1, ... ,k for M-j, and N-j respectively. 

2.3 Martingale Properties 

In this section we will prove that the process Mij(t), as defined above, is a square 

integrable martingale and we will also derive an expression for the covariance process. 

These properties are essential in deriving the asymptotic properties of the crude incidence 

function. A comprehensive and concise review of the martingale theory used is given in 

section 11.3, pp. 64, of Andersen et al. (1993) 

Proposition 2.3.1. Under the assumption that Aj(t) < 00, it follows that 
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is a martingale with respect to the filtration 

Ft =O"{Nij (s),Yi(s);O:::;s<t,i=I, ... ,n,j=I, ... ,k}. 

Proof To show that [IMij(t)1 < 00 is trivial since both Nij and Yi only take values of 

o or 1, and by assumption Aj(t) < 00. Since Aj is a deterministic function, it is clear 

that Mij(t) is measurable with respect to Ft. 

It remains to show that [(Mij(t)IFs) = Mij(S) for all 0 < S < t. To do 

this, we must think in terms of the original definition of the Nij and Yj in terms of 

Ti
mln = min(Til' ... , Tik ) and Gi = arg min(7il, ... , Tik) , where for the purposes of 

this proof we simply treat censoring as just another cause. Now, conditional on Fs, we 
. . 

can identify the occurrence of two complementary events: {s > Timln}, {s < Timln}. If 

the first event has occurred-the failure has happened-then we also have observed the 

value of Gi , whereas if the second event has occurred, then we do not know the value 

of Gi . The need to know the value of Gi in the case of the first event is why we need 

the larger filtration generated by the Nik for all possible causes, k, rather than just the 

filtration generated by Nij for the j of interest. Before continuing with the proof, I will 

restate the definition of the cause-specific hazard, 

Aj(t) = lim lP(t < T min < t + 1St n G = jlTmin > t)/ISt. 
Ot-+O 

Consider the two events: 

1. {7imln < s}, 
. . . T mln 
In this case Mij(S) = Mij(t) = J{Gi = J} - fo t Aj(u)du. 
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here, Mij(S) = 0 - J; Aj(u)du, whereas, 

[(Mij(t)IFs) = [p(1imin < t n Ci = jls < Timin) - fos Aj(u)du 

- f.' IP(Ti
min > ulT,min > s),\j(u)du, 

0- (S Aj(u)du + [P(s < 1i
mln 

< t ~ Ci = j) 
io [P(s < 1imln) 

(t [p(Ti
min > u) fJ(u) 

- is [p(Timin > s) [p(Timin > u) du, 

where fj is the cause-specific density defined as 

lim [P(t < Ti
mln < t + 8t n Ci = j)/Jt. 

8t-+o 

So the first two terms equate to Mij(S); in the last term, the integrand simplifies 

through cancellation and the denominator is a constant, so, integrating fj from s 

to t gives us [P(s < Ti
mln < t n Ci = j). Hence the last two terms cancel leaving 

just Mij(S) as desired. 

o 

Finally, we will calculate an expression for (M)(t), the k x k matrix of predictable 

variation processes (Mip , Miq)(t) , p, q E {I, 2, ... ,k}. 

Proposition 2.3.2. Assuming that Tip =I Tiq almost surely, and that Aj are continuous, 

the predictable variation process for p, q E {I, 2, ... ,k} is, 

Proof Using the standard "integration by parts" result for right continuous, bounded 

variation processes, and suppressing subscript i, 
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AIp(t)AIq(t) - AIp(O)AIq(O) 

fa' [Mp(u- )dMq(u) + Mq( u)dMp(u)] 

l' [Mp(u- ) dMq(u) + Mq(u-)dMp(u)] + L L'>Mp(u)L'>Mq(u) , 
o u~t 

where fj,AIj denotes the jumps sizes at discontinuities of AIj. Now, clearly fj,AIj(t) = 

fj,Nj(t) and since 1P(1ip = Tiq) = 0, in the case of p #- q, this reduces to 

Since the right hand side is clearly a mean-zero martingale the proof is complete for 

For p = q = j, since Nj(t) is a counting process, we have that 

Hence subtracting off J~Y(u)dAj(u) we get 

MJ(t) - fa' Y(u)dAj (u) = 2 fa' Mj ( u- )dMj(u) + Mj(t). 

2.4 Estimators 

An estimator of the cumulative cause-specific hazard is, 

~ t dNj(s) 
Aj(t) = J

o 
J(s) Y(s) , 

o 

where we define J(t) = J(Y(t) > 0) and 0/0=0. It can easily be seen that, since Nj 

has jumps of size 1 at the failure times, this estimate is equal to the more recognisable 
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L min J(Ci = j)/Y(Timtn-). From this expression it is clear that this estimator of 
Ti <t 

the cause-specific hazard is identical to the conventional Nelson-Aalen estimator (Aalen 

1978, Nelson 1969) if we were to treat all failures from causes, other than the one of 

interest, as cases of censoring. From this observation it follows that the asymptotic 

properties of the estimator include consistency and weak convergence to a Gaussian 

processes where the variance of the estimator can be estimated in a number of ways 

(Klein 1991). 

A consistent estimate of the overall survival function S(t) is the Kaplan-Meier 

estimator, S(t). This is defined to be 

S(t) = 

where iA. denotes the increments that occur at (non-censored) observed times in the 

Nelson-Aalen estimate of the overall cumulative hazard function. Its properties, including 

consistency and weak convergence to a Gaussian process, are well documented (Andersen 

et al. 1993, Fleming and Harrington 1991). 

The crude incidence function is defined as 

(2.1) 

Given the final expression, a proposed estimator is the process 

The merit of these two estimators, the Kaplan-Meier and the crude incidence 

function, is that they take into account the assumption of independent censoring. If it 

cannot be assumed that the censoring is independent then it should be considered as 

another competing risk. Indeed without any censoring present, or if censoring is treated 
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as a dependent competing risk, the Kaplan-Meier estimator reduces to the empirical 

distribution of T min , and the crude incidence estimate is n-1 Li I {Timin < t, Ci = j}. 

However for practical purposes, independent censoring is a very common assumption 

and the increased precision must be utilised. An example of independent censoring is a 

clinical trial that has to be analysed and written up for publication; if there are patients 

who have not experienced the event of interest then they have to be censored and it may 

be fair to assume that the date chosen to close the trial is independent of the individual 

patients' outcomes. 

2.5 Asymptotic Properties 

This section provides the fundamental mathematical results in which we are interested. 

In 2.5.2 we prove that our estimate of the crude incidence function tends to the true value 

as the size of the data increases, and in 2.5.4 we show that the error, scaled by vn, tends 

to a Brownian process. Neither the mathematics involved, nor the results themselves, 

are innovative. The mathematics closely follows the route laid out in Andersen et al. 

(1993) which proves similar results about the Nelson-Aalen estimator and the Kaplan­

Meier estimator, although proposition 2.5.1 is completely the work of the author. The 

results of consistency and of weak convergence have been stated in the literature, for 

example Pepe and Mori (1993), but the author is unaware of any self-contained and 

thorough proof. The main boon of the counting process representation is the ease with 

which variance estimators of the crude incidence functions can be derived. 

2.5.1 Basic Theorems 

In this subsection we will present two basic theorems used in the proof of the main 

result, theorem 2.5.3. The first theorem, a version of Rebolledo's (Rebolledo 1980) 
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martingale central limit theorem, is taken verbatim from Andersen et al. (1993), the 

second theorem is known as Lenglart's inequality (Lenglart 1977), and is a useful result 

for the purposes of proving limits in probability. 

Martingale Central Limit Theorem 

For each n = 1,2, ... , let M(n)(t) = (Min) (t), ... ,M~n)(t)) be a vector of k local 

square-integrable martingales, defined for t E T = [0, T) (T is a fixed, 'termination' 

time). Also, for each E > 0, let M~n) be a vector of local square-integrable martingales, 

containing all the jumps of M(n) larger in absolute values than E. Write (M(n)) for the 

k x k matrix of of predictable variation processes, (Mi(n) , Mjn)). 

Now, define U to be a continuous Gaussian vector martingale with (U) = 

[U] = V, a continuous deterministic k x k positive semi-definite matrix on T. So, 

U(t)-U(s) rv N(O, V(t)-V(s)), and is independent of (U(u); u < s) for all 0:::; s :::; t. 

For completeness we will define the optional variation process [M(n)](t) = 

L::s<t I.6.M(n)(s)1 2 , where .6.M(n)(s) = limos-toM(n)(s + 5s) - M(n)(s) (the discon­

tinuities in M(n)). This can be though of as the empirical, or observed version of the 

predictable variation process. By (D(T))k, we mean the space of IRk-valued functions 

which are right continuous with left-hand limits, defined on T and endowed with the 

5korohod topology (Billingsley 1999, pp. 123-124 and chapter 3). 

Theorem 2.5.1 (Rebolledo's theorem). Let To ~ T and consider the conditions 

(M(n))(t) ~ V(t) for all t E To as n --+ 00, 

[M(n)](t) ~ V(t) for all t E To as n --+ 00, 

(Mt;(in))(t) ~ 0 for all t E To, i, E > 0 as n --+ 00, . 
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Then either of (2.2), (2.3), together with (2.4), imply 

for all h, ... ,tm E To; moreover, both (2.2), (2.3) then hold. Furthermore, if To is dense 

in T, then the same conditions imply 

M(n) ~ U in (D(T)l as n -+ 00, 

and (M(n)) and [M(n)] converge uniformly in probability to V on compact subsets of 

T. 

lenglart's Inequality 

If (X(t); 0 < t :=:; T) is a local submartingale on T with a strictly positive compensator 

Y(t), then for any TJ > 0 and 5 > 0, 

lP(supX(t) > TJ) :=:; 5/TJ + IP(Y(T) > 5). (2.6) 
tET 

This applies, in particular, to X = J H dN where H IS a predictable, non-

negative process and N is a counting process; it also applies to M2 where M is a local 

martingale, in which case the inequality is, 

lP(sup IM(t)1 > TJ) < 5/TJ2 + IP((M)(T) > 5). 
tET 

2.5.2 Consistency 

In this subsection I will prove that the estimate of the crude incidence function is con-

sistent. 

Theorem 2.5.2. Let t E [0, T), where T = inf(t : S(t) = 0), and assume that, as 

n -+ 00, 

lo
t J(n)(u) p 

(n) dAj(u) ----+ 0, j = 1,2, ... ,k 
o Y (u) 

(2.7) 
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and 

fa' (1- J(n)(u))dA.(u) ~ O. (2.8) 

Then, as n --+ 00, 

........ (n) P 
sup IQj (8) - Qj(8)1 ----t O. 

sE[O,t] 

Proof Begin by observing, 

Qj(t) - Qj(t) = fa' [S(s)J(s)dAj(s) - S(s)dAj(s)] (2.9) 

t 8 ( 8 ) J ( 8) t ........ rt ........ 
= 10 Y(8) dM-j(8) + 10 (3(8) - 3(8))dAj(t) - 10 3(8)(1 - J(8))dAj(8). 

(2.10) 

Now, considering the expressions on the right hand side in turn, for the first one we can 

use the martingale version of Lenglart's inequality, 2.5.1, so 

hence by condition (2.7), and since 82 < 1, 

lo
t 8(8)J(3) p 

sup Y() dM-j(8) ----t O. 
tE[O,T] 0 . 8 

For the second expression, noting that summing condition (2.7) across j gives 

lo
t J(n)(u) p 

() dA. ( u) ----t 0 
o Y n (u) 

and hence the conditions for theorem IV.3.1 in Andersen et al. (1993, p. 261) are 

satisfied, hence SUPSE[O,T] 18(8) - 3(8)1 ~ O. Given that 18(8) - 3(8)1 < 1, using the 

dominated convergence theorem, we obtain 

t p 10 (8(8) - 3(8))dAj(t) ----t O. 
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For the final expression, 

o < In' 8(8)(1 - J(s))dAj(8) 

rt p 
< Jo (1 - J(s))dAj(s) --+ 0, 

by condition (2.8) D 

2.5.3 Technical Lemma 

This section draws heavily on the theory of product-integration and the functional delta 

method as outlined in Andersen et al. (1993). The aim is to obtain the result detailed 

in proposition 2.5.1. This is then used in the proof of theorem 2.5.3, which gives an 

expression for the weak convergence of the crude incidence function estimator. 

The delta method, in its simplest form, assumes a random sequence, X n , that 

satisfies 

where N is typically a standard normal distribution, x is a fixed point, and an is an 

increasing sequence of constants (typically applied with an = fo). The result is that 

an(g(Xn) - g(x)) ~ g'(x)N, 

where g, g' are a smooth function and its derivative. 

In Andersen et al. (1993, page 111, theorem 11.8.1) and Gill (1989, theorem 3) 

this is extended and formalised for Xn that are processes through time and for more 

general functions that are compactly differentiable so as to include 8(1\), the Kaplan-

Meier estimator. 
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Now consider the mapping S(·) defined as 

Un=t 

S(A(t)) = lim II (1- {A(Ui+l) - A(Ui)}) 
maxluHl -uil-+o 

uo=O 

(2.11) 

The existence and uniqueness of this limit is proven in Gill and Johansen (1990), but if 

we consider a sequence of {un i} such that A( Un i+d - A( Un i) = {A(t) - A(O)} In for 

all i, 1 < i < n, then the right hand of (2.11) equals limn-+oo(1- {A(t) - A(O)}jn)n. 

If A is a continuous function then such a sequence {und exists and hence S(A(t)) is 

equal to exp( -{A(t) - A(O)}). Hence the mapping S gives the conventional definition 

of the survival function when applied to the true cumulative hazard function, which is 

assumed to be continuous and satisfies A(O) = O. Moreover, when S is applied to the 

Nelson-Aalen estimate of the cumulative hazard, A, which is a step function, then S(A) 

clearly equates to the Kaplan-Meier estimator. 

Now using the standard result with an appropriate sequence of constants, an, 

where B(·) represents Brownian motion and applying the generalised delta method we 

have the result that 

"" D an { S ( An ( t )) - S ( A ( t ) )} ----+ dS (A) . B ( () ( t ) ) , 

and 

The meaning of dS is defined on the same page in (Andersen et al. 1993) in definition 

11.8.1 . If we had defined S(A) as exp( -A) then one could derive dS as the derivative, 

with respect to A, of this function and obtain dS(A(t)) = -S(A(t)). It turns out that 

this result is true, but as we need to define our mapping S to hold for both the Kaplan-

Meier estimate and the underlying survival function, the complex definition in (2.11) is 

required. 
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To calculate d8 use proposition 11.8.7 In (Andersen et al. 1993, page 114) In 

conjunction with the chain rule, to give 

(d8(A).h) (t) = lo
t 8(t) 

- 8(s-)-dh(s) 
o 8(s) 

-S(t) l dh(s) = -S(t)h(t), 

where the continuity of the underlying true survival function allows the cancellation. 

All this comes together to provide a lemma that is used in the proof of theorem 

2.5.3. 

Proposition 2.5.1. Given a time interval t E [0,7] where 8(t) > 0 and the assumptions 

of theorem 2.5.2, then 

[ an { S ( t) - 8 ( t ) }] - [-an 8 ( t ) { A ( t) - A ( t ) } ] 
p 

---+ 0; as n --+ 00. 

where an is an increasing sequence as will be defined in theorem 2.5.3. 

2.5.4 Weak Convergence 

In this subsection we will consider the weak convergence of the estimator of the crude 

incidence function. The proof uses Rebolledo's Central Limit theorem, but what it really 

shows is a result about the limiting distribution of 

where J(t) = I{Y(t) > O}. To obtain a result of any practical use we need an addi-

...... 
tiona I condition which implies that the difference between Qj and Qj will converge in 

probability to zero and the 'nuisance' factor, J, can be ignored. To apply the central 

limit theorem we need to assume that the estimate of the covariance matrix process 
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converges, and that these estimates converge to a continuous function. These assump-

tions may appear to be rather convoluted and implausible, but we will provide simple 

sufficient conditions for their validity at a later point. 

Theorem 2.5.3. Assume that there exists a sequence of positive constants {an}, in-

creasing to infinity as n --+ 00, and a function y(t) > 0 such that the following exist for 

all t E [0, T], where T = inf{t : S(t) = O}: 

L;11 (t, j) = fa' S2 (u)/y(u)dAj (u) + fa' Q;(u)/y(u)dA.( u) 

+2 fa' S(u)Qj(u)/y(u)dAj(u) (2.12) 

L;12(t,j) fa' S(u)/y(u)dAj(u) + fa' Qj(u)/y(u)dA(u) (2.13) 

L;22(t,j) fa'l/y(U)dA(U), (2.14) 

where j = 1,2, ... ,k, and assume that 

(AJ 

a~ {fa'.?'(U)J(U)/Y(U)dAj(U) + fa' Q;(u)/Y(u)dA(u) 

+2 fa' S(U)J(U)Qj(U)/Y(U)dAj(u)} ~ L;l1(t,j), 

a; {fa' S(u)J(u)/Y(u)dAj(u) + fa' Qj(U)/Y(U)dA(u)} ~ L;12(t,j), 

a; {fa'l/Y(U)dA.(U)} ~ L;22(t,j), 

as n --+ 00 for all t E [0, T]; 
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( B) For a /I E > 0, i, j = 1, 2, . .. ,k, 

(2.18) 

2 t 1 (an) P an J
o 

Y(u) I Y(u) > E dA.(u) -----70, (2.19) 

as n -t 00 for all t E [0, T]; 

(C) For j = 1,2, . .. ,k, and all t E [0, TJ, 

an fa' (1 - J(u))dAj(u) ~ 0, as n --+ 00. (2.20) 

Then 

where U1(t,j), U2(t,j) is a Gaussian martingale with COV(Ul(tl,j), U2(t2,j)) = ~(tl /\ 

t2, j), a 2 x 2 matrix. Also, for p, q = 1,2, and j = 1,2, ... ,k, 

sup la~~pq(t, j) - ~pq(t, j) I ~ 0 as n -t 00, 

tE[O,T] 

where expressions for ~pq(t,j) can be obtained from the expressions in condition (A) 

by replacing Qj with OJ, and Aj with Aj . 

Proof By definition, 

an(Qj(t) - Qj(t)) = an {fa' S(u)J(u)ii..j(u) -fa' S(u)dAj(u) } 

= an {fa' S(u)/Y(u)dMj(u) + fa'(S(U) - S(u))dAj(u) -fa' S(u)(l- J(U))dA,(u)}. 
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By condition (C) we know that the third term tends in probability to zero hence we 
....... 

can ignore this term henceforth. In addition, given the range of Sand S, we observe 

IS(t) - S(t)1 < 1 and using the dominated convergence theorem with proposition 2.5.1, 

~ an {fa' S(u)J(u)/Y( u)dMj(u) -fa' (A(u) - A. (u))S(u)dAj (u) } 

= an {fa' S(u)J(u)/Y(u)dMj(u) -fa' (A(u) - A. (u))dQj(u) } 

through integration by parts 

= an {fa' S(u)J(u)/Y(u)dMj(u) - Qj(t)(A(t) - A.(t)) 

+ fa' Qj(u)d(A.(u) - A. (u)) } 

= {t S (u) J (u) dM . () t Q . ( ) dM. (u) _ Q . () t dM. (u) } 
an JoY (u) 'J u + J a J u Y (u) J t JoY (u) . 

Note that a stochastic integral with respect to a martingale is also a martingale, hence 

the expression above is a linear combination of martingales. We now use standard 

stochastic integral theory (Revuz and Yor 1999, chapter IV, section 2, pp.137-145, 

theorem 2.2) which gives that 

for predictable processes, HI, H2 and martingales B I , B 2 . Noting that the martingales, 

M j , are orthogonal and that d(Mj)(t) = Y(t)dAj(t), we observe that the predictable 

variation for the stochastic processes, 

(n) { t S ( u ) J ( u ) rt dM. ( u) } 
BI (t) = an J

o 
Y(u) dMj(u) + J

o 
Qj(u) Y(u) 

B (n)( ) _ rt dM.(u) 
2 t - an JoY ( u ) , 

equates to the left hand side of condition (A) which, by assumption, converges to ~(t, j), 

and thus satisfies (2.2) in the central limit theorem. 
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To check that the continuity condition (2.4) is satisfied, observe that because 

M-j is associated with a counting process, it has jump sizes of 1. So if we break M .. 

into its components, M.l, ... ,M.k , we obtain, 

(n) ( ) rt 1 (an ) 
B2E t = an io Y(u) I Y(u) > E dM .. (u), 

so using standard stochastic integral theory we see that the predictable variation pro­

cesses, (Bi;)), (B~;)), equate to the left hand side of condition (B) which converge in 

probability to zero, thus satisfying (2.4) of the central limit theorem. Hence we can 

apply the central limit theorem which proves the part about the weak convergence of 

the estimator. 

The optional variation processes, [Bi(n) , Bjn)] (t), are given by substituting Aj 

for Aj in the expressions for (Bi(n) , Bjn))(t) , and since, by theorem 2.5.2, Qj ~ Qj 

uniformly, we can apply the second part of the central limit theorem to see that 

sup la~~pq(t,j) - ~pq(t,j)1 ~ 0 as n -t 00. 
tE[O,T] 

2.5.5 Sufficient conditions 

D 

The conditions used in deriving theorems 2.5.2 and 2.5.3 were chosen to be the weakest 

possible. The problem with this is that they are difficult to interpret. Typically we 

require that the censoring is not too heavy in the time period which we consider. This 

allows the use of the Glivenko-Cantelli theorem (Billingsley 1995, pp. 268-269) with 
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an = .jn, which says that the empirical distribution tends to the underlying cumulative 

distribution function. If we have a censoring mechanism which censors all individuals 

after a fixed time point, T, then the resulting y(t) = 0, for t > T. This will mean that the 

expressions in, say, (2.12) will be the integral of 1/0, fortunately on a statistical, rather 

than mathematical, level this makes perfect sense as the censoring means we have no 

information after time T. Similarly, if there exist a fixed time T such that A(t) = 00, for 

t > T, then this implies that every individual will fail before T with probability I, hence 

it is pointless to consider times after T. 

Here will be demonstrated a simple condition for the assumptions of theorems 

2.5.2 and 2.5.3. 

Proposition 2.5.2. Assuming there exists a sequence, an ----t 00 as n ----t 00, such that 

where 

y(n)(t) p () 
--::2- ----t y t , 

an 

inf y(s) > 0 
sE[O,t] 

(2.21) 

(2.22) 

where y(t) is defined in theorem 2.5.3, and that Aj(t) < 00 for all t, then conditions 

(A).(8), (C) of theorem 2.5.3 will be satisfied. 

Proof For condition (A), observe that the dominated convergence theorem for the 

sequence of random variables, y(n)(t)/a;" gives the result immediately. 

For condition (B), for bounded functions H(t), all the integrals are of the form, 

t H
2
(u)a;, I (H(U)an > E) dA·(u) (2.23) 10 y(n\u) y(n) J 

-"-+ l y~~) (u)J C~u~~n > E) dAj(u) (2.24) 

(2.25) 
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since an --+ 00 as n --+ 00. 

For condition (C) observe that 

r {an l' I(y(n)(u) = O)dA(u) > E} (2.26) 

= lP[w : y(n)(u,w) = 0] --+ 0 (2.27) 

which gives the desired result. o 

Weaker conditions are required to obtain consistency, so a weaker sufficient 

condition will suffice. 

Proposition 2.5.3. If y(n) ~ 00 as n --+ 00 then conditions (2.7) and (2.8) of 

theorem 2.5.2 will be satisfied. 

Proof Since y(n) ~ 00, which implies that 

J(n)(u) p 
() -+ 0, 

y n (u) 

and hence by the dominated convergence theorem (2.7) is satisfied. 

For (2.8) observe that, 

r {1' (1 - J(n)(u))dA(u) > E} 

= lP[w: y(n)(u,w) = 0] --+ 0, 

thus obtaining the desired result. 

2.6 Applications 

(2.28) 

(2.29) 

o 

Having found a parameter-free distribution to base any inference around, and having 

found expressions for the covariation process, the standard route to calculating confi-

dence intervals and bands is to perform simulations (Lin 1997). This is because al-

though, pointwise, the estimator has an asymptotic Gaussian error process, the error 
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process does not have independent increments. This means that well understood results 

for Brownian motion cannot be applied, and at present, there are no known procedures 

to derive analytic confidence bands. However I will consider below the circumstances in 

which Brownian motion coincides or approximates the error process, and will illustrate 

the mechanics of producing confidence bands and intervals. 

Using theorem 2.5.3 we observe that (Ul(t,j) - Qj(t)U2(t,j))/an = Dj(t) is 

also a Gaussian random variable with mean zero but with covariance function (with 

t < S ) 

Cov(Dj(t),Dj(s)) = ~l1(t,j) - (Qj(t) + Qj(S))~12(t,j) + Qj(t)Qj(S)~22(t,j), 

It would be very convenient if all the terms involving s were to disappear, as then it 

could be inferred that the process has independent increments and hence is Brownian 

motion. So, collecting together the terms that have Qj (s) as a factor, we have 

-~12(t,j) + Qj(t)~22(t,j) 

= -10' S(u)jy(u)dAj(u) -10' Qj (u)jy(u)dA. (u) + Qj(t) 1o'1jY(U)dA.(U) 

using definition (2.1) of Qj(u) and reordering the terms 

= Qj(t) 10' dA.(u)jy(u) -10' Qj(u)dA.(u)jy(u) -10' dQj(u)jy(u) 

using integration by parts 

= 10' [f dA.(V)jy(v)] dQj(u) -10' dQj(u)jy(u) (2.30) 

At this point it is helpful to consider what y(u) represents. It is a type of survival 

function where an event is defined as any observed failure time, including all causes of 

failure and censorings and, under the prevailing assumption of independent censoring, 
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it can be written as y(u) = exp( -A.(u) - /'\:(u)) , where /'\: is the hazard function for the 

censoring distribution. Hence 

ioU dA.(v)jy(v) = iou exp(A.(u) + /'\:(u))dA.(v) 

= exp(A.(u) + /'\:(u)) - iou exp(A.(u) + /'\:(u))d/'\:(v) = 1jy(u) - iou d/'\:(v)jy(v) , 

so substituting this expression into (2.30) some cancellation occurs and the resulting 

expression IS 

fa' [f d,,{V)/y{v)] dQj{u). (2.31) 

Now if there is no censoring, or equivalently if censoring is just considered as another 

cause of failure and not considered to be independent, then /'\: is zero and hence Dj(t) 

has independent increments. If there is light censoring, or an initial period with no 

censoring, then we can say that there are approximately independent increments in the 

sense that (2.31) is approximately zero. 

2.6.1 Asymptotic Pointwise Confidence Intervals 

Theorem 2.5.3 provides a means to produce pointwise confidence intervals. And if we 

are only considering one point in time, there is no need to consider the covariation 

process across time. Standard theory of Z-statistics applies. 

So for a fixed t, defining the interval, 

where Zo/2 is the 100(1- aj2) percentile of the standard normal distribution, we obtain 

that asymptotically, 

IP(Qj(t) E I(t,j)) = a. 
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However, it is possible that these confidence intervals will not lie entirely within the 

range [0,1] in which Qj lies. To avoid this problem use of the delta method can be 

made. The basic idea is that for a sufficiently well-behaved function g(.), and a random 

sequence {Xn} such that (Xn - x)/s.d.(Xn) ~ N(O, 1), for a constant x, it can be 

shown that 

g(Xn) - g(x) D 

Ig'(x)ls.d.(Xn) ---t N(O, 1). 

Now if the transformation, 9 is chosen to map [0,1] to IR then we can obtain a 

confidence interval, on the g-scale, and then map it back to [0,1] using g-1 and the 

resulting confidence interval will lie within the range of Qj. 

2.6.2 Simultaneous Confidence Bands 

By a simultaneous confidence band on a one-dimensional function H(t) we mean a 

2-dimensional region I, such that 

1P{(t,H(t)) E I;Vt} = 1- a/100, 

for a given percentile a. Given the two-dimensional nature of I, it is clear that there 

are infinitely many candidates for I and, unlike the I-dimensional analogy the pointwise 

confidence interval, there is no well defined notion of choosing the region I with smallest 

width. For the remainder of this section it will be assumed that the error process has 

approximately independent increments. With this assumption the literature offers three 

main choices: the Hall-Wellner Band (Hall and Wellner 1980), the Equal Precision band 

(Nair 1984), and the Gill bands (Aalen 1976, Gill 1980). An excellent discussion of the 

derivation of these bands is given in Andersen et al. (1993, pp. 208-213). 

The Hall-Wellner band corresponds to the Kolmogorov-Smirnov band in the case 

of one cause and no censoring-the crude incidence function is the empirical distribution 
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function. The Equal Precision band has the property that the width of the band, 

or equivalently the distance of the extrema of the bands from Qj(t), at any point t 

remains proportional to the width of the pointwise confidence bands. However both 

the equal precision and the Hall-Wellner bands require the evaluation of quantiles of 

rather complicated distributions, which depend on the choice of tl, t2, when the region 

of interest is {t : tl < t < t2}; the Hall-Wellner also rely explicitly on the choice of 

sequence, an, although, given that the overwhelmingly popular choice is for an = VTi, 

thus invoking the strong law of large numbers to satisfy proposition 2.5.2, this is not a 

great complication. An advantage they offer is that when the assumptions of theorem 

2.5.3 break down, which typically occur when there is a cut-off time T before which all 

individuals will either be censored or have failed, the bands do not explode to infinity, 

or become incalculable. 

The Gill bands are simple to evaluate, do not depend upon the sequence an, and 

have the property that their width remains constant over time. However, for this ease 

of evaluation the price is that they tend to be larger in size, in some sense, apart from 

the tail of the distribution, which is a region where there is least information provided 

by the data and that is commonly not of great practical interest. 

Derivations 

To give a sketch of the derivations we need to note a few brief facts about Brownian 

Motion and the related process a Brownian Bridge. A Brownian Motion B(t) is defined 

to be a Gaussian, mean zero random process, with B(O) = 0 almost surely, and with 

covariance process Cov(B(t), B(s)) = s 1\ t. The related process, a Brownian Bridge is 

W(t) = B(t) - tB(l), is also a mean zero Gaussian process, but the covariance process 

is s(l - t) for 0 < s ::; t < 1, it can be seen that almost surely W(l) = 0, hence 
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the name. Now consider the processes defined as B(t)/(l + t) and W(t/(l + t)) for 

o < t < 00. It is clear that they are both zero-mean Gaussian processes, have value zero 

at t = 0, and both their covariance processes for time points s, tare (s/\t)/(l+s)(l+t), 

hence they have the same distribution. 

To obtain a general class of confidence bands, we choose an arbitrary continuous, 

non-negative function q, and note that for a mean-zero Gaussian process U(t), which 

starts at zero almost surely, with variance function (J2(t), and independent increments 

(which corresponds to B((J2(t))), we can observe that 

= W(x)q(x), x E [0,1] 

the point being that the right hand side follows a parameter-free distribution, and does 

not depend upon the variation process, (J2 (-). 

It follows that 

~ sup /q(x)W(x)/, 
xE[Cl ,C2] 

where Ci = (J2(ti)/(1+(J2(ti)), which can be estimated with ~ = a~&2(t)/(1+a~&2(t)). 

This can be inverted to give a 100(1 - ex)% band on [tl, t2], 

where Kq,oJcl, C2) is the upper ex quantile of the distribution of 

sup /q(x)W(x)/. 
xE[Cl ,C2] 
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Equal Precision Bands 

The equal precision bands are obtained by using q(x) = 1/ Jx(1 - x). In this case the 

an terms disappear and the band simplifies to 

where a do:(cl, C2) can be found using the formula from Miller and Siegmund (1982) 

where ¢ is the standard normal density function. 

Hall-Wellner Bands 

The Hall-Wellner bands are defined by choosing the function q(x) = 1. Here the 

sequence an does enter into the calculation, but the quantile Kq,o:(CI, C2) is possibly 

easier to calculate as it is the upper Q: quantile of the distribution of 

sup IW(x)l. 
XE[Cl,C2] 

Software to evaluate such quantiles is available at 

http://www.nrcan.gc.ca/gsc/mrd/sdalweb/wiener/index .html and a summary 

of the mathematics behind the software is in Chung (1987). A conservative estimate 

can be obtained by taking [CI' C2] = [0,1]; the appropriate quantiles are tabulated below. 

K I ,o:(O,I) 1.2238 1.3581 1.4802 1.6276 1.9495 2.2246 

Q: 0.1 0.05 0.025 0.01 0.001 0.0001 

Table 2.1: Upper quantiles of the supremum of the modulus 
of a Brownian Bridge on the unit interval 
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Gill Bands 

These bands are only applicable when the region of interest is 0 < t < t2' To derive 

them, note that the choice of an is fairly arbitrary, indeed if we have a sequence which 

satisfies the conditions for theorem 2.5.3, and another (possibly random) sequence bn -+ 

b < 00, then we could apply theorem 2.5.3 using anbn as the sequence. If we define 

(2.32) 

where ea(cl' C2) is the upper ex quantile of the distribution of SUPxE[Cl,C2]IW(x)l. 

Now we can define the sequence bn to give a constant ,n = " and consider 

what happens as , -+ O. Now consider the distribution ,-1/2W(,t/(1 + ,)), this is a 

zero-mean Gaussian variable and its covariance process is 

s ( ,t) -- 1 - -- -+ s, 0 < s ::; t < 1, 
1+, 1+, 

as, -+ O. 

So ,-1/2Wbt/ (1 +,)) converges in distribution to a standard Brownian motion. Hence 

(2.32) becomes, 

where U a is the upper ex quantile of the distribution of 

sup IB(x)l, 
xE[O,l] 

which only depends upon ex and not C2. The values Ua can be calculated using the 

result, 

IP sup IB(x)1 > U = 1- - ~ exp{-7l' (2k+ 1 8u , 
{ } 

4 ~ (_l)k 2 )2/ 2} 
xE[O,l] 7l' k=O 2k + 1 
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which is derived in Billingsley (1999, chapter 2, section 9, pp. 94-101). Some values of 

U a are given in table 2.2. 

U a 1.960 2.241 2.498 2.807 3.481 4.056 

a 0.1 0.05 0.025 0.01 0.001 0.0001 

Table 2.2: Upper quantiles of the supremum of the modulus 
of Brownian motion on the unit interval 

2.7 Example 

To finish this chapter, I will illustrate the computation of the various confidence intervals 

and bands. The data are the survival times (in months) of 121 breast cancer patients 

from the clinical records of one hospital over the period 1929 to 1938. The causes of 

death are 'Cancer' (78 patients) and 'Other' (18 patients), there is also mild censoring 

(25 patients) of which the earliest is at 111 months. The data are in Boag (1949) and 

are included in appendix A. 

