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Quantifying the Efficiency of Price-Only Contracts

in Push Supply Chains over Demand Distributions

of Known Supports∗

Donglei Du† Bo Chen‡ Dachuan Xu§

March 22, 2013

Abstract

In this paper, we quantify the efficiency of price-only contracts in supply chains
with demand distributions by imposing prior knowledge only on the support, namely,
those distributions with support [a, b] for 0 < a ≤ b < +∞. By characterizing the
price of anarchy (PoA) under various push supply chain configurations, we enrich the
application scope of the PoA concept in supply chain contracts along with complemen-
tary managerial insights. One of our major findings is that our quantitative analysis
can identify scenarios where the price-only contract actually maintains its efficiency,
namely, when the demand uncertainty, measured by the relative range b/a, is relatively
low, entailing the price-only contract to be more attractive in this regard.

Keywords: supply chain management, price of anarchy, Stackelberg game, Nash
equilibrium

1 Introduction

Price of anarchy (PoA), a quantifier measuring the inefficiency of a multi-agent system due
to selfish behavior of its agents, has been an extremely popular concept in computer sci-
ence and operations research communities in the last decade (Nisan et al. (2007)). Perakis
and Roels (2007) pioneered its application in supply chain contracts and obtained the PoA
for price-only contract for several configurations of the underlying supply chain when the
demand distributions possess the (weakly) increasing generalized failure rate (IGFR) prop-
erty. A nonnegative random variable X with cumulative distribution function (cdf) F (x)
and probability density function (pdf) f(x) is of IGFR property if xf(x)/F̄ (x) is nonde-
creasing for all x such that F̄ (x) > 0, where F̄ (x) = 1−F (x). We will use FIGFR to denote
the class of all distributions with IGFR property.

One of the most important managerial insights observed from their analysis is that the
worst PoA under FIGFR is at least 1.71 (a 71% loss of efficiency) even for the simple two-
stage chain, and consequently price-only contract may not be a viable practical contract
with certain demand distributions due to this large loss of efficiency. Nevertheless, the
price-only contract has been widely adopted in many real-life practices. This popularity has
been constantly attributed to its low administrative cost (cf. Cachon (2003)).
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Therefore, the following important questions arise naturally: Is it possible that the
assumption of IGFR on demand distributions leads to the overwhelmingly negative image
on the price-only contract? Can we identify and justify those situations where price-only
contract is attractive not just because of its low administrative cost?

These questions of significant practical consequences serve the main motivation of this
work, which investigates another class F [a, b] (0 < a ≤ b < +∞) of all distributions with sup-
port of the form [a, b]. The adoption of this class is a distributionally robust (or distribution-
free, semi-parameter or min-max) approach similar to those by Scarf (1965) (see also, e.g.,
Gallego (1992), Gallego and Moon (1993), Gallego (1998), Gallego (2001), Godfrey, and
Powell (2001), Jiang et al. (2011), Yue et al. (2006), Gallego (2007), Perakis and Roels
(2008) etc.), when only distribution parameters, such as support, mean or variance, rather
than the full distribution itself, are assumed to be known.

The main contribution of this work is to derive PoA bounds over all distributions in
the class F [a, b] under various supply chain configurations, as compared with the work of
Perakis and Roels (2007) for distribution class FIGFR. These two classes of distributions
are overlapping but not inclusive: there are IGFR distributions with support [0,∞) and
there are distributions of support [a, b] that are not IGFR. The bounds derived by Perakis
and Roels (2007) depend on the number of supply chain partners n and the profit margin,
whereas the bounds derived here depend on the number of supply chain partners n and the
relative range b/a. Hence, different and complementary managerial insights are obtained,
especially with regard to the degree of uncertainty of demand, measured by the parameter
b/a.

We only present the results on the push mode (Cachon, 2004), where the downstream
partner(s) hold(s) the supply chain inventory. Interested readers are referred to our work-
ing paper (Du et al. 2011) for results concerning the other mode, pull mode. Moreover,
throughout this paper, we will only consider pure equilibria for all the (sub-)games involved,
as mixed strategies are not well-accepted in supply chain management (Cachon and Netes-
sine, 2004). Finally, we only focus on the nontrivial cases where the upstream partner in
the game is the leader and where full efficiency cannot be achieved, that is, PoA > 1.

The paper is organized as follows. After this introduction, we first provide some prelimi-
nary results in Sec. 2, and then consider the serial supply chain system, the assembly system,
and two distribution systems depending on two different customer behaviors in Sec. 3, Sec. 4,
and Sec. 5, respectively. We conclude the paper by some important observations in Sec. 6.

All technical proofs can be found in the Appendices.

2 Preliminaries

2.1 The centralized setting

For any given supply chain system, we imagine a centralized system facing a standard
newsvendor problem where a single decision maker operates the entire supply chain. Without
loss of generality, we assume the uncertain demand X follows a continuous distribution
with probability density function f , cumulative probability function F and complementary
cumulative probability function F̄ = 1−F (x) defined on support [a, b] (0 < a ≤ b). Let r be
the unit inbound cost and w.l.o.g. p = 1 be the normalized out-bound cost. Therefore, the
imaginary decision-maker seeks to decide an inventory level x to maximize the profit Π(x)
of the entire supply chain:

max
a≤x≤b

Π(x) ≡ −rx+ E[min{x,X}] = max
a≤x≤b

(
−rx+

∫ x

0

F̄ (t)dt

)
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with optimal order quantity xc equal to the upper support b (when F̄ (x) > r for all x ∈ [a, b],
namely the objective function increases within [a, b]) or uniquely determined by:

F̄ (xc) = r, for some xc ∈ [a, b].

2.2 The decentralized setting

The game-theoretic settings to be considered can be described by the following simple sce-
nario with two players. There is a manufacturer producing a product with cost r per unit
whose goal is to set the price of the product to some value w so that he maximizes his profit.
There is also a retailer who buys the product from the manufacturer at price w per unit and
sells it with price 1 per unit. The demand X for the product follows a probability distribu-
tion. Hence, the goal of the retailer is, given the price w of the product, to determine the
inventory x that optimizes his expected profit, i.e., to determine x so that −wx+E[min x,X]
is maximized. Now, given the decision of the retailer for x, the manufacturer’s optimal price
is a value for w so that her profit (w− r)x is maximized. When both the manufacturer and
the retailer are profit maximizers, the total profit at equilibrium will be in general subop-
timal. The PoA captures the profit loss due to the selfishness of the manufacturer and the
retailer.

More complicated settings that generalize the one above will be considered in the sections
to follow. They include those with more than two parties (Sec. 3) and with a tree-like
structure (Sec. 4, and Sec. 5).

2.3 The formal definition of PoA

Before we formally define PoA, we note an essential difference between the classes F [a, b]
and FIGFR, which poses some technical challenges in our analysis later. The price-only
contract can be formulated as a multi-level mathematical program, where multiple optimal
solutions (equilibria) may exist in the lower level problem for some parameter values, leading
to ambiguity in the definition of the problem. To avoid this ambiguity, this work adopts the
well-accepted optimistic approach in the multi-level programming literature (e.g., Dempe
(2002)) with the economic interpretation that the follower is willing to support the leader,
namely the follower will select, among all solutions optimal to himself, one that is best for
the leader. Note that this is not a concern for the two-stage price-only contract under F [a, b]
and two- or three-stage problem under FIGFR.

Throughout the rest of this paper, let xc denote the optimal inventory level of the
centralized system and xd any inventory level of the decentralized system at equilibrium.

To capture the essence of the issues, we assume, where applicable, that F (x) is smooth
enough to ensure differentiability almost everywhere. For convenience we denote ρ = b/a
and

αF (x, y) :=

∫ y

x

F̄ (t)dt, ∀ 0 ≤ x ≤ y,

dropping off the subscript F whenever no confusion is caused. Let us formally define the
price of anarchy (PoA) for a given price-only contract as follows:

Definition 1

PoA = sup
F∈F [a,b]

Π(xc)

minxd Π(xd)
= sup

F∈F [a,b]

−rxc + αF (0, x
c)

minxd{−rxd + αF (0, xd)}

= 1 + sup
F∈F [a,b]

min
xd

−r(xc − xd) + αF (x
d, xc)

−rxd + αF (0, xd)
.

3



3 Serial supply chain

The organization of this section is as follows: we first describe the problem in Sec. 3.1,
then present the exact PoA in Sec. 3.2, and finally utilize the uniform distribution to show
detailed different behaviors between the classes F [a, b] and FIGFR in Sec. 3.3.

3.1 Problem description

Let us label the stages of the decentralized supply chain in an increasing order from down-
stream to upstream: 1, . . . , n. Each upstream stage i (i = n, . . . , 2) as a leader offers a
wholesale price wi−1 to his next downstream stage i− 1 as a follower, who accepts his offer
as long as his expected profit is non-negative. The price-only contract under this supply
chain system can be formulated as an n-level optimization problem (refer to Fig. 1):

X
1p

11ii1in 1iw
iwrw

n

Figure 1: Decentralized multistage supply chain with the upstream stages as leaders

Level 1. Stage 1 as the retailer with given transferring price w1 offered by Stage 2, faces
the random customer demand X and chooses his order quantity x as inventory in such
a way that his profit is to be maximized after selling the products to customers at a
unit price of p = 1:

max
a≤x≤b

(
−w1x+

∫ x

0

F̄ (t)dt

)
.

Level i (2 ≤ i ≤ n− 1). Stage i with a given transferring price wi from his upstream stage,
offers a transferring price wi−1 to his downstream stage i − 1 in such a way that will
maximize his profit, anticipating the order quantity x (a ≤ x ≤ b) from the downstream
stage:

max
wi−1:wi−1≥wi

(wi−1 − wi)x.

Level n. Stage n with the unit production cost r, offers a whole price wn−1 to his down-
stream stage n−1 to maximize his profit, anticipating the order quantity x (a ≤ x ≤ b)
from the downstream stage:

max
wn−1≥r

(wn−1 − r)x.