To calculate the estimates of the Crude Incidence function, Qj, and the associ­

ated variation process, a-;, the S-plus code listed in appendix B was used. Code already 

exists within the R software (Ihaka and Gentleman 1996): the cmprsk package, which 

calculates and plots the crude incidence function. However, this code is more geared 

towards hypothesis testing between groups as outlined in Gray (1988), and it does not 

produce confidence intervals or bands. To use this we need to estimate [CI, C2], where 

Ci = no:2 (ti)/(1+no:2(ti)), which in this case were [0.008063,0.4093] where the ti were 

chosen to coincide with the first and last failure times. Using these parameters the 95% 

critical values of the distributions used for the Equal Precision, Hall-Wellner, and Gill 

bands on this interval were calculated to be 3.058, 1.206, 2.241, respectively; for the 
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pointwise 95% confidence interval 1.96 was used. The results are plotted below. 
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Figure 2.1: Crude Incidence function for Cancer with confi­
dence bands 

As would be anticipated, the 95% pointwise confidence interval lies closer to the 

point estimate than all the simultaneous confidence bands. At the start of the time 

interval the Equal Precision is the narrowest band, followed by the Hall-Wellner band, 

and the Gill band is the widest; by the end of the time interval this ordering has been 

reversed. The Equal Precision and Hall-Wellner bands intersect at about 20 months, 

the Gill band intersects with the Equal Precision at about 35 months, and the Gill band 

intersects with the Hall-Wellner band much later at 80 months. However, even at the 

very end of the time interval, the Gill band only offers an improvement, in terms of 
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width, of 2 x (0.1854 - 0.1696)100% = 3.1%, suggesting that the Hall-Wellner bands 

are a sensible compromise in this case. 

The equivalent crude incidence function and associated confidence intervals/bands 

is shown for 'Other' causes in figure 2.2. Bootstrapping was performed, with 1000 repli­

cates, and 96.5 % coverage was obtained for the Hall-Wellner bands, 48.9 % coverage 

for the Equal Precision bands and 97.1 % coverage for the Gill bands. The poor perfor­

mance of the Equal precision bands, in this case, is due to the time interval starting as 

early as possible, and most of the occurrences of the bands being breached occur near 

the start. This is a consequence of the fact that the Equal Precision bands are of the 

form Q + K . 0', whereas the other two bands include an additive constant thus avoiding 

the problem of a very small 0'. If the time interval is slightly changed from [0.3,228]' to 

[17.3,228]' the coverage of the Equal Precision bands becomes 95.6 %. 
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Figure 2.2: Crude Incidence function for Other Causes with 
confidence bands 

2.8 Summary 

In this chapter we have presented together the mathematical properties of the conven-

tiona I estimator of the crude incidence function. With these we have developed methods 

for calculating confidence intervals and bands for the estimates and have illustrated their 

important potential for use in exploratory analysis. The limited software available does 

not calculate any such confidence bands and rather than giving a visual tool which com-

municates the uncertainty of the estimates, concentrates instead on hypothesis testing 

between sub-groups. 
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The next chapter moves on from the exploratory phase of the statistical process 

and considers what can be inferred about the dependence between the latent failure 

times and what sort of comparisons can be made between sub-groups of individuals. 
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Chapter 3 

Improved bounds for the joint 

survival in the case of a two-armed 

trial 

3.1 Introduction 

A common way to represent competing risks data is through the use of latent fail­

ure times. This assumes that, when dealing with k causes, there exists a vector, 

(TI , ... ,Tk ), of random failure times, each associated with a particular cause, but 

rather than observing all of these values we only observe one them, the earliest, and 

have only the knowledge that the other times must be larger than the observed time. A 

criticism of this, which is explored in Prentice and Kalbfleisch (1978), is that Nature is 

not some idiot scientist who can be criticised on the grounds: 

To call in the statistician after the experiment is done may be no more 

than asking him to perform a postmortem examination: he may be able to 
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say what the experiment died of. 

-Ronald Fisher, Indian Statistical Congress, Sankhya, ca 1938. 

Rather, these latent times do not exist, and to perform counter-factual inference 

is a dangerous thing to do. Nevertheless there are questions typically asked about such 

latent times: what is the dependency between the latent times; what happens if we 

remove a particular cause of failure; what are the effects of treatments or covariates on 

a particular latent failure time. These are perfectly valid questions, and they rely on the 

latent failure times to be considered. If data alone cannot provide a specific answer we 

must consider what range, or set, of answers can be inferred, and how extra assumptions 

will affect the problem. 

In this chapter I consider the marginal distribution of the latent failure times. 

Consider two scenarios: conditionally on the earliest latent time, all the remaining latent 

times are immediately afterwards; conditionally on the earliest latent time, all the re­

maining latent times are at infinity. The data cannot distinguish between these scenarios 

since we only observe the earliest time, but the dependence structures are very difFerent 

and clearly the marginal survival in the first scenario will decay at a faster rate than the 

second scenario. 

These two extremes are considered formally in Peterson (1976) and they produce 

a set of bounds on the marginal survival which are known as Peterson's bounds. They 

will be presented formally here also. However they are only applicable to a homogeneous 

data set. I will consider the simplest increment into heterogeneity: the two-armed trial. 

For this chapter we are making the assumption that the effect of a treatment can be 

represented by a time transformation, whereby to calculate the joint survival function 

function of the latent failure times at a point t in the experimental arm, say, we could 

perform a transformation t H- ¢(t), and evaluate the joint survival of the control arm at 
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this new point. Now we do not know the joint survival in the control or the experimental 

arms, but if we did know this time-transformation, ¢, then Peterson's bounds can be 

improved. It is a strong assumption in knowing ¢ and I will consider this question more 

fully in chapter 4. However, based on the assumption that we know ¢, this chapter 

explores what extra information we have on the joint survival. 

3.2 Definition of the covariate-time transformation 

The model assumptions shortly to be defined are motivated as a generalisation of ac­

celerated failure time models. The accelerated failure time model assumes the effect of 

covariates is to speed up, or slow down, time by a factor determined by the covariates, Z. 

Formally, in a univariate example 

S[tIZ) = S[J(Z)tlzoJ, 

where Zo is a reference value of Z such that j(zo) = 1. Hence if j(zI) > 1 then the 

probability of a failure time larger than t, conditional on Z = Zl is smaller than the 

probability, conditional on Z = zoo It is a useful, practical alternative to the proportional 

hazards assumption that is both parsimonious and easy to interpret. 

Another viewpoint is that the transformed variable j(Z)T has a distribution that 

does not depend upon the value of Z, and is identical to the distribution conditional on 

Z = zo, since 

IP[J(Z)T> tlZ) = IP[T > t/ j(Z)IZ) = IP[T > j(Z){t/ j(Z)}lzo) = IP[T > tlzo). 

(3.1) 

A simple generalisation is to replace j(z)t with an arbitrary function ¢(t, z) that is zero 

at t = 0, is increasing in t, and satisfies ¢(t, zo) = t for some reference value, ZOo 
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Extending this into the latent failure time framework, the covariate-time transformation 

is defined to be the mapping, 

where Oz is the sample space of the variable Z, such that, 

S[tIZ = z] = S[¢(t, z) IZ = zo], (3.2) 

¢(O, z) = 0, (3.3) 

¢(tl,." ,u, ... ,tk,z) > ¢(tl"" ,v, ... ,tk,Z), for u 2: v. (3.4) 

This is a completely general framework, and contains any joint distribution of 

(TI , ... ,Tk, Z), since the role of ¢ is to map between the contours of the survival func­

tion for the different values of Z. As such it is too general. The rest of the chapter will 

consider the special case where the ith element of ¢(t, z) can be simplified to ¢i(ti, z), 

a function on (ti' z) rather than (tl' ... ,tk, z); henceforth referred to as the rectangular 

assumption. It is also assumed that the ¢is are continuous in t, and hence with (3.4) 

implies that ¢i(', z) has an inverse, 'l/Ji(', z). By a similar argument to (3.1) it can be 

shown that (¢I(TI , Z), ... ,¢k(Tk, Z)), conditional on Z, has the same distribution as 

(TI,'" ,Tk) conditional on Z = Zo : 

IP[¢I(TI , Z) > tr,··· ,¢k(Tk, Z) > tklZ] 

IP[TI > 'l/JI(tl, Z), ... ,Tk > 'l/Jk(tk, Z)IZ] 

IP[TI > ¢r{'l/JI(t,Z),Z}, ... ,Tk > ¢k{'l/Jk(t,Z),Z}IZ = zo] 

IP[TI > tl,'" , Tk > tklZ = zo]. 

So if a value of Z is observed such that ¢i(ti, z) > ti then this would be 

interpreted as accelerating the latent failure time Ti. Specific examples are shown In 
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section 4.2, including both the accelerated failure time model and the proportional 

hazards model. Chapter 4 considers the estimation of the covariate-time transformation, 

but this chapter will assume it is known a priori and will consider what can be inferred 

about the joint distribution. 

3.3 A Geometric Introduction 

First we will introduce Peterson's bounds in the case of two causes of failure. Formally, 

assume there is a pair of variables (TIl T2) E IR~ and we observe T min = min(TIl T2) 

and the cause of failure C. Now if we wish to calculate S(tll t2) = IP(TI > tl nT2 > t2), 

referring to figure 3.1, this is equivalent to integrating over the infinite rectangle with a 

'lower left' vertex at point X = (tIl t2) with measure corresponding to the joint density 

of (TIl T2)' However, given the observed data we can only estimate the crude incidence 

function for each cause, IP(Tmm < t, C = i) = Qi(t). For the purposes of this chapter 

we will work with a closely related function: the cause-specific survival function, 

the quantity Qi(OO) = Fi(O) = IP(C = i). Examining figure 3.1 it is clear that, for 

example, FI (tI) corresponds to integrating over the infinite triangle with sides formed 

by the diagonal, and the vertical line withe lower end-point B = (tIl tl), similarly F2(tI) 

is the integral over the lower triangle at B. Clearly, the rectangle we wish to integrate lies 

within the union of the upper triangle at B and the lower triangle at A, which therefore 

provides an upper bound, FI(tI) + F2(t2)' Whereas the union of the upper and lower 

triangles at B lies within the rectangle thus providing a lower bound, FI(tI) + F2(tI). 
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tlL 

¢( tlL) 

~--------------------~ TI 

Figure 3.1: Illustration of the 2-d case 

This is formalised, in the finite-dimensional case, as 

L Fi (max(t)) ~ S(t) ~ L Fi(ti). 
t 

Now consider the implications of (3.2) along with the rectangular assumption, 

in the case where Z E {O, I} represents the two arms of a trial, with Zo = O. To simplify 

notation, ¢(t, Z = 1) is condensed into ¢(t). In figure 3.1 the curved line represents 

the image of the mapping of the diagonal under the covariate-time transformation: 

(t, t) H «Pt[t, 1], ¢2[t, 1]). Now under (3.2) the joint survival function at any point on 

this line, conditional on Z = 0, is equal to the survival function, conditional on Z = 1, 

for a specific point on the diagonal. This is useful because the survival function of a point 

on the diagonal, is simply the univariate survival function of T mm , and this is clearly 

estimable from the data. Under the rectangular assumption, given a point (it, ... ,tk) 

on this image, the relevant point on the diagonal is ('l/Ji(ti), ... ,'l/Ji(ti)) (where the value 

of i is irrelevant since 'l/Ji(ti) = 'l/Jj(tj), given that (tl,'" ,tk) lies on the curved line). 

Further, the rectangular assumption also means that, for example, defining the 

'lower pseudo-triangle' A as the region to the right/below the curved line, and above 
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the horizontal line through X, then P{(TI, T2) E AIZ = O} = F2{ u(A)IZ = I}, 

where u(A) = 'l/J2(t2) in this case since the curved line lies below the diagonal. These 

relationships will be formally derived later, but the important thing to note is: first, 

that the rectangle with 'lower-left vertex' at the point X is contained within the region 

defined as the union of the lower pseudo-triangle at A' and the upper pseudo-triangle 

at B'; second, the same rectangle, in turn, contains the union of the upper and lower 

pseudo-triangles at B'. The probabilities of these regions, conditional on Z = 0, can 

be evaluated and they will provide tighter bounds for the joint survival at X than the 

Peterson bounds. 

3.4 Extension to finite dimensions 

Next we will formalise these ideas in a generalised context of there being p > 2 causes 

of failure. First we will consider the p-dimensional version of Peterson's bounds. 

Theorem 3.4.1 (Finite-dimension worst-case bounds). 

p p 

LF"i(Ui) ~ S(Ul,U2, ... ,up) ~ LFi(max{ud) 
i i 

Proof. It is clear that nr {Ii > Ui} :J nr {Ii > max{ Uk}}. The next step is to partition 

the smaller subset by the events {Tj = min{Tk}}, but these partitions can be simplified 

taking the probabilities of these events we obtain the lower bound, 

p 

> L P( {Ii > max{ Uk}} n {Ti = min{Tk}}) 
i 
p 

L Fi(max{Uk})· 
i 

To obtain the upper bound the event of interest is partitioned, again, by the 
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events {Tj = min{Tk}}, so that 

the probability of these events, the upper bound is obtained, 

p p p 

[p(n{'Ii > ud) < L [P( {Ti > Ui} n {'Ii = min{Td} = L Fi(Ui). 
iii 

D 

The next stage is to generalise the effect of a binary covariate from two causes 

to P > 2 causes. In the ensuing derivations the following lemma will be used 

Lemma 3.4.1. Psuedo-triangular regions 

F}(t) [P(Tj > t n Tj = min{TdlZ = 1) 

[P( 'l/Jj(Tj ) > t n 'l/Jj (Tj ) = min{ 'l/Jk(Tk) }IZ = 0) (3.5) 

Proof By the definition of the covariate-time transformation (using the original, ex-

panded notation for <P and 'l/J), it is assumed that 

[P(T E AIZ) [P(¢{T, Z} E ¢{A, Z}IZ) 

[P(T E ¢{A, Z}IZ = zo), 

where A is any measurable region in the sample space of the latent failure times. Now 

consider A = {t : tj > t, ti > tj, i -# j}, we wish to find ¢{A, Z} = {t : ti = 

<Pi(Ui, Z), U E A}. By the rectangular assumptions the <PiS can be inverted, hence 

¢{A,Z} = {t : 'lj;j(tj,Z) > t,'Ij;i(ti,Z) > 'lj;j(tj,Z),i -# j}. Hence the event {T E 

¢[A, Z]} can be written as {'Ij;j(Tj) > t n 'l/Jj(Tj) = min['l/Jk (Tk)])' reverting back to 

the condensed notation for the two-armed trial. D 
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Now it is possible to generalise the two dimensional case. 

Theorem 3.4.2 (Alternative bounds). 

p p 

~ F} ('l/Jj (Uj)) ~ S(U1, U2,· .. , uplZ = 0) > ~ F}(max{'l/Jk(Uk)}). 
j=1 j=1 

Proof For the lower bound, observe that, by definition, max{?/Jk(uk)} ~ ?/Ji(Ui) and 

hence since ¢i is non-decreasing, {Ii > Ui} ;;2 {Ti > ¢i [max{?/Jk(uk)}]}. So 

but if the event on the the right ha nd side is partitioned by the sets {?/Jj (Tj ) 

min{'l/Jk(Tk)}} = Cj, some simplifications occur, 

y {0{T; > 1>;[max{,pk(uk)}]} ncj } 

= y {[,pj(Tj) > max{1/>k(uk)}] n Cj }, 

hence taking the probability of these events, and using equation 3.5 the lower bound is 

obtained, 

P 

S(U1,U2, ... ,uplZ = 0) ~ ~F}(max{'l/Jk(uk)})' 
j=1 

For the upper bound observe that nflTi > Ui] n Cj C [Tj > Uj] n Cj , so taking 

the union over j the following is obtained, 

y { 0[71 > Ui] n Cj } 

c y {[Tj > Uj] n Cj } 

Y {[,pj(Tj) > ,pj(Uj)] n Cj } 
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Hence evaluating the probability of these events, conditional on Z 

equation 3.5, the upper bound is obtained, 

3.4.1 Marginals 

P 

S(Ul,U2, ... ,uplZ = 0)::; ~F}('l/Jj(uj)). 
j 

0, and uSing 

D 

As a corollary of theorems 3.4.1 and 3.4.2 we can evaluate the marginal survival, Sj(t), 

for latent time Tj . This corresponds to evaluating the joint survival function for at a 

point (0, ... ,0, tj, 0, ... ,0). Hence there are two possible bounds. 

FjO(t) + ~ QJ(O) > Sj(tiZ = 0) > ~ FP(t), 
ilj i 

which comes from theorem 3.4.1, and 

F}('l/Jj(t)) + ~Fl(O) > Sj(tiZ = 0) > ~Fl('l/Jj(t)). 
ilj I 

3.5 Which bounds are tighter? 

It is convenient to be able to decide, in advance, which of the two sets of bounds 

is tighter. Intuitively if we have a point which is 'nearer', in some sense, to the line 

((/JI(t), ... ,c/Jk(t)) than to (t, ... ,t) then the alternative bounds will be tighter. How-

ever, short of simply evaluating both sets of bounds, it is hard to say what being nearer 

means in this case. 

A limited result is presented below in which it is assumed that it is possible to 

permute the labelling of the events is such that 'l/Jl (t) < 'l/J2(t) < ... < 'l/Jp(t) , for all t, or 

equivalently (h(t) 2:: ch(t) > ... 2:: ¢p(t). This is not true in general for all t. However, 
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if this is the case then the three regions, A = {?/JI(Ul) > 'l/J2(U2) > ... > 'l/JP (Up)} , 

C = {Ul < U2 < ... < up}, and B = IR~/ A/C, tell us where either set of bounds 

may be optimal. In region A, theorem (3.4.2) provides the tighter bounds; in region (, 

theorem (3.4.1) provides the tighter bounds; in region B it is not possible to tell which 

set of bounds will be tighter without their evaluation. 

3.5.1 Region A 

For the first case, in region A, the assumption that 'l/Ji(U) > 'l/JI(u) implies that Ul 2: 

p p 

n{7i > uI} c nfn > ¢i ('l/Jl (uI))). (3.6) 

However, the right hand side, nf {'l/Ji(Ti) > 'l/Jl (Ul)}, equals nf {'l/Ji(Ti) > max( 'l/Jk( Uk))}, 

if and only if 'l/Jl(uI) = max('l/Jk(Uk)) , which is satisfied by the definition of region A. 

However theorem (3.4.2) shows that 

Also, given that 'l/Jl(Ul) > 'l/Ji(Ui) , applying the function ¢l gives Ul > ¢l('l/Ji(Ui)) 2: 

¢l('l/Jl(Ui)) = Ui· 50,we have that in region A, Ul = max(ui) and theorem (3.4.1) shows 

that lP(nf{7i > Ul = max(ui)}) = I:f FP(uI). So we can infer that 

p 

< L Fl(max('l/Jk(uk))) 

hence theorem (3.4.2) provides the tighter lower bound in region A. In fact the proof 

shows that all we need is that 'l/Ji(Ui) < 'l/Jk(Uk),Vk, which is a subset of region A. The 

upper bounds are where we need the stricter conditions of region A. 
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To obtain the inequality between the two upper bounds we need to show that, 

in Region A, 

Y {[Tj > Uj] n [,pj{Tj ) = min{1j;k{Tk)}]} C Y {[Tj > Uj] n [Tj = min{Td]} 

(3.7) 

To do this partition the left hand side by the events [Ti = min{Tk}]. and observe that 

for j > i, because, taking the event on the left to be true, 

Hence we have that 

Y {[Tj > Uj] n [,pj{Tj) = min{1j;k{Tk)}]} = 

y i~ {[Tj > Uj] n [,pj{Tj) = min{,pk{Tk)}] n [T; = min{Tdl}. 

(3.8) 

Given that [1/Jj(Tj ) = min{1/Jk(Tk)}] and that 1/Jj(Uj) 2: 'l/Ji(Ui) for j :::; i, we can write 

'l/Ji(Ti) > 'l/Jj(Tj ) > 1/Jj(Uj) > 1/Ji(Ui), hence it is implied that 

[Tj > Uj] n ['l/Jj(Tj) = min{1/Jk(Tk)}] 

C [11 > Ui] n ['l/Jj(Tj) = min{1/Jk(Tk)], i > j. 

Hence 

Y {[Tj > Uj I n [,pj (Tj) = min { ,pk (Tk)}] } 

c l) W> . {[T; > Ui] n [,pj (Tj) = min { ,pk (Tk)}] n [T; = min {Td I } . 
J t_J 
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However, due to equation (3.8), we can take the union over all i, change the order of 

the union-operators, and observe that 

y y {[11 > Ui] n [T; = min {Td] n [,pj (Tj ) = min {1/Jk (Tk )}] } = 

y {[T; > Ui] n [Ti = min{Td]} 

So, trivially changing the (now) dummy variable i to j, equation (3.7) is proven. D 

In the case of the marginal distributions, the alternative bounds provide tighter 

bounds for latent time 1. 

3.5.2 Region C 

The proofs are very similar to region A. For the lower bound, observe that 'l/Ji(U) 2: 'l/Jp(U) , 

so Ii > ¢i('l/Jp(Up)) > ¢i('l/Ji(Up)) = uP' hence we can reverse equation (3.6) to get 

In region A it was necessary to show that 'l/Ji(UI) = max{'l/Jk(uk)} =? Ul = max{ud, 

whereas in region C it is known that up = max{uk}, but given that 'l/Jp(t) > 'l/Ji(t) it is 

clear that 'l/Jp(up) > 'l/Ji(Up) > 'l/Ji(Ui), and hence 'l/Jp(up) = max{'l/Jk(uk)}. Given these 

two conditions, the arguments for region A can be followed to convert the probabilities 

of the relevant events into the sums of crude incidence functions, and the ordering of 

the lower bounds is reversed. 

For the upper bounds, equation (3.7) needs to be reversed to 

To do this we partition the left hand side by ['l/Jj(Tj) = min{'l/Jk(Tk)}], and apply 

51 



equation (3.8) to equate this to 

y ~ {[T' > Ui] n [T, = min{T.}[ n [,pj(Tj ) = min{,pk(Tk)}[}. 

Now by the definition of region C it is observed that if Ii = min{Tk} and Ti >Ui then 

for j ::; i, T j ~ Ii > Ui ~ Uj hence 

From here the argument is identical to region A. except the roles of i and j are reversed. 

Here, in the case of the marginals the conventional Peterson bounds provide 

tighter bounds for latent time p. 

3.5.3 Region B 

In region B = IR~/A/C, neither of these two arguments apply so both sets of bounds 

must be evaluated and the tighter values used. 

3.6 Example 

To illustrate these bounds, they were calculated using a simulated data set. The joint 

distribution was chosen so the marginals of the two causes, C, conditional of the co­

variate, Z, were exponential with hazards as set out in table 3.1. 

Z=Q Z=l 

C = 1 1 1.5 

C = 2 2 2.5 

Table 3.1: Marginal hazards 
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A dependency was induced between the two causes, by assuming there was a 

Gamma frailty with mean, 1, and variance 2. This was achieved using the algorithm 

derived in Genest and MacKay (1986). Hence the time transformation is defined as 

( 
1.5h ) ¢(t) = 

2.5/2t2 

The 10,000 realised values are plotted in figure 3.2. 
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From this the minimum of the two times was taken, and estimators of the crude 

incidence functions, conditional on Z, were calculated using the method in Prentice 

and Kalbfleisch (1978). With these the special case when U2 = 0, i.e. the marginal 

distribution of TI , was considered, and Z = 0, the improved bounds were calculated. 

No attempt was made to estimate the time transformation, ¢ as as this is known in 

advance, although in reality they would have to be estimated from the data. The results 

are shown in figure 3.3. 
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Given the sample size of 10,000, the margin of error associated with these es-

timates is negligible. However, when a subset of size 100, with an equal split between 

the values of Z, was taken and the values of the hazard ratios, 0:i for cause i, were 

estimated, using Cox proportional hazards (Cox 1972), the results are not so positive. 

The estimate of 0:1 was very crude as it assumes independence between the 

latent failure times; the data was regressed on Z, and cases other than C = 1 were 

treated as censored. The estimate al = 1.77 was obtained. The bounds obtained for 

the marginal distribution of Tl conditional on Z = 0, are shown in figure 3.4, 

Marginal 
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Figure 3.4: Bounds on a data set, n = 100 

where it is observed that the upper bounds are briefly in the wrong order between 

t 0 and t = 0.5. If we skip ahead to chapter 4 where we obtain bounds on the 
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covariate-time transformation and use this specific data set as an example, examining 

figure 4.2 we see that the estimated covariate-time transformation of (PI (t) = 1.77t lies 

above its upper bound for a brief period early on. This is a consequence of the modelling 

assumptions not exactly agreeing with the data. The effect is that it forces the bounds 

on the marginal survival to be in the wrong order for a brief period early on. 

3.7 Confidence Bands 

From the derivations of the asymptotic form of Qi(t) = Fi(O) - Fi(t), in chapter 2 we 

see that the estimates of the crude incidence function can be represented in terms of 

orthogonal martingales {M.l(t), ... ,M.k(t)} as: 

Hence the covariation process for cross-terms is 
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So using this, along with the expression for (OV(Qi(S) - Qi(S), Qi(t) - Qi(t)) given 

in theorem 2.5.3 we can calculate expressions for the variation process of Li FHui) 

for arbitrary (Ul, ... ,Uk). This is the form for both set of bounds. With some mild 

assumptions such as proposition 2.5.2 it can be shown that, with a suitable sequence 

of scaling constants an, Rebolledo's central limit applies (Rebolledo 1980) and hence 

confidence bands and intervals can be formed. 

3.8 Summary 

I have derived a set of bounds that, in some regions of the latent time space, improve 

the bounds on the joint survival function that can be inferred from competing risks 

data. These bounds can be obtained if we know the mapping ¢, which is a strong 

assumption, and without specifying more structure, such as a frailty model, we can only 

obtain bounds on this function ¢. This will be considered in the next chapter. How 

much these new bounds improve upon the existing Peterson bounds depends on which 

particular points in the latent time space are of interest. If we are considering a marginal 

survival then, as an extreme case, the bounds will converge if the line ¢{(t, ... ,tn lies 

along the axis of the latent time that we are considering. This would be a very strong 

covariate effect. At the other extreme if the mapping ¢{(t, . .. ,tn does nothing, and 

coincides with the diagonal (t, ... ,t), then effectively we have a homogeneous sample 

and thus the new bounds will be the same as the Peterson bounds. 
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Chapter 4 

Estimates of the covariate-time 

transformation 

4.1 Introduction 

Chapter 3 considered what could be inferred about the joint survival function, assuming 

that the covariate time transformation (CTT), ¢(t, z), was known a priori. Clearly, this 

is not an assumption that can normally be made, hence, in this chapter, we will consider 

what properties this function can hold. 

First we consider the implications of simplifying the covariate-time transform 

¢(t) to the case where ¢i(t) = ¢i(ti). With this assumption we then show that the 

transformations are unique and are non-decreasing. The main result of the chapter is the 

bounds on the covariate-time transform in the case of a binary covariate. The chapter 

finishes by putting confidence intervals on these bounds, considers the limitations of the 

bounds and calculates them in a simulated data set where the 'true' transformations are 

known. 
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4.2 Elementary Properties 

In a most general sense, the effect of covariates, Z, can be represented as a transfor­

mation of the time axes, where 

These transformations are not unique because any map which preserves the contours of 

the survival function, when Z = z, can be applied first and it will not affect the the joint 

survival. Hence the definition will be satisfied by any function, ¢(t, z), which maps the 

contours S(tIZ = zo) = k to the contours S(tIZ = z) for every value of k, 0 :S k :S 1. 

Here we will consider the implication of the special case where ¢i(tl, ... , tp; z) = 

¢i(ti; z) for all values of z, or equivalently, 8¢d8tj = 0, i #- j. In the notation of 

chapter 3 we have that q,(t) the transformation of the diagonal is equal, component­

wise, to ¢i (tn), alternatively 

hence the inverse transformation of the general ¢(t) coincides with 'ifJi(ti), 

4.2.1 Examples 

Most of the models used in the literature (Cox and Oakes 1984, chapter 5) to describe 

multivariate and univariate survival distributions can be represented using a CTT of the 

form (4.1). 

S(tIZ = z) = S{¢l(tl,Z), ... ,¢k(tk,Z)IZ = zo} ( 4.1) 
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Accelerated Failure Time 

Accelerated failure time models (Kalbfleisch and Prentice 2002, chapter 7) can be rep­

resented using such CTTs, since their assumption is that 

S(t; z) = So {h(Z)tl,'" ,fk(Z)td 

for some specified function, So{-·· }. This is of the form (4.1) with ¢i(ti, z) = fi(Z)ti, 

where the reference value, Zo, has to satisfy fi(ZO) = 1. 

Cox's Proportional Hazards model 

The commonest model-the independent proportional hazards model (Cox 1972)-can 

also be represented since it assumes that 

S(t;z) = exp {- ~J;(Z)Ai(ti)}. 
Hence the CTTs are functions, ¢i(ti, z), such that 

Ai { ¢i ( ti, z) } 

:::;.. ¢i(ti , z) 

fi(z)Ai {td 

Ai 1 {fi ( Z ) Ai ( ti )} , 

where Ai defines the cause-specific cumulative hazard functions conditional on Z = Zo 

and Zo is a reference value such that fi(ZO) = 1. 

Numerous other models, including the proportional odds model (Bennet 1983) 

and the additive hazards model (Aalen 1980), can also be described using the CTT 

framework. 

4.2.2 Further Properties 

A useful property under the assumption that 8¢d8tj = 0 is that the functions ¢i(',') 

are unique. 
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Theorem 4.2.1. If there exist functions ¢i(ti; z) such that 

and the cause-specific hazards are non-zero everywhere, then the functions ¢i are unique. 

Proof First, examine the case where tl = ... = tp = 0, then 

1 = S(O, ... ,01Z = z) = S(¢l(O, z), ... ,¢p(O, z)), 

¢i(O, z) = 0, 

Hence, denoting the marginal survival function of Ti as Si(tiZ = z) 

Si ( t I Z = z) = Si ( ¢i ( t) I Z = zo) 

¢i(t) = Si-1 {Si(tIZ = z)IZ = zo} 

Since these marginal functions clearly are unique, so are their composition, and inverses. 

D 

However their existence cannot be guaranteed, so it is useful to understand the 

implications of their existence. One useful property is that the Copula, and hence a large 

class of dependence measures, is invariant to the value of the covariate. A summary of 

recent developments in copula theory is given in Nelsen (1998). 

Theorem 4.2.2. There exist functions ¢i(ti; z) such that 

if, and only if, the survival Copula (Cz(Ul, ... ,up) s.t. S(tl, ... ,tplZ z) 

Cz(Sl (tl, z), ... ,Sp(tp, z))) is invariant to values of z. 
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Proof We know from theorem 4.2.1 that ¢i = R;l 0 Si, where R(t) = Si(tiZ = zo). 

Hence, 

S(t1"" , tplZ = z) = S(ch(tl, z), ... , ¢p(tp, z)IZ = zo) 

~ C Z [ S 1 ( t 1 , z), . .. , Sp ( tp, z )] = C Zo [R 1 ( ¢1 ), . .. , Rp ( ¢p) ] 

= Czo [R1 {Rl1 0 Sl(t, z)}, ... , Rp{R;;I 0 Sp(t, z)}] 

= Czo [Sl (t1, z), . .. , Sp(tp, z)] 

D 

Unfortunately, in a competing risks setting this is not very useful, per se, in esti­

mating the functions ¢i, since it is well known that their marginal distribution functions 

are non-identifiable. 

An elementary property of the functions ¢i(t) is that they are monotonic increas­

ing functions 

Theorem 4.2.3. IfS(t1,'" ,tp I Z = z) = S(¢1(t1,Z), ... ,¢p(tp,z) I Z = zo), then 

¢i ( U, z) > ¢i ( v, z), for u > v. 

Proof It follows that if sets A, B are such that A c B, then IP(A) < IP(B), hence 

if u > v then {1i > u} c {1i > v}, and therefore nj:;i:i{Tj > tj} n {Ti > u} c 

nj:;i:i{Tj > tj} n {1i > v}. Taking the probability of these events 

S(t1"" ,u, ... ,tp IZ=Z)<S(t1, ... ,v, ... ,tpIZ=z) 

=> S(¢1(t1, z), ... , ¢i(U, z), ... , ¢p(tp, z) I Z = zo) 

< S(¢1(t1, z), ... , ¢i(V, z), ... , ¢p(tp, z) I Z = zo) 

=> ¢i(U, z) > ¢i(V, z) 
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4.3 Bounds 

Hereafter we will only consider the special case of a two-armed trial, where Z takes 

values in {O, I}; we set Zo = 0 and simplify the notation so that ¢i(t) = ¢i(t,z = 1). 

Now at any time point t it is possible to permute the indices referring to the causes of 

failure such that 

which, given the ¢i are non-decreasing, is equivalent to 

where 'l/Ji = ¢:;l. Assuming the ¢ are continuous functions, this ordering will hold over 

an interval (u, v] containing t, and the number of such disjoint intervals is countable. 

Initially we will assume that there is just one interval: the entire real line. 

Now note that, for any set C of causes of failure, 

( 4.2) 
iEC iEC ji=i iEC jr;lC 

since UiEC njEC/{i} {li < Tj } is the event that one of the lis, restricted to i E C, is 

the minimum of the Tis, restricted to i E C, and this is always true. The right hand 

side of equation (4.2) is more mathematically convenient. 

Consider C = {I, 2, ... ,m} and observe that for i < m < j 

by the monotonicity and ordering of the 'lj;, hence 

(4.3) 
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This is useful as, under the assumption of equation (4.1) about the CTT 

so we can use equation (4.3) to order the IP{ C E ClZ} for the different Z. Choosing 

a different C = {m, m + 1, ... ,K}, we can reverse the ordering in (4.3), since for 

j < m < i, 

hence 

(4.4) 
i?mji-i 

Now consider 

LQdtlZ = I} 
i<m 

IP {.U ({Ii < t} n (I.{Ii ::; Tj }) Z = I} 
t~m Ji-t 

IP {.U ({Ii < ¢i(t)} n (I.{?jJi(Ti) < ?jJj(Tj )}) Z = o} 
t~m Ji-t 

> IP {.U ({Ii < ¢i(t)} n (I.{Ii < Tj }) Z = o} 
t~m Ji-t 

> IP {.U ({Ii < ¢m(t)} n (I.{Ti < Tj }) Z = o} 
t~m Ji-t 

L Qi{¢m(t)IZ = o} 
i~m 

where the first and last equalities are by definition, the second equality is through 

the CTT assumptions, the first inequality is through equation (4.3), and the second 

inequality is through the ordering of the ¢. If we consider i > m then equation (4.4) 
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allows us to reverse the inequalities and, to summarise, we have the two inequalities: 

( 4.5) 

(4.6) 

Since the Qi are directly estimable these can be converted into bounds on the unknown 

functions cPm. 

~----------------~--+ T1 
cP1 (t) 

Figure 4.1: Illustration of the 2-d case 

A geometrical interpretation of the 2-d case is shown in figure 4.1. This shows 

the plane of the two latent failure times and the curved line represents the line ¢(t). 

The modelling assumption (4.1) means that Q1 {t/Z = I} is the integral of the density, 

conditional on Z = 0, over the region above the curved line, and to the left of the 

vertical line through X; QI{cP1(t)/Z = O} is the integral over the region above the line 

T1 = T2 , and to the left of the vertical line through X. The inequality (4.5) comes 

from the fact that the integral over the dashed region is non-negative. Observe that 

Q1 {t/Z = I} + Q2{t/Z = I} is equal to the integral over an area sandwiched between 

two boundaries: the two axes; a translation of the axes such that the image of the 

origin is ¢(t). A similar region, but with the translated origin at X, gives the quantity 
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Qd<P1(t)IZ = O} + Q2{<P1(t)IZ = O}. Hence equation (4.6) comes from the non­

negativity of the integral over the solid region. This shows that the bounds are tight if 

the underlying joint distribution puts zero mass in either of the highlighted regions. 

4.3.1 Ordering 

Unfortunately, there is still some more work to be done since the ordering of the <Pi is not 

known in advance. If these bounds are to be used to check a model, or a further set of 

assumptions about the (TT, then this is not a problem. If the model produces estimates 

of the (TT then the estimates can be ordered, the bounds can be calculated, and if the 

estimates lie within the bounds then this would support the modelling assumptions. 

The ordering does not need to be known in advance when there are only two 

causes of failure. For both causes the <Pi share a common bound, c(t), which is obtained 

from the equality 2:7=1 Qi{c(t)IZ = O} = 2:7=1 Qi{tiZ = I}. For one cause this is the 

lower bound and for the other cause it is the upper bound. The other bounds, bi(t), are 

obtained from Qi{bi(t)IZ = O} = Qi{tiZ = I}, and the correct ordering, and whether 

the bounds are upper or lower, becomes apparent when the three bounds are calculated. 

This is illustrated in section 4.6. 

It is also true, in the case of two causes of failure, that the upper and lower 

bounds coincide if the two <Pi are equal. This is because, when equal, the <Pi must lie on 

the diagonal (t1 = t2)' Hence it is always possible to calculate the bounds and identify 

the ordering in the case of two causes of failure. 

In the case with three or more failures there is no fail-safe route to determining 

the ordering. A possible avenue for investigation uses the result shown in Heckman and 

Honore (1989), 

Qi(OIZ = Zd/Qi(OIZ = Z2) = ¢i(O, Zl)/¢i(O, Z2), 
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where the dot ( . ) notation indicates the partial time derivative. In a two armed 

trial we know that ¢i(t, Z = 0) = 1, so we have identified ¢i(O, Z = 1). Given that 

¢i(O, z) = 0, knowing the derivative at the origin, under continuity assumptions, gives 

the ordering of the ¢i immediately after the origin. Unfortunately there is no method to 

determine if the ¢i subsequently change their order in the case of three or more causes 

of failure. This is because in more that two-dimensions the line (¢l(t), ... ,¢k(t)), does 

not have to intersect the line (t, ... ,t)' when the ordering changes, whereas it does in 

two dimensions. 

4.4 Confidence intervals 

To obtain confidence intervals on the bounds in equations (4.5) and (4.6), consider the 

random process 

L {Qi(tIZ = 1) - Qi(uiZ = O)} = Dm(t, u). 
i-::;m 

Using the counting process approach of Andersen et al. (1993) it is shown in chap-

ter 2 that the two left-hand terms converge, asymptotically, to Gaussian processes. 

Unfortunately, the covariation process is complex and does not exhibit independent 

increments, however a simulation approach described in Lin (1997) can be used to cal­

culate confidence limits aa(u),ba(u) such that [P{D(t,u) > aa(u)} = 1 - 0/2 and 

[P{Dm(t, u) < ba(u)} = 1 - 0/2 for a fixed value of t, where Dm is the function 

estimated by Dm. It follows that the roots of the equations, aa(u),ba(u) = 0, pro­

vide pointwise (1 - 0)100% confidence intervals for the bounds in equation (4.5). An 

identical argument for the bounds in (4.6) applies. 

It is not clear if confidence bands can be formed for a continuum of values 

of v. The problem is that the bounds are of the form G- 1(H(v)), where G and H 
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are functions that are estimated with random error; how to cope with a convolution of 

two such processes and subsequently form confidence intervals is unknown. The delta 

method may be of use. 

4.5 Limitations 

It is worth pointing out that it is impossible to calculate the bounds in equations (4.5) 

and (4.6) for all time points and choices of index, m. This is because, if the covariate 

has any effect, there will exist choices of ordering the causes of failure and m such that 

P{l < C < mlZ = I} > P{l < C < mlZ = O}. 

In these cases it will be impossible to solve, for u, the relevant equation 

(4.7) 

for values of t > too such that 

i<m i<m 

The bound will explode at this point, too, and consequently be of no practical use. 

Fortunately, the lack of a solution to (4.7) does not invalidate the bounds since 

in scenario 1 the solution, u to (4.7) provides an upper bound to ¢i(t); at too we have 

that ¢i(too ) < 00, and hence it is perfectly logical, if rather uninformative, to keep 00 

as an upper bound for t > too. The negative aspects of this are that the point too is 

invariant to sample size, and hence we will always have to cope with a guarantee of 

infinitely large bounds on the covariate-time transformation in at least one of the latent 

times. 

Even more unfortunate is the fact that it apears fruitless to try and use these 

bounds in conjunction with the theory of chapter 3 for marginal distributions. This is 
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because a sufficient condition for the alternative bounds of chapter 3 to improve upon 

the conventional Peterson bounds for the Ti marginal distribution is that the Ti axis is 

nearer to the line q,(t) than to the diagonal t1L. Unfortunately this is precisely the same 

condition required for the upper bound, for ¢il to explode to infinity. 

4.6 Illustration 

These bounds are illustrated on the data set of chapter 3, where there were two causes, 

indexed by C, and a binary covariate, Z, with marginal exponential distributions with 

hazards as displayed in table 4.1. 

C= 1 

C=2 

Z=o Z=l 

1 

2 

1.5 

2.5 

Table 4.1: Marginal hazards 

A dependency is induced by a frailty term with a gamma distribution with mean 

of 1 and a variance of 2. 

From this simulated distribution the crude incidence function was estimated. 

Since the resulting estimate of the crude incidence function, Q(t) is a right continuous 

increasing function, the inverse function was defined to be 

Q -1 (p) = min {t : Q ( t) > p}. 

From this figure 4.2 was produced which illustrates the theoretical bounds. Further 

along the time axis the true function ¢2(t) = 1.25t intersects its upper bound, although 

this is due to the random error associated with the estimates of the cumulative incidence 

functions. 
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Figure 4.2: Bounds for ¢(t), with the true value 

4.7 Summary 

1.0 

This chapter has considered in general the covariate-time transformation. The first result 

is that the assumption of a simplified covariate-time transformation, ¢i(t; z) = ¢i(t; z), 

is equivalent to the assumption that the Copula of the dependence structure within 

the latent failure times is invariant to the covariates. In this case, it is shown that 

such functions ¢i are unique and are non-decreasing. In the case of a binary covariate, 

there are bounds on the functions ¢i that can be consistent with (perfect) competing 

risk information. We have considered the question of deriving confidence intervals for 
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these bounds, and have considered what conditions are needed for the bounds to be of 

practical use and not explode to infinity. The next chapter will illustrate how to use the 

results of this chapter and those of chapter 3 on an existing data set. 
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Chapter 5 

Application to a two-armed trial 

5.1 Background 

In this chapter we will apply the results of chapters 3 and 4 to a two-armed trial. The 

data are in appendix A which are taken from Hoel (1972) and record the survival times 

of mice which received a radiation dose. The mice were then randomised into two 

treatments: the control was being kept in ordinary lab conditions and the treatment 

was being kept in a germ-free environment. There were three possible causes of death: 

thymic lymphoma, reticulum cell sarcoma and other. 

5.2 Models 

For illustrative purposes we will concentrate our attention on the sarcoma cause of 

failure. Two models were fitted which treated all other causes of failure as censorings: 

a Cox proportional hazards model (Cox 1972) and a Weibull model with a log link. The 

Wei bull is both an accelerated failure time model, where the covariate-time transform is 

a straight line, and is also a proportional hazards model but where the hazard function is 
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constrained to belong to a two-parameter set of functions. Explicitly the hazard function 

IS 

A(t; z) = 0: (exp(Ao + {3z)tt . 

So the time transformation is, t H exp({3)t, whereas the log hazard ratio is 0:{3. For 

this analysis z = 0 refers to the laboratory conditions group and z = 1 refers to the 

germ-free conditions group. 

In the Weibull model, assuming a fixed shape parameter Q = 6.94, a 95% 

confidence interval for the log hazard ratio is (-1.89, -3.10). This can be compared 

to the Cox model which has a 95% confidence interval for the log hazard ratio of 

(-1.34, -2.72). The remaining parameters in the Weibull model, 0: and Ao, had confi­

dence intervals of (5.63,8.58) and (1.41,1.55) x 10-3 , respectively. This indicates that 

a germ-free environment lowers mortality. 

5.3 Covariate-time transformations 

Using the theory of chapter 4 we can see how plausible these two models are given the 

data. 
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Figure 5.1: Bounds and estimates of the time transformation 

This is shown in figure 5.1. There are three solid lines, although the uppermost 

pair coincide initially and split apart approximately at the point (250,300). Under the 

model that treats sarcoma and lymphoma as two latent failure times with 'other' being 

treated as uninformative censoring, these form the bounds outlined in chapter 4 for the 

covariate time transformation where the lower set of bounds refers to the sarcoma latent 

failure time, and the upper set of bounds refers to the lymphoma latent failure time. 

These were obtained by forming the crude incidence functions for the two groups and 

without making any modeling assumptions. 
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Since the uppermost line explodes to infinity fairly early on-just after 400 days, 

where it finishes in figure S.l-and, earlier on, coincides with the middle line, there is 

not a sufficient amount of information to be able to use the bounds on the lymphoma 

time. Henceforth we will concentrate on the sarcoma time. The straight, dotted line 

which is the line y = exp( -O.359)x represents the time transformation as predicted by 

the independent Wei bull model. As we can see it does the best it can for a straight 

line trying to lie in a non-concave region, but is clearly not suitable for this data. The 

remaining dotted line gives the time transformation as given by the Cox proportional 

hazards model. This is 

----where AO is the standard estimate of the baseline hazard for the laboratory conditions 

group and, since it is an increasing step function, its inverse is defined as 

This estimate lies mostly within its bounds and only goes outside for a period of ap-

proximately twenty days just after 600 days. 

5.4 Marginal Survival estimates 

Now when we come to estimate the marginal survival function of the sarcoma failure 

time, we see that we must be in a region where the alternative bounds derived in 

chapter 3 are wider than the conventional Peterson bounds. This is shown in figure 5.2. 
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Here the solid lines are the bounds provided for sarcoma survival in the laboratory 

conditions group by the Peterson bounds and the dotted lines represent the alternative 

bounds derived in chapter 3 which use the Cox proportional hazards model to estimate 

the covariate-time transformation. We can clearly see that the alternative bounds are 

wider, and hence of no use, compared to the conventional bounds. However for a 

short period at around 620 to 650 days the lower alternative bound is higher than the 

conventional bounds. This is incorrect and it is propsosed that this is a consequence of 

the proportional hazards assumption being wrong. The proportional hazards assumption 
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forces the estimate of the covariate-time transformation to lie outside the correct region, 

at roughly the same time period, which is shown in figure 5.1. 

5.5 Summary 

This chapter has applied the results of chapters 3 and 4 to a two-armed trial. The 

bounds on the covariate-time transformation are useful in comparing two models, the 

Weibull and the Cox proportional hazards model, and indicate that the Weibull model 

is not flexible enough to model the sarcoma latent failure time. The data illustrate well 

the payoff between increased information about the covariate-time transformation and 

lack of information about the marginal survival curves. There are useful, reasonably nar­

row, bounds for the sarcoma time-transformation, but as a consequence the alternative 

bounds for the marginal sarcoma latent time are wider than the Peterson bounds. For 

the lymphoma cause, there is very little information on the covariate-time transforma­

tion since the bounds explode to infinity shortly after 400 days which is less than half of 

the 1000 days which are under consideration. If there was accurate knowledge of this 

covariate-time transformation then it could be used to calculate the narrower bounds 

derived in chapter 3 for the marginal lymphoma latent time distribution. 
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Chapter 6 

Generalised identifiability for 

competing-risks with covariates 

6.1 Fundamental problem 

The main problem with competing risks data is that they can only provide information 

on the cause-specific survival functions. In a latent failure time setting, the natural 

objects of interest are the joint density or joint survival function. The problem is that 

it is a one-way street between the joint survival and the cause-specific survival. There 

are infinitely many distinct joint survival function which will give a specified set of 

cause-specific surviva Is. 

This was proven in Tsiatis (1975). For any model of the joint survival func­

tion there exists a model which exhibits independence between the latent failure times 

that produces the same cause-specific survival functions. The proof rests on exam­

ining the derivatives of the cause-specific survival functions, rather the cause-specific 

survival functions themselves. This is because of the convenient mathematical relation-
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ship between the derivative of the cause-specific survival function and the joint survival 

function. 

aFai(t) = lim } lP(t < T min < t + 6 n C = i) 
t 0-+0 U 

-1 n = lim 71P (t < Ti < t + 6 Tj > t) 
0-+0 U 

j::j:i 

= lim {I - IP (Ti ~ t + 6 nj::j:i Tj > tn - {I - IP ('Ii > t nj::j:i T j > tn 
0-+0 6 

1
. S(t, . .. ,t, t + 6, t, ... ,t) - S(t, . .. ,t) 

= 1m ---=.---------:~-..:.....:....---.:... 
0-+0 6 
as 

= -a (tlL) , (6.1) 
ti 

where 1L represents a k-dimensional vector of Is. 

So, to sketch the proof in Tsiatis (1975), given any specified joint survival func-

tion S(t) which gives cause-specific survivals, 

F[(t) = aas (tlL), 
ti 

then the new, independent joint survival function, 

* [{ti -FI ( U ) 1 
S (t) = exp - 2( 10 Lj Fj(u) du , 

will give identical cause specific survival functions. By inspection, 

a S* FI ( t) [ t -FI ( u ) 1 
ati (tlL) = Lj Fj(t) exp - 2( 10 Lj Fj(u) du , 

since the range of integration is common, swapping the summation and integration 
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All this is assuming that we have a homogeneous sample, which is rarely the 

case. Chapters 3 and 4 considered what happens in the case of a binary covariate, and 

can be extended to a finite, discrete set of covariates, by choosing a baseline level of 

the covariate and comparing the different levels of the covariate, as if it were a binary 

covariate and then taking the narrowest set of bounds. However with a continuous 

covariate, whose effect can be represented through a continuous mapping, more results 

have been obtained. 

An important result is from Heckman and Honore (1989) where it is shown that 

given a continuous covariate, and the assumption that the covariate-time transformation, 

¢( t, z), has the form 

which is essentially a proportional hazards assumption, then the joint survival function 

can be identified. To be able to use the constructive proof given in the paper would 

require that the covariate is observed over a very large range of values, thus demanding a 

huge sample size. A useful extra assumption is that the dependence between the latent 

failure times is induced by an unobserved covariate having an effect on the distribution. 

This means that the kernel of the distribution-the joint survival at a baseline level of 

the covariate-is in the form of an integral. This integral has the role of marginalising 

with respect to the (unknown) density of the unobserved covariate. Because the kernel 

is in the form of an integral it must be an analytic function, in other words it can be 

represented by a Taylor expansion. It is shown in Abbring and van den Berg (2003), 

that this weakens the assumptions on which identifiability is obtained. 

This chapter will consider if it is possible to generalise the assumption of pro-
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portional hazards to where the form of the covariate-time transformation is 

The general answer seems to be negative. It is shown that if the kernel is known then the 

covariate-time transformation can be identified and vice versa where if the covariate-time 

transformation is known then the kernel is identified. Unfortunately, these two cannot 

then be tied together since it is shown that there are infinitely many pairs of kernel & 

transformation which agree with the cause-specific survival functions, but disagree on 

the general joint survival function. 

6.2 Assumptions 

It is assumed that we are considering a data set where the individual has a set of 

latent failure times {TI, . .. ,Tk} but the observations only consist of the minimum time 

T mm = min{TI' ... ,Tk} and the cause of failure C = argmin{TI' ... ,Tk}. In addition 

to this there is assumed to be a set of I-dimensional covariates, Z, where I 2: k - l. 

If interest is in the underlying latent failure-time joint-distribution then, without 

further assumptions about its functional form, it is impossible to make any inferences. 

Here we will examine the particular assumption that thejoint survival function S(tIZ) = 

IP(TI > tl, ... ,Tk > tklZ) takes the functional form 

where K is a function such that K(O) = 1, and K( ex:» = o. The conditions on ¢i are that 

¢i(t, z) is increasing in t, there exists a z* such that ¢i(t, z*) = t for all i, and ¢i(O, z) = 

o for all i, z. An example of this functional form is an independent, proportional hazards 

model, where ¢i(ti, z) = exp(,s:z)Ai(ti), and K(x) = exp (- Li Xi); this can be 

83 



generalised to a frailty model, as considered in chapter 7, by keeping the same form 

for ¢i but replacing K with the Laplace transform of the frailty distribution. The key 

assumption here is that the different latent failure times can always be split up from 

each other, in some manner, and we do not need any terms such as ¢(tl, t2, z), say. As 

we are concerned with identifiability we assume that we 'know', without any random 

error, the set of cause-specific survival functions, 

Fi(t, z) = IP(Tmm > t n C = ilz). 

6.3 Identifiability Results 

The fundamental question is then whether, given the functional form assumptions, there 

is a unique set of ¢i(t, z) and K(·) that gives rise to the cause-specific survival functions. 

An alternative phrasing of our question is: is there a bijection between the joint survival 

function and the functions in equation (6.1)? 

One possible tactic in attempting to prove identifiability is to show that if we 

know the ¢i then we can identify the K, whereas if we know the K then we can find 

the ¢i. If we were then to iterate between finding K from a given ¢, and then using 

this K to find a new 'improved' ¢ we may find that the pair (K, ¢) would converge. 

If a fixed point were found then it would satisfy the assumptions and give the correct 

cause-specific survival functions. Unfortunately, this fixed point is not unique. We 

will show that there exists an infinite set of such stationary points all of which give 

different functions for the joint survival function, and hence we still have the yoke of 

non-identifia bility. 

To start with we show that indeed, given either K or ¢, the other can be found. 

Theorem 6.3.1. Given the general assumptions, along with assuming that the func-
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tions ¢i (t, z) i = 1, ... ,k are known and that the mapping cI> : [R+ x [Rl 1---7 [Ri : 

(t,z) 1---7 (¢I(t,Z), ... ,¢k(t,Z)), is a surjection, then the function K(XI, ... ,Xk) can 

be identified from the cause-specific survival functions. 

Proof From the definition of the cause-specific survival function it is clear that Li Fi(t, z) = 

S(t1Llz), and this can be evaluated. So if we can find a t(x) E [R+ and a z(x) E [R~ which 

maps to x = (Xl, ... ,Xk) under the mapping <P, then by definition K(XI, .. . ,Xk) = 

Li Fi(t(X), z(x)). But as we assume that cI> is a surjective mapping, such t(x) and z(x) 

exist. o 

The next theorem shows that if the joint survival function, K, is known then we 

can identify the time-transformations ¢. 

Theorem 6.3.2. Assuming that the function K : [Rk 1---7 [0, 1] is known, has continuous, 

non-zero first derivatives and that 

as t goes to infinity, then ¢i (t, z) can be found. 

Proof Using (6.1), we have defined a set of first order differential equations, 

Our assumptions about the derivatives of K imply that the right hand side is bounded 

and continuous. This, along with the boundary conditions, ¢i(O, z) = 0, satisfies stan-

dard conditions for a unique solution to exist (Brauer and Nohel 1967). o 

If the modelling assumptions are true then the assumptions of theorem 6.3.2 must hold 

since ¢i and its derivatives exist; although this is a rather circular argument as we can 

never know that any modelling assumptions are true with complete certainty. 
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One would hope that if a pair of (¢, K) were found which simultaneously satisfied 

theorems 6.3.1 and 6.3.2 then this would be unique. Unfortunately this is not the case 

in general. We show this by considering two possible joint survival functions K and K; 

next, we define a mapping f : IRk f---t IRk, which takes the contours of K, {x : K(x) = 

c} to the contours of K, {x : K(x) = c}. With this, we show that 81d 8xj = 0, 

for i =I- j, is a necessary and sufficient condition to obtain the general agreement, 

information available, in the form of equation 6.1, does not limit the choice of I to 

satisfy this orthogonality condition and we provide an explicit counter-example. 

Definition 6.3.1. Given two functions K,L: IRk f---t IR, define the set C(K,L) as: 

C(K, L) = {f : K[f(x)] = L[x]}, 

where f has both domain and range, IRk. 

The next theorem shows that if we have two pairs (¢, K) and (¢, K), which 

both give the same cause-specific survival functions, then we can choose a member of 

- -
C(K, K) which relates ¢ and ¢. 

Theorem 6.3.3. Given two kernels K and K, if there exist ¢ and ¢ such that the 

resulting cause-specific survival functions are identical (equivalently they satisfy both 

theorems 6.3.1 and 6.3.2), then there exists f E C(K, K) such that 

f[i(t, z)] = <I>(t, z), (6.2) 

where <I>(t, z) = (¢l(t, z), ... ,¢k(t, z)) as defined in theorem 6.3.1 and a similar defi-

nition for <I>. 

Proof Since [p(Tmm > tlz) = Li Fi(t, z) is identified, we must have that 

K[<I>(t, z)] = K[<I>(t, z)]. 
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Given a mapping f E C(K, K), it satisfies K[f(x)) = K[x), this implies that 

K[~(t,z)) = K[f(~(t,z))). 

This does not imply equation (6.2) since K is not a bijection, but we can apply any 

mapping to the image of f that preserves the contours of K, and we will obtain a new 

function that is also in C(K, K). In particular we can find such a mapping that gives 

equation (6.2). D 

We can fix this version of the contour mapping and use it to define a relationship 

between ¢ and ¢. We can do this without loss of generality since whenever we evaluate 

K[¢) = K[f(¢)), it is invariant to the choice of f within C(K, K). 

At this point it will be convenient to make some further definitions. First, define 

the inverse relationship, 

i(t, z) = g[~(t, z)). (6.3) 

This leads to a relationship between ¢ and ¢, since cPi(t, z) = ~i(t, z), the ith compo­

nent of~. Hence 

(6.4) 

Second, define the mapping 'l1: [Rt x [Rl f-7 [R+ x [Rl such that 'l1(t,x) = (u,z) 

if, and only if, ¢(t,x) = (cPI(tl,X), ... ,cPk(tk,X)) = ~(u,z). And define similarly the 

function 'l1. 

Theorem 6.3.4. The two mappings 'l1 and ~ coincide if, and only if, agd aXj = 0, for 

i i= j. 
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Proof If w(t, x) = (u, z) then by definition of w(t, x), 

¢1 (tI, x) 

¢2(t2, x) 

and also if w(t, x) = (u, z) then, similarly, 

- -

¢l(U,Z) 

¢2(U,Z) 

¢(t, x) = <I>(u, z). 

Now using equation (6.4) obtains 

(6.5) 

91 { ¢1 (t1, x), ¢2 (t1' x), ... ,¢k (t1' x)} 91 {¢1 (u, z), ¢2 (u, z), ... ,¢k (u, z)} 

92 { ¢1 (t2' x), ¢2 (t2' x), ... ,¢k (t2, x)} 92 { ¢1 (u, z), ¢2 (u, z), ... ,¢k (u, z)} 

9k{ ¢1 (u, z), ¢2(U, z), ... ,¢k(U, z)} 

(6.6) 

But, substituting the left side of 6.5 into the right side of 6.6 we see that, 

for all i. Ignoring the ¢s and focusing on the 9S, we see this is saying that, 

9i(t,t, ... ,t) =9i(a,b,c, ... ,t, ... ,x,y,z), 

where the t is in the ith position on the right hand side. So the value of 9i only depends 

upon its ith argument. Assuming that g has derivatives, this can hold, in general, if, 

and only if, a9i/ aXj = 0 for i i=- j. o 
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Now under our assumptions S(tl, ... ,tkIX) = IP(Tmm > ulz) where 'lI(t, x) = 

(u, z). Hence we need 'lI and ~ to coincide otherwise the two models will give different 

probabilities to events such as {TI > tl, ... ,Tk > tklx}. 

To recapitulate, it is assumed that we have two pairs (cp, K) and (¢, K), which 

give identical cause-specific survival functions. Theorem 6.3.3 shows that there must 

exist a function f such that K[f(x)] = K[xJ, and that relates the covariate-time trans­

formations <p(t,z) = f(<p(t,z)). Theorem 6.3.4 shows that to get agreement for all 

values of (t, z)-effectively identifiability-a necessary and sufficient condition is that 

this f, or rather its inverse g, has to have a diagonal derivative matrix. 

The next theorem shows that in general there exist multiple pairs (cp, K) which 

give the same cause-specific survival functions, but do not satisfy the conditions of 

theorems 6.3.3 and 6.3.4. 

Theorem 6.3.5. Given a pair, (cp, K) which is consistent with theorems 6.3.2 and 6.3.1, 

there exists a mapping g : [Ri 1-7 [Ri which defines a new pair (¢, K), by means of 

theorem 6.3.3 and equations {6.2} and {6.3}, and which does not satisfy 8gi/8xj = 0 

for i =1= j. 

Proof Starting with the ith component of equation (6.3), and taking its derivative with 

respect to time, 

8¢i ""' 8cpj 8gi ( ) 8t (t, z) = L Tt(t, z) 8x. <p(t, z) 
j J 

8<p . ) = 7ft(t,z) /\ [Dr(<p(t,z) , 

[
8<P 1 ~ = 7ft(t, z)D( <p(t, z)) , (6.7) 

where D(·) is the matrix whose jth row, ith column, is defined to be 8gi/8xj, and [D]i 

denotes the ith column of this matrix. Here /\ denotes the standard inner product. 
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Similarly taking the definition of K and taking the derivative with respect to Xi 

obtains, 

by (6.2) 

since f = g-l 

8K (~ ) ~ 8fk (~ ) 8K ([~ ]) 8Xi q>(t,z) = L..t 8Xi q>(t,z) 8Xk f q>(t,z) 
k 

~ 8fk (~ ) 8K ( ) 
= L..t 8x. q>(t, z) 8Xk q>(t, z) 

k t 

= [D-1L (q>(t,z)) 1\ \7K(q>(t,z)), 

= [D- 1 (q>(t,Z))\7K(q>(t,z))L ' (6.8) 

where [D-1]i denotes the ith row of the inverse of the matrix D. Here \7 denotes the 

standard gradient operator. 

Substituting equations (6.7) and (6.8) into equation (6.1) we see, that 

[: (I, z) n V K( <1>(1, z)) L = [~~ (I, z)D( <1>(1, z)) r [D-1 (<1>(1, z)) V K( <1>(1, z)) L 
(6.9) 

Now if we regard 8q> /8t and \7 K as two arbitrary, fixed, vectors it can be seen 

that equation (6.9) is a set of k equations on the k 2 elements of matrix D. In general we 

can find an infinite number of solutions which do not have D as a diagonal matrix. 0 

As a solid example it can be verified that the matrix 

1 a 

1 1 

1 
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where 

and all the remaining elements are zero, satisfies equation (6.9). 

6.4 Summary 

In this chapter there are some results of limited use, which show that with less assump-

tions about the form of the covariate-time transformation we lose identifiability without 

extra information about the kernel joint survival. Hopefully this sheds some extra light 

on what is the absolute weakest set of assumptions which give identifiability in the 

competing risks setting. At the moment, for practical purposes, the weakest assump-

tion is one of proportional hazards with a frailty distribution inducing a dependency. A 

topic for future research would be to understand why, and if, this is indeed the weakest 

assumption and to discover if there were any different, but 'equally weak' assumptions. 
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Chapter 7 

Frailty modeling 

7.1 Constituent Theory 

This chapter is based on the binding together of three ideas. The first idea is the theorem 

proved in Heckman and Honore (1989) where it is shown that under the assumption of 

proportional hazards, the addition of covariate information permits the identifiability of 

the joint survival function in a competing risks model. The second idea, or rather a large 

body of contemporary statistical research, takes the very general modeling assumption 

of Heckman and Honore (1989), namely that 

and refines it to the specific assumption that the K(·) represents the operation of 

marginalisation with respect to some unobserved covariates, upon which the different 

causes would be conditionally independent: this is commonly referred to as frailty mod­

eling. The third idea is the practical device in Lunn and McNeil (1995) which enables, 

in theory, the use of existing frailty software to fit non-independent competing-risks 

data with covariates: explicitly, if an individual is at risk from p causes of failure, and 
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we observe a failure at time t from cause k, say, then this can be represented by p 

individuals, with identical values for time and all the covariates, with the addition of a 

further covariate, CAUSE, which systematically takes different values from {I, 2, ... ,p} 

corresponding to the causes of failure, and all individuals are recorded as being censored 

with the exception of the 'replicate' with CAUSE = k. 

7.1.1 Identifiability Theorem of Heckman and Honore 

Their result is phrased in terms of only two com peting risks, but it is clear that it 

generalises to p causes in a trivial fashion. The basic assumption is that the joint 

survival function of two latent variables tl, t2 with covariates x, has the form, 

where K(·,·) is a continuously differentiable, non-negative function [0,1] x [0,1] H [0,1]. 

They assume some normalisations: Ai(l) = 1, ¢i(XO) = 1, i = 1,2, for some fixed Xo. 

It is taken that the data provide an estimate of the cause-specific survival, 

The normalisations are not an important imposition, since the same joint survival 

function is obtained whenever A is divided by a constant and ¢ is multiplied by the 

same constant, hence Al can be normalised; the normalisation, ¢i(XO) = 1 can be 

achieved by a rescaling of ¢l, by c say, which can be accommodated by defining a new 

K(rJI, rJ2) = K(rJl c
, rJ2)' 

They go on to prove the identifiability of the cumulative cause specific hazards, 

Ai, the covariate functions, ¢i, and K, and hence the joint survival function. An outline 

proof is to take the ratio of F/(t;x) at an arbitrary x i= Xo to F/(t;xo), where Xo is 

the reference level. This is equal to the ratio of the first derivatives of K with respect 
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to the latent time, k Taking the limit as t --+ 0, we get ¢i(X). Next, setting t = 1 so 

that Ai(l) = 1, and letting the ¢i range over their support we identify K. Finally, to 

identify AI, say, we find a value of x such that ¢I (x) (=f. 0) is fixed but ¢2(X) = o. From 

this we get K = !(AI(t)¢I(X)), which can be inverted to find AI. 

Unfortunately, this merely proves the identifiability of the joint survival function, 

it does not provide a practical means to estimate the effect of the covariates, since ¢(x) 

is shown to be equal to the limit, as t tends to zero, of some quantity and hence, in the 

proof, ignores most of the information in the data set. Also, the fact that we need ¢ to 

take values over its entire range-the positive rea Is-suggests that a lot of information 

needs to be provided to build up a reliable picture of the function K. 

7.1.2 The Frailty Model 

This area is most easily approached as a specific application of generalised linear mixed 

models, which are a generalisation of generalised linear models (G.L.M.s). G.L.M.s 

provide a very useful framework that assumes the response variable, y, comes from 

a two-parameter exponential family, and relates the expected value of y to a linear 

function of the covariates, 1](X) = X{3, using a specified link function, g(-), where 

g ([(y)) = 1](X). A comprehensive summary of the theory behind classical G.L.M.M.s 

is provided in McCulloch and Searle (2001). 

All proportional-hazards survival models can be represented within this frame­

work, where each individual is represented by repeated observations of the random 

variable N(t) = I(t >failure time), and Y(t) = I(t <event time). This is referred to 

as a counting process. The random process N(t) starts at zero and jumps to one at an 

observed failure time, or stays at zero if the individual is censored. The predictable or 

left continuous, process Y(t) indicates whether or not the individual is still at risk. When 
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dN(t) is used as the response variable it is assumed to follow a Poisson distribution with 

mean Y(t)A(t) where A(t) is defined as the hazard function. It can be seen that the 

likelihood for the counting process coincides with the conventional likelihood, since (in 

a very heuristic fashion) 

IP(N(t), Y(t)) = II (Y(t)A(t))dN(t) exp( -Y(t)A(t)) = A(T)O exp( - rT 

A(t)dt), 
O<t io 

where (T,5) represent the traditional (time, status) way of representing the data. The 

abuse of notation in taking the product over a dense set is explained in detail in Andersen 

et al. (1993). 

Within the G.L.M. framework, the canonical link function for a Poisson distribu-

tion is the log-link. This ties in with the proportional hazards models since the hazard 

function for an individual with covariates x is assumed to be A(t, x) = exp(,Bx)AO(t) 

for some baseline hazard function Ao(t), so when we take the logarithm of the Poison 

mean we get log[[ {dN(t)}] = ,Bx + log Ao(t) = TJ, a linear function of the covariates-

as required by the G.L.M. framework. When the baseline hazard function is unknown, 

as in Cox's proportional hazards (Cox 1972), the term log AO(t) is left as a piecewise 

constant function on the intervals [t(i) , t(i+l))' with values to be estimated, effectively 

a factor. If the baseline hazard is assumed to take a parametric form then it is fitted as 

an offset term. 

The next step is the introduction of random effects to the linear predictor, 

where bj is an unobserved continuous random variable common to the cluster indexed 

by j. Typically there are some restrictions on the distribution of bjto enable identifiability: 

conventionally, [(b) = 0 or lP(b < 0) = 1/2. Index i refers to individuals within these 

clusters and it is assumed that the log AO(t) term is absorbed into x,B. The likelihood 
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for the observed data is then a function of the likelihood conditional on the bj. The 

conditional likelihood can be represented by the likelihood for the conventional regression 

model which temporarily pretends the bj are known. To obtain the likelihood, this 

function is then integrated with respect to the distribution of the random effects. The 

integration induces a dependency between individuals within a cluster which makes it a 

suitable framework for dealing with non-independent competing risks. 