Note that we adopt the optimistic approach in the multi-level programming literature
(e.g., Dempe (2002)) to guarantee that this multi-level program is well-defined. Note also
that the existence of a Stackelberg equilibrium is evident as all the optimization problems
across the n levels are feasible with compact domain and continuous objectives. But multiple
local optima and hence multiple equilibria may exist.

3.2 PoA

Denote lnk ρ = (ln ρ)k, where ρ = b/a ≥ 1. The next result offers the exact PoA for this
contract system along with graph illustration in Fig. 2.
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Theorem 1 The price of anarchy is given by

PoA = 1 +

n−1∑

k=1

1

k!
lnk ρ.

The bound is achieved by the following worst distribution:

F̄ (x) =






1, 0 ≤ x ≤ a,

r + (1−r)a
x

∑n−2
k=0

1
k! ln

k
(
x
a

)
, a < x ≤ b,

0, x > b.

Figure 2: PoA in Theorem 1

3.3 Uniform distribution U [a, b]

We use the two-stage supply chain under the uniform distribution U[a, b] to further illustrate
the results obtained here. Moreover it also serves the purpose of showing the limitations
of any worst-case analysis, namely, more accurate insights should be expected when more
information about the demand distributions is available.

Under U[a, b], we have xc = (1 − r)b + ra and

xd =

{
a, if (1− r) (ρ− 1) ≤ 1,
(1−r)b+ra

2 , if (1− r) (ρ− 1) > 1.
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Recall that, for U[a, b],

F̄ (x) =





1, if x < a,
b−x
b−a , if a ≤ x < b,

0, if x ≥ b,

which implies that, for any x ∈ [a, b),

α(0, x) = a+ α(a, x) = a+

∫ x

a

F̄ (t)dt = a+
(x − a)(2b− a− x)

2(b− a)
.

Therefore, we can obtain the PoA as follows:

PoAU[a,b] =

{
1 + 1

2 (1− r) (ρ− 1) , if (1− r) (ρ− 1) ≤ 1,

1 + 1
3−4/(1+(1−r)(ρ−1))2

, if (1− r) (ρ− 1) > 1.

A few observations from this characterization (see Figure 3) are as follows:

Impacts of profit margin and relative range. Note that PoAU[a,b] ∈ [1, 3/2]. The PoA
depends on the profit margin 1 − r and relative range ρ in a similar way: with increased
values of 1−r or ρ, it increases initially and then decreases. The highest efficiency is attained
at the lowest profit margin and relative range.

Closeness to PoAF [a,b]. Figure 3 below illustrates the gap between the uniform bounds
and the general PoA bound PoAF [a,b] when ρ varies.

Impact of the coefficient of variation (CV). Note that the CV of U[a, b) is given by

CV =
σ

µ
=

√
1/12(b− a)

1/2(a+ b)
=

1√
3

b− a

b+ a
,

implying that

ρ− 1 =
b

a
− 1 =

2
√
3

1/CV−
√
3
.

Therefore, ρ increases with CV, which implies that dependence on CV of the PoA for the
uniform distribution is similar to that on ρ, i.e., with increase of CV, the PoA first increases
and then decreases after CV goes beyond certain threshold.

4 Assembly supply chain

In such a system, the manufacturer produces a unit product at the cost of c0 by assembling
n components supplied by n upstream competitive suppliers with unit production cost ci
for supplier i (i = 1, . . . , n), and sells the end product at unit price p = 1 (refer to Fig. 4).

The organization of this section is as follows: we first describe the problem in Sec. 4.1,
then raise and address the issue of possible non-existence of an equilibrium under class
F [a, b] in Sec. 4.2, and finally present the exact PoA in Sec. 4.3.

4.1 Problem description

Each supplier i (1 ≤ i ≤ n) as a leader offers a unit wholesale price wi for his component to
the manufacturer as the follower, who accepts the offer to produce for his inventory as long
as his profit is nonnegative. The price-only contract under the system can be formulated as
an bi-level optimization problem:

6



Figure 3: Comparison: the top surface PoAF [a,b] vs. bottom surface PoAU[a,b]

(leaders)

Suppliers

(follower)

erManufactur

1

1w
1c quantityordersystem

x

X
1 p

0 0i
iw

ic 0c

n nwnc

Figure 4: Decentralized assembly system with the suppliers (left) as leaders

Level 1. The manufacturer orders x units of each component (to be assembled to x units
of end product) before observing the demand X to maximize his profit

max
x

(
E[min{x,X}]−

(
n∑

k=1

wi + c0

)
x

)
,
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with optimal order quantity:

x = F̄−1

(
c0 +

n∑

k=1

wk

)
.

Level 2. The suppliers choose their Nash equilibrium wholesale prices w1, . . . , wn to max-
imize their profits, anticipating the order quantity x from the manufacturer:

maxwi
Πi(w1, . . . , wn) ≡ (wi − ci)x, i = 1, . . . , n

s.t. x = F̄−1

(
c0 +

n∑

k=1

wk

)
.