Aside: the well known non-identifiability problem of competing risks coincides 

exactly with the non-identifiability problem in G.L.M.M. when there are no-replicates­

an individual cannot fail twice-and a lack of covariates. 

The frailty model also has the convenient interpretation that the random effects 

represent some covariates which cannot be observed, although the assumption that 

these follow a normal distribution is questionable. There is also the restriction that, 

with a univariate random effect, the correlation which is induced must be positive. 

However in the case of multivariate random effects the covariance structure can be 

arbitrarily specified, thus opening up possibilities of an autoregressive structure with 

negative correlation or something even more exotic. However, the main problem with 

such a structure comes from the likelihood being in the form of an integral which, in 

general, has to be numerical evaluated over a multi-dimensional space, thus making 

it rather difficult to maximise accurately. The practicalities of such estimation will be 

considered later. 

7.2 Penalised Quasi-likelihood Estimation 

In this section the problem of how to maximise a multi-dimensional integral will be 

addressed. The principal line of attack, at the present time, is to use a Laplace approx­

imation to the integral which subsequently allows Newton-Raphson Schemes, or Fisher 
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, 

Scoring, to maximise this quasi-likelihood numerically. Somewhat unsatisfactorily, an 

alternative perspective is to consider the quasi-likelihood as an ad hoc starting point 

and subsequently to analyse the properties of the resulting estimators. 

We consider the log-likelihood of the data, y, conditional on the values of the 

random effects, b, and covariates, x, and denote this as h(y; x, b). Note that there is 

a conflict of standard notation in the meaning of y or Y; for this section y denotes the 

response variable in a generalised linear mixed model and not the indicator variable of 

section 7.1.2. If we make the further assumption that the p random effects, which are 

unobserved, follow a p-dimensional multivariate normal distribution, N[O, D(I1)), where 

11 represents a parameterisation of the covariance matrix, then the likelihood for the 

observed data is, 

L(8,(3) ex IDI-1/
2 ~ exp [ll(b, ... ) - ~b'D-Ib] db. 

Now, taking a second order Taylor expansion of the logarithm of the integrand about bo 

we get 

L(8, (3) ex IDI-1/2 exp (l(bo, . .. ) - ~b~D-Ibo) 

x ~ exp [ (i' (bo, ... ) + D -1 bo ) t (b - bo) 

+(b - bo)t (l" (bo, ... ) + D-1
) (b - bo) + o(b2

)] db. 

Now if bo is chosen to satisfy 

l' (bo, ... ) + D-1bO = 0, 

which can be found by considering b to be a fixed effect coefficient in a standard G.L.M. 

framework, then this leads to an integral with a known value: the normalising constant 

of the multivariate normal distribution with inverse covariance, -l" (bo, ... ) - D-1
. 
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Using the exponential-family form of the conditional likelihood, it can be shown that 

the logarithm of this approximation reduces to the quasi log-likelihood which we define 

to be, 

where W is the standard diagonal matrix of weights with Wii = l/Var {Y} g2 {[(Y)}, 

from G.L.M. theory as summarised in chapter 5 of McCulloch and Searle (2001). For 

the purposes of maximisation it is assumed that the first term changes very slowly with 

values of the mean, g-l(X(3+Zb), and hence it is ignored. 

The basis of the algorithm proposed in Breslow and Clayton (1993), and derived 

by alternative means in Schall (1991) and Wolfinger (1993), is to iterate between max-

imising the quasi-log likelihood in terms of the coefficients (which as a side-effect gives 

a prediction of the random effects), and maximising in terms of e, the parameterisation 

of the random effects variance, where at each stage it is assumed that the other param-

eters are fixed. To maximise with respect to the coefficients, we can use Fisher-scoring, 

where we define the working vector, 

fj = 'f](x, b) + (y - [[ylx, b]) g' ([[ylx, b]) , 

the fi rst order Taylor expa nsion of 9 (y) a bout [(y), a nd then iteratively solve 

[ 
xtwx 

ZtWX 

which has the appealing interpretation of transforming the response variable to a scale 

where least-squares estimation can be used. To estimate e, the following equation has 

to be solved: 

[ BV - ( BV)] -1/2 (fj - X(3)tv-1 Be
j 

V-1(y - X(3) - trace P Be
j 

= 0, 
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where 

and V = W- 1 + ZDZ t
, the variance of the working vector y. In the simple case where 

D = el, independent random effects with a common variance, solving this equation 

reduces to iterating, 

7.3 Partial likelihood 

Having justified how parametric and semi-parametric proportional-hazards survival mod-

els can be fitted within the G.L.M. framework, and hence can utilise the generalised 

framework of G.L.M.M.s for frailty models, it is appropriate to point out some problems. 

The main problem is that, within the unadulterated G.L.M. representation, the semi-

parametric version requires a parameter to be estimated at each unique non-censored 

failure time. This translates into a large parameter space which increases in dimension 

at a rate proportional to the sample size. This has computational implications in that, 

regardless of the approach taken to estimation, the inverse of a large matrix will need 

to be repeatedly calculated. On a statistical level, the point of using a semi-parametric 

model is to be able to focus attention on the effect of the covariates without worrying 

about the baseline hazard. Fortunately there is a way to avoid this problem: the partial 

likelihood (Cox 1975). 

If we take the expression below as a starting point for the likelihood as a function 
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where it is assumed that the failure times have been ordered so that, i < j if, and 

only if, ti < tj, that to = 0 and that AOi = Jt~~l Ao(s)ds. Hence AOi/(ti - ti-d will 

approximate the hazard function, Ao(ti), as the time increments become smaller. If we 

assume that the coefficients, and the random effects, are known then if we take the 

derivative of the profile log-likelihood with respect to AOi , we obtain 

which is equal to zero when 

Oil AOi - L exp(rlj) , 
j?i 

n 

AOi = oil L exp(rlj). 
j=i 

If this is substituted into the full log-likelihood, then we obtain 

However it can be shown that the final term, upon changing the order of summation 

(L:i L:j:Si = L:j L:i?j)' equals the constant, L: j OJ, and can be ignored as can the 

constant term L:i Oi log(ti - ti-d· 

Hence we have shown that the likelihood is maximised, in term of the coefficients, 

by the maximiser of 

which does not involve the baseline hazard. Given that the methods for estimating 

G.L.M.M.s uses the Laplace approximation to obtain the quasi-log-likelihood, 

1 t -1 
l(y; X, bo) - '2boD bo, 

it is clear that substituting the partial log-likelihood for l will give the same estimate for 

/3, without needing to estimate the baseline hazard. 
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This can be derived in another more subtle fashion, by observing that 

IP( individual i fails at til individuals i, i + 1, ... , n are still at risk) 

= exp(7]i)Ao(ti) / L exp(7]j)Ao(ti), 
j?:.i 

observing that the hazard functions cancel out reduces the expression to the partial-

likelihood function defined above. Using this conditional probability, rather than the 

full density, is justified on the general grounds that if you have two sets of parameters 

¢,1/J such that the full likelihood L(¢,1/Jlx) = L(¢I1/J,x)L('!jJlx), where ¢ is a nuisance 

parameter, then it is valid to ignore the first factor and simply maximise the second 

factor, which does not depend on the nuisance parameters. The standard properties of 

the likelihood transfer to the partial likelihood, although there is the possibility of losing 

some inferential power if the two parameter sets are not orthogonal (Barndorff-Nielsen 

and Cox 1994, Cox 1975). 

7.4 Data Editing 

The commonest format, due to its conciseness, for competing risks data to be presented 

is for each individual to have a failure time T E IR+, a cause C E {O, 1, ... , c}, where 

C = 0 represents a censored individual, along with a vector of explanatory variables Z. 

However, if we are using the concept of latent failure times then this really represents 

a set of c failure times {TI , ... , Tc }, which all take the value T but are censored, with 

the one exception of Tc which is observed if C =1= 0, or is also censored if C = o. In the 

counting process framework we have that, instead of a single Ni(t) for individual i, there 

are c such processes, Nij(t)(j = 1, ... , c), along with the variables }ij(t) (shifting back 

to the section 7.1.2 definition of Y) which do not vary across j-this is essentially the 

key distinguishing aspect of competing-risks survival analysis, as opposed to multivariate 
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survival analysis. 

So if given a data set in the conventional format with rows corresponding to 

individuals, where row i is (~, Gi, Zi), this should be converted to the matrix with c 

rows, where row j (1 < j < c) consists of (~, 6ij,j, Zi) where 6ij = 1(G = j). The only 

remaining point is to explain how to use the new explanatory variables (j, Z) to represent 

the desired dependence structure of the model. If we assume that the covariates Zi for 

individual i are explicitly a set of univariate random variables, Xl, ... ,Xp , where a 

discrete variable, also known as a factor, with state space {I, ... ,k} is represented as 

a set of (k - 1) binary variables and any potential interactions are represented, then we 

need to create the correct design matrix. If the desired model is for the hazard function 

Aij(t; Zi), for individual i, cause j, to be of the form 

for some subsequence (nl, ... ,nq) of 1, ... ,p, and a baseline hazard function AOj(t) 

which varies between causes and if (j, Z), the data values, are labeled as 

then, using the notation employed in S-Plus (Wilkinson and Rogers 1973, Becker, Cham­

bers and Wilks 1988, Chambers and Hastie 1992), we want the design matrix correspond­

ing to 

CAUSE: (Xnl + ... + Xnq)+strata(CAUSE). 

If we prefer that the values of j3nIJ' ... ,j3nr j do not change between causes of failure, 

then we need 

X n1 + ... + Xnr +CAUSE : (Xnr+l + ... + Xnq) +strata(CAUSE). 
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On the other hand, if we believe that AOj(t) = WjAo(t) so that the cause-specific baseline 

hazard functions are proportional to one another, then we need 

and similarly if all the coefficients are constant between causes, and the cause-specific 

hazards are proportional then we have, 

CAUSE + X n1 + ... + X nq . 

7.5 Practical Computing Issues 

In summary, to fit a competing-risks survival analysis model, which represents any depen­

dencies between the latent survival times by a random effects distribution, and represents 

the influence of covariates through a proportional hazards model we first edit the data 

as described in section 7.4 and obtain the appropriate design matrix. Then the relevant 

parameters, namely the fixed effect coefficients, the variance of the random effects, and 

the baseline hazard function, are estimated by maximising the penalised partial likelihood 

function as defined in section 7.3. This maximisation is performed using the algorithm 

described in section 7.2, which consists of estimating the fixed effects assuming that the 

random effects variance is known, and then estimating the variance assuming the fixed 

effects are known. 

This iterative scheme, in algebraic terms, corresponds to defining a sequence 

O"n+l = g(O"n), and calculating the limiting value. Geometrically this is shown in fig­

ure 7.1. 
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Figure 7.1: Geometric version of the algorithm 

However, if the lines y = x and y = g(x) lie close together then it is clear 

that the sequence will converge at a slow rate. It is apparent that, due to the high 

proportion of censoring intrinsic in fitting a competing risks frailty model, the penalised 

quasi likelihood is rather flat, and hence we find ourselves in the slow convergence 

situation. In practice with a simulated data set of size 100, the number of iterations is 

in excess of a 100. An alternative is to use an interval bisection algorithm. The basic 

idea here is to have some means of determining whether or not (j lies in an interval (a, b); 

the first step is to start with a wide interval (ao, bo) which contains (j, then consider the 

two intervals (a, [a + bJ/2) , and ([a + bJ/2, b), clearly (j will only lie in only one of these 

intervals and we are able to determine which one; now we repeat this where at each 

stage the interval is bisected, and hence any desired margin of error can be achieved in 

a finite number of steps. This is shown in figure 7.2. 
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ao- - - - - - - - - - - - - -bo 
al- - - - - - -b1 

a2----b2 
a3- -b3 

Figure 7.2: Geometric representation of the bisection algorithm 

It is clear that the interval bisection algorithm hinges on the ability to determine 

whether the root of the equation lies within a specified interval. The proposed method of 

achieving this is based around performing one step of the previous, slow, algorithm and 

examining the new estimate to see if it is larger or smaller than the previous estimate. 

It is claimed that if the new estimate is larger, say, then the root of the equation is also 

larger than the previous estimate. Hence if the lower bound of an interval produces an 

increased estimate, and the upper bound produces a decreased estimate then the root 

lies within the interval. Theorem 7.5.1 provides necessary conditions, namely a region 

where the Hessian matrix is negative definite, for the proposed method to work. 

Theorem 7.5.1. Given a well behaved log-likelihood function, I (ex, (3) : lRP x lR f-t lR, 

which has a negative definite Hessian matrix, H, if we define the functions 

f : lR f-t lRP 

such that 

8l 
8ex/f ((3) , (3) = 0, i = 1, ... ,p (7.1 ) 

and 

g:lRf-tlR 
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such that 

az 
fJf3 (I(f3), g(f3)) = 0, (7.2) 

and define the vector, (no, f3o) to satisfy 

f30 = g(f3o) , no = I(f3o), 

then 

(g(f3) - (3) (f3o - (3) > 0 if, and only if, 

Proof Consider the function, 

h(f3) = g(f3) - f3. 

By the Mean Value Theorem and assuming that g, and therefore h, is continuous, there 

exists f3' E [f3, f3o] such that 

h' (f3') = h(f3) - h(f3o) = g(f3) - f3 
f3 - f30 f3 - f30 ' 

hence h'C) < 0, or equivalently g'(.) < 1, is a necessary and sufficient condition. 

Taking the derivative with respect to f3 of (7.2) we obtain, 

P fJ2Z fJ2Z 
~ II fJnifJf3 + fJf32 g' (f3) = 0 

* - (t f: a:i2~f3 ) / :;; = g'(f3) (7.3) 

Similarly taking the derivative with respect to f3 of (7.1) we get, 

0, i = 1, ... ,p 

(7.4 ) 
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Hence substituting (7.4) in the left hand side of (7.3) we get, 

g' (f3) = (L JI a~~aj Ji) / :;; 
~,J 

(atHa)j(btHb) < 1, 

where a = U{' ... ,1;,0) and b = (0, ... ,0,1). By assumption, xtHx < ° for all 

x E IRP+l, hence the condition is equivalent to 

(7.5) 

D 

So in the notation of the proof (72 = f3, the variance of the frailties, and a is the 

vector of coefficients. Equation (7.1) represents the step of holding the variance fixed 

and finding the maximising set of coefficients: the mapping f. Equation (7.2) takes 

these new coefficients, I(f3), assumes they are fixed, and maximises with respect to the 

variance the mapping g. The end result, that (g(f3) - (3) (f3 - f3o) < 0, implies that if 9 

increases f3, then f3 is less than the converged value f3o, whereas if 9 decreases f3 then 

the f30 is less tha n f3. 

This result is of limited use as, clearly, it hinges upon the model and which 

starting values are used as to whether the condition is satisfied or not. The condition 

could be checked, with a numerical approximation to If, at each step, but it is not clear 

what to do if the condition fails. One observation is that, considering equation (7.4), if 

the parameters, a and f3 are orthogonal in the sense that az2 j8a8f3 = 0, then the left 

hand side of (7.5) is zero and the inequality is satisfied. 

When used on the data set considered in chapter 9 the estimated variance of the 

random effect, using the algorithm proposed here, was 0.560 with a standard deviation of 

0.127. This is reasonably close to the estimate obtained from the 5-Plus frailty software 
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(Therneau and Grambsch 2000) which gave an estimate of 0.527 with a p-value of 0.062 

for the hypothesis that the variance is zero. A comparison of the fixed effects coefficients 

are plotted in figure 7.3. 
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Figure 7.3: Scatter plot of two sets of fixed effects coefficients 

As shown in chapter 9 the variance of the frailty distribution is sensitive to 

the choice of frailty distribution and the discrepancy between these two estimates is 

acceptable given the effect of changing the assumed frailty distribution. Also given 

the variety of ad hoc approximations which are proposed in the literature, as regards 

calculating a likelihood, this method may have a suitable role in practical model selection 
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given its speed. 

There are other alternative approaches to the interval bisection algorithm, such as 

the secant method or the Fibonacci search method, however, limited practical experience 

indicates that any improvements in computation time are very modest and that the 

guaranteed convergence of the bisection method can be lost with the secant method. 

7.6 Current Software 

Although the proposed alteration to the established algorithm does decrease the com­

putation time when both algorithms have been written in S code by the author, the 

optimal method in terms of absolute computation time, presumably achieved through 

optimal use of C code, is to use the frailty software of Therneau and Grambsch (2000) 

which is readily available within S-plus. To use this should be as simple as adding a 

term such as 

frailtyC clusterindex ) 

to the desired formula as discussed in section 7.4. However there are, at present, several 

bugs in the software. 

First, the software defaults to a slightly dated method of forming the relevant 

design matrices when a frailty term is in the formula. This forms an incorrect design 

matrix when there are interactions, such as CAUSE/ { ... }, which is a matrix of sub­

column-rank and thus the matrix inversion steps encounter a singular matrix and fail. 

This has been corrected using the standard code from the coxph software which is in 

use when there are no frailty terms. The altered software is in appendix B 

Secondly, it does not respond correctly when the variable which indexes the 

frailty clusters is anything other than the simple sequence 1,2, ... ,m, where m is the 
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number of clusters. In particular, even when a cluster should be excluded due to missing 

values, the software still attempts to estimate and integrate out a frailty bj. The practical 

solution is to settle upon a cleaned data set with no missing values and only then index 

the frailty clusters. 

Another criticism is that it has proved practically impossible to obtain a value 

that corresponds to the integrated full likelihood when the fraily distribution is assumed 

to be normal. This would be useful in obtaining profile likelihood functions so as to 

calculate confidence intervals for the variance of the frailty distribution. 

On the positive side, when the frailty distribution is assumed to follow a gamma 

distribution, rather than a normal distribution, the integration of the conditional likeli­

hood can be done in closed form. This means the full likelihood can be maximised by 

a generic maximisation algorithm. This was done and compared to the result using the 

frailty software, and close agreement was found. In the case of the normally distributed 

frailty the software, as a default action, appoximates a block of the Hessian matrix with 

a diagonal matrix so as to save computational time. This was compared to using the 

full Hessian matrix and was found to agree well with the approximation and did save 

substantial computation time. 

7.7 Summary 

This chapter has considered the practical implementation of a model which assumes the 

latent failure times have a dependency which is induced by a univariate frailty variable. 

The method of estimation is closely based upon the theory of generalised linear mixed 

models as can easily be seen when the counting process formulation is modeled as a 

Poisson random variable. From the theory of the generalised linear mixed model it 

easier, on a practical level, to use the penalised partial likelihood although there are 
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several ad hoc approximations which have not been fully examined. A minor alteration 

to the estimation algorithm has been proposed which certainly reduces the number of 

iterations but, at present, cannot compete, in terms of computational time, with the 

existing frailty software. 
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Chapter 8 

P61ya trees 

8.1 Introduction 

P61ya trees were introduced by Ferguson (1974) as an intermediate step between Dirich­

let processes, which were, and still commonly are, the default choice of tool for Bayesian 

non-parametric analyses, and more general tail-free processes (Schervish 1995, sec­

tion 1.6.2, pp. 60-72). 

The name originates from the P61ya urn, where there is a urn containing a fixed 

number, b, of black balls and a fixed number, r, of red balls. A ball is drawn, replaced and 

then an additional ball of the same colour is added to the urn. This random sequence of 

balls is exchangeable, thus invoking De Finetti's theorem (De Finetti 1937/1964), and 

the probability of drawing a black ball, say, can be shown to follow a beta distribution 

with parameters corresponding to the original number of balls, (b, r) (Mauldin, Sudderth 

and Williams 1992). Now consider a tree with two arms from each node which is 

extended to an infinite number of levels and branches. Now 'ascend' up the tree from 

the root and at each node draw from a P61ya urn associated with that node; if the ball 
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is black go left, if the ball is red go right. If the nodes at each level correspond to a 

partition of the sample space of a random variable, where each extra level is a refinement 

of the previous level, then this is a mechanism for simulating from a random distribution 

(as opposed to a fixed distribution of random variables). This random distribution is 

referred to as a P61ya tree. 

The principal attraction of P61ya trees is their use as a Bayesian non-parametric 

tool. When used to model an unknown or, equivalently, a random distribution they 

improve upon the normal Dirichlet process since a density realised from a random P61ya 

tree is finite with probability one. The Dirichlet process will almost surely give a discrete 

distribution, which is an incorrect imposition in many models. In addition, P61ya trees 

are highly tractable when the prior distribution is updated to a posterior distribution 

having observed data. The mathematics which underpin P61ya tree theory is covered 

in Lavine (1992), Mauldin et al. (1992), Lavine (1994), and a more readable work is 

Walker and Mallick (1997) which covers some practical applications. 

This first section of this chapter will formally define a P61ya tree and sketch the 

main results concerning the posterior distribution and the sample space being the set of 

continuous distributions. 

The next section aims to investigate how to set the parameters of the P61ya tree 

as a prior distribution so as to reflect any prior beliefs. This is considered in two ways. A 

mean prior distribution is chosen, f, and then one considers, marginally at a fixed point 

y, the distribution of the random variable, foo(y)j f(y), where foo represents a density 

sampled from the P61ya tree. It is shown that, with a particular choice of parameters, 

this follows a gamma distribution with mean 1, and a variance of our choosing. Sec­

ondly, a more ad hoc means of considering the strength of the prior, is to say that any 

density sampled from a P61ya tree can be approximated by a normal distribution. It is 

113 



approximated in the sense that we can choose two, convenient, predetermined intervals 

in the sample space, It, [2, examine what probabilities the random density attaches 

to these intervals, and then choose the two parameters of the normal distribution so 

that the probabilities coincide. We then consider the distribution of the two, random 

parameters of the approximating normal distribution. 

The following section then considers the posterior distribution. Partial results 

concerning the density of j=/ j are obtained, but the question of whether the posterior 

density is consistent remains unanswered. 

Fortunately, for most practical purposes the interest lies in a quantity which can 

be represented as an integral with respect to an unknown density, rather than the density 

itself. This can be the probability of a particular interval or the expectation of a random 

variable. In section 8.5 the question of integrating in practice is considered. 

The penultimate section presents together some results concerning P6lya trees 

which do not fit naturally elsewhere in this chapter and which may appear rather esoteric. 

8.2 Definitions and existing results 

8.2.1 Definitions 

P6lya trees are a means to specify priors over a space of distributions on an arbitrary 

measure space. They are suited to performing non-parametric analysis within in the 

Bayesian paradigm. A P6lya tree P is characterised by two objects (II, A). 

The first, II is a sequence of binary partitions of the sample space n, where 

n = 7fo U 7fl, 7fl = 7flO U 7fu, and in general each element of the partition, at level 

m, is denoted 7f( where E is a binary sequence length m , where 7f( = 7f(o U 7fd· So, 

II = U( 7f(. 
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The second is a sequence of random variables on the unit interval, 

A = {Cn, Co, C1, Coo, COl, Cooo ,· .. }, 

where CE represents IP(X E 7rEoIX E 7rE), where X is a random variable following a 

realisation of the P61ya tree distribution; Cn = IP(X E 7r0). Informally, the subscripts, 

E, of the random probabilities, CE , denote which interval is being conditioned on, 7rE , 

and the value of CE gives the conditional probability of being in the 7r€o, rather than 

the 7rd, sub-partition. Since a P61ya tree is intended to represent a distribution with 

uncertainty-effectively random-this explains why A is a collection of random variables 

rather than fixed constants. All the random variables in A are independent and for every 

E, 

A beta distribution Beta( a, (3) has density function 

r(a + (3) x a - 1(1 _ x),B-1 on [0 1]· 
r(a)r((3) , , 

this results in a mean of a/(a + (3) and a variance of a(3/(a + (3)2/(a + (3 + 1). For 

some of the material further on in this chapter, it is useful to note that, if desired, we 

could define 1 - C€, rather than C€ in which case we just swap the parameters around: 

So in this formulation, for every m = 1,2, ... and every E = E1E2· .. Em, 

m 

P(7rEIE2 ... Em) = II Cq ... Ej _ 1 

j=l; 
€j=o 

m 

II (1 - Cq ... Ej _ 1 ) 

j=l; 
Ej=l 

where the factors are Cn or 1 - Cn if j = 1, and E1 = 0 or 1 respectively. 
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Figure 8.1: Relationship between 7rf. and Cf. 

8.2.2 Choice of hyper-parameters 

The interdependence between the partition sequence, II, and the conditional probabili-

ties, A, allows room for manoeuvre to simplify the distributions of A. A convenient way 

to represent a desired mean prior is to let all the af. at level m be equal to some function 

of m. This simplification implies that [CE = 1/2. To accommodate this the partitions 

have to be chosen to have the prior mean probability of 2-m . 

Theorem 1.121 of Schervish (1995, pp. 66-68) shows that a sufficient condi­

tion for the limiting distribution of fn(x) = P(7rq ... En)/P,(7rf.l ... En) (p, is a dominating 

measure) to be finite p,-a.e., equivalently P is a continuous distribution, is that 

sup r [[J~(x)ldp,(x) < 00, 
n JB 

for all B which are measurable in the O"-algebra generated by II. 

If we let 7rn = U _ 7rE , then lemma 1.124 of Schervish (1995, p 68) shows E-q ... En 
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that if 

00 

L sup Var(CJ/([CE)2 < 00 
n=l7r f E7rn 

then SUPn IB [[i~(x)]dp,(x) < 00. Hence in the special case considered here, Var(CE)/([Ct )2 = 

1/(2an+l) where an is the parameter of the beta distribution common to level n. Hence 

sequences of the form an = cnP for p > I, constant c, or an = can for a > 1 will 

satisfy this condition. A popular choice in the literature is O.ln2 . 

8.2.3 Posterior Conjugacy 

If data {Xl,'" ,Xn } are observed then updating the posterior distribution according 

to Bayes rule for CE = P(X E 7fEoIX E 7ft ) is proportional to 

So, we have prior-posterior conjugacy, where a E f----t a E + Li J(Xi E 7ft ). 

8.3 Interpretation of the strength of prior 

8.3.1 Convergence of the density estimator 

In this section we will consider the limiting distribution of in (x). Given its form as an 

infinite product it is easiest to consider its logarithm. Now, defining Y = In(Beta( a, 13)), 

we can see that the transformed density function is B( a, f3)eQY (1 - ey).B- I , where 

B(a,f3) is the normalising constant of the form r(a + f3)/r(a)/r(f3). The moment 

generating function, [( etY ) can easily be calculated, 
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The definition of fn(x) is 

n 

II C€l ... €j_l 
j=lj 
€j=o 

n 

II (1 - C€l ... €j_l) 
j=lj 
€j=l 

where x E 1f€l ... En and J-l is Lebesgue measure. The random variables, C€l ... Ej_l follow 

a Beta(aj,/3j) distribution, so it is clear that without some further assumptions about 

(aj, /3j) it is not possible to gain further insights. 

Dropping the dependencies on x and using equation (8.1) to relabel the C€l ... €j_l' 

and J-l(1fq ... €j_l) so that we have, 

n 

fn = II Cjf J-ln, 
j=l 

we are free to choose aj = /3j = k2 j- 1 . We can now see that the moment generating 

function of In(fn) = Zn is of the form 

n 

'l/Jzn (t) = exp( -In(J-ln)t) II 'l/JlnCj (t) 
j=l 

r(2k)r(k + t) r(4k)r(2k + t) r(2nk)r(2n- 1k + t) 
= exp( -In(J-ln)t) r(k)r(2k + t) . r(2k)r(4k + t) ... r(2n- 1k)r(2nk + t) 

r(k + t)r(2nk) 
= exp( -In(J-ln)t) r(k )r(2nk + t) 

Now, J-ln is defined to be F-1((k + 1)2-n) - F- 1(k2-n) for a suitable integer 

k(x, n), where F is the CD.F. of the expected prior. So, assuming F is continuous with 

first derivatives, as n ---+ 00, J-ln2n ---+ dP-1/dq(P(x)) = 1/ f(x). 

Now given the result that J-ln = O(2-n) we need to consider the limit of 

2ntr(2nk)/r(2nk + t) as n ---+ 00. Using Stirling's formula which states that 

lim y'2;nn+l/2e-n /r(n + 1) = 1 
n-)-oo 
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and replacing 2n with m, we obtain 

( k 1)mk-1/2 -mk-1 t 
lim mtf(mk)/f(mk + t) = lim m - e m 
m~oo m~oo (mk + t - 1)mk+t-1/2e-mk-t-1 

= lim (1 + t ) -(mk-1) (1 + __ t_) -1/2 
m~oo mk - 1 mk - 1 

( 
t l)-t 

X k + m e
t 

using the result that (1 + x/n)n n~ eX 

So, if we denote c = In f(x) the limiting function of 'l/Jzn' 

ectf(k + t) 
'l/Jz(t) = ktf(k) . 

Now examining f(k + t)/kt , it can be seen that, 

using the substitution y = In(x/k) 

(8.2) 

Standard M.G.F. theory tells us that if F(t) is the M.G.F. of f(y), then ectF(y) is the 

M.G.F. of f(y - c). Hence we have found the distribution of y = In(foo/ f), which is 

proportional to exp( -k(eY - y)). Making the change of variables x = foo/ f = eY , we 

obtain the distribution proportional to 

k-1 -kx 
X e . 
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Hence we see that the random variable w = fool f follows a gamma distribution with 

shape and scale parameter k. From this we can calculate pointwise confidence intervals 

for different values of k, which give an indication of the strength of the prior in terms 

of the multiplicative factor of deviation from the expected prior distribution. The upper 

and lower bounds of such [0.025,0.975] confidence intervals are shown in figure 8.2. 

The expected value of this distribution is 1, and its variance is 11k. 

4 

3 

2 

1 

o 

o 10 20 30 40 

k 

Figure 8.2: Solid lines: upper and lower bounds for the 95% 
c.l.s. Dashed line: expected value, 1. 
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8.3.2 Normal Approximation 

This subsection makes the more specific assumption that any prior information can be 

described by setting the expected prior density to be a normal distribution, N(J-l, 0-2 ) and 

then choosing a form for an that reflects any uncertainty. If we assume the partitions 

II, at level n, have been set equal to the j2-n -th quantiles of the expected prior, then 

in particular we have that 

h = 11"0 = (-00, J-l], 

h = 11"01 U 11"10 = (J-l- 0-<I>-1(0.75),J-l + 0-<I>-1(0.75)], 

where <p denotes the CD.F. of a standard normal density. Now the next step is to 

approximate any density realised from the P61ya tree to a normal distribution, N(M, 52), 

where the random variables M and 5 are defined to be those such that the random 

probability attached to the intervals, hand h by the random density, P(Ij ), equals the 

probability given to these intervals by N(M, 52). 

So M and 5 have the implicit definitions 

Cn = <I> (I' ~ M) 
Cn(! - Co) + (1 _ Cn)Cl = <I> (I' + (T<I>-l~.75) - M) _ <I> (I' - (T<I>-l~.75) - M) 
These can be simplified slightly to an implicit definition for 5 which does not involve 

M, and an explicit definition for M which does involve 5. 

<p (<I>-1(Cn) + ~<I>-1(0.75)) - <p (<p-1(Cn) - ~<p-1(0.75)) (8.3) 

= Cn(l - Co) + (1 - Cn)C1 

(8.4) 

Note that J-l only affects the definition of M; equation (8.3) is in terms of 0-/5 

so 0- just scales the distribution of 5. Since 5 is almost surely positive IP(AI > J-l) = 
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IP( <1>-1 (Cn) < 0) = IP( Cn < 0.5) = 0.5, and hence J.L is the median of M. A simulation 

of S variables, where On = k2n
-

1 with k = 3, as shown in figure 8.3, indicates that the 

median and mean of S is smaller than (J. 

o 

L{) 
o 
o 

o 0+----

o 5 10 
s 

Figure 8.3: A kernel density estimate of S from a simulation 
size 1000. The vertical line gives (J 

15 

In chapter 9 a P61ya tree is used to model a frailty distribution. In this model 

confounding occurs between the location of the frailty distribution and the location of 

the fixed effects. To resolve this the value of Cn is fixed at 1/2. This means that the 

median of any density realised from the P61ya tree is fixed at sup 7ro. In such cases 
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M = J1 and equation (8.3) simplifies to 

Observe that the right hand side equates to 0.5 if S = CT and since the left hand side is 

symmetrically distributed about 0.5 also, this implies that the median of S, in this special 

case, is equal to CT. In figure 8.4, confidence intervals for S/CT are shown as functions of 

k, where k parametrises two choices of form for an: k2n- 1 and kn2 . 

4 4 

3 3 
S S 
2 2 

1 1 

0 
;-

0 
f 

I 

0 10 20 30 40 50 0 10 20 30 40 50 
k k 

(a) an = k2 n -
1 

Figure 8.4: 95% c.l.s for S/CT. 

8.4 Posterior 

Considering the posterior distribution, in a pointwise fashion, the parameters {at} are 

transformed to {at + Nt} where Nt is defined to be Li I(Xi E 1ft ). Hence the moment 

generating function of Y:: = In Ct becomes 

B(ato + Nto, ad + Nd) 

B(ato + N to + t, ad + N d )· 
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Using the result, r(n + 1) = nr(n), this can be simplified to 

(8.5) 

and if we want to consider the M.G.F. of In(l- CE ) then we simply swap the subscripts 

EO and E1 in (8.5). 

It is helpful to consider the effect on the posterior distribution when a single 

value x is observed. First some definitions: we have a sequence of Ei such that, 

where m tends to infinity; also we have the counts observed 'before' the observation x, 

For any point of interest, y -=f Xi, x, in the support, [2, there will be a level i 

such that 

I 

YEn 1TEi' but y t/. U1TEi' 
i=l i>l 

At each level, i, for 1 < i S i-I, the moment generating function, 'IjJ(t) (on the 

In(Joo(')/ f(·)) scale) is multiplied by the factor 

at the level i = i, where the paths of x and y diverge, equivalently, x, y E 1TEl' Y t/. 1TE1+1 , 

the moment generating function 'IjJ(t) is multiplied just by 

eYEIO + eYEll + NEI 

eyEIO + eYEll + NEI + t 

Now we consider what is the effect of each of these factors. It is easily shown 

that A/(A+t) is the M.G.F. of the density function, Aexp(AX), X < 0, so in effect, at 
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each level i < l we subtract from the prior distribution for In(Joo(')/ f(·)) an independent 

exponential variable with mean l/(cxEio + CXEil + NEJ. 

The other factor is more complex and it does not correspond to the addition of 

a random variable, rather it is a transformation on the existing posterior distribution. 