4.2 Possible non-existence of an equilibrium

Unfortunately, unlike the other systems we consider, in the push assembly system here, the
uniqueness of Nash equilibrium in the sub-games involved and, more seriously, the existence
of Stackelberg equilibria in the decentralized supply chain may not be guaranteed for general
class F [a, b] of demand distributions, as indicated in Appendix B, where a whole sub-class of
distributions allows only those equilibria at which the assembler has zero profit in the supply
chain, entailing that the assembler cannot remain in business! Gerchak and Wang (2004)
require that, at an equilibrium, every partner in the supply chain system has a positive
profit to make, so that all partners can remain in business and the supply chain system is
sustainable. While we technically allow such an equilibrium in the worst-case (as we have
seen in the previous sections), it is not clear at all whether an equilibrium will exist for any
given distribution in class F [a, b]. Therefore, in this section we are interested only in those
distributions that guarantee the existence of an equilibrium.

4.3 PoA

The following result offers the exact PoA for the push assembly system along with the graph
illustration in Fig. 5.

Theorem 2 Let r =
∑n

i=0 ci. The price of anarchy for all the demand distributions in class
F [a, b] that permit existence of an equilibrium is given by

PoA =
1 + (n− 1)ρ+ ln ρ

n
.

The worst distribution is achieved by

F̄ (x) =





1, 0 ≤ x ≤ a,

1 + 1−r
n

(
a
x − 1

)
, a < x ≤ b,

0, x > b.

4.4 Uniform distribution U [a, b]

Analogously to the analysis in Sec. 3.3, under U[a, b] we obtain the PoA as follows:

PoAU[a,b] =




1 + 1

2 (1− r) (ρ− 1) , if (1 − r) (ρ− 1) ≤ n,

1 + n2

(2n+1)−( n+1
1+(1−r)(ρ−1) )

2 , if (1 − r) (ρ− 1) > n.
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Figure 5: PoA in Theorem 2: PoA is almost linear in ρ for larger n

5 Competitive distribution system

In such a system, the manufacturer produces certain product at a unit cost of r, and n
identical retailers, each with unit selling price p = 1, compete for the same aggregate demand
X , which is allocated to the retailers according to some rule as specified in Lippman and
McCardle (1997) or Cachon (2003) (refer to Fig. 6).

We distinguish between the herd-behaved customers and the proportionally-split cus-
tomers respectively in Sec. 5.1 and 5.2.

5.1 Herd behavior of customers

5.1.1 Problem description

The manufacturer as the leader offers wholesale prices wi (i = 1, . . . , n) to retailers as
followers, who accept the offers for their inventories as long as their individual profits are
nonnegative. Assume that aggregate demand X is allocated to the retailers according to the
herd behavior of the customers (Lippman and McCardle, 1997), namely, these customers,
randomly choosing an order π = (π1, . . . , πn) among retailers with equal probability among
all permutations, visit the retailer one at a time until the total demand is met. The price-
only contract under this supply chain systems can be formulated as a bi-level optimization
problem:

Level 1. Each retailer i (1 ≤ i ≤ n), facing the random demand allocated to him based
on the herd behavior rule, decides his order quantity xi at given wholesale price wi to

9
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Figure 6: Decentralized push supply chain with the manufacturer (left) as the leader

maximize his profit:

max
xi

n∑

k=1

∑

π:i=πk

1

n!
E



min



xi,



X −
∑

j>i

xπj




+




− wixi, i = 1, . . . , n.

This subgame has a unique Nash equilibrium and it is symmetric (Lippman and Mc-
Cardle, 1997). Due to symmetry because of the equi-probability of all permutations,
the manufacturer offers the same wholesale price w to all retailers, each of whom or-
ders the same quantity y := xi (i = 1, . . . , n) at any Nash equilibrium. Therefore, each
retailer faces the same optimization problem:

max
y

n∑

k=1

1

n
E[min{y, (X − ky)+}]− wy

with optimal order quantity y for each retailer satisfying

1

n

n∑

k=1

F̄ (ky) = w.

Level 2. The manufacturer chooses the wholesale price w to maximize his profit, anticipat-
ing each retailer’s order quantity y:

max
w

n∑

k=1

(w − r)y

s.t.
1

n

n∑

k=1

F̄ (ky) = w,

or equivalently, with x = ny being the system order quantity,

max
a≤x≤b

(
1

n

n∑

k=1

F̄

(
kx

n

)
− r

)
x.

10



5.1.2 PoA

Now we establish bounds on the PoA along with the graph illustration in Fig. 7.

Theorem 3 The price of anarchy for the class F [a, b] has the following upper and lower
bounds:

(1 + ln ρ)/(1 + lnn) ≤ PoA ≤ 1 + ln ρ.

Figure 7: PoA bounds in Theorem 3: top surface is the upper bound and the bottom surface
is the lower bound

5.1.3 Uniform distribution U [a, b]

Analogously to the analysis in Sec. 3.3, under U[a, b] we obtain the PoA as follows:

PoAU[a,b] =





1 + 1

2 (1− r) (ρ− 1) , if (1− r) (ρ− 1) ≤ 1
n ,

1 + 1

n(n+2)−( n+1
1+(1−r)(ρ−1) )

2 , if (1− r) (ρ− 1) > 1
n .