For an arbitrary density function g it is true that 

Hence the effect of multiplying a M.G.F. by the factor (1 + t/)..) is to transform the 

density function with 

g' 
0. : g f--7 g - "I' 

assummg that the density function function decays quickly enough in its tails. In 

the specific case considered here).. = CXEi+l + NEi+l and g is the density function of 

In(foo(yIX)/ f(y)). Lemma 8.4.1 establishes that the final term in (8.6) does indeed 

vanish for an arbitrary number of iterations of this transformation, assuming that we 

start off with a log-gamma distribution. Hence by the uniqueness-inversion property of 

moment generating functions we can infer that this transformation does leave us with 

a density function. 

lemma 8.4.1. Define the density function go(y) ex exp( -k(eY-y)), y E [R, for positive 

constant, k. Also, define the mapping 0. : F f--7 F, such that f f--7 f - f' /).., where F 

is the space of density functions on [R. Then, 

lim T!:(go) (y)e ty = 0, 
y-+±oo 

where T;: is the nth convolution of0., for n = 0,1, .. , . 
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Proof For positive a, b, 

also 

lim -aeY + by = -00 
y-+oo 

=} lim exp( -aeY + by) = 0 
y-+oo 

lim -aeY + by = -00 
y-+-oo 

=} lim exp( -aeY + by) = 0 
y-+-oo 

Hence for n = 0, a = k and b = t + k the result holds when t > -k. Since 

7).( exp( -aeY + by)) = (1 - ~) exp( -aeY + by) + ~ exp( -aeY + (b + l)y), 

it is clear that 

n 

Tf:(go) = L i3r exp( -keY + (k + r)y) 
r=O 

for some coefficients i3r. Therefore the resu It is true in genera I. 

(8.7) 

D 

Since the updating of the posterior is equivalent to repeatedly adding an inde-

pendent variable and repeatedly performing the transformation T>.., it would be worrying 

if these operations-the adding and transforming-gave different results if the order in 

which they are performed were changed. Lemma 8.4.2 proves that this is not the case. 

lemma 8.4.2. Given two independent random variables, X, Y with densities fx, fy, 

and the mapping T>.. as defined in lemma 8.4.1, then 

7). {Lx fx(x)fy(w - X)dX} (w) = Lx fx(x)7). {Iy} (w - x)dx. 
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Proof 

0. {lnx fx{x)fy{w - X)dX} (w) 

= r fx(x)fy(w - x)dx - ~ dd r fx(x)fy(w - x)dx 
lox /\ w lox 

= r fx(x)fy(w - x)dx - r fx(x)f!y(w - x) dx 
lox lox A 

= L fx{x) {fy(w - x) - f~{~ - x)} dx 

= r fx(x)'TA {fy} (w - x)dx. 
lox 

D 

To summarise the logarithm posterior density divided by the expected prior den-

sity at a fixed point y, log{f=(y)/ f(y)}, is a random variable which can be represented 

as 

(8.8) 

where it assumed that y E 7r€L C 7r€L_l C ... C 7r€1; that N€ denotes the number of 

observations in 7r€ and that L refers to the highest level partion which contains y and 

has a count N€L > O. The two expression GAMMA(·) and EXP(-) refer to gamma and 

exponential distributions with their parameters. There is an abuse of notation in 

which refers to a random variable with density equal to a convolution of the transfor-

mation T applied to the original density of X 
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Considering equation (8.7) we can see that the density associated with the con-

volution of T in this particular case has the form 

R 

L (3r exp( -keY + (k + r)y), 
r=O 

where R = L~=l (NEm - 1). This is a linear sum of densities of the logarithm of 

gamma distributions with scale k and shape (k + r) and it could be postulated that this 

a mixture distribution. However the coefficients (3r, which depend upon the am and 

the observed counts N E , can become negative with increasing sample size, so we cannot 

apply this convenient interpretation. 

So in summary the distribution posterior of the posterior density is modified by 

the convolution of the transformation T and is then added to a sequence of negative 

exponential variables as summarised in 8.8. The moments of the posterior are considered 

below although there is no clear conclusion. 

It is easily proved by induction that, for an infinitely differentiable function M, 

for n = 0, 1, 2, . .. , 

So if we consider M as a M.G.F. we see that the transformation T was arrived at by 

considering the effect of multiplying a M.G.F. by a factor (1 +t/,\). Hence we can use this 

expression to calculate moments of a transformed distribution. If Y is the transformation 

of X it follows that by evaluating at t = 0, [(yn) = [(xn) + n[(Xn- 1
)/,\, for any 

integer, n. In terms of mean and variance, this is 

[(Y) = [(X) + 1/,\ 

Var(Y) = Var(X) - 1/,\2. 
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An EXP(),) distribution has mean 11)' and variance 1/),2. A log GAM MA(k, k) distri­

bution has mean f'(k)/f(k) -log k and variance (f(k)f'(k) - {f'(k)}2) If2(k). 

So expressions for the expectation and variance of In foo(y)1 f(y) = V are below 

Obtaining asymptotic results on these expressions as the sample size increases is an 

unsolved problem. The problem is that as the level increases the count decreases and 

eventually becomes zero at some level, L. This level L increases with sample size and 

am increases with the level which means that we would expect the sum to converge, 

but what it converges to is unknown and there is no reason to think it converges to 

the correct value, log 9 I f where 9 is the 'true' sampling distribution. This is not too 

surprising considering the results of section 3.3 in Barron, 5chervish and Wasserman 

(1999) which proves that a sufficient condition for consistency is that the parameters 

am = 8m, which is increasing far quicker than the choice of a = 2m in this chapter. 

However, Barron et al. (1999) do not prove it is a necessary condition and there are no 

such results, at present, which give necessary and sufficient conditions for the consistency 

of the posterior density with a P61ya tree prior. 

8.5 Integration with respect to a P61ya tree 

When reporting on the results of a fitted model many important quantities can be 

expressed in terms of integrals with respect to the posterior density. For example, 

the probability that a random variable is less than zero, the expectation of a random 

variable, credible or confidence intervals, and expected utility. This section will consider 
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the practical integration of a PcSlya tree which is considered up to a finite level. The 

main problem here is how to cope with the tail, or most extreme partitions. In practice 

we cannot extend the partitioning to an infinitely fine level as this would require infinite 

amounts of computer memory and processing. Fortunately our model is such that the 

parameters am increase with level and effectively says that as we examine the density 

conditional on some partition 7fEm , this almost surely approaches a uniform density as 

the size (Lebesgue measure) of the partition decreases. This is exactly what we would 

anticipate in the case of a continuous distribution and in practice means we only need 

to monitor the PcSlya tree up to a finite level. The literature seems to recommend a 

level of 8, or, equivalently, intervals with an expect prior probability of 2-8 = 0.0039l. 

The down side of this is that the tail partitions extend to ±oo if the sample space is 

IR and thus if the posterior puts significant mass in these intervals any approximation 

may be highly biased. In reality any numerical integration must consider a finite interval 

and hope that any region of the sample space which is ignored would only contribute 

a negligible amount to any integral which is being approximated. We consider how to 

choose such finite intervals. 

The easiest way to perform integration with a realised PcSlya tree as the inte­

grating measure is to perform a version of the trapezium rule. That is to approximate 

[(J(x)IX E 7fE ) with [J(SUP7fE ) + j(inf7fE)l/2 = £(j,E), and then an approximation, 

to level m, is 

,~Em {su, E) )! ,m C"""j_' } . 

If g(x) is the density function for a realised PcSlya tree, and H(x), h(x) are the 

C.D.F and density, respectively for the expected prior distribution, then we are using the 
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trapezium rule on 

/,
1 f[H-1(y)]g[H-1(y)] 1 

h[H-1( )] dy = f(x)g(x)dx, 
y=O y H-l(y)=xEO 

where the points of evaluation, in terms of yare j2-m , j = 0, ... ,2m . Given that 9 

is almost surely finite, bounds on the error can be provided and these are M 4-m /12, 

where M is 

sup ~ {f[H-1(Y)]9[H-1(y)]} . 
yE[O,l] dy2 h[H-1(y)] 

However, this constant M, may not be finite if the range of integration is infinite. 

In practical terms, to be able to compute any estimate, we need to choose a constant l, 

such that integrating over [-l, l] approximates integrating over IR. If the sample space 

is finite then the integrand of interest will be zero in IR/[-l, l] and the two integrals will 

be equal. If the integral over IR is finite then it must hold that the difference between 

the 'true' value and the 'truncated' value must have limit zero as I tends to infinity. 

For each function f(x), and lower end-point,a there is a value of l such that 

(f(a) + f(l))/2 = /.00 f(x)g(x)dx, 

where g(x) is the density of X conditional on X E [a, (0). This value of l depends upon 

the actual function. A sensible default choice would be to consider the identity function 

f(x) = x. 

A useful part of P61ya tree theory is that the expected posterior density in each 

partition 1rE is the expected prior density scaled by the appropriate amount so that 

[[P(1rEol1rE ) I data] equals the correct value, 

QED + Li J(Xi E 1rEo) 

With a finite (or real) data set, at a certain level and above, and at a non-zero distance 

from an observed data point, the expected conditional probabilities will equal the prior 
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values since J(Xi E 1ft ) = O. Hence, the expected posterior density is a rescaled version 

of the expected prior density. This means to find the expected posterior density (away 

from the observed data values) we simply do a piecewise re-scaling of the expected 

prior density which would normally chosen to be of some convenient mathematical form 

(Lavine 1992); it is not necessary to consider each point, of a continuum of points, in 

turn. 

So if we have chosen the standard normal as the prior, and are partitioning to 

level 8, then, considering the right tail, T = 1fll111111 (eight ones) it is the interval 

[2.66007, (0), since 1 - <1>(2.66007) = 2-8 . Hence the task is to solve, 

1 100 

x (2.66007 + 1)/2 = P( ) roc exp( _x2 /2)dx, 
T 2.6607 V 21f 

where the right hand side is a rescaled version of the original expected prior distribution. 

Fortunately the integral has a closed form, exp( -(2.66007)2 /2)/V'ii, and so the root 

IS 

I = 0.02316/P( T) - 2.66007. 

Using the expected value of P( T), which is 2-8 , this is 3.2687. 

8.5.1 Hermite Polynomial approach 

A more systematic consideration would be to consider a basis of functions which span 

the space of functions with finite expectation with respect to normal measure. For the 

convenience of the mathematics, a sensible choice is the Hermite polynomials. These 

are defined to be 

Ho(x) = 1 () ( )
n x2 d

n 
( _x2) 

H n x = -1 e dxn e . 
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Now defining the definite integral, 

Considering the standard normal density function,¢, we can represent In(a) as 

In(a) = yI2; 100 

Hn(x)¢(V2x)dx 

= VKjOO Hn(Y/V2)d¢(y) 
v'2a 

So to find an upper bound, I, which will give the correct value with respect to the 

expected value of H n (x/V2) , we need to find a suitable root, in terms of I, of the nth 

order polynomial 

where inf T = 2.66007, and P( T) is replaced by its expected value, 3.2687. 

Figure 8.5 shows the smallest such root which is real and greater than inf T, for 

n = 1 ... 50. 
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Figure 8.5: First 50 roots 

However given that the first five va lues of l are near to 3.3, the roots nearest to this 

value were found and these are shown in figure 8.6. 
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Figure 8.6: The roots nearest to 3.3 
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Unfortunately it does not offer any discernible improvement in the spread of values. 

In practical terms, we want to choose a single value for l. Given the roots 

of (8.9), denoted as In, we can easily compute the percentage error which a different 

value of l will give: 

( l) _ ( Hn(inf T / J2) + Hn(l/ J2) ) 07 en, - -1 100/0. 
Hn(inf T / J2) + Hn(ln/ J2) 

Without further information of what function we want to find the expectation, a sensible 

approach would be to consider averaging e and e2 over n. With the first function, which 

we call bias, we would like to find a value of l which gives a value of zero; with the 

second function, which we call mean square error, we would like to minimise with respect 

to l. These two functions are shown in figure 8.7, and they show that a sensible choice 

lies between 2.99 and 3.00. However, it must be admitted that the implications of 

restricting the averaging to n = 1 ... 50 are unknown. 

700 ~ M.S.E. ./ 

"- ./ 

600 "- Bias ./ 

"- ./ 

"- ./ 

"- ./ 

500 "- ./ 

"-
./ 

"-
./ 

./ 

400 "- ./ 
"- ./ 

"- ./ 

300 "- ./ 
"- ./ 

"- ./ 
"- ./ 

200 "- ./ 

" ./ 

" ./ 
...... ./ ...... ./ 

100 -----------
0 

2.96 2.98 3 3.02 3.04 
1 

Figure 8.7: The bias and J( mean square error) 
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8.6 Miscellanea 

The final section of this chapter contains three parts. The first part considers what 

happens to the precision or variance of the conditional probabilities Gam when data 

is observed. In the prior distribution the precision increases monotonically with level. 

However when we update to the posterior distribution the precision first decreases with 

the level, reaches a nadir and then increases, which is somewhat surprising at first sight. 

The second part of the chapter considers what happens if we transform a particular 

choice of P61ya tree by rotating the realised CD.F. through a half-turn. It turns out 

that the P61ya tree distribution is invariant to such a transformation. The third part 

considers a generalisation of P61ya trees where the partitions are not fixed in advance 

but are randomly sampled. In this case the distribution of the CD.F. is identical to the 

distribution of the inverse CD.F. 

8.6.1 Maximal variance 

If we consider the variance of the conditional probabilities, Var(Gt ) as a function of the 

level, m, then for most choices of the sequence {am}, Var( Gt ) will be monotonically 

decreasing, and hence have a maximum at the crudest partition. However, once data 

have been observed the posterior will not, in general follow this trend. The reason being 

that Li I(Xi E 1ft ) will be smaller (non-increasing) as the level of 1ft increases. If a 

sequence of {1f t } are nested then this will be true with certainty; if we are considering an 

arbitrary sequence with increasing level then this result will hold in probability as the level 

increases to infinity. Considering the updated posterior parameters, at + Li I(Xi E 1ft ), 

there is a trade-off between an increasing at and a non-increasing Li I(Xi E 1ft ), 

hence the observed Var(Gt ) will increase, reach a maximum, and finally decrease (so as 

to satisfy conditions for continuity). In computational terms, calculations can only be 
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performed to a finite level and we may not observe the decreasing variance. 

A practical example is the choice Q m = cm2
, hence the update posterior pa­

rameter is cm2 + Lj J(Xj E KErn). If it is assumed that the choice of prior distribution 

coincides with the data generating mechanism, then the updated parameter, with sample 

size n, has expectation 

This has derivative 2cm - n(1n 2)2-m, so the maximum variance is achieved at the root 

of 2-m = (I;~)n m. Examining figure 8.8 it is clear that increasing the sample size, n, 

or decreasing the constant, c, which reflects the overall, prior precision, will accentuate 

this effect. 

Figure 8.8: Geometric illustration 

8.6.2 Two transformation theorems 

The first theorem shows us that given a specific P61ya tree with the unit interval as the 

sample space then we can rotate the CD.F. plane through K about the point (1/2,1/2) 
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and the random CO.F. will have the same distribution. 

The second theorem shows that with a mixture of P61ya trees, on the unit 

interval, the inverse CO.F. has the same distribution as the CO.F. 

Theorem 8.6.1 (Rotation). Assuming the partition of P61ya tree is of the form 

U((j - 1)2-i ,j2-i
], j = 1, ... ,2i

, i = 1,2, ... , 
i,j 

and that the distributions associated with the CE are identical within each level, and are 

universally symmetric about 1/2, then for all values of x, p, E [0,1]' 

IP{P(x) < p} = IP{P(1 - x) > 1 - p}. 

Proof. Given that the distributions of CE are identical within levels this means that 

any permutation of the CE will give an identically distributed P. In particular if we 

systematically swap all the Os and Is in the E-suffix notation, at all levels, then we have 

effectively performed the transformation X f---+ 1 - X, P f---+ 1 - P, effectively rotating 

the (X, P)-plane through 1r about (1/2,1/2). D 

Theorem 8.6.2 (Inverse). If the partitions of a P61ya tree (defined on the unit interval) 

are not fixed, but randomly chosen, with 

and 

where Q I; and CE have independent, identical beta distributions, then 

IP {P (x) < p} = IP { X (p) < x}. 
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Proof By definition the Q€ and C€ have independent, identical beta distributions, hence 

they can be exchanged at all levels, and values, of E and the resulting' mixed' P61ya tree 

will have the same distribution. However this exchange is equivalent, on a macroscopic 

scale, to making the transformation X f---t P, P f---t X, a reflection about the diagonal. 

This is equivalent to obtaining the inverse CO.F. o 

Note that, despite the abundance of symmetry in the definition of a P61ya tree 

defined on [0,1] with a fixed set of partitions {7r€}, the inverse CO.F. is not, in general, 

identically distributed to the CO.F. As a counter example consider values p = 1/2, x = 

1/4. Without any assumptions, the event {X(1/2) < 1/4} is equivalent to {P(1/4) > 

1/2} or 

{CoCo> 1/2}. (8.10) 

If the inverse CO.F. were identical to the CO.F. we would have !P(P(1/2) < 1/4) = 

!P(X(1/2) < 1/4). But the event considered on the left hand side is equivalent to 

{Co < 1/4}. (8.11) 

Numerical calculations, or simulations, easily show that the probabilities of (8.10) and 

(8.11) are not, in general, equal. 

8.7 Summary 

In this chapter I have considered how to interpret the strength of a P61ya tree prior 

distribution and the practical issues of integration with the P61ya tree as the measure. I 

have proven, with a particular choice of parameters, that the prior density is distributed as 

the expected prior density multiplied by a gamma-distributed random variable. Limited 

results on the distribution of the posterior distribution have been obtained. I have 
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considered how to choose a finite range of integration to approximate an integral over 

IR so that any error is minimised. 
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Chapter 9 

Analysis of prostate cancer data 

set 

9.1 Origins of the data 

The data are published in Andrews and Herzberg (1985) and are down-Ioadable from 

http://lib.stat.cmu.edu/datasets/Andrews/T46.1 

They consist of patient records from a randomised clinical trial for patients with stage 

3-4 prostatic cancer. There were four treatments: placebo, 0.2mg , 1.0mg, and 5.0mg 

of oestrogen. The endpoint considered was the survival time and survival status, for 

which there were 10 possible, and mutually exclusive events as shown in table 9.1, which 

also tells us that there were 506 patients in the trial. 
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code description count 

0 alive 150 

1 dead from prostatic cancer 130 

2 dead from heart or vascular disease 96 

3 dead from cerebrovascular disease 31 

4 dead from pulmonary embolus 14 

5 dead from other cancer 25 

6 dead from respiratory disease 17 

7 dead from other specific non-cancer cause 29 

8 dead from unspecified non-cancer cause 7 

9 dead from unknown cause 7 

TOTAL 506 

Table 9.1: Table of endpoints 

Along with survival time/status, tumour stage and treatment, there were recorded 

twelve pretreatment covariates: age, weight index, exercise performance rating, history 

of cardio-vascular disease, systolic blood pressure, diastolic blood pressure, electrocar­

diogram code, serum haemoglobin, size of primary tumour, combined index of tumour 

stage and histological grade (Gleason grade), serum, prostatic acid phosphatase in King­

Armstrong units, bone metastases. The data were originally analysed in Byar and Corle 

(1977), and, Byar and Green (1980), which give further details of the variables recorded. 

From the statistical perspective this is an interesting data set as the end-point 

is clearly a competing risks situation. Furthermore we would a priori expect there to be 

positive correlations between cancer, and cardiovascular disease, say, whether on medical 

grounds or due to an unobserved confounding variable such as a history of smoking. 
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Moreover, the data set is of a reasonable size to induce reasonable statistical power in 

any inference and we have a several continuous, and plausibly relevant covariates which 

allows us to make use of the identifiability results discussed in chapter 6. 

9.2 Statistical analysis 

The point of this chapter is to demonstrate the techniques which have been developed in 

the preceding chapters. A precursor to any formal analysis is to note that aside from the 

status codes of alive and dead from prostatic cancer all the remaining codes have 226 

patients in total, and hence any finer stratification is unlikely to have sufficient statistical 

power. In addition, the focus of the trial was on the treatment of prostatic cancer, so 

with these two considerations any further analyses will just use three possible status 

codes: dead from prostatic cancer, dead from other causes, alive. The alive status will 

be considered, where appropriate, as an uninformative censoring. 

The preliminary analysis will be in 9.3 where the tool of the crude incidence 

function will be used, along with the simultaneous confidence bands presented in chapter 

2, as a means to compare the treatments. The second part, 9.4 will develop a regression 

model using the techniques described in chapter 7, where the data is augmented as in 

Lunn and McNeil (1995), but then is modeled using a gamma or a log-normal frailty 

distribution to try to capture any dependency between the two causes of failure. The 

final section, 9.5 will consider whether the assumption of the gamma or log-normal is 

appropriate by the use of P61ya tree theory as considered in chapter 8 to model the 

frailty distribution, and in addition will translate the model of 9.4 into a fully Bayesian 

framework. 
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9.3 Preliminary Analysis 

The first analysis is presented in figure 9.1 and it shows the crude incidence function, 

Qk(t) = lP(survival time < t, cause = k), for all nine non-censoring causes of failure. 
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Figure 9.1: Point estimates of the crude incidence function for 

all causes 

It clearly shows that prostatic cancer, and cardio-vascular disease, are the com-
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monest observed causes of death in the trial. In figure 9.2 we can see that if we group 

together the remaining causes of failure then we have three causes which are all within 

the same order of magnitude in terms of mortality rates. The North-West graph shows 

the three causes together, and the remaining three graphs show the causes separately 

with their 95 % Hall-Wellner confidence bands. 
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Figure 9.2: Crude Incidence for the individual causes with con­

fidence bands 

60 

The next step is to compare the the treatment groups in terms of their effect 

on crude incidence, and on the cause specific hazard. In general we must consider 

separately the two sets of basic null hypotheses; Ha : a common cause-specific hazard 
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between the treatments; Hb : a common crude incidence between the treatments. This 

is because of the relationship 

where S is the overall survival, and dAk is the cause-specific hazard for cause k. It 

is possible for the S and the dAk'S to be different between treatment groups but still 

produce a common crude incidence, and vice versa. 
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treatment 
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Figure 9.4: Crude Incidence for heart stratified by treatment 

Figures 9.3 and 9.4 display the crude incidence curves for the separate treatment 

groups. The crude incidence curves are formally compared in table 9.2 which uses the 

chi-squared test developed in Gray (1988). To compare the cause-specific hazards we can 

use the well known log-rank test, which is also in table 9.2. Both tests were subject to 

a weighting parameter, p, which was considered with two values: p = 0 uses a constant 
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weight through out the time period, whereas p = 1 weights the data proportionally to 

S(t), thus giving more weight to earlier observations. 

p=o p=l 

cause Qk Ak Qk Ak 

cancer 0.1370 0.2122 0.1350 0.2073 

cerebo 0.5700 0.8027 0.5750 0.8037 

embolus 0.1590 0.1431 0.1550 0.1388 

heart 0.0021 0.0028 0.0022 0.0031 

non-cancer 0.4060 0.3522 0.4020 0.3523 

prostatic 0.0357 0.0355 0.0353 0.0374 

respiratory 0.5570 0.6211 0.5550 0.6215 

unknown 0.6850 0.5967 0.6860 0.6000 

u nspec-non-ca ncer 0.6810 0.6261 0.6810 0.6272 

Table 9.2: Table of p-values comparing the treatment groups 

The tests indicate that there is strong evidence of a treatment effect on heart/vascular 

mortality, and some evidence of an effect on prostatic cancer mortality. The p-values 

are unaffected by which test we perform and this is probably due to the overall survival 

being unaffected by the treatment groups, as shown in figure 9.5 with p-values of 0.0426 

(p = 0) and 0.155 (p = 1) in the standard log-rank test. In these circumstances having 

common Ak'S is equivalent to having common Qk'S. 
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Figure 9.5: Overall survival by treatment group 

9.4 Classical Frailty Regression 

The basic framework used here is an extension of the Cox proportional hazards model 

(Cox 1972), as discussed in chapter 7. In brief, the model uses the counting process 
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Nij(t), Yi(t), where, 

Yi(t) = I(individual i at risk at time t), 

Nij(t) = I(individual i failed of cause j at time T < t), 

rP(dNij(t) = 1) = Yi(t) exp(;3J x + bi) .. (t), 

bi rv N(0,u 2
) or expbi rv r(l/u2 , l/(2 ). 

In practice, this model is fitted using first using the data augmentation technique of 

Lunn and McNeil (1995), and then instead of assuming independence, using the frailty 

software in S-plus, as described in Therneau and Grambsch (2000), to model a depen­

dence between the causes of failure. This effectively changes the format of the data 

from a k x n matrix of counting processes to a kn vector of (X, 5) survival pairs. The 

fact that the model uses a ;3j, rather than a common ;3 means that every fixed effect has 

an interaction with the cause covariate. Each individual in the original, un-augmented, 

data set now spawns k individuals which form a cluster, or family, represented by one 

unobserved frailty, bi . 

As the primary interest was in prostatic cancer, the causes were now condensed 

into two possibilities, along with censoring: dead from prostatic cancer, dead from other 

causes, alive. The treatment was condensed into two levels: placebo & 0.2 mg, and, 

1.0 mg & 5.0 mg . Other covariates which were included in the final model were: serum 

haemoglobin levels in grams per 10 ml; tumour size in cm2 ; tumour step - an indicator 

of a combined index of tumour stage and histological grade exceeding 11; cardio -

an indicator of a history of cardiovascular disease; age in years; bone metastases - an 

indicator variable; performance 1 - an indicator that the patient was confined to bed less 

than 50 % of the time; performance 2 - an indicator that the patient was confined to bed 

more than 50 % of the time. A summary of the marginal distribution of the covariates 
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is given in table 9.3. The continuous covariates all had a bell-shaped distribution, with 

the exception of tumour size, which was all positive and peaked at zero and would be 

better described with an exponential, rather than a normal, distribution. 

variable mean or proportion s.d. 

haemo 134 19.5 

tumour size 14.6 12.3 

tumour step 0.480 

cardio 0.424 

age 71.4 7.08 

bone metastases 0.162 

performance 1 0.0734 

performance 2 0.0299 

Table 9.3: Distribution of covariates 

The form and choice of covariates was determined by a two-step procedure. The 

first step was of an exploratory nature and consisted of taking the martingale residuals 

from the null model with just one fixed effect for causes, and plotting them against 

any potential covariates as in Fleming and Harrington (1991) sections 4.5 and 4.6 -for 

example the cut point of 11 in tumour step was chosen by eye in this way. The second 

step was a more formal nested hypothesis testing procedure based on likelihood ratio 

statistics. A model was considered which had separate baseline hazards for the two 

causes, but was found to be unnecessary. 
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9.4.1 Gamma Frailty 

For the gamma-frailty model the estimates and p-values are presented below. The 

principal effects, as summarised by the preliminary analysis, are in table 9.4 along with 

the non-significant effect of the gamma frailty. The effect if the covariates on the 

prostatic causes of failure is in table 9.5 and the effect on the 'other' causes of failure 

is in table 9.6. 

variable coef s.e. X2 DF p-value 

ca use=' other' -4.34 2.03 4.60 1 0.032 

Rx=oestrogen -3.95 1.72 5.24 1 0.022 

cause:Rx 0.936 2.49 0.14 1 0.707 

frailty 0.02 0.02 0.670 

Table 9.4: Estimates and p-values for the gamma frailty model: 
main cause/treatment effects 

The crude incidence curve for 'other' causes will be an average of the 'heart' and 

the remaining non-prostatic causes which will be weighted towards the 'heart' curve due 

to patient numbers. As shown in figure 9.2 the prostatic curve is higher, indicating that 

there is a lower risk of failure from 'other' which is reflected in the negative coefficient. 

The treatment (labeled as Rx with two levels: oestrogen, control) lowers the risk and its 

effect, without accounting for interactions with covariates, does not significantly vary 

between the causes. The frailty terms are not statistically significant thus indicating, 

under an untestable assumption, that there is no dependency of this form. The estimated 

variance of the gamma distribution is 5e-5, and the profile log-likelihood gives a 95% 

confidence interval of [0, 0.429]. 
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variable coef s.e. p-value 

haemo -0.011 0.00511 0.032 

tumour size 0.0397 0.00683 6.07E-9 

tumour step 1.94 0.29 2.43E-11 

cardio -0.142 0.206 0.490 

control : age -0.0422 0.0153 0.006 

Rx : age -0.00295 0.0188 0.875 

control: bone metastases 0.031 0.33 0.925 

Rx : bone metastases 0.857 0.311 0.006 

control: bed<50% -0.741 0.48 0.122 

Rx: bed<50% 0.445 0.54 0.410 

control: conf/bed>50% 1.46 0.443 0.001 

Rx: conf/bed>50% 0.866 0.549 0.115 

Table 9.5: Estimates and p-values for the gamma frailty model: 
covariate effects for 'prostatic' cause 
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variable coef s.e. p-value 

haemo -0.00475 0.00381 0.212 

tumour size -0.00503 0.00712 0.480 

tumour step -0.194 0.162 0.230 

cardio 0.678 0.142 1.79E-6 

control: age 0.0336 0.0181 0.064 

Rx: age 0.078 0.0167 2.94E-6 

control: bone metastases 1.07 0.305 4.67E-4 

Rx: bone metastases -0.904 0.378 0.017 

control: bed<50% 0.155 0.34 0.647 

Rx: bed<50% 1.23 0.316 1.04E-4 

control: conf /bed>50% -0.994 1.01 0.325 

Rx : conf /bed>50% -0.169 1.04 0.871 

Table 9.6: Estimates and p-values for the gamma frailty model: 
covariate effects for 'other' causes 

Comparing the two sets of coefficients, within 'prostatic' cause, haemoglobin has 

a statistically significant association with increased survival. Tumour size and tumour 

step are significant only for the prostatic cause, and both decrease survival. Age is 

significant for both causes; it decreases the risk in the prostatic control group (with 

non-significance in the treatment group), in the 'other' cause it has approximately twice 

the effect in increasing the log-odds in the treatment group compared to the control 

group (0.0780 versus 0.0336). Metastases only has a significant effect in the treatment 

group for prostatic which decreases survival, but in the 'other' cause it increases risk 

in the control group and decreases risk in the treatment group by a similar magnitude. 
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The performance indicator, is significant at level 2 for the control group in prostatic, 

and at level 1 for the treatment group in 'other', both decrease survival. 

9.4.2 Log-normal Frailty 

As an alternative model the random effects, on the multiplicative scale, were modeled 

with a normal distribution. The estimates of the fixed effects were very close to those 

of the model with a gamma frailty. This is shown in figure 9.6, where the two point 

estimates form a co-ordinate, and the crosses give error bars equal to twice the standard 

deviation. The points are very close to the dashed line of equality, and the error bars in 

each direction are of similar length. 

The estimate of the variance of the log-normal frailty distribution is 0.527. This 

gives a starkly different conclusion about the question of dependence, as it is on the 

borderline of significance. To compare with table 9.4, there is a X2 statistic of 140.35 

on 116 degrees of freedom giving a p-value of 0.062. 
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Figure 9.6: Comparison of fixed efFects estimates 

It is difficult to investigate this difference any further, due to the complexity of 

the S-plus code. The likelihood can be calculated explicitly in the case of the gamma 

frailty, this was then maximised using a general maximisation routine and was found to 

agree with the analysis. However in the case of the log-normal frailty, the basic idea 

used is a Newton-Raphson scheme which requires the inverse Hessian matrix. Because 

this matrix is nearly diagonal in the block associated with the frailties, the code makes 

this approximation and greatly reduces the computation time. It is possible to override 

this and the estimates are in broad agreement with each other. However it was not 
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possible to extract a profile log-likelihood to judge the estimate of the variance of the 

frailty distribution. 

9.5 P61ya tree frailty analysis 

The next modification to the model considered was to replace the parametric assump­

tions about the form of the random effects distribution, with the infinite-parametric 

framework of a P61ya tree. The only practical way to perform this was using M.C.M.C. 

simulation techniques, which permits a move to the full Bayesian framework. The partial 

likelihood was used instead of the full likelihood in computing the posterior distribution. 

This is equivalent to assuming that we only observe the order, and not the exact times, of 

the events. It avoids the extra computational burden of estimating the baseline hazard. 

The priors for the fixed effects were all reference priors of N(O, 102). The P61ya 

tree had its median constrained to be zero so as to give identifiability. The partitions 

for the P61ya tree at level m were (qk, qk+l]' where IP(Z < qk) = k2-m , and Z follows 

a standard normal; and the prior put on the probability, p, associated with each interval 

at level m was a (3(2m - 1 /100, 2m - 1 /100). This effectively centres the P61ya tree's prior 

on N(O,I), but says that the ratio of the 'realised to expected' density at any point 

(marginally) follows a gamma distribution, with mean 1 and variance 100. 

The sampling procedure used was very similar to that described in Raftery and 

Lewis (1996) which is the Metropolis-Hastings algorithm applied to one parameter at 

a time using a symmetric, uniform random walk as the proposal distribution. For the 

fixed effects, a linear transformation of the parameters, (3' = A-1(3 was sampled where 

A was such that (XA)T(XA) = I (the Gram-Schmidt orthonormalisation). Loosely, 

this reduces the correlation in the posterior distribution of the components of (3' and 

this improves the mixing and convergence of the chain. The bounds of the uniform 
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proposal distribution were chosen to give a standard deviation equal to 2.3s.d.(,Bj l,B-j) 

where s.d. (,Bj I,B-j) is the residual standard deviation of regressing ,Bj on the remaining 

parameters. This calculation was iterated three times, until it had stabilised. The 

length of the final simulation was 12,000 and was performed, in parallel, three times 

from different starting values and the convergence diagnostics from the CODA package 

(Best, Cowles and Vines 1995) indicated satisfactory convergence and mixing. 

9.5.1 Results 

The traces of one of the chains, along with a kernel density estimate of the posterior 

distribution (starting from iteration 2000) is shown in figure 9.7. 
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Figure 9.7: Main effects posteriors 

The covariate effects for prostate are shown in figures 9.8 and 9.9. 
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Figure 9.9: Prostate effects posteriors (continued) 

The equivalent for 'other' cause is shown in figures 9.10 and 9.11. 
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Figure 9.11: 'Other' effects posteriors (continued) 

A P61ya tree was used to model the frailty distribution. The tree was constrained 

to have a median of zero with probability 1. To display the random distribution visually, 

each iteration of the M.C.M.C. re-samples the conditional probabilities which define the 

tree. With these it is possible to calculate the cumulative density at any set of point 

desired-effectively giving a realisation of the random cumulative density function. This 

was done at unit intervals between -3 and +3. With these the resulting cumulative den-

sity function is approximated with a piecewise linear function. Approximated pointwise 

confidence intervals can then be formed by discarding the most extreme proportion of 
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the estimates at any point. This is presented in figure 9.12 which give 90% confidence 

intervals, along with the empirical mean of the estimates. 