Note that when a = 0 and hence ρ → ∞, the second case above leads to PoA = (n +
1)2/(n(n+ 2)) under U[0, b). We can derive similar insights as those in Sec. 3.3.

5.2 Splitting customers

5.2.1 Problem description

Assume that the aggregate demand X is allocated to the retailers in proportion to their
inventory levels and there is no reallocation of the unmet demand (Cachon, 2003). The

11



manufacturer as the leader offers wholesale price w to all retailers as followers, who accept
the offer as long as his profit is nonnegative. The price-only contract in this supply chain
systems can be formulated as a bi-level optimization problem (refer to Fig. 6):

Level 1. Each retailer i (1 ≤ i ≤ n), facing the random demand proportionally allocated
to him, decides his order quantity xi at wholesale price w to maximize his profit:

max
xi

(
E

[
min

{
xi,

xi

x
X
}]

− wxi

)
=

xi

x

∫ x

0

F̄ (t)dt− wxi, i = 1, . . . , n,

where x =
∑n

k=1 xk. This subgame has a unique Nash equilibrium, which is symmetric
(Cachon, 2003).

Level 2. The manufacturer chooses the wholesale price w to maximize his profit, anticipat-
ing retailers’ order quantity x1, . . . , xn:

max
w

n∑

i=1

(w − r)xi

s.t. xi = argmax
xi

E

[
min

{
xi,

xi

x
X
}]

− wxi, i = 1, . . . , n.

5.2.2 PoA

The following result offers the exact PoA for the system along with the graph illustration
in Fig. 8.

Theorem 4 The price of anarchy is given by

PoA = 1 +
1− ρ1−n

n− 1
.

The worst distribution is achieved by

F̄ (t) =





1, 0 ≤ t < a,

r − 1−r
n−1

(
a
t

)n
, a ≤ t < b,

0, t ≥ b.

5.2.3 Uniform distribution

The result is exactly the same as that in Sec. 5.1.3.

6 Concluding remarks

We have extended the application of the PoA analysis in supply chain management. Our
results have revealed some new performance behavior of the price-only contract in various
supply chain systems and hence deepened our understanding of it. The following observa-
tions follow readily from our analysis:

1. The bounds derived in this paper are independent of costs, prices and the boundaries
a and b of the demand distribution support. In particular,

(a) The bounds in the present work do not depend on upstream supply costs. This
property is an attractive feature in environments of fluctuating commodity prices.

12



Figure 8: PoA in Theorem 4

(b) It is also significant that the bounds are independent of retail prices, individual
values of a and b. Instead, the bounds only depend on their ratio ρ = b/a.

(c) Moreover, in the assembly setting where multiple equilibria can exist in the ab-
sence of the IGFR property, our PoA bounds serve the purpose to necessitate the
need of coordinating contracts in settings where ambiguity surrounds the demand
distribution, cost/price parameters, and/or the particular equilibrium reached.

2. One of the major contributions of this work is the identification of the relative range
ρ = b/a, a measure of uncertainty, as a pivotal parameter in that the PoA obtained
usually improves with reduced fluctuation ratio, although the exact analytical formula
for PoA is highly nontrivial. Intuitively, on the one hand, when there is demand
certainty, namely ρ = 1, it should be clear that both the decentralized and centralized
solution will be to order the exact demand, leading to perfect coordination with PoA
= 1. On the other hand, when there is uncertainty in the demand, namely, ρ > 1,
the decentralized solution can be forced to order a while the centralized solution is to
order b in the worst case.

3. Our analysis under F [a, b] in this work shows that the price-only contract actually
maintains its efficiency when the demand uncertainty, measured by ratio ρ = b/a, is
relatively low, entailing the price-only contract to be more attractive in this regard than
those administratively more expensive contracts as those considered, e.g., by Chen et
al. (2012), Jörnsten et al. (2013) and Palsule-Desai (2013), and hence justifying the
efforts in demand forecasting to reduce uncertainties. Moreover, it actually offers a
deeper reason on the wide acceptance and popularity of the price-only contract in

13



many real-life practices, besides its low administrative cost.

This insight of efficiency improvement with decrease of ρ is empirically and qualitatively
intuitive, given that the main source of double marginalization is demand uncertainty
(Lariviere and Porteus (2001)). However, to the best of our knowledge, our work here
is the first one to theoretically quantify this effect, achieved by the introduction of an
uncertainty measure, ρ.

4. Our analysis also shows that worst-case PoAs under F [a, b] and FIGFR are complemen-
tary in the following sense: the former is in general independent of the profit margin
1− r, while the latter is in general increasing in the profit margin.

Note that the aforementioned insights are obtained through worst-case analysis and
for a given demand distribution other than the worse-case distribution. The PoA may
not perform as described above (see Sec. 3.3, Sec. 4.4, Sec. 5.1.3, and Sec. 5.2.3 for the
exact PoA under the uniform distribution, for which the PoA behaves differently from the
worst-case situation). Therefore, one should exercise caution and care when applying the
observations based on worst-case analysis to a given demand distribution other than the
worst-case distributions.

An apparent open problem is to find a tight bound for the distribution system with herd
behavior (Theorem 3). Moreover, due to the practical importance of the price-only contract,
an investigation of other demand classes would be important for identifying the situations
where the price-only contract is relatively efficient.
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Appendix A: Technical proofs

A.1 Proof for Theorem 1

We need two lemmas first. Define the following functions iteratively:

{
m1(x) = F̄ (x),

mi(x) = (xmi−1(x))
′, i = 2, . . . , n− 1.

Here the prime operator ′ is the standard derivative in calculus.

Lemma 1 If the decentralized equilibrium inventory level xd is an interior solution of the
n-level optimization problem with wi being the corresponding equilibrium transfer price at
stage i (i = 1, . . . , n− 1), then

wi = mi(x
d), i = 1, . . . , n− 1, (1)

implying that
m1(x

d) ≥ · · · ≥ mn−1(x
d). (2)

Proof of Lemma 1. We prove equations (1) by induction. For i = 1, the optimization
problem at stage 1 is:

max
a≤ξ≤b

(
−w1ξ +

∫ ξ

0

F̄ (t)dt

)
.
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So, if the optimal solution x is interior, then it satisfies the first-order condition w1 = F̄ (x) =
m1(x).

Assume that the equation in (1) is correct for i = ℓ − 1 (ℓ ≥ 2), namely, the optimal
interior solution x of the optimization problem at stage ℓ− 1 satisfies wℓ−1 = mℓ−1(x).

Consider the optimization problem at stage ℓ:

max
wℓ−1: wℓ−1≥wℓ

(wℓ−1 − wℓ)x.

If optimal wℓ−1 results in optimal interior x, then according to the induction hypothesis,
the above optimization problem is equivalent to:

max
a<ξ<b

(mℓ−1(ξ)− wℓ)ξ.

Therefore, the optimal solution x satisfies the first-order condition:

wℓ = mℓ−1(x) + xm′
ℓ−1(x) = mℓ(x),

which completes our induction. �

Denote the following quantities:

βi = xd(mi(x
d)− r), i = 1, . . . , n− 1.

Then from (2) in Lemma 1, we have

β1 ≥ · · · ≥ βn−1. (3)

Lemma 2 Assume that the decentralized equilibrium inventory level xd is an interior solu-
tion to the n-level optimization problem. Then, for any x ≥ xd, we have

mn−i(x) ≤ r +
1

x

i−1∑

k=0

βn−i+k
1

k!
lnk
( x

xd

)
, i = 1, . . . , n− 1,

implying with (3) that

∫ x

xd

mn−i(ξ)dξ ≤ r(x − xd) +

i∑

k=1

βn−i−1+k
1

k!
lnk
( x

xd

)

≤ r(x − xd) + β1

i∑

k=1

1

k!
lnk
( x

xd

)
, i = 1, . . . , n− 1.

Proof of Lemma 2. We prove the lemma by induction on i. For i = 1, the optimization
problem at stage n is

max
wn−1≤1

(wn−1 − r)x.

Since optimal wn−1 (i.e., w∗
n−1) results in an interior xd, according to equations (1), the

above problem is equivalent to

max
a<ξ<b

(mn−1(ξ)− r)ξ,

implying that
βn−1 ≥ (mn−1(ξ)− r)ξ, ∀a < ξ < b,

or equivalently

mn−1(ξ) ≤ r + βn−1
1

ξ
, ∀a < ξ < b.
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Therefore, ∫ x

xd

mn−1(ξ)dξ ≤ r(x − xd) + βn−1 ln
( x

xd

)
,

which implies the basis step in the induction. Assume that the desired result is correct for
i = ℓ− 1, that is, we have the inductive hypothesis,

∫ x

xd

mn−ℓ+1(ξ)dξ ≤ r(x − xd) +

ℓ−1∑

k=1

βn−ℓ+k
1

k!
lnk
( x

xd

)
.

Note that the LHS of the above inequality is equal to
∫ x

xd

mn−ℓ+1(ξ)dξ =

∫ x

xd

(ξmn−ℓ(ξ))
′dξ = xmn−ℓ(x) − xdmn−ℓ(x

d).

Therefore,

xmn−ℓ(x) − xdmn−ℓ(x
d) ≤ r(x − xd) +

ℓ−1∑

k=1

βn−ℓ+k
1

k!
lnk
( x

xd

)
,

or equivalently

mn−ℓ(x) ≤ r +
1

x

(
βn−ℓ +

ℓ−1∑

k=1

βn−ℓ+k
1

k!
lnk
( x

xd

))
,

which, by integration, implies

∫ x

xd

mn−ℓ(ξ)dξ ≤ r(x − xd) +

ℓ∑

k=1

βn−ℓ−1+k
1

k!
lnk
( x

xd

)
.

This completes the inductive step. �

Taking i = n− 1 and x = xc in Lemma 2, we obtain

α(xd, xc) ≤ r(xc − xd) + β1

n−1∑

k=1

1

k!
lnk
(
xc

xd

)

= r(xc − xd) + xd
(
F̄ (xd)− r

) n−1∑

k=1

1

k!
lnk
(
xc

xd

)
, (4)

where xd is interior: a < xd < b.