-3 -2 -1 o 1 2 3 
x 

Figure 9.12: 90% pointwise confidence intervals for the CD.F. 

9.5.2 Sceptical Prior analysis 

Ideally, to perform an Bayesian analysis which is not using a reference prior we would like 

to consult expert opinion and the existing literature. Unfortunately the current literature 

on clinical trials of prostate cancer are of poor statistical quality. The most recent large 

scale randomised control trials published by the European Organisation for Treatment 

and Research into Cancer (EORTC trials 30843 & 30853) (Sylvester, Denis, de Voogt 
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et al. 1998, de Voogt, Studer, Schroder, Klijn, de Pauw, Sylvester et al. 1998), have 

performed a Cox proportional hazards regression analysis, but as an intermediary step to 

forming a prognostic scoring system which is assessed by stratifying patients according to 

the score and performing log-rank test on the resulting groups. No confidence intervals 

or p-values were reported on the relevant coefficients. All that can be inferred from 

the literature is that roughly the same covariates are considered as having a potential 

prognostic influence. 

In the light of this we have effectively had to pluck a prior out of thin air. If 

one follows the philosophy advised in Spiegelhalter, Myles, Jones and Abrams (2000), 

of considering the posterior to be a function of the prior and it being the responsibility 

of the analyst is to display this function, then we can justify asking the question, "What 

extremal priors will give substantial posterior mass near zero?" 

To answer this we consider the canonical Normal-Normal prior-posterior case. 

If the data follow a normal distribution with mean J.Lobs and precision ( inverse of the 

variance) 1'obs' and the prior distribution is normal with mean and precision (J.LO, 1'0), 

then the posterior has parameters ((')'OJ.LO + 1'obsJ.Lobs) / (')'0 + 1'obs) , 1'0 + 1'obs)' So if we 

take the step of saying the maximum likelihood estimators of the fixed effects coefficients 

give us values of (J.Lobs' 1'obs) , then what values of (J.L0, 1'0) will give posterior mass near 

zero? If we assume that J.Lobs was positive then we formulate this question, in terms of 

Z-statistics, as finding the region in the (J.L0, 1'o)-plane such that, 

1'oJ.LO + 1'obsJ.Lobs < <1>-1(1 - a), 
y'1'O + 1'obs 

(9.1) 

where a is typically chosen to be 0.05. If it was the case that J.LobsV1'obs > <1>-l(l-a) 

then this region is similar to the area below the line in figure 9.13 
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J.to 

1'0 

Figure 9.13: Region which gives a 'non-significant' posterior 

If it is the case that J.tobsV1'obs < q>-1(1 - ex), then a reference prior will give 

substantial mass near zero. This graph can be interpreted as a play-off between the 

influence of the prior's mean, and its precision. If the precision is close to zero then the 

mean needs to be a large negative number to counter the influence of the likelihood and 

drag the posterior distribution towards zero. As the precision increases, then the prior 

gains in influence on the posterior and as such the prior's mean needs to be close to 

zero to achieve the same effect on the posterior. 

Our sceptical priors were chosen according to this argument. In particular, the 

apex of the curves in figure 9.13 were used as this represents the point of 'equal influence' 

between the prior's mean and precision. The location of the apex can be found in an 

analytical form by taking the derivative of 9.1 (converted to an equality with J.to as the 

subject) with respect to 1'0 and equating it to zero. The fixed parameters (J.tobs,1'obs) 

used were the estimates in the gamma-frailty model. If the parameter estimates were 
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'non-significant' then the reference prior of N(O, 102 ) was retained. The prior means 

and standard deviations are in tables 9.7 and 9.8. 

Main effects 

Covariate Mean S.D. 

Cause -1.39 1.91 

Rx -1.01 1.25 

Cause: Rx 0 10 

Table 9.7: Sceptical priors for the main effects 

Prostate Effects Other Effects 

Covariate Mean S.D. Mean S.D. 

haemo -0.00351 0.00482 0 10 

tumour size 0.00121 0.00123 0 10 

tumour step 0.0445 0.045 0 10 

cardio 0 10 0.0312 0.0319 

RxO: age -0.00653 0.00722 0 10 

Rxl: age 0 10 0.00375 0.00385 

RxO: bone meta 0 10 0.0958 0.101 

Rx1 : bone. meta 0.133 0.148 -0.204 0.242 

RxO: bed<50% 0 10 0 10 

Rx1: bed <50% 0 10 0.0876 0.0912 

RxO: confjbed>50% 0.149 0.158 0 10 

Rxl: confjbed>50% 0 10 0 10 

Table 9.8: Sceptical priors for covariate effects 
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Sceptical Prior Results 

The traces and density estimates are given below. The main effects are in figure 9.14, 

the prostate effects are given in 9.15 and 9.16, the other effects are given in 9.17 and 

9.18. The prior densities are given as dotted lines. 
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Figure 9.14: Sceptical main effects posteriors 
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Figure 9.15: Sceptical prostate effects posteriors 
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Figure 9_16: Sceptical prostate effects posteriors (continued) 
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Figure 9.17: Sceptical 'Other' effects posteriors 
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Figure 9.18: Sceptical 'Other' effects posteriors (continued) 

The equivalent of figure 9.12, the pointwise confidence intervals for the frailty 

CD.F., is shown below in figure 9.19 and they appear to be very similar. 
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Figure 9.19: 90% pointwise confidence intervals for the CO.F. 

As was intended all of the density estimates now put at least 5% of their mass 

on the other side of zero from their modulus. For the coefficients with a sceptical 

prior, the variance of the prior distribution is smaller than the variance of the resulting 

posterior distribution indicating that the level of a priori certainty required to reject the 

conclusions of the reference prior is higher than the weight of evidence provided by the 

trial data. 
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9.5.3 Comparison 

To compare the classical and Bayesian analysis (reference prior) the mean estimates of 

the fixed effects are plotted, along with their 95% credible intervals, against the fixed 

efFects of the gamma frailty model in figure 9.20. 
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Figure 9.20: Comparison of the fixed effects 

10 

There are two covariates whose credible interval does not intersect the line of 

equality: cause, and prostate:tumour step. However, given that there are 27 estimates, 

multiple testing comes into play and this should not be considered as a disagreement 

between the two models. When the influence of individual patients was considered by an 

175 



approximate jack-knifing (the dfbeta method as discussed in Therneau and Grambsch 

(2000, pages 153-159)) in the classical analysis there did not appear to be any hugely 

influential individuals. For Cause the percentage change in the estimate obtained by 

omitting each individual was between -7.0% and +6.0%. For Prostate:Tumour step the 

percentage change was between -2.2% and +0.9%. 

The main difference between the models is in the frailty distribution. The P61ya 

tree has a much larger variance that the log-normal model which, in turn, is much 

larger than the gamma frailty. It is difficult to judge whether this is some shape-driven 

aspect of the frailty distribution, such a skewness or a heavy-tailed property, as the 

cumulative density function does not display such features very well. Unfortunately, it 

is not possible to compare the density function since the posterior P61ya tree density is 

very spiked with an infinite number of discontinuities. Also it is not at all clear whether 

the posterior P61ya tree density is a consistent estimator. The conclusion of this is that 

we can only consider expectations, or integrals, with respect to a P61ya tree density. On 

the positive side, the width of the confidence intervals in figure 9.12 seem to indicate 

that the estimated distribution is reasonably robust. 

It can be observed that, although the posterior distributions for the fixed effects 

are In agreement, as concerns location, with the classical analyses, the variances are 

larger in the Bayesian analysis. This may be due to the infinite-parameter distribution 

draining information from the fixed effects, or there may be some play-off between the 

random-effects taking a more prominent role in describing the data, and hence requiring 

more room-or variance-to manoeuvre, which results in a less prominent role for the 

fixed effects. 
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9.6 Comparison with existing analysis 

The data were originally analysed in Byar and Green (1980), which is a paper that 

aims to promote the concept of subgroup analysis which optimises treatment. It is 

undoubtedly aimed at a statistically illiterate and (or) medical audience as the following 

quotes indicate: 

and 

It is undoubtedly true that most progress in treating patients with cancer 

has come from the ideas of medical researchers and from the observations 

of clinicians who are actually treating patients rather than from clever sta­

tistical analysis of data collected in the course of treatment. 

Non-statisticians in the audience will have to excuse us for a moment while 

we suggest how tests for treatment-covariate interactions may be carried 

out. 

This data set is used as an illustratory example. Their principal analysis is based on 

all-causes survival. They do perform regression but rather than using the original scale 

of the covariates they decide to condense the values into intervals, label the intervals as 

0,1,2, ... , and then use these labels as a continuous scale where the label=2 can be 

interpreted as having twice the effect of label=1. The covariates which are considered, 

due to having a significant univariate effect, are: haemoglobin, performance status, 

history of cardio vascular disease, stage-grade category, standardised weight, age, tumour 

size. This is broadly in agreement with our choice of covariates. 

The paper does not make clear what univariate model they used. It could be 

an exponential, Weibull or Cox model. Also it is not clear whether the parameters 

which are estimated are to be interpreted as an additive or a multiplicative effect on the 
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hazard function. In all cases a test was performed for an interaction between treatment 

(the condensed version used here) and the covariate. The final model fitted used the 

exponential model with additive hazards, where 

S(tIX) = exp( -'\(X)t), '\(X) = (3X. 

The coefficients estimated, and their p-values are given in table 9.9. 

variable coef p-value 

intercept 8.79 <.0001 

haemoglobin 8.34 .0067 

performance 11.7 .0477 

cardio 9.86 <.0001 

stage 13.4 <.0001 

age 0.804 .7794 

tumour size 17.8 .0014 

Rx -3.105 .1707 

Rx : stage -8.45 .0455 

Rx : age 9.98 .0143 

Table 9.9: Previous analysis 

When the patients are stratified according to whether their 4-year survival was >60%, 

40% to 60%, 20% to 40%, or <20%, there was good agreement between the actuarial 

survival curves and the predicted survival curves. They briefly consider the patterns 

associated with the cause of death, by producing a 3-way table, where patients are clas­

sified by cause of death, treatment, and predicted optimal treatment. This, along with 

the treatment interactions in the model, supports the theory that the treatment helps to 
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treat prostate cancer but also has some early toxic effects which are counter-productive 

to cardiovascular disease. 

This is in broad agreement with the main effects of our model given in table 9.4. 

Our model helps to clarify which variables are important for which causes of death. 

Only age and bone metastases are significant for both. Haemoglobin, tumour size, 

tumour grade, and the indicator of 'confined to bed >50%' are significant for prostate. 

These are all non-significant for 'other' causes. Cardiovascular history and the indicator 

of 'confined to bed <50%' is significant for 'other' causes, which is dominated by 

cardiovascular death. 

9.7 Conclusion 

The data set has been re-analysed using a more sophisticated model which may be able 

to capture dependencies between causes of failure, and also allows the consideration 

in greater detail of which variables influence which causes of failure. Although there 

is good agreement about the fixed effects, both between the new models presented 

and previous analyses. This is not the case for the modeled frailty distribution. An 

unsolved problem is the extraction of a full log-likelihood from the log-normal, rather 

than a partial-penalized-profile-log-Iikelihood. This would allow the formal comparison 

of the gamma and the log-normal distribution by means of their deviances or A. I.e. The 

use of the P61ya tree distribution added to the confusion although it does give some 

indication as to the entire distribution of the frailty distribution, rather than attempting 

to reduce it to one parameter. Possible developments to the model would be to consider 

the treatment in its original four stages. A further refinement of the cause is unlikely to 

reveal anything through low statistical power and a model was considered which grouped 

all the cancer deaths together, but very little changed. 
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Chapter 10 

Overview and future directions 

10.1 Counting Process Applications 

The counting process theory which was used in chapter 2 enabled the production of 

confidence bands on important functions such as the crude incidence function. These 

bands have been derived in a fairly ad hoc manner with their main raison d'etre being the 

ability to calculate critical values such as lP(sUPtE[a,bJ IW(t)1 < k), where W is a Brow­

nian bridge. At present the author is only aware of one free-standing computer package 

that can calculate such quantities. Although this package is freely down-Ioadable from 

the internet (http://www.nrcan.gc.ca/gsc/mrd/sdalweb/wiener/index.html).it 

can only run on MS-DOS and may stop being forward compatible with the current Mi­

crosoft environment within a decade. It would be desirable if the calculation of such 

probabilities and quantiles were to become a standard part of statistical software pack­

ages. 

An area which was only lightly touched upon in this chapter was k-sample test­

ing for differences between the crude incidence function of subgroups of the sample. 
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Although the concept of hypothesis testing has become largely discredited within the 

statistics community, they are widely applied within medical statistics, and hence it is 

desirable to investigate the power of such tests against various alternative hypotheses. 

At present the tests which are considered in the literature (Gray 1988, Lunn 1998) 

are only powerful against an ordered difference between the crude incidence functions: 

where there exists a sequence of groups, il, ... ,ik such that 

for all values of t. This is because they are all formed by deriving a process Z(t) which is a 

vector of the difference between the individual crude incidence functions and a weighted 

average. This is normally distributed with a variation process 2:(t), and a mean of 

zero when the null hypothesis is true. With this Z(t) process, a chi-square statistic is 

formed by taking a time point at the end of the study period, T, and calculating the 

statistic Z(T)t~-I(T)Z(T). However, if the crude incidences are different but cross over, 

rather than diverging, then this statistic will not have optimal power. A more uniformly 

powerful test can be inspired by the Kolmogorov-Smirnov test where we take the same 

process, Z(t), but consider SUPtE[O,TjIZ(t)l, instead of a chi-square statistic. This is 

considered in more detail in Andersen et al. (1993, section V.4, pp. 390-7). 

10.2 Bounds on the joint survival 

Chapter 3 contains the result that we can obtain a different set of bounds on the joint 

survival function in the case of a 2-sample data set. To calculate these bounds we need 

to assume that there is a covariate-time transformation ¢(t) which can calculate the 

joint survival for one group at a fixed point t by transforming this point and evaluating 

the joint survival at the transformed point conditional on being in the other group. It 
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is assumed that this transformation is known. In some regions of the latent-failure time 

space these alternative bounds are tighter than the conventional Peterson bounds. 

The proof rests on that proposition that when the region of in the latent-failure 

space where TI , say, is the smallest is transformed by 4>, then the resulting region IS 

bounded by the transform of the original bounds. Given that the transformation IS 

continuous and monotonic this seems highly plausible. This proposition may well be a 

trivial result to a topologist, but the author is currently unaware of a proof. 

Given the fact that in a two-armed data set there are two possible bounds for 

the joint survival it would be useful to know which bounds are tighter in a particular 

region of the latent-failure time space. This can be answered by simply calculating the 

bounds, but when the result is generalised to a k-sample data set this may become 

computationally infeasible. We have limited results as to which bounds are optimal 

where, but it would be worthwhile to generalise. 

10.3 Covariate-time transformation 

The following chapter considers this covariate-time transformation, 4>, in more detail. 

It makes the specific assumption that ¢i(t) = ¢i(ti), which means that the derivative 

matrix is diagonal. This assumption can be justified if we expect that any dependence 

structure (as opposed to 'scale' or 'Iocation')in the latent-failure times, which can be 

described in terms of a copula, is invariant to the covariates. It is unknown what happens 

when this assumption is relaxed and should be investigated further. 

The main result of the chapter is the bounds obtained on this covariate-time 

transformation in the case of a two-armed data set. Pointwise confidence intervals on 

these bounds can be formed but confidence bands for a range of time points is more 

difficult. The problem can be expressed quite generally in that we have two functions, 
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G(t) and H(t), say, where these are estimated, with random error, by C and ii. Given the 

error process for each estimate, what can be said about the error process for C- 1 (ii(t))? 

10.4 Identifiability 

The chapter on identifiability starts with the important result of Heckman and Honon§ 

(1989) and considers whether its assumptions can be relaxed. The assumptions are that 

the joint survival function is of the form 

This assumes that the covariate-time transformation ¢ has a diagonal time derivative 

matrix, but also assumes that it is of the form A(t)¢(z)-proportional hazards. It is 

considered whether the result of identifiability can still be obtained if the proportional 

hazards assumption is dropped. The answer is no. 

It was surprisingly difficult to come up with this answer and it does raise the 

question of how wide a set of models the single assumption of a diagonal derivative 

matrix implies. It may be the case that some quantities derived from the joint distribution 

are identified. A general sensitivity analysis may be useful. A related question is whether 

or not the assumptions of Heckman and Honore (1989) are necessary, as well as sufficient, 

to allow identifiability. If this were the case it would be surprising as the assumption 

of proportional hazards is not particularly realistic or suitable for all data. A greater 

understanding is required of why these assumptions give identifiability. 

10.5 Frailty Modeling 

Here we have considered the assumption that any dependence in the latent-failure time 

distribution is because of an unobserved covariate. This is described by assuming a 
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frailty model where the failure times for each cause are independent conditional on this 

covariate and that the effect of this covariate is to multiply all the cause-specific hazards 

by a factor. 

One question which has been considered is the sensitivity of the model to the 

assumed distribution of this frailty variable. This is considered in a practical sense in 

chapter 9 where a non-parametric tool was used to describe the frailty distribution. The 

broad conclusion was that the fixed effects were not particularly sensitive to the frailty 

distribution, but the variance of the frailty was sensitive to the choice of distribution. 

Another question would be to ask whether multiplying the cause-specific hazards 

by the same factor is appropriate. If there were a negative correlation between two 

latent failure times then it would clearly be inappropriate. A natural extension to the 

univariate frailty model considered here is a multivariate frailty distribution where each 

cause-specific hazard is multiplied by a different factor and the aim is to describe the 

distribution of this multivariate collection of frailties. Questions of practical computation 

and of identifiability need to be addressed. 

Within the frequentist framework, there is a large choice of approximate like­

lihoods, whether it be quasi-likelihood, penalised-likelihood or partial-likelihood or a 

combination thereof. Which is optimal in terms of robustness, bias, and variance is 

unknown. A slight improvement to the speed of the existing algorithms is proposed 

where the interval bisection algorithm is used. 

10.6 P61ya trees 

The Bayesian non-parametric tool, the P61ya tree, is examined in chapter 8. We have 

obtained results on what the limiting distribution of the random density is. This result 

only applies pointwise, so we can say what the marginal distribution of foo(Y) is, but the 
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distribution of the multivariate random variable (foo(YI), ... ,foo(Yk)) is an unanswered 

question, as is the random process for an interval of values of y. What is true is that 

they are not independent. 

The result obtained assumed a specific form for the parameters of the pnor 

distribution: an = k2n. This form can be generalised to an = kan, for positive k and 

a > 1. What the consequences are for foo are unknown. 

A key question is whether the posterior density is consistent. This is important 

if the aim is to see if a density is multi-modal. If the density is not consistent, or 

alternatively is not smooth enough, then this will be hard to judge. At the moment, 

from practical experience, we have to examine the mean density function obtained from 

a simulation and still attempt to judge questions of modality through a mass of spikes. 

This is rather like examining a profile of a mountain range and counting how many 

mountains there are despite seeing a large number of local peaks. 

The theory behind P61ya trees could easily be extend to cases where n i=- IR. An 

area for investigation is how to perform marginalisation or conditioning if n = IRP. 

The integration with the P61ya tree random measure is also considered in this 

chapter. The basic tool used is the trapezium rule. This is not the cutting edge of 

numerical integration, but it does allow tractability. Whether any improvements can be 

obtained by the use of more sophisticated methods of numerical integration is a good 

question. The main potential for error occurs when the integrand is large in the tails of 

the P61ya tree's sample space. There is no sensible answer to this problem other than 

'don't do it.' This is no more than statistical common sense saying that it is inadvisable 

to make inferences about quantities for which there is little data. 
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Appendix A 

Data 

A.l Boag 1949 

The data are taken from Boag (1949) which records the survival times, in months, of 

121 breast cancer patients from the clinical records of one hospital over the period 1929 

to 1938. The causes are: Cancer, Other, Censored. 
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Cancer 

Other 

Censored 

0.3, 5, 5.6, 6.2, 6.3, 6.6, 6.8, 7.5, 8.4, 8.4, 10.3, 

11, 11.8, 12.2, 12.3, 13.5, 14.4, 14.4, 14.8, 15.7, 

16.2, 16.3, 16.5, 16.8, 17.2, 17.3, 17.5, 17.9, 

19.8, 20.4, 20.9, 21, 21, 21.1, 23, 23.6, 24, 24, 

27.9, 28.2, 29.1, 30, 31, 31, 32, 35, 35, 38, 39, 

40, 40, 41, 41, 42, 44, 46, 48, 48, 51, 51, 52, 

54, 56, 60, 78, 78, 80, 84, 87, 89, 90, 97, 98, 

100, 114, 123, 161, 174 

0.3, 4, 7.4, 15.5, 23.4, 46, 46, 51, 65, 68, 83, 

88, 96, 110, 111, 112, 132, 162 

111, 112, 113, 114, 114, 117, 121, 123, 129, 

131, 133, 134, 134, 136, 141, 143, 167, 177, 

179, 189, 201, 203, 203, 213, 228 

A.2 Hoel 1972 

The data are taken from Hoel (1972). They arise from a laboratory experiment in which 

mice were given a radiation dose of 300 rads at 5 to 6 weeks old. They were split into 

two groups according to the conditions in which they were subsequently kept. There 

were three recorded causes of death. 
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Thymic Lymphoma 

Conventional Lab, n=99 

156, 189, 191, 198, 200, 207, 220, 235, 245, 

250, 256, 261, 265, 266, 280, 343, 356, 383, 

403, 414, 428, 432 

Reticulum cell sarcoma 317, 318, 399, 495, 525, 536, 549, 552, 554, 

Other 

Thymic Lymphoma 

557, 558, 571, 586, 594, 596, 605, 612, 621, 

628, 631, 636, 643, 647, 648, 649, 661, 663, 

666, 670, 695, 697, 700, 705, 712, 713, 738, 

748, 753 

40, 42, 51, 62, 163, 179, 206, 222, 228, 252, 

259, 282, 324, 333, 341, 366, 385, 407, 420, 

431, 441, 461, 462, 482, 517, 517, 524, 564, 

567, 586, 619, 620, 621, 622, 647, 651, 686, 

761, 763 

Germ-free, n=82 

158, 192, 193, 194, 195, 202, 212, 215, 229, 

230, 237, 240, 244, 247, 259, 300, 301, 321, 

337, 415, 434, 444, 485, 496, 529, 537, 624, 

707, 800 

Reticulum cell sarcoma 30, 590, 606, 638, 355, 679, 691, 693, 696, 747, 

Other 

752, 760, 778, 821, 986 

136, 246, 255, 376, 421, 565, 616, 617, 652, 

655, 658, 660, 662, 675, 681, 734, 736, 737, 

757, 769, 777, 800, 806, 825, 855, 857, 864, 

868, 870, 870, 873, 882, 895, 910, 934, 942, 

1015, 1019 
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A.3 Prostate Cancer Data 

The data are published in Andrews and Herzberg (1985) and were originally pub­

lished in Byar and Corle (1977) and Byar and Green (1980) and can be downloaded 

at http://lib.stat.cmu.edu/datasets/Andrews/T46.1 . The first five patients 

from this data set of 506 patients are below in S-plus format. 

stage Tx date.month date.day date.year time status age weight. index 

1 3 0.2mg 8 10 67 72 alive 75 76 

2 3 0.2mg 9 21 67 1 cancer 54 116 

3 3 5.0mg 1 12 68 40 cerebo 69 102 

4 3 0.2mg 3 18 68 20 cerebo 75 94 

5 3 placebo 3 21 68 65 alive 67 99 

performance cardio SBP DBP ECG haemo tumour. size tumour.grade acid.phos 

1 normal no 15 9 strain 138 2 8 3 

2 normal no 13 7 block 146 42 NA 7 

3 normal yes 14 8 strain 134 3 9 3 

4 bed<50% yes 14 7 benign 176 4 8 9 

5 normal no 17 10 normal 134 34 8 5 

bone.meta 

1 no 

2 no 

3 no 

4 no 

5 no 

189 



A.4 Input file for the M.C.M.C. programme 

For the sake of clarity I have included the first five lines of the input file to the C-

programme, prostpart, for which the code is in section B.4 . The values have been 

rounded to three significant figures and the lines have been broken to fit on the page. 

72 0 1 0.0000 0.0000 0.0000 6.52e-02 -1.45e-17 -4.38e-02 -5.95e-18 
72 0 1 0.0454 -0.0262 -0.0370 4.16e-17 1.18e-02 -3.42e-17 -4.60e-02 
40 0 2 0.0000 0.0525 -0.0371 -7.0ge-04 2.62e-17 -3.93e-02 1.08e-17 
40 1 2 0.0454 0.0263 0.0371 -3.82e-17 -3.54e-03 3.38e-17 -4.21e-02 
20 0 3 0.0000 0.0000 0.0000 8.32e-02 -1.85e-17 -5.06e-02 -7.64e-18 

-2.64e-02 -5.31e-18 -4.65e-02 -6.91e-18 4.05e-02 5.91e-16 8.13e-03 
1.58e-17 -2.9ge-02 -4.21e-18 -5.01e-02 -2.26e-16 3.68e-02 -3.26e-15 

-2.61e-02 9.34e-18 5.12e-02 8.02e-18 9.62e-03 8.70e-16 -3.1ge-02 
-1.22e-17 -2.9ge-02 9.12e-18 4.86e-02 1.54e-16 -6.41e-03 3.55e-16 
-3.5ge-02 -6.70e-18 3.26e-02 -9.32e-18 -5.16e-02 -2.38e-15 -3.42e-03 

1.01e-17 -1.15e-02 -1.34e-17 1.63e-02 2.73e-17 -9.95e-03 -2.95e-17 
8.64e-03 -8.84e-17 -8.02e-03 -3.94e-16 1.76e-02 -1.77e-17 -8.46e-03 

-2.78e-15 1.54e-02 4.56e-16 -2.1ge-02 -3.25e-16 -2.2ge-03 2.80e-16 
-3.22e-02 -9.9ge-17 1.36e-02 -4.86e-16 -2.25e-02 -4.50e-18 -3.10e-03 

1.75e-15 1.58e-03 -2.41e-16 2.84e-02 2.74e-16 2.28e-01 -1.75e-16 

1.01e-02 -1.3ge-17 -3.80e-03 2.13e-17 -3.4ge-03 -1.54e-17 
4.26e-17 1.08e-02 -7.65e-17 -3.9ge-03 1.33e-16 -3.02e-03 

-1.87e-02 1.5ge-16 -8.24e-04 -1.93e-16 -3.53e-03 2.05e-16 
-7.90e-17 -1.91e-02 -9.41e-17 -7.16e-04 6.81e-17 -3.80e-03 
5.43e-03 -9.54e-17 2.16e-02 1.16e-16 3.38e-04 -1.4ge-16 
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Appendix B 

Code 

B.1 Crude Incidence estimator 

The following is S-plus code (Becker et al. 1988, Chambers and Hastie 1992). The 

input is a vector of observed times, a vector of causes of failure, and an argument which 

defines the code for censored values. The output is a list composed of a vector of sorted 

times, a matrix of the crude incidence function with one column for each cause, and a 

matrix which estimates the variance of each estimator. 

Crln<-iunction(time, cause, censor = "0") 
{ 

index <- order(time) 
time <- time[index] 
cause <- cause[index] 
Causes <- levels (cause) [levels (cause) ! = censor] 
dN <- 1 * outer(as.character(cause) , Causes, "==") 
Y <- length(time):l 
dLj <- dN/Y 
dL <- apply (dLj, 1, sum) 
Sminus <- c(l,cumprod(l - dL)[l:(length(time)-l)]) 
Q <- apply(dLj * Sminus, 2, cumsum) 
COY <- (Sminus-2 * dLj + Q-2 * dL + 2 * Sminus * Q * dLj 
- 2 * Q * (Sminus * dLj +Q * dL) + Q-2 * dL)/Y 

191 



COV <- apply (COV, 2, cumsum) 
list(time = time, crude. incidence = Q, variance = COV) 
} 

B.2 COX frailty model with bisection algorithm 

This is a set of S-plus functions which use the (old-style) class structure of the S-plus 

language (Venables and Ripley 2000, chapter 4). 

coxglmm 
function(x, ... ) 
{ 

UseMethod(lcoxglmm") 
} 

coxglmm.default 
function(formula, data, random, subset, start = 7, upper = start, lower 
10, verbose = T, method = "bisect", disp = "REML", ... ) 
{ 

call <- match.call() 
#obtain the fixed effects design matrix 
m <- match.call(expand = F) 
temp <- C(IIII, "formula", "data", "weights", II subset II , "na.action") 
m <- m [match (temp , names(m), nomatch = 0)] 
m[[1]] <- as.name("model.frame") 
m <- eval(m, sys.parent()) 
Terms <- terms (formula, specials = "strata", data = data) 
attr(Terms, "intercept") <- 1 
xvars <- as. character (attr(Terms , "variables")) 
if((yvar <- attr(Terms, "response")) > 0) 
xvars <- xvars[ - yvar] 
if(length(xvars) > 0) { 
xlevels <- lapply(m[xvars], levels) 
xlevels <- xlevels[!sapply(xlevels, is.null)] 
if(length(xlevels) == 0) 
xlevels <- NULL 
} 
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else xlevels <- NULL 
temp <- untangle.specials(Terms, IIstrata ll , 1) 
if (length(temp$vars)) { 
X <- model.matrix(Terms[ - temp$termsJ, m) 
strata <- as.numeric(strata(m[, temp$varsJ, shortlabel = T)) 
} 

else { 
X <- model.matrix(Terms, m) 
strata <- NULL 
} 

#to remove the intercept but make sure it copes with nested formulae 
xint <- match(1I (Intercept) II , dimnames(X)[[2JJ, nomatch = 0) 
if (xint > 0) 
X <- XC, - xint, drop = FJ 
# extract the responses 
Y <- model.extract(m, response) 
if(class(Y) != IISurvll) { 
stop(IIError: response must be a Surv objectll) 
} 

else { 
time <- Y[, 1J 
status <- Y [, 2J 
} 

# get the random effects matrix 
mz <- match.call(expand = F) 
mz$formula <- mz$random 
temp <- C(IIII, IIformula ll , IIdata ll , IIweightsll, II subset II , IIna.actionll) 
mz <- mz[match(temp, names(mz), nomatch = O)J 
mz[[1JJ <- as.nameC'model.frame ll ) 
mz <- eval(mz, sys.parent()) 
Termsz <- attr(mz, IIterms ll ) 
attr(Termsz, II intercept II) <- 0 
Z <- model.matrix(Termsz, mz) 
if(method == IIbisect ll ) { 
fit.upper <- coxglmm.fit (status , time, strata, X, Z, sigma2 = 
upper, verbose = T, disp = disp) 
fit.lower <- coxglmm. fit (status , time, strata, X, Z, sigma2 = 
lower, verbose = T, disp = disp) 
if((upper - fit.upper$sigma2) * (lower - fit.lower$sigma2) > 
0) 

stop(lItry larger/smaller starting value ll ) 
while(upper - lower> 1e-06) { 
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bisect <- (fit.lower$sigma2 + fit.upper$sigma2)/2 
fit.bisect <- coxglmm.fit(status, time, strata, X, 
Z, sigma2 = bisect, verbose = T, disp = disp) 
if(bisect - fit.bisect$sigma2 > 0) { 
upper <- bisect 
fit.upper <- fit.bisect 
} 

else { 
lower <- bisect 
fit.lower <- fit.bisect 
} 

} 

fit <- coxglmm.fit (status , time, strata, X, Z, sigma2 = (lower + 
upper)/2, verbose = verbose, disp = disp) 
} 

else { 
sigma <- start 
sigma. old <- start + 1 
while(abs(sigma.old - sigma) > 1e-05) { 
fit <- coxglmm.fit (status , time, strata, X, Z, sigma2 
= sigma, verbose = verbose, disp = disp) 

sigma. old <- sigma 
simga <- fit$sigma2 
} 

fit <- coxglmm.fit (status , time, strata, X, Z, sigma2 = sigma, 
verbose = verbose, disp = disp) 
} 

fit$fixedterms <- Terms 
fit$randomterms <- Termsz 
fit$call <- call 
fit$x <- X 
fit$y <- Y 
fit$z <- Z 
fit$formula <- call$formula 
fit$coefficients <- fit$beta[l:dim(X) [2] , ] 
fit$random.effects <- fit$beta[(dim(X) [2] + l):(dim(X) [2] + dim(Z)[ 
2]) , ] 

fit$n <- dim(X) [1] 
fit$var <- solve (fit$Hessian) [l:dim(X) [2] , 1:dim(X)[2]] 
if(!is.null(xlevels)) 
attr(fit, "xlevels") <- xlevels 
if(!is.null(fit$call$disp) && fit$call$disp -- "ML") { 
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M <- solve(fit$Hessian[(dim(X) [2J + 1):dim(fit$Hessian)[1J, 
(dim(X)[2J + 1):dim(fit$Hessian) [1JJ) 
} 

else { 
M <- (solve(fit$Hessian))[(dim(X)[2J + 1):dim(fit$Hessian)[ 
1J, (dim(X) [2J + 1) :dim(fit$Hessian) [1JJ 
} 

r <- eigen(M)$values 
fit$varsig <- (2 * (fit$sigma2)~2)/(dim(Z)[2J - (2 * sum(r))/fit$sigma2 + 
sum(r~2)/(fit$sigma2)~2) 

structure (fit , class = "coxglmm") 
} 

coxglmm.fit 
function(y, time, strata, X, Z, sigma2 = 7, verbose, disp) 
{ 

#initialisation 
if(length(strata) == 0) { 
index <- order(time, 1 - y) 
newstrats <- length(y) 
} 

else { 
index <- order(strata, time, 1 - y) 
newstrats <- table(strata) 
} 

Y <- Y [indexJ 
X <- as.matrix(X[index, ]) 

Z <- Z[index, J 
beta <- rep(O, dim(X) [2J + dim(Z) [2J) 
# M is a block diagonal matrix of lower triangular matrices of 1s 
for(i in 1:length(newstrats)) { 
if(i == 1) 
M <- outerO :newstrats [1J, 1 :newstrats [1J, ">=") 
else { 
m <- outerO :newstrats [iJ, 1 :newstrats [iJ, ">=") 
M <- cbind(rbind(M, matrix(O, ncol = dim(M)[2J, nrow = 
dim(m)[1J)), rbind(matrix(O, ncol = dim(m)[ 
2J, nrow = dim(M)[1J), m)) 
} 