Proof of Theorem 1

We consider three cases depending on whether the decentralized solution xd of the n-level
optimization problem is achieved at the upper support, or an interior point, or the lower
support. If xd = b, we have PoA = 1, since xd ≤ xc ≤ b implying that xd = xc = b.

Now assume xd = a. Recall that any optimal solution x for the optimization problem at
stage 1 satisfies the first order condition:

w1 = F̄ (x).

Consider the optimization problem at stage 2:

max
w1

(
(w1 − w2)x(w1) : w1 = F̄ (x) ≥ w2, a ≤ x ≤ b

)
,
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or equivalently
max

x

(
(F̄ (x)− w2)x : F̄ (x) ≥ w2, a ≤ x ≤ b

)
.

That xd = a being the equilibrium solution for the entire system implies that there exists
a w̄2 ∈ [r, 1] such that the optimal objective value at stage 2 is (1 − w̄2)a ≤ (1 − r)a. Fix
w2 = r in the above optimization problem at stage 2. Then the optimal value should be no
more than (1− r)a, implying that

(F̄ (x) − r)x ≤ (1− r)a, ∀x ≥ a,

or equivalently

F̄ (x) ≤ r +
(1− r)a

x
, ∀x ≥ a,

which in turn implies that

α(a, xc) ≤ r(xc − a) + (1− r)a ln

(
xc

a

)
,

making inequality (4) valid also for xd = a.
Therefore, we assume a ≤ xd < b with satisfaction of inequality (4), from which and the

following inequality directly implied by the monotonicity of function F̄ ,

inf
F∈F [a,b]

αF (0, x
d) ≥ xdF̄ (xd), ∀ xd ≥ 0, (5)

we obtain

Π(xc)

Π(xd)
≤ 1 +

−r(xc − xd) + α(xd, xc)

−rxd + α(0, xd)

≤ 1 +
xd
(
F̄ (xd)− r

)∑n−1
k=1

1
k! ln

k
(
xc

xd

)

xd(F̄ (xd)− r)
= 1 +

n−1∑

k=1

1

k!
lnk
(
xc

xd

)
,

implying that

PoA ≤ 1 +
n−1∑

k=1

1

k!
lnk ρ.

Now we show the bound is tight. Under the worst distribution, we have that

α(a, x) =

∫ x

a

m1(t)dt = r(x − a) + (1− r)a
n−1∑

k=1

xk

k!
,

which implies that xc = b as the objective of the centralized system

Π(x) = −rx+ a+

∫ x

a

m1(ξ)dξ = (1− r)a

n−1∑

k=0

xk

k!
,

is an increasing function.
On the other hand, xd can be any value within [a, b) because the objective at stage n in

the decentralized system:
(mn−1(t)− r)t = (1− r)a

is a constant throughout. So for this worst distribution:

sup
xd

Π(xc)

Π(xd)
=

(1− r)a
n−1∑
k=0

xi

k!

(1− r)a
= 1 +

n−1∑

k=1

xk

k!
.
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A.2 Proof for Theorem 2

Lemma 3 Let r =
∑n

i=0 ci. Then

α(xd, xc) ≤ (xc − xd)

(
r +

n− 1

n
(F̄ (xd)− r)

)
+ (F̄ (xd)− r)

xd

n
ln

(
xc

xd

)
.

Proof of Lemma 3. At Nash Equilibrium, the utility Πi(w1, . . . , wn) of each supplier
i (i = 1, . . . , n) is maximized with respect to wi. Assume that the Nash Equilibrium is
(w∗

1 , . . . , w
∗
n) with the corresponding order quantity xd. Hence, for any x ∈ [a, b], we have



F̄ (xd)− r −
∑

k 6=i

(w∗
k − ck)



xd ≥



F̄ (x)− r −
∑

k 6=i

(w∗
k − ck)



 x.

Summation for i = 1, . . . , n leads to

(
F̄ (xd)− r

)
xd ≥

(
n(F̄ (x)− r)− (n− 1)(F̄ (xd)− r)

)
x,

or equivalently:

F̄ (x) ≤ r +
F̄ (xd)− r

n

(
n− 1 +

xd

x

)
,

which, after integration, gives

α(xd, xc) ≤ (xc − xd)

(
r +

n− 1

n
(F̄ (xd)− r)

)
+ (F̄ (xd)− r)

xd

n
ln

(
xc

xd

)
.

�

Proof of Theorem 2

From (5) and Lemma 3, we obtain

Π(xc)

Π(xd)
− 1 ≤ (xc − xd)n−1

n (F̄ (xd)− r) + (F̄ (xd)− r)x
d

n ln
(
xc

xd

)

xd(F̄ (xd)− r)

=
n− 1

n

(
xc

xd
− 1

)
+

1

n
ln

(
xc

xd

)
,

implying that

PoA ≤ 1 +
n− 1

n
(ρ− 1) +

1

n
ln ρ =

1 + (n− 1)ρ+ ln ρ

n
.