} 

#inner loop for coefficients and random effects 

iter <- ° 
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beta. old <- rep(l, length(beta)) 
while(max(abs(beta - beta. old)) > le-05 & iter < 100) { 
eta <- cbind(X, Z) %*% beta 
w <- exp (eta) 
W <- diag(w, nrow = length(w)) 
a <- y/(t(M) %*% w) 
b <- M %*% a 
d <- Y - w * b 
H <- rbind(t(X) , t(Z)) %*% (diag(w * b, nrow = length(b)) -
W %*% M %*% diag(a~2, nrow = length(a)) %*% t(M) %*% W) %*% 
cbind(X, Z) 
V <- H + diag(rep(c(O, 1/sigma2), c(dim(X) [2] , dim(Z)[2])), 
nrow = dim(X) [2] + dim(Z) [2]) 
beta. old <- beta 
beta <- beta + solve(V, rbind(t(X) , t(Z)) %*% d - rep(c(O, 
1/sigma2), c(dim(X) [2] , dim(Z) [2])) * beta) 
iter <- iter + 1 
} 

#inner loop for dispersion 
iter2 <- 0 
sigma2.old <- sigma2 + 1 
sigmaouter <- sigma2 
while(abs(sigma2 - sigma2.old) > le-07 & iter2 < 100) { 
V <- H + diag(rep(c(O, 1/sigma2), c(dim(X)[2], dim(Z)[2])), 
nrow = dim(X) [2] + dim(Z) [2]) 
if(disp == "ML") { 
v <- sum(diag(solve(V[(dim(X) [2] + l):(dim(H)[l]), 
(dim(X) [2] + 1): (dim(H) [2] )] ))) 
} 

else { 
v <- sum(diag(solve(V) [(dim(X) [2] + l):(dim(H)[l]), 
(dim(X) [2] + 1): (dim(H) [2])])) 
} 

sigma2.old <- sigma2 
sigma2 <- (t(beta[(dim(X)[2] + l):(dim(H)[l]), ]) %*% beta[ 
(dim(X)[2] + l):(dim(H) [1]), ] + v)/dim(Z) [2] 
iter2 <- iter2 + 1 
} 

loglik <- t(y) %*% (w - t(M) %*% w) - 1/2 * (t(beta[(dim(X)[2] + 1): 
(dim(H) [1]), ]) %*% beta[(dim(X) [2] + l):(dim(H)[l]), ]/ 
sigma2) 
if (verbose) 
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cat(1l\nCoefficients: II, beta[1:dim(X) [2]], lI\nSigma-2: II 
sigma2, lI\nPQL: II, loglik, lI\n ll ) 

list(sigma2 = sigma2, beta = beta, Hessian = V, loglik = loglik) 
} 

print.coxglmm 
function(x, ... ) 
{ 

cat (IiCall: \nll) 
print (x$call) 
cat(lI\nFixed effects:\n ll ) 
print(x$coefficients) 
cat(lI\nVariance of random effect:\n ll ) 
cat (x$sigma2, lI\n ll ) 
cat(lI\nPenalised Quasi Log-Likelihood:\nll) 
cat (x$loglik, II \n II) 
cat(lI\nEstimating variance of the random effects variance:\n ll ) 
cat (x$varsig, II \n II) 
invisible(x) 
} 

summary.coxglmm 
function(x, ... ) 
{ 

class(x) <- IIcoxphll 
UseMethod (II summary II , x, ... ) 
cat(lI\nRandom Effects Variance\n ll ) 
cat (x$sigma2, II \n II) 
cat(lI\nEstimating variance of the random effects variance:\n ll ) 
cat (x$varsig, II \n II) 
cat(lI\nPenalised Quasi Log-Likelihood:\n ll ) 
cat (x$loglik, II \n II) 
invisible(x) 
} 

plot.coxglmm 
function(x, ... ) 
{ 

par. store <- pare) 
on.exit(par(par.store» 
par (ask = T) 

base <- baseline(x) 
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plot(cumhaz - time, base, type = "S", ... ) 

base$upper <- base$cumhaz + 1.96 * sqrt(base$variance) 
base$lower <- base$cumhaz - 1.96 * sqrt(base$variance) 
lines (base$time , base$upper, type = "S", lty = 2) 
lines (base$time , base$lower, type = "S", lty = 2) 
par (ask = T) 
plot(exp( - cumhaz) - time, base, type = "S", ylim = c(O, 1), ylab = 
II survival II , ... ) 
lines (base$time , 
lines (base$time , 
} 

baseline 
function(fit) 
{ 

exp( - base$upper), type 
exp( - base$lower), type 

r <- exp(cbind(fit$x, fit$z) %*% fit$beta) 
n <- length(r) 
# upper triangular matrix 
M <- outer(l:n, l:n, "<=") 
index <- order(fit$y[, 1], 1 - fit$y[, 2]) 
N <- fit$y[, 2] 

= II S II , 

= II S II , 

cumhaz <- cumsum(N[index]/(M %*% (r[index]))) 
var <- cumsum(N[index]/(M %*% (r[index]))-2) 
time <- fit$y[, 1] [index] 
index <- (N[index] == 1) 

lty = 2) 
lty = 2) 

data. frame (time = time [index] , cumhaz = cumhaz[index] , variance = var[ 
index]) 
} 

8.3 Ammended exisiting frailty code 

This is an ammended version of the existing code by T Therneau (Therneau and Gramb-

sch 2000) which can cope with interactions and frailty terms in a coxph formula. 

coxph2 
function(formula = formula (data) , data = sys.parent(), weights, subset, 
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na.action, init, control, method = c("efron", "breslow", "exact"), 
singular.ok = T, robust = F, model = F, x = F, Y = T, ... ) 
{ 

method <- match.arg(method) 
call <- match.call() 
m <- match.call(expand = F) 

temp <- c("", "formula", "data", "weights", "subset", "na.action") 
m <- m[match(temp, names(m), nomatch = 0)] 

special <- c (" strata", "cluster" , "frailty") 
Terms <- if(missing(data)) terms (formula, special) else terms (formula, 
special, data = data) 
m$formula <- Terms 
m[[1]] <- as.name("model.frame") 
m <- eval(m, sys.parent()) 
if(missing(control)) 
control <- coxph.control( ... ) 
Y <- model.extract(m, "response") 
if ( ! inherits (Y, "Surv")) 
stop("Response must be a survival object") 
weights <- model.extract(m, "weights") 
offset <- attr(Terms, "offset") 
tt <- length(offset) 
offset <- if(tt == 0) rep(O, nrow(Y)) else if(tt -- 1) 
m[[offset]] 
else { 
ff <- m[[offset[1]]] 
for(i in 2:tt) 
ff <- ff + m[[offset[i]]] 
ff 
} 

attr(Terms, "intercept") <- 1 
#Cox model always has \Lambda_O 
strats <- attr(Terms, "specials")$strata 
cluster <- attr(Terms, "specials")$cluster 
dropx <- NULL 
if(length(cluster)) { 
if(missing(robust)) 
robust <- T 
tempc <- untangle. specials (Terms , "cluster", 1:10) 
ord <- attr(Terms, "order")[tempc$terms] 
if(any(ord > 1)) 

stop("Cluster can not be used in an interaction") 
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cluster <- strata(m[, tempc$varsJ, shortlabel = T) 
#allow multiples 
dropx <- tempc$terms 
} 

if(length(strats)) { 
temp <- untangle. specials (Terms , IIstrata ll , 1) 
dropx <- c(dropx, temp$terms) 
if(length(temp$vars) == 1) 
strata.keep <- m[[temp$varsJJ 
else strata. keep <- strata(m[, temp$varsJ, shortlabel = T) 
strats <- as.numeric(strata.keep) 
} 

if(length(dropx)) 
X <- model.matrix(Terms[ - dropxJ, m)[, -1, drop = FJ 
else X <- model.matrix(Terms, m)[, -1, drop = FJ 
type <- attr(Y, IItype ll ) 
if(type != IIrightll && type != IIcountingll) 
stop(paste(IICox model doesn't support \1111, type, 
11\11 survival data ll , sep = 1111)) 

if(missing(init)) 
init <- NULL 
# Check for penalized terms 
pterms <- sapply(m, inherits, IIcoxph.penaltyll) 
if(any(pterms)) { 
pattr <- lapply(m[ptermsJ, attributes) 
# 

# the 'order' attribute has the same components as 'term. labels' 
# pterms always has 1 more (response), sometimes 2 (offset) 
# drop the extra parts from pterms 
tempf <- untangle. specials (Terms , IIfrailtyll, 1:10) 
ord <- attr(Terms, lIorderll)[tempf$termsJ 
if (any(ord > 1)) 

stop(IIPenalty terms cannot be in an interaction ll ) 
pcols <- (attr(X, lIassignll) [-1J) [tempf$varsJ 
#penalized are hard sometimes 
if(control$eps.miss) control$eps <- 1e-07 
if(control$iter.miss) 
control$iter.max <- 20 
fit <- coxpenal.fit(X, Y, strats, offset, init = init, control, 
weights = weights, method = method, row.names(m), pcols, 
pattr) 
} 
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else { 
if(method == "breslow" I I method -- "efron") { 
if(type == "right") 
fitter <- get("coxph.fit") 
else fitter <- get("agreg.fit") 
} 

else if(method == "exact") 
fitter <- get("agexact.fit") 
else stop(paste("Unknown method", method)) 
fit <- fitter(X, Y, strats, offset, init, control, weights = 

weights, method = method, row.names(m)) 
} 

if(is.character(fit)) { 
fit <- list(fail = fit) 
oldClass(fit) <- "coxph" 
} 

else { 
if(any(is.na(fit$coef))) { 
vars <- (l:length(fit$coef))[is.na(fit$coef)] 
msg <- paste("X matrix deemed to be singular; variable II , 

paste(vars, collapse = II ")) 

if (singular. ok) 
warning (msg) 
else stop(msg) 
} 

fit$n <- nrow(Y) 
oldClass(fit) <- fit$method[l] 
fit$terms <- Terms 
fit$assign <- attr(X, "assign") 
if(robust) { 
fit$naive.var <- fit$var 
fit$method <- method 
# a little sneaky here: by calling resid before adding the 
# na.action method, I avoid having missings re-inserted 
# I also make sure that it doesn't have to reconstruct X and Y 
fit2 <- c(fit, list(x = X, Y = Y, weights = weights)) 
if (length(strats)) 
fit2$strata <- strata. keep 
if(length(cluster)) { 
temp <- residuals.coxph(fit2, type = "dfbeta", 
collapse = cluster, weighted = T) 
# get score for null model 
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if(is.null(init)) fit2$linear.predictors <- 0 * 
fit$linear.predictors else fit2$ 
linear.predictors <- c(X %*% 
init) 
tempO <- residuals.coxph(fit2, type = "score", 
collapse = cluster, weighted = T) 
} 

else { 
temp <- residuals.coxph(fit2, type = "dfbeta", 
weighted = T) 
fit2$linear.predictors <- 0 * fit$ 
linear.predictors 
tempO <- residuals.coxph(fit2, type = "score", 
weighted = T) 
} 

fit$var <- t(temp) %*% temp 
u <- apply(as.matrix(tempO), 2, sum) 
fit$rscore <- coxph.wtest(t(tempO) %*% tempO, u, 
control$toler.chol)$test 
} 

#Wald test 
if(length(fit$coef) && is.null(fit$wald.test)) { 
#not for intercept only models, or if test is already done 
nabeta <- !is.na(fit$coef) 
if(is.null(init)) 
temp <- fit$coef[nabeta] 
else temp <- (fit$coef - init) [nabeta] 
fit$wald.test <- coxph.wtest (fit$var [nabeta, nabeta] , 
temp, control$toler.chol)$test 
} 

na.action <- attr(m, "na.action") 
if (length(na. action)) 
fit$na.action <- na.action 
if (model) 
fit$model <- m 
else { 
if(x) { 
fit$x <- X 
if(length(strats)) 
fit$strata <- strata. keep 
} 

if(y) 
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fit$y <- Y 
} 

} 

if(!is.null(weights) && any(weights != 1)) 

fit$weights <- weights 

fit$formula <- as.vector(attr(Terms, "formula")) 
fit$call <- call 
fit$method <- method 
fit 
} 

B.4 Markov Chain Monte Carlo simulation code 

This is the C-code (Kernighan and Ritchie 1978) used for the simulations in chapter 9, 

in particular the sceptical Bayesian analysis. 

To compile the code, on a unix platform, use the command line 

> gee -1m prostpart.c -0 prostpart 

where prostpart. c is the code below. To use the the code 

> prostpart infile outfile 1000 

The programme will perform 1000 iterations reading the data In infile and writing 

the simulated random variables to outfile. The input file uses variables which have 

undergone a linear transformation so that some of the columns are orthogonal; the first 

five lines of this input file are in section A.4. Also, the programme writes, to the standard 

interface, simulations from the P61ya tree CO.F. which can be redirected to another file 

or programme. 

#include <stdio.h> 
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#include <math.h> 
#include <stdlib.h> 
#include<plot.h> 
#include<time.h> 

#define MAXSAMPLE 10000 
#define MAXSIMS 10000 
#define PI 3.1415926536 

float critical[] = { 
0, -0.674489750196082, 0.674489750196082, -1.15034938037601, 
-0.318639363964375, 0.318639363964375, 1.15034938037601, 
-1.53412054435255, -0.887146559018876, -0.48877641111467, 
-0.157310684610171, 0.157310684610171, 0.48877641111467, 
0.887146559018876, 1.53412054435255, -1.86273186742165, 
-1.31801089730354, -1.00999016924958, -0.776421761147928, 
-0.579132162255556, -0.402250065321725, -0.237202109328788, 
-0.0784124127331122, 0.0784124127331121, 0.237202109328788, 
0.402250065321725, 0.579132162255556, 0.776421761147928, 
1.00999016924958, 1.31801089730354, 1.86273186742165, 
-2.15387469406146, -1.67593972277344, -1.41779713799627, 
-1.22985875921659, -1.07751556704028, -0.946781756301046, 
-0.830510878205399, -0.724514383492366, -0.626099012346422, 
-0.533409706241281, -0.445096524985517, -0.36012989178957, 
-0.277690439821577, -0.197099084294312, -0.117769874579095, 
-0.0391760855030976, 0.0391760855030977, 0.117769874579095, 
0.197099084294312, 0.277690439821577, 0.36012989178957, 
0.445096524985517, 0.53340970624128, 0.626099012346421, 
0.724514383492366, 0.830510878205399, 0.946781756301046, 
1.07751556704028, 1.22985875921659, 1.41779713799627, 
1.67593972277344, 2.15387469406146, -2.41755901623651, 
-1.9874278859299, -1.76167041036307, -1.60100866488608, 
-1.4734675779471, -1.3662038163721, -1.27269864119054, 
-1.18916435019934, -1.11319427716093, -1.04315826331845, 
-0.977897543940542, -0.916556667533113, -0.858484474141833, 
-0.803172565597918, -0.750215375467941, -0.69928330238322, 
-0.650104070647995, -0.602449453164424, -0.556125593618691, 
-0.510965806738248, -0.46682512285259, -0.4235760842012, 
-0.381105454763556, -0.339311606538817, -0.298102412930487, 
-0.257393526100938, -0.21710694721013, -0.17716982099174, 
-0.137513402144336, -0.0980721524886611, -0.0587829360689431, 
-0.0195842852301269, 0.0195842852301269, 0.0587829360689431, 
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0.098072152488661, 0.137513402144336, 0.17716982099174, 
0.21710694721013, 0.257393526100938, 0.298102412930487, 
0.339311606538817, 0.381105454763557, 0.4235760842012, 
0.46682512285259, 0.510965806738248, 0.556125593618692, 
0.602449453164424, 0.650104070647995, 0.69928330238322, 
0.750215375467941, 0.803172565597918, 0.858484474141832, 
0.916556667533112, 0.977897543940542, 1.04315826331845, 
1.11319427716093, 1.18916435019934, 1.27269864119054, 
1.3662038163721, 1.4734675779471, 1.60100866488608, 
1.76167041036307, 1.9874278859299, 2.41755901623651, 
-2.66006746861747, -2.26622680920966, -2.06352789831625, 
-1.92135077429371, -1.80989223848061, -1.71722811750574, 
-1.63732538276806, -1.56668858606841, -1.50310294312927, 
-1.44507257981808, -1.3915374879959, -1.34171784108025, 
-1.29502240670581, -1.25099171546255, -1.20926123170916, 
-1.16953661020714, -1.13157655838619, -1.09518065276139, 
-1.06018047943536, -1.02643306313791, -0.993815907860883, 
-0.962223195295421, -0.931562830007115, -0.9017541138301, 
-0.872725894627041, -0.844415077375257, -0.816765415315091, 
-0.789726519943266, -0.763253043732571, -0.737304000438654, 
-0.71184219593942, -0.686833748574731, -0.662247682488414, 
-0.638055580922517, -0.614231289060245, -0.590750658062819, 
-0.567591323544569, -0.544732512988176, -0.522154877598002, 
-0.499840344883735, -0.477771988903886, -0.455933915613139, 
-0.43431116117521, -0.412889601443654, -0.391655871092592, 
-0.370597291109629, -0.349701803553895, -0.328957912640491, 
-0.308354631344837, -0.287881432831012, -0.267528206101097, 
-0.247285215340805, -0.227143062502715, -0.20709265272436, 
-0.187125162225721, -0.16723200837085, -0.147404821612355, 
-0.12763541906627, -0.107915779489187, -0.0882380194499245, 
-0.0685943705051181, -0.0489771572021319, -0.0293787757441571, 
-0.00979167316134537, 0.00979167316134536, 0.0293787757441571, 
0.048977157202132, 0.0685943705051181, 0.0882380194499244, 
0.107915779489187, 0.12763541906627, 0.147404821612355, 
0.16723200837085, 0.187125162225721, 0.20709265272436, 
0.227143062502715, 0.247285215340805, 0.267528206101097, 
0.287881432831012, 0.308354631344837, 0.328957912640491, 
0.349701803553895, 0.370597291109629, 0.391655871092592, 
0.412889601443654, 0.43431116117521, 0.455933915613139, 
0.477771988903886, 0.499840344883735, 0.522154877598002, 
0.544732512988176, 0.567591323544569, 0.590750658062819, 
0.614231289060245, 0.638055580922517, 0.662247682488414, 
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0.686833748574731, 0.711842195939419, 0.737304000438655, 
0.76325304373257, 0.789726519943266, 0.816765415315091 , 
0.844415077375258, 0.87272589462704, 0.9017541138301, 
0.931562830007114, 0.962223195295421, 0.993815907860883, 
1.02643306313791, 1.06018047943536, 1.09518065276139, 
1.13157655838619, 1.16953661020714, 1.20926123170916, 
1.25099171546255, 1.29502240670581, 1.34171784108025, 
1.3915374879959, 1.44507257981808, 1.50310294312927, 
1.56668858606841, 1.63732538276806, 1.71722811750574, 
1.80989223848061, 1.92135077429371, 2.06352789831624, 
2.26622680920966, 2.66006746861747 }; /*Pr( N(0,1»2.66)=2-(-8) */ 

struct tnode { 
float cri t; 
float P; 
float level; 
struct tnode *left; 
struct tnode *right; 
}; 

void metrop( float **param, int j, int m, float ***datapointers, 
struct tnode *polya1, struct tnode *polyaO, int sampdim); 

float posterior( float **param, int m, float ***datapointers, 
struct tnode *polya1, struct tnode *polyaO); 

float dnorm( float y1, float y01, float mu1, float muO, 
float sigma1, float sigmaO); 

float dgamma( float x1, float xO, float 11, float 10, float a); 
float dpois( float y1, float yO, float mu1, float mu2); 
float dbinomial( float r1, float rO, float p1, float pO, 
float n); 

float dpolya( float b1, float bO, struct tnode *polya1, 
struct tnode *polyaO); 

struct tnode *addtree( struct tnode *p, float critical, 
float level); 

void samppolya(struct tnode *where1, struct tnode *whereO, 
struct tnode *root1, struct tnode *rootO, float **param, 
float ***datapointers, int m); 

float proppolya( struct tnode *where1); 
float polyaprior( struct tnode *where1, struct tnode *whereO); 
float polyaexpect( struct tnode *root, float (*function) (float, 
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float ), float lower, float upper, float arg); 
float momentl( float x); 
float moment2( float x); 
float indicator( float x, float arg); 
float factorial( float x); 
float proposal( float previous, float range); 
void Ppolya(struct tnode *where, float x , int m, float *p); 
void tnodecopy( struct tnode *nodeA, struct tnode *nodeB); 
float lowB(struct tnode *where); 
float uppB(struct tnode *where); 
float**transpose (float **input, int ncol, int nrow); 
int sortunique( float *time, float *x, float *delta, int m); 
float max(float *list, int listlength, float lower); 
float scale( float *x, int n); 
float mvnormal( float *xnew, float *xold, float *mu, float **sigmainv, 
int dim); 

main(int argc, char *argv[]) 
{ 

FILE * fdata, *foutput; 
float **data, **param, **Y, **dN, ***datapointers, 

*mun[l], *scalers; 
float quant[] = { 
-3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0 }; 
float starters[] = { 
-38.7, -23.1, 5.68, -13.9, 0.0932, 0.338, -0.0753, 
0.47, -0.299, -0.225, 0.421, -1.43, -0.0539, -0.0673, 0.532, 
0.0349, 0.602, 0.759, -1.15, -0.0371, -0.00496, -0.00491, 
0.332,0.413, 0., 0., O. 

1* fixed effects ends, random effects starts *1 
, -2.67, 0.232, 1.83, -1.65, 1.05, 0.0846, -1.55, 
0.135, -1.86, -0.284, -1.11, -0.526, -0.0351, 1.54, 1.07, 
-0.0423, 1.48, 1.35, -0.872, 0.437, 0.414, 0.218, 1.28, 0.374, 
-0.464, -1.99, 0.554, 0.695, 1.63, 0.277, 0.306, 1.02, 0.845, 
-1.48, 1.07, 1.04, 1.2, 1.08, 1.43, -1.76, 0.0118, -1.38, 
0.0572, -0.335, 1.6, -1.07, -3.64, 1.47, 0.781, 1.69, 1.73, 
-0.436, 1.5, 0.597, 1.81, 0.677, 0.524, 2.06, 1.26, 0.945, 
2.32, -0.762, 0.966, 0.776, 0.558, -0.101, 1.37, -2.86, -2.38, 
-0.491, -3.17, 0.456, -1.01, 1.95, -1.24, 2.1, 1.33, 1.15, 
-0.15, -0.914, -0.403, 1.9, 1.55, -2.12, -1.63, 1.5, 0.746, 2, 
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1.72, 0.743, -0.928, -0.141, -1.31, 0.206, -0.593, 1.87, 
-0.265, 0.103, -1.98, 2.22, 0.479, 1.36, -2.64, -3, -3.42, 
0.832, 2.02, 0.905, 1.36, -1.91, 2.18, -1.21, -1.4, 1.1, 2.18, 
-0.202, -2.15, -0.18, 2.11, 2.13, -2.24, 1.35, -0.947, 1.37, 
1.79, 2.22, 2.07, -1.16, -0.177, 1.5, 2.27, 0.224, 0.697, 2.1, 
1.38, 1.14, -0.704, 1.24, 0.753, -2.53, 1.06, -2.63, 1.39, 
1.95, 0.276, 1.78, 2.11, -0.847, -1.46, 0.359, -0.728, 0.185, 
-1.64, 1.84, 0.382, 0.274, -0.46, -2.66, -3.08, 0.0378, -2.44, 
1.33, 2.1, -0.379, 0.606, -0.586, 1.72, -0.75, -1.28, 1.43, 
1.01, 1.45, 0.107, 2.15, 1.08, -1.73, -1.65, 0.934, -1.46, 
0.483, -1.16, -0.562, -2.37, -0.24, 1.04, -1.01, -0.139, 
-0.317, -1.43, 2.12, 2.2, 2.32, -0.622, -1.04, -2.7, -1.44, 
-0.846, -2.1, -1.11, 0.561, -0.423, 1.87, 1.32, 1.19, 0.586, 
2.43, 2.69, -1.85, 1.71, -0.706, -0.49, -0.44, 0.161, -2.89, 
0.98, -2.29, -2.15, 0.625, 0.2, 0.604, 2.49, -0.875, -0.718, 
-0.379, 0.583, 1.23, -0.777, 1.5, -3.24, 1.24, 0.659, 1.92, 
2.32, -1.67, 0.871, 0.21, -1.69, -0.36, -0.939, 0.664, 0.521, 
1.39, -0.556, -1.13, -3.06, -0.452, -0.792, -1.87, 2.31, 
-2.28, 1.12, -1.06, 1.96, 0.79, 1.62, -1.24, 0.592, 2.05, 
-0.261, 0.764, -1.61, 1.54, 0.299, -0.153, -0.485, -1.44, 
1.04, 1.9, 0.756, -2.9, 1.38, 1.37, 0.235, -1.79, 1.46, 0.875, 
1.88, 1.16, -0.287, 1.11, -0.815, -2.69, -4.12, -2.11, 0.709, 
-2.63, -3.11, 0.207, -2.32, -2.87, 1.17, -1.38, -2.59, -0.131, 
-2.54, 0.844, 0.381, 1.84, -2.11, -1.83, 0.805, 1.34, -1.83, 
-1.35, -2.29, -2.37, 1.74, -2.6, -2.48, -1.23, -1.85, 2.26, 
0.0941, 1.25, 1, -1.37, 2.31, -0.4, 1.71, -1.97, 1.16, -0.476, 
0.39, 1.53, 0.474, 2.52, 1.91, -0.148, -0.862, 2.09, 0.197, 
1.56, 0.463, 1.97, -1.03, 0.534, -1.1, -0.028, -0.627, 0.752, 
1.38, 1.17, 1.36, 0.198, 0.19, 0.731, -0.132, -0.02, -0.056, 
2.52, 2.1, -0.409, -0.632, 0.569, 2.09, -0.276, 0.659, -2.31, 
-1.91, -2.08, 0.208, 0.494, 1.21, 1.7, 1.32, -0.409, -3.09, 
-3.43, 0.97, 0.949, 2.52, -0.00847, 1.63, -0.181, -1.96, 
-0.993, 0.843, -1.54, 1.68, 1.45, -1.94, 2.39, 0.721, -2.23, 
2.08, 0.438, -1.07, 0.139, 1.09, 1.58, -0.399, 1.7, 1.94, 
0.761, -0.965, 0.228, -1.91, 1.08, -0.0556, 0.468, -1.57, 
0.565, 2.17, 1.81, -0.216, 0.331, 0.706, 2.25, -0.678, 1.36, 
1.01, 1.71, -2.81, 0.522, -2.73, 0.0914, -1.36, 2.21, 1.7, 
-0.728, -0.579, 0.791, 2.02, 2.23, -2.03, -1.53, 0.224, -0.67, 
-1.41, 1.34, 1.74, 0.586, -0.78, -0.756, -0.623, 2.26, 0.775, 
2.64, 1.19, 0.487, 1.94, 1.79, 2.1, -1.97, -1.23, 1.67, 0.636, 
-0.0533, 1.82, -0.124, 2.08, 0.956, -0.923, 2.07, 1.42, 1.95, 
1.48, 0.486, 1.53, -0.0289, -0.525, -1.55, 0.306, -1.27, 0.37, 
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0.927, -0.866, 2.28, 0.271, -1.28, 0.542, 2.04, -1.92, 1.76, 
-1.55, -1.18, 0.247, 1.93, 0.982, 0.326, 2.43, 2.42, 0.503, 
0.275, 0.00247 }; 

float muraw[] = { 
-38.7442484590995, -23.1378682268593, 
5.67649625670294, -13.907972716795, 0.0931783114425791, 
0.337834364839979, -0.0752851004003422, 0.470224709915386, 
-0.298785038532856, -0.225319467811483, 0.42084060477797, 
-1.42775926202799, -0.0538508483055472, -0.0672816365946448, 
0.532094280005891, 0.0349276596412233, 0.602066922021037, 
0.759001567577583, -1.15488141529265, -0.0370977406594049, 
-0.00495849763383467, -0.0049145609567213, 0.332246292917992, 
0.412687043722702, 0.0, 0.0, 0.0 }; 

float sigmainvraw[] = { 

0.000565, -0.000326, -0.00046, 5.18e-19, -0.00391, 
1.63e-19, -0.00119, 4.51e-19, -0.000867, 3.91e-19, 
-0.00064, -7.7e-18, -0.00912, 9.72e-16, -0.000237, 
3.53e-17, -0.00169, 1.7e-16, -0.000624, 5.5e-18, 
-0.00073, -6.84e-18, -0.000356, 3.43e-17, 9.17e-05, 
-5.03e-17, -0.000234, -0.000326, 0.00194, -0.000977, 
-0.00214, 0.00225, -2.13e-05, 0.000686, 3.87e-05, 
0.0005, 0.000152, 0.000369, 0.00979, 0.00526, -0.0215, 
0.000137, -0.000875, 0.000973, -0.00405, 0.00036, 
1.3ge-05, 0.000421, 9.14e-05, 0.000205, -0.000876, 
-5.2ge-05, 0.000833, 0.000135, -0.00046, -0.000977, 
0.00138, 0.00159, 0.00318, 1.58e-05, 0.000971, 
-2.86e-05, 0.000709, -0.000113, 0.000528, -0.00725, 
0.00822, 0.0159, -0.000505, 0.000648, 0.00146, 0.003, 
0.000416, -1.03e-05, 0.000644, -6.77e-05, 0.000317, 
0.000649, -0.00011, -0.000617, 0.000234, 5.18e-19, 
-0.00214, 0.00159, 0.0123, -3.78e-06, -0.00747, 
9.2e-07, -0.00345, 1.71e-06, -0.00707, 3.67e-06, 
-0.0524, 0.000451, 0.0284, -0.000402, 0.00714, 5e-05, 
0.0126, -5.31e-05, -0.000438, 2.87e-05, 0.00293, 
1.56e-05, 0.0046, -2.04e-05, 0.000484, 2.51e-05, 
-0.00391, 0.00225, 0.00318, -3.78e-06, 0.027, 
-3.76e-08, 0.00823, 6.83e-08, 0.006, 2.68e-07, 
0.00443, 1.73e-05, 0.0631, -3.7ge-05, 0.00168, 
-1.55e-06, 0.0117, -7.15e-06, 0.00432, 2.45e-08, 
0.00505, 1.61e-07, 0.00246, -1.55e-06, -0.000633, 
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1.47e-06, 0.00162, 1.63e-19, -2.13e-05, 1.58e-05, 
-0.00747, -3.76e-08, 8.48, 9.15e-09, -3.81, 1.7e-08, 
0.268, 3.65e-08, -1.7, 4.4ge-06, -0.231, -4e-06, 
-1.46, 4.98e-07, -0.471, -5.28e-07, -0.298, 2.86e-07, 
-0.459, 1.55e-07, -0.599, -2.03e-07, 0.856, 2.5e-07, 
-0.00119, 0.000686, 0.000971, 9.2e-07, 0.00823, 
9.15e-09, 0.00251, -1.66e-08, 0.00183, -6.53e-08, 
0.00135, -4.21e-06, 0.0192, 9.23e-06, 0.00049, 
3.76e-07, 0.00355, 1.74e-06, 0.00131, -5.97e-09, 
0.00154, -3.93e-08, 0.000749, 3.77e-07, -0.000194, 
-3.58e-07, 0.000494, 4.51e-19, 3.87e-05, -2.86e-05, 
-0.00345, 6.83e-08, -3.81, -1.66e-08, 6.33, -3.0ge-08, 
0.199, -6.62e-08, -0.00206, -8.14e-06, 0.12, 7.25e-06, 
-0.105, -9.03e-07, -1.27, 9.58e-07, -0.0119, 
-5.18e-07, 0.00783, -2.82e-07, 0.33, 3.68e-07, -0.539, 
-4.53e-07, -0.000867, 0.0005, 0.000709, 1.71e-06, 
0.006, 1.7e-08, 0.00183, -3.0ge-08, 0.00143, 
-1.21e-07, 0.000992, -7.82e-06, 0.014, 1.72e-05, 
0.000348, 6.9ge-07, 0.00258, 3.24e-06, 0.000926, 
-1.11e-08, 0.00112, -7.3e-08, 0.000543, 7e-07, 
-0.00014, -6.66e-07, 0.000358, 3.91e-19, 0.000152, 
-0.000113, -0.00707, 2.68e-07, 0.268, -6.53e-08, 
0.199, -1.21e-07, 0.0346, -2.6e-07, -0.0781, -3.2e-05, 
-0.00906, 2.85e-05, -0.101, -3.55e-06, -0.12, 
3.76e-06, -0.0189, -2.04e-06, -0.0297, -1.11e-06, 
-0.0167, 1.44e-06, 0.0151, -1.78e-06, -0.00064, 
0.000369, 0.000528, 3.67e-06, 0.00443, 3.65e-08, 
0.00135, -6.62e-08, 0.000992, -2.6e-07, 8.44, 
-1.68e-05, -0.582, 3.68e-05, -1.34, 1.5e-06, 0.272, 
6.94e-06, -0.163, -2.38e-08, -0.673, -1.57e-07, -1.19, 
1.5e-06, -0.261, -1.43e-06, 0.108, -7.7e-18, 0.00979, 
-0.00725, -0.0524, 1.73e-05, -1.7, -4.21e-06, 
-0.00206, -7.82e-06, -0.0781, -1.68e-05, 1.06, 
-0.00206, -0.0894, 0.00184, 0.342, -0.000229, 0.256, 
0.000243, 0.0807, -0.000131, 0.104, -7.14e-05, 0.0619, 
9.31e-05, -0.166, -0.000115, -0.00912, 0.00526, 
0.00822, 0.000451, 0.0631, 4.4ge-06, 0.0192, 
-8.14e-06, 0.014, -3.2e-05, -0.582, -0.00206, 0.194, 
0.00452, 0.0932, 0.000184, 0.00881, 0.000853, 0.021, 
-2.93e-06, 0.0594, -1.92e-05, 0.0894, 0.000185, 
0.0166, -0.000175, -0.0035, 9.72e-16, -0.0215, 0.0159, 
0.0284, -3.7ge-05, -0.231, 9.23e-06, 0.12, 1.72e-05, 
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-0.00906, 3.68e-05, -0.0894, 0.00452, 0.274, -0.00403, 
0.049, 0.000502, 0.0591, -0.000533, 0.00734, 0.000288, 
0.0111, 0.000157, 0.0283, -0.000204, -0.0337, 
0.000252, -0.000237, 0.000137, -0.000505, -0.000402, 
0.00168, -4e-06, 0.00049, 7.25e-06, 0.000348, 
2.85e-05, -1.34, 0.00184, 0.0932, -0.00403, 5.56, 
-0.000164, -0.017, -0.00076, 0.483, 2.61e-06, 0.186, 
1.71e-05, -0.0492, -0.000164, 0.0907, 0.000156, 
-0.368, 3.53e-17, -0.000875, 0.000648, 0.00714, 
-1.55e-06, -1.46, 3.76e-07, -0.105, 6.9ge-07, -0.101, 
1.5e-06, 0.342, 0.000184, 0.049, -0.000164, 0.387, 
2.04e-05, 0.334, -2.17e-05, 0.076, 1.17e-05, 0.114, 
6.38e-06, 0.099, -8.32e-06, -0.119, 1.03e-05, 
-0.00169, 0.000973, 0.00146, 5e-05, 0.0117, 4.98e-07, 
0.00355, -9.03e-07, 0.00258, -3.55e-06, 0.272, 
-0.000229, 0.00881, 0.000502, -0.017, 2.04e-05, 4.14, 
9.46e-05, 0.514, -3.25e-07, -0.263, -2.13e-06, 0.0777, 
2.05e-05, -1.25, -1.95e-05, -0.00554, 1.7e-16, 
-0.00405, 0.003, 0.0126, -7.15e-06, -0.471, 1.74e-06, 
-1.27, 3.24e-06, -0.12, 6.94e-06, 0.256, 0.000853, 
0.0591, -0.00076, 0.334, 9.46e-05, 1.9, -0.0001, 
0.0795, 5.43e-05, 0.026, 2.95e-05, 0.0449, -3.85e-05, 
-0.347, 4.75e-05, -0.000624, 0.00036, 0.000416, 
-5.31e-05, 0.00432, -5.28e-07, 0.00131, 9.58e-07, 
0.000926, 3.76e-06, -0.163, 0.000243, 0.021, 
-0.000533, 0.483, -2.17e-05, 0.514, -0.0001, 0.625, 
3.45e-07, -0.00154, 2.27e-06, -0.00539, -2.17e-05, 
-0.137, 2.07e-05, -0.162, 5.5e-18, 1.3ge-05, 
-1.03e-05, -0.000438, 2.45e-08, -0.298, -5.97e-09, 
-0.0119, -1.11e-08, -0.0189, -2.38e-08, 0.0807, 
-2.93e-06, 0.00734, 2.61e-06, 0.076, -3.25e-07, 
0.0795, 3.45e-07, 0.0161, -1.86e-07, 0.0216, 
-1.01e-07, 0.0198, 1.32e-07, -0.0291, -1.63e-07, 
-0.00073, 0.000421, 0.000644, 2.87e-05, 0.00505, 
2.86e-07, 0.00154, -5.18e-07, 0.00112, -2.04e-06, 
-0.673, -0.000131, 0.0594, 0.000288, 0.186, 1.17e-05, 
-0.263, 5.43e-05, -0.00154, -1.86e-07, 0.0711, 
-1.23e-06, 0.0847, 1.18e-05, 0.0951, -1.12e-05, 
-0.0151, -6.84e-18, 9.14e-05, -6.77e-05, 0.00293, 
1.61e-07, -0.459, -3.93e-08, 0.00783, -7.3e-08, 
-0.0297, -1.57e-07, 0.104, -1.92e-05, 0.0111, 
1.71e-05, 0.114, -2.13e-06, 0.026, 2.27e-06, 0.0216, 
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-1.23e-06, 0.038, -6.66e-07, 0.0303, 8.6ge-07, 
-0.0222, -1.07e-06, -0.000356, 0.000205, 0.000317, 
1.56e-05, 0.00246, 1.55e-07, 0.000749, -2.82e-07, 
0.000543, -1.11e-06, -1.19, -7.14e-05, 0.0894, 
0.000157, -0.0492, 6.38e-06, 0.0777, 2.95e-05, 
-0.00539, -1.01e-07, 0.0847, -6.66e-07, 8.54, 
6.3ge-06, 0.096, -6.07e-06, 0.56, 3.43e-17, -0.000876, 
0.000649, 0.0046, -1.55e-06, -0.599, 3.77e-07, 0.33, 
7e-07, -0.0167, 1.5e-06, 0.0619, 0.000185, 0.0283, 
-0.000164, 0.099, 2.05e-05, 0.0449, -2.17e-05, 0.0198, 
1.18e-05, 0.0303, 6.3ge-06, 5.25, -8.33e-06, -0.0825, 
1.03e-05, 9.17e-05, -5.2ge-05, -0.00011, -2.04e-05, 
-0.000633, -2.03e-07, -0.000194, 3.68e-07, -0.00014, 
1.44e-06, -0.261, 9.31e-05, 0.0166, -0.000204, 0.0907, 
-8.32e-06, -1.25, -3.85e-05, -0.137, 1.32e-07, 0.0951, 
8.6ge-07, 0.096, -8.33e-06, 0.387, 7.92e-06, 3.88e-05, 
-5.03e-17, 0.000833, -0.000617, 0.000484, 1.47e-06, 
0.856, -3.58e-07, -0.539, -6.66e-07, 0.0151, 
-1.43e-06, -0.166, -0.000175, -0.0337, 0.000156, 
-0.119, -1.95e-05, -0.347, 2.07e-05, -0.0291, 
-1.12e-05, -0.0222, -6.07e-06, -0.0825, 7.92e-06, 
0.183, -9.77e-06, -0.000234, 0.000135, 0.000234, 
2.51e-05, 0.00162, 2.5e-07, 0.000494, -4.53e-07, 
0.000358, -1.78e-06, 0.108, -0.000115, -0.0035, 
0.000252, -0.368, 1.03e-05, -0.00554, 4.75e-05, 
-0.162, -1.63e-07, -0.0151, -1.07e-06, 0.56, 1.03e-05, 
3.88e-05, -9.77e-06, 0.0954 }; 

float prob[7]; 
char c[10]; 
struct tnode *polyal = NULL; 
struct tnode *polyaO = NULL; 
int m = 0, i, j, k, n, test, munique; 

I*EDIT*I 
int sampdim = 1000, datadim = 30; I*EDIT for ( 

upper bounds on) sampdim-dim sample space, data 
dim-dim data-space *1 

param = (float **) malloc( (unsigned) 2 * sizeof(float 

*)); 
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data = (float **) malloc( (unsigned) MAXSAMPLE 
*sizeof(float * )); 

/*set the random seed */ 
srand(26); 

for ( i = 0; i < 255; i++) { 
polyal = addtree(polyal, critical[iJ, 1.0); 
polyaO = addtree(polyaO, critical[iJ, 1.0); 
} 

fdata = fopen (argv [lJ, "r"); 
while (test != EOF) { 
*(data + m) = (float *) malloc( (unsigned) (datadim 

+ 1) * sizeof(float)); 
/* the (datadim+x) allows for x extra v 

ariables to be calculated) */ 
for ( j = 0; j < datadim; j++) { 
test = fscanf(fdata, "%f", *(data 

+ m) + j); 
} 

m++; 
} 

/*TRANSFORM DATA HERE */ 
data = transpose( data, datadim + 1, m); 
/*CHECK that you have the corect columns for ti 

mes, and deltas */ 
munique = sortunique( data[OJ, data [30J , data[lJ, 

m); 

Y = (float **) malloc( (unsigned) munique * sizeof( float 
*)) ; 

dN = (float **) malloc( (unsigned) munique * sizeof( float 
*)) ; 

for ( j = 0; j < munique; j++) { 
Y[jJ = (float *) malloc( (unsigned) m * 

sizeof(float)); 
dN[jJ = (float *) malloc( (unsigned) m 

*sizeof(float)); 
for ( i = 0; i < m; i++) { 
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Y[jJ[iJ = (data[OJ[iJ >= data[30J[j] ); 
dN [jJ [iJ = ( fabs (data [30J [jJ -

} 

} 

data [OJ [iJ) < 0.0001 ); 

1* CHECK to cope with data in different sized a 
rrays we have pointers to the different arrays. 

Ammend as neccessary *1 
datapointers = (float ***) malloc( (unsigned) 6 

*sizeof( float * *)); 
datapointers[OJ = data; 
datapointers[lJ = Y; 
datapointers[2J = dN; 
mun[OJ = (float *)malloc( (unsigned) 3 * sizeof(float)); 
mun[OJ [OJ = (float) munique; 
1* determines the number of unobserved frailtie 

s *1 
mun[OJ [lJ = max( data[2J, m, 0.0); 
mun[OJ [2J = 1; 1* use to indicate to Posterior 

that this is the first iteration *1 
datapointers[3J = mun; 
sampdim = 27 + (int) max( data[2J, m, 0.0); 
datapointers[5J = (float **) malloc( (unsigned) 27 

*sizeof(float *)); 
for ( i = 0; i < 27; i++) { 
datapointers[5J [iJ = (float *) malloc( (unsigned) 27 

*sizeof(float )); 
for ( j = 0; j < 27; j++) { 
datapointers[5J [iJ [jJ = sigmainvraw[27*i+jJ; 
} 

} 

datapointers[4J = (float **) malloc( (unsigned) 1 
*sizeof(float *)); 

datapointers[4J [OJ = muraw; 

for ( i = 0; i < 2; i++) { 
param[iJ = (float *) malloc( (unsigned) sampdim 

*sizeof(float)); 
for ( j = 0; j < sampdim; j++) { 
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param[iJ [jJ = starters[jJ; I*E 
DIT starting values *1 

} 

} 

I*sampling proper *1 

if ( argc == 3) { 
n = 10000; 
} else { 
n = (int) atof( argv[3J); 
} 

I*command line or default sample size *1 

foutput = fopen(argv [2J, "w"); 
for ( i = 0; i < n ; ++i) { 
1* sample from the polya tree *1 
samppolya(polyal, polyaO, polyal, polyaO, 

param , datapointers, m) ; 
for (j = 0; j < sampdim; ++j) { 
metrop(param, j, m, datapointers, 

polyal, polyaO , sampdim); 
fprintf( foutput, "%f\t" , param[lJ[j]); 
} 

for (k = 0; k < 7; ++k) { 
prob[kJ = polyaexpect(polyal, indicator, 

-100, 100, quant[kJ); 
printf( "%f\t", prob[k]); 
} 

printf("\n"); 
fprintf (foutput, "\n") ; 
} 

} 

float posterior(float **param, int m, float ***datapointers, 
struct tnode *polyal, struct tnode *polyaO) 

{ 

I*EDIT compute the product of likelihood ratio 
and prior ratio p(new)/p(old) *1 
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float *beta[2J, *frail[2J, *HR[2J, **data, **Y, 
**dN, eta[2J, d ; 

double sum[2J, update; 
int dimfrail; 

int i, j, k, munique; 
data = datapointers[OJ; 
Y = datapointers[1J; 
dN = datapointers[2J; 
munique = (int) datapointers[3J [OJ [OJ; 
dimfrail = (int) datapointers[3J [OJ [1J; 

for ( i = 0; i < 2; i++) { 
HR[iJ = ( float *) malloc( (unsigned) m 

*sizeof(float)); 
frail[iJ = param[iJ + 27; 
beta[iJ = param[iJ; 
} 

update = loge polyaprior(polya1, polyaO) ); 

update += mvnormal( beta[1J, beta[OJ, datapointers[4J [OJ, 
datapointers[5J, 27); 

for (j = 0; j < dimfrail; j++) { 
update += log(dpolya(frail[1J [jJ, frail [OJ [jJ, 

polya1, polyaO)); 

} 

I*the prior ratio *1 
for ( i = 0; i < m; i++) { 
eta[1J = eta[OJ = 0.0; 
for ( k = 0; k < 27; k++) { 
eta[1J += beta[1J [kJ * data [k+3J [iJ; 
eta[OJ += beta[OJ [kJ * data [k+3J [iJ; 
} 

HR [1J [iJ = exp (eta [1J + frail [1] [(int) data [2J [iJ -1]) ; 
HR [OJ [iJ = exp (eta [OJ + frail [OJ [(int) data [2J [iJ -1]) ; 
} 
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for ( j = 0; j < munique; j++) { 
1* d copes with tied failure times *1 

sum [1] = sum[O] = d = 0; 

for ( i = 0; i < m; i++) { 
if ( Y [j] [i] ) { 

sum [1] += HR [1] [i] ; 
sum [0] += HR [0] [i] ; 
} 

if ( dN[j] [i] ) { 

update += loge HR[l] [i]) 

d++; 
} 

} 

-loge HR[O] [i]) ; 

update += d * (log(sum[O]) - log(sum[l]) ); 
1* printf (ll update j=%i, %fll, j, upda 

te) ; *1 
} 

for ( i = 0; i < 2; i++) { 
free(HR[i]); 
} 

1* printf (Illog-lik= %f \nll, update); *1 
return (update> 1000) ? 1 : update; 
} 

void metrop(float **param, int j, int m, float ***datapointers, 
struct tnode *polyal, struct tnode *polyaO, int sampdim) 

{ 

int i; 
float p; 
double postratio; 
1* range=(float *) malloc( (unsigned) sampdim*s 

izeof(float));*1 
float range[] = { 
20, 16.3, 10.5, 16.1, 14.1, 4.28, 14.7, 4.7, 14.1, 

14.7, 4.3, 9.58, 13.3, 12.6, 4.9, 12, 5.84, 8.19, 10.9, 15.6, 14.7, 
14.5, 4.46, 5.22, 12.6, 13.9, 12.6 
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1* fixed effects ends here *1 
, 8.65, 8.6, 6.55, 6.55, 8.65, 6.55, 6.55, 8.65, 8.6, 
8.75, 8.65, 8.7, 8.6, 6.65, 6.5, 7, 8.6, 6.55, 6.55, 8.7, 8.6, 6.75, 
8.85, 8.65, 6.75, 6.6, 8.6, 8.6, 9.3, 6.55, 6.6, 6.5, 6.5, 7.1, 6.5, 
8.6, 6.6, 6.5, 6.55, 6.7, 6.5, 6.6, 6.75, 6.5, 8.95, 6.6, 6.75, 6.65, 
6.95, 6.55, 8.65, 8.65, 8.6, 6.7, 8.75, 6.55, 6.6, 6.5, 6.6, 6.5, 
6.55, 6.55, 6.55, 6.6, 6.6, 6.5, 6.5, 8.7, 6.7, 6.55, 6.55, 6.5, 6.5, 
6.55, 8.65, 6.55, 8.7, 6.75, 8.6, 6.5, 8.65, 8.6, 8.65, 6.5, 8.65, 
6.6, 6.8, 8.8, 8.8, 6.55, 6.6, 6.55, 6.55, 7.65, 6.5, 8.65, 8.8, 
6.55, 6.5, 6.8, 6.65, 8.6, 6.6, 8.6, 6.5, 6.5, 8.6, 6.5, 8.6, 8.6, 
6.55, 6.5, 6.5, 6.5, 8.7, 8.6, 6.55, 6.5, 8.6, 8.6, 6.5, 6.55, 6.55, 
6.75, 6.55, 6.6, 8.95, 6.55, 8.75, 6.5, 6.5, 6.85, 6.5, 6.5, 8.7, 
6.85, 8.6, 8.65, 6.6, 6.6, 8.65, 6.5, 6.55, 6.55, 8.65, 8.9, 8.8, 
8.6, 6.6, 8.7, 6.5, 6.5, 6.65, 6.55, 6.95, 6.5, 6.9, 8.7, 6.55, 6.55, 
6.55, 6.6, 6.5, 6.55, 8.7, 8.65, 6.75, 8.65, 6.75, 6.65, 6.95, 9.1, 
7.1, 6.55, 8.6, 6.55, 8.75, 7.1, 6.5, 6.5, 6.5, 6.55, 8.6, 8.65, 8.6, 
8.6, 8.8, 8.9, 6.6, 8.7, 6.5, 6.5, 6.55, 8.6, 6.5, 6.5, 6.6, 6.6, 
6.85, 6.65, 7.35, 7.45, 8.65, 6.65, 8.7, 8.85, 7.15, 6.6, 6.55, 6.5, 
7.65, 8.65, 8.65, 8.6, 6.5, 6.6, 6.55, 8.9, 6.5, 6.8, 6.55, 6.5, 
8.65, 6.55, 6.65, 6.7, 6.6, 6.65, 6.55, 6.55, 6.55, 7.2, 7, 8.75, 
6.7, 6.75, 8.65, 6.5, 8.75, 6.55, 8.65, 6.5, 6.55, 6.6, 9.9, 8.65, 
6.5, 6.65, 6.55, 8.7, 6.55, 6.95, 6.7, 6.65, 6.8, 6.5, 6.5, 7.4, 
9.05, 6.55, 6.55, 6.6, 6.7, 6.6, 6.55, 6.5, 6.55, 6.65, 6.75, 8.65, 
7.25, 8.9, 7.55, 6.6, 8.85, 8.65, 6.6, 8.6, 8.65, 6.75, 6.6, 8.65, 
7.3, 8.65, 6.55, 6.55, 6.5, 8.7, 6.75, 6.55, 6.55, 6.65, 6.6, 8.65, 
8.6, 6.55, 8.65, 8.65, 8.6, 8.65, 6.5, 6.55, 6.75, 6.55, 8.65, 6.5, 
6.55, 6.5, 8.65, 6.55, 8.65, 6.55, 6.5, 6.6, 8.6, 6.5, 6.55, 6.55, 
8.65, 6.5, 6.55, 6.55, 6.55, 6.5, 8.65, 6.55, 8.65, 8.6, 6.65, 6.55, 
6.5, 6.6, 6.6, 8.6, 6.8, 6.6, 6.6, 8.6, 8.6, 6.5, 6.5, 8.65, 6.6, 
6.55, 6.5, 6.7, 6.55, 9.1, 8.7, 8.9, 6.6, 6.6, 6.55, 6.55, 6.55, 
6.65, 8.7, 8.75, 6.6, 6.6, 6.5, 6.8, 6.55, 6.6, 7.25, 6.7, 6.7, 8.7, 
6.5, 6.55, 8.7, 6.5, 6.55, 7.3, 6.5, 6.55, 7, 6.6, 6.55, 6.5, 6.8, 
6.5, 6.55, 6.7, 7.1, 6.65, 8.75, 6.55, 8.75, 6.55, 8.65, 6.55, 6.5, 
6.55, 8.65, 6.7, 8.6, 6.55, 6.5, 8.6, 8.6, 6.55, 6.55, 8.75, 6.65, 
8.8, 6.85, 8.7, 6.5, 6.55, 8.65, 6.75, 8.6, 6.5, 8.6, 6.5, 8.7, 8.65, 
6.55, 6.75, 8.65, 6.55, 6.5, 6.55, 8.65, 8.6, 8.6, 6.5, 6.55, 6.5, 
6.5, 8.6, 6.55, 6.55, 6.5, 8.7, 8.65, 6.5, 6.55, 6.6, 6.5, 6.65, 6.5, 
7.15, 6.55, 6.5, 6.55, 6.55, 6.5, 8.6, 6.6, 8.6, 8.6, 8.6, 6.6, 6.8, 
6.6, 6.7, 7.15, 6.6, 6.65, 6.6, 8.6, 8.6, 8.7, 6.5, 8.6, 6.7, 7.3, 
8.65, 6.5, 8.65, 6.55, 8.6, 8.75, 8.6, 6.55, 6.55, 8.6, 6.5, 6.5, 

6.6, 8.65, 6.65, 6.65 }; 
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/*EDIT as appropriate to change range of random 
walk proposal distributions*/ 

param[O] [j] = param[l] [j] ; 
param[l] [j] = proposal( param[1] [j], range [j]); 

postratio = posterior (param, m, datapointers, polyal, 
polyaO ); 

p = (rand() + 1) / 32767.0; 
if (log(p) > postratio) { 
param[l] [j] = param[O] [j] ; 
} 

} 

float proposal( float previous, float range) 
{ 

float p; 
p = range * (rand() / 32767.0 - 0.5); 
return previous + p; 
} 

void samppolya( struct tnode *wherel, struct tnode *whereO, 
struct tnode *rootl, struct tnode *rootO, float **param, 
float ***datapointers, int m) 

{ 

float ratio, p; 
if ( wherel != NULL) { 
whereO->P = wherel->P; 
wherel->P = proppolya( wherel ); 
ratio = posterior( param, m, datapointers, 

rootl, rootO); 
p = (rand() + 1) / 32767.0; 
if (log(p) > ratio ) { 
wherel->P = whereO->P; 
} 

samppolya( wherel->left, whereO->left, 
rootl, rootO, param, datapointers, m); 

samppolya( wherel->right, whereO->right, 
rootl, rootO, param, datapointers, m); 

} 
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} 

float proppolya( struct tnode *where1) 
{ 
float p, range; 
p = rand() I 32767.0 - 0.5; 
1* EDIT tinker with the sampling range *1 
range = 2.0 I sqrt( 0.01 * pow( 2, where1->level 

-1)); 

p = where1->P + p * range; 
if ( (p > 0.0) && (p < 1.0) && (where1->level > 

1.0) 1* && (where1->level <5.0) *1 
) 

return p; 
else 
return where1->P; 
} 

float polyaprior( struct tnode *where1, struct tnode *whereO) 
{ 
float p; 
if ( where1 -- NULL) 

return 1.0; 
else { 
p = pow( (where1->P) I (whereO->P) * (1 

-where1->P) I (1 - whereO->P), 0.01 * pow( 2, 
where1->level - 1) - 1 ) ; 

return polyaprior( where1->left, whereO->left ) 
*polyaprior(where1->right, whereO->right) 
*p ; 

I*EDIT change the hyper parameters for 
the polya tree *1 

} 
} 

1* ratios of standard densities *1 
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float dnorm(float yl, float yO, float mul, float muO, float sigmal, 
float sigmaO) 

{ 

float answer; 
answer = sigmaO / sigmal * exp( -( (yl - mul) * 

(yl - mul) / sigmal / sigmal - (yO - muO) * (yO 
-muO) / sigmaO / sigmaO) / 2.0); 

return answer; 
} 

float factorial( float x) 
{ 

if ( x == 0) 

return 1.0; 

else 
return x * factorial(x - 1); 
} 

float dbinomial(float rl, float rO, float pl, float pO, 
float n) 

{ 

float update; 
if ( pl < 0 I I 

< 0 II pO 
return 0.0; 
else { 

pl > 1 I I rl < 0 I I rl > n I I pO 
> 1 I I rO < 0 I I rO > n) 

update = pow(pl, rl) / pow(pO, rO); 
update *= pow( 1 - pl, n - rl) / pow( 1 

-pO, n - rO); 
update *= factorial( rO) / factorial(rl); 
update *= factorial(n - rO) / factorial( n 

-rl); 
return update; 
} 

} 

float dgamma( float xl, float xO, float 11, float 10, float a) 

{ 

if ( xl > 0.0 && xO > 0.0) 
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return pow(xl * 11 / xO / 10, a) * xO / 
xl * exp(-ll * xl + 10 * xO); 

else 
return 0.0; 
} 

float dpois( float yl, float yO, float mul, float muO) 
{ 

return exp(-(mul - muO)) * pow( mul / muO, yl) 
*pow( muO, yl - yO) * factorial(yO) / factorial(yl); 

} 

float dpolya( float bl, float bO, struct tnode *polyal, 
struct tnode *polyaO) 

{ 

float update = 1.0, upper[2] = { 
100.0, 100.0 }, 
lower[2] = { 
-100.0, -100.0 }; 

struct tnode *wherel = polyal; 
struct tnode *whereO = polyaO; 
/* EDIT the highest level of the polya tree (9-

1) */ 
while ( wherel != NULL && wherel->level < 10.0 ) { 
if ( bl <= wherel->crit) { 
update *= wherel->P; 
upper[l] = wherel->crit; 
wherel = wherel->left; 

} else { 
update *= (1 - wherel->P); 
lower [1] = wherel->crit; 
wherel = wherel->right; 
} 

if ( bO <= whereO->crit) { 
update /= whereO->P; 
upper [0] = whereO->crit; 
whereO = whereO->left; 
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} else { 
update /= (1 - whereO->P); 
lower[O] = whereO->crit; 
whereO = whereO->right; 

} 
} 
update *= (upper[O] - lower[O]) / (upper[1] - lower[1]); 
if ( upper[1] == 100.0 I I lower [1] == -100.0) 
update *= (upper[1] - lower[1]) * exp(-b1 

*b1 / 2) / sqrt(2 * PI) * pow(2.0, (where1 
== NULL) ? 8.0 : (where1->level - 1.0) ); 

if ( upperCO] == 100.0 I I lower[O] == -100.0) 
update /= (upper[O] - lower[O]) * exp(-bO 

*bO / 2) / sqrt(2 * PI) * pow(2.0, (whereO 
-- NULL) ? 8.0 : (whereO->level - 1.0)); 

return update; 
} 

struct tnode *addtree( struct tnode *p, float critical, 
float level) 

{ 
if ( P == NULL) { 
p = (struct tnode *) malloc( sizeof(struct tnode )); 
p->crit = critical; 
p->P = 0.5; 
p->left = p->right = NULL; 
p->level = level; 
} else { 
level++; 
if ( critical <= p->crit) 
p->left = addtree( p->left, critical, 

level); 
else 
p->right = addtree( p->right, critical, 

level); 
} 
return p; 

} 
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float polyaexpect( struct tnode *root, float (*function) (float, 
float), float lower, float upper, float arg) 

{ 
if ( root->left == NULL) 
return (function(upper, arg) + function(lower, 

arg)) / 2; 
else 
return (root->P) * polyaexpect( root->left, 

function, lower, root->crit, arg) + (1 
-root->P) * polyaexpect( root->right, function, 
root->crit, upper, arg); 

} 

float momentl( float x) 
{ 
x = 1.0 * x; 
return x; 
} 

float moment2( float x) 
{ 
x = 1.0 * x; 
return x * x; 
} 

float indicator( float x, float arg) 
{ 
return (x <= arg) ? 1.0 : 0.0; 
} 

void Ppolya( struct tnode *where, float x, int m, float *p) 

{ 
if ( where != NULL) { 
if ( x <= where->crit) { 
p[m] = where->P; 
Ppolya( where->left, x, m + 1, 

p); 
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} else { 
p[m] = 1 - where->P; 
Ppolya( where->right, x, m + 1, 

p); 
} 

} 

} 

float lowB( struet tnode *where) 
{ 

float p = 1.0; 
struet tnode *now = where; 
while (now != NULL) { 
p *= now->P; 
now = now->left; 
} 

return - 0.01159805342 * 2 / P + 2.66006746861747; 
} 

float uppB( struet tnode *where) 
{ 

float p = 1. 0; 
struet tnode *now = where; 
while (now != NULL) { 
p *= (1 - now->P); 
now = now->right; 
} 

return 0.01159805342 * 2 / p - 2.66006746861747; 
} 

float**transpose (float **input, int neol, int nrow) 
{ 

int e, r; 
float **output; 
output = (float **) malloe( (unsigned) neol * sizeof( float 

*)); 

for ( e = 0; e < neol; e++) { 
output[e] = (float *) malloe( (unsigned) nrow 

*sizeof( float)); 
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for ( r = 0; r < nrow; r++) { 
output [c] [r] = input [r] [c] ; 
} 

} 

for ( r = 0; r < nrow; r++) 
free( input[r]); 
free( input); 
return output; 
} 

float max( float *list, int listlength, float lower) 
{ 

int i; 
for ( i = 0; i < listlength; i++) { 
if (list[i] > lower) 
lower = list [i] ; 
} 

return lower; 
} 

int sortunique( float *time, float *x, float *delta, int m) 
{ 

int i, j, k, n = 0; 
for ( i = 0; i < m; i++) { 
if ( delta[i] > 0.5) { 
for ( j = 0; j < n I I n == 0; j++) { 
if (time[i] < x[j]) { 
for (k = n; k > 

j; k--) { 

1* code folded from here *1 
x [k] = 

x [k-l] ; 

1* unfolding *1 
} 

xU] = time[i]; 
n++; 
break; 
} else if (time[i] -- x[j]) { 
break; 
} else { 
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x en] = time [i] ; 

if ( j == n - 1 

II n == 0 ) 
/* code folded from here */ 
n++; 
/* unfolding */ 
} 

} 

} 

} 

return n; 
} 

float scale(float *x, int n) 
{ 

float mu = 0.0, oldmu = 0.0, s = 0.0; 

int i; 
for ( i = 0; i < n; i++) { 
mu = (i * oldmu + xCi]) / (i + 1.0); 

if ( i > 0) { 

s = (i - 1) * s / «float) i) + 
( xCi] - oldmu) * (x[i] - oldmu) 
/ (i + 1. 0) ; 

} 

oldmu = mu; 
} 

if (s > 0) { 
for ( i = 0; i < n; i++) { 
xCi] = (x[i] - mu) / sqrt(s); 
} 

} 

return sqrt(s); 
} 

float mvnormal( float *xnew, float *xold, float *mu, float **sigmainv, 

int dim) 
{ 

int i, j; 
float sum = 0.0; 
for ( i = 0; i < dim; i++) { 
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for (j = 0; j < dim; j++) { 
sum += - (( xnew [i] - mu [i]) * ( sigmainv [i] [j] ) 

*(xnew[j] - mu[j]) - ( xold[i] 
-mu [iJ) * ( sigmainv [i] [j J) * (xold [j] 

} 

} 

-mu[j])) / 2.0 ; 

return sum; 
} 

8.5 Code for displaying the P61ya C.D.F.s 

This code is written in Python (Lutz and Ascher (1999), http://www.python.org) 

and is used to display the simulation of the C.D.F.'s from a P61ya tree. It is suitable for 

the output of the prostpart. c programme. This can be applied directly to the output, 

where the file test. py is listed below. 

> prostpart infile outfile 10001 python test.py -3 3.0001 7 

For practical purposes, on the unix platform used by the author, the bufFer management 

held up the display for minutes at a time and it was more efFective to save the output 

and view it at a later time 

> prostpart infile outfile 1000 > out 

> cat out 1 python test.py -3 3.0001 7 

The programme takes its input as a sequence of text lines which give the values of a 

C.D.F. at a fixed sequence of values. These values are described by the three numerical 

arguments: -3, 3.0001 and 7. These are the minimum value, the maximum value, and 
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the number of values per line. The code attempts to label these values to two significant 

figures, but a bug means that instead of -3,3,7 you have to enter -3,3.00001,7. A 

window appears which has four buttons: go/pause which starts and stops the animation; 

keep/discard which indicates whether each CD.F. should be kept or erased; print which 

activates a window that can print to a file the graph currently displayed; quit which 

exits the programme. It requires the Python package to be installed on your platform. 

from Tkinter import * 
import sys, string, math 
from tkFileDialog import asksaveasfilename 

class Inter(Frame): 

def __ init __ (self, Min=-10, Max=10, Num=4, master=None): 
self.Min=Min*1.0 
self.Max=Max*1.0 
self.Num=Num 
Frame. __ init __ (self,master) 
self.createWidgets() 
Grid.config(self) 
self.update_idletasks() 
self.evolve() 

def createWidgets(self): 
self.xw=350 
self.yw=216 
self.bb=40 
self.iteration=O 
self.numbervar=StringVar() 
self.numbervar.set( "Iteration Number %d" %self.iteration) 
self.NUMBER=Label( self, textvar=self.numbervar) 
self.NUMBER.grid(row=O, column=l) 
self.QUIT=Button( self, text='quit', command=master.destroy) 

self.QUIT.grid(row=l,column=O) 
self.PRINT=Button(self, text='print', command=self.postscript_print) 

self.PRINT.grid(row=2, column=O) 
self.legend=['go', 'pause'] 
self.flag=O 
self.h=StringVar(); self.h.set(self.legend[self.flag]) 
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self.HOLD=Button(self, textvar=self.h ,command=self.hold) 
self.HOLD.grid(row=3, column=O) 
self.recleg=['keep' ,'discard'] 
self.rec=O 

self.r=StringVar();self.r.set(self.recleg[self.rec]) 
self.REC=Button(self, textvar=self.r, command=self.record) 
self.REC.grid(row=4, column=O) 

self.draw=Canvas(self, width= self.xw+2*self.bb, height=self.yw+2*self.bb) 
self.draw.line=self.draw.create_line(0,0,1,1) 
self. axes 0 
self.draw.grid(row=1, rowspan=4,column=1) 

def evolve(self): 
self.update_idletasks() 
if self.flag: 
item=sys.stdin.readline() 
try: 
probs=map(float,string.split(item)) [:(self.Num+1)] 
coord=O 
for i in range(self.Num): 
coord=coord+( self.bb+ i *self.xw/(self.Num-1),self.bb+self.yw*(1-probs[i])) 
if self. rec: 
self.draw.itemconfig(self.draw.line, fill="grey") 
else: 
self.draw.delete( self.draw.line) 
self.draw.line=self.draw.create_line(coord, fill=lred",width=1) 
self.after(1, self.evolve) 
self.iteration=self.iteration+1 
self.numbervar.set("Iteration number %d" %self.iteration) 
except IndexError: 
self.after( 1, self.evolve) 
else: 
self.after(1, self.evolve) 

def axes(self): 
self.draw.create_rectangle(self.bb-1, self.bb-1, 
self.xw+self.bb+1, self.yw+self.bb+1, width=3 ) 
ylabs=(O.O, 0.1,0.25, 0.5, 0.75,0.9, 1) 
for y in ylabs: 
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self.draw.create_text(self.bb-20, 
self.bb+self.yw*(1-y),text=y) 
self.draw.create_line(self.bb,self.bb+self.yw*(1-y), 
self.bb -10, self.bb+self.yw*(1-y) ,width=3 ) 
self.draw.create_line(self.bb,self.bb+self.yw*(1-y), 
self.bb +self.xw ,self.bb+self.yw*(1-y) , width=1) 

xlab=range(self.Num) 
for i in range(self.Num): 
xlab[i]=self.Min + i*(self.Max - self.Min)/(self.Num -1) 
k=int(math.log10(1.0*math.fabs(xlab[i]») 
xlab[i]=math.floor( 
xlab[i]*math.pow(10,k+2)+0.5)/math.pow(10,k+2) 
# supposed to round to 3 significant figures 
self.draw.create_text(self.bb+i*self.xw/(self.Num -1),self.bb-20, text=xlab[i]) 
self.draw.create_line( 
self.bb+i*self.xw/(self.Num -1),self.bb -10, 
self.bb+i*self.xw/(self.Num-1), self.bb, width=3) 

def postscript_print(self): 
fname=asksaveasfilename( defaultextension=lI. ps ll, title=IIFile to hold PostScriptll~ 
if fname: 
self.draw.postscript(file=fname) 

def hold(self): 
self.flag=1-self.flag 
self.h.set(self.legend[self.flag]) 

def record(self): 
self.rec=1-self.rec 
self.r.set(self.recleg[self.rec]) 

if __ name __ == 1I __ main __ II: 

master=TkO 
master. protocol (11 WM_DELETE_WINDOW II , master. destroy) 

if len(sys.argv)==4: 
Min=string.atof(sys.argv[1]) 
Max=string.atof(sys.argv[2]) 
Num=string.atoi(sys.argv[3]) 
test=Inter(Min=Min, Max=Max, Num=Num) 

else: 
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test=InterO 
test .mainloopO 
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