Under the worst distribution, we have that

α(a, x) = (x− a)

(
r +

n− 1

n
(1− r)

)
+ (1− r)

a

n
ln

x

a
,

implying that xc = b, because the objective of the centralized system

Π(x) = −rx + a+ α(a, x) = (1− r)a+
(1 − r)a

n

(
1 + (n− 1)

x

a
+ ln

x

a

)

is an increasing function.
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It can be further shown that wd
i = ci+

1−r
n (i = 1, . . . , n) form an Nash equilibrium, and

xd can be any value within [a, b], because the objective for each supplier i at wd
i

(wi − ci)x = (F̄ (x) − r −
∑

k 6=i

(wd
k − ck))x

=

(
(1− r)

(
1 +

1

n

(a
x
− 1
))

− n− 1

n
(1− r)

)
x =

(1− r)a

n

is a constant, implying that xd = a is an Nash equilibrium. So for this worst distribution:

sup
xd

Π(xc)

Π(xd)
=

1 + (n− 1)ρ+ ln ρ

n
.

A.3 Proof for Theorem 3

We first prove the following two lemmas.

Lemma 4 Fix F̄ (x) = φ (a ≤ x ≤ b). Then

inf
F∈F [a,b]

∫ x

0

F̄ (t)dt = a+ (x− a)φ.

Hence,

PoA = 1 + sup
F∈F[a,b]

F̄ (xd)=φ

α(xd, xc)− r(xc − xd)

(φ− r)xd + (1 − φ)a
. (6)

The following parameterized distribution is a minimizing distribution with ǫ → 0:

F̄ǫ(t) =

{
1, if 0 ≤ t ≤ a+ (x − a)φ1/ǫ,

φ(x − a)ǫ(t− a)−ǫ, if a+ (x − a)φ1/ǫ < t ≤ x.

Proof of Lemma 4. The integration concerned is equal to

a− ǫ

1− ǫ
(x− a)φ1/ǫ +

1

1− ǫ
φ(x− a),

which approaches a+(x−a)φ as ǫ → 0. The equation for PoA above follows from Definition 1.
�

This lemma basically says that restricting on the minimizing distributions above will not
preclude any distribution that maximizes the PoA containing parameters xd, xc and φ.

Lemma 5 For any given δ > 0, let F (·) = Fǫ(·) be a worst distribution as given in Lemma 4
for some ǫ > 0 sufficiently small. Denote φ = F̄ (xd) and the manufacturer’s utility function

Π1(Q) =

(
1

n

n∑

k=1

F̄ (kQ/n)− r

)
Q.

Then Π1(x
d) ≤ (φ− r)xd + (1 − φ)a+ δ.

Proof of Lemma 5. If xd = a, then φ = 1 and Π1(x
d) = (1 − r)xd, implying that the

claimed inequality holds. If na < xd and ǫ > 0 is sufficiently small, then Π1(x
d) = (φ− r)xd

according to the definition of F (·). Therefore, without loss of generality, we assume aℓ−1 <
xd ≤ aℓ for some ℓ with 1 ≤ ℓ ≤ n− 1, where

ai =
n

n− i
a, i = 0, 1, . . . , n− 1. (7)
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Consequently, when ǫ > 0 is sufficiently small, we have

Π1(x
d) =

(
(n− ℓ) + ℓφ

n
− r

)
xd =

(
(φ − r) +

n− ℓ

n
(1− φ)

)
xd

= (φ− r)xd + (1− φ)axd/aℓ,

which leads to our desired result due to xd ≤ aℓ. �

Proof of Theorem 3

According to the definition,

Π1(x
d) ≥ Π1(x) =

(
1

n

n∑

k=1

F̄ (kx/n)− r

)
x, for any x ∈ [a, b].

Therefore, since kx/n ≤ x for all k = 1, . . . , n and at least one of the inequalities is strict,
with strict monotonicity of F̄ (·) we have

Π1(x
d) > (F̄ (x) − r)x, or F̄ (x) < r +

Π1(x
d)

x
for any x ∈ (a, b].

Taking integration for the above from xd to xc, we obtain
∫ xc

xd

F̄ (x)dx < r(xc − xd) + Π1(x
d) ln

(
xc

xd

)
,

which (with strict inequality) together with the fact that xc/xd ≤ ρ implies that, for some
δ > 0, ∫ xc

xd

F̄ (x)dx ≤ r(xc − xd) + (Π1(x
d)− δ) ln ρ.

Now, using Equation (6) we obtain

PoA ≤ 1 +
(Π1(x

d)− δ) ln ρ

(φ− r)xd + (1− φ)a
,

which implies the upper bound in our theorem with Lemma 5.
To show the lower bound, we consider the following distribution with the assumption

that ρ > n:

F̄ (x) =





1, 0 ≤ x < a,

r + (1−r)a
x , a ≤ x < b,

0, x ≥ b.

The global utility function is

Π(x) = −rx +

∫ x

0

F̄ (t)dt = a(1− r)(1 + ln(x/a)), (8)

which is maximized at xc = b. On the other hand, if ρ > n, i.e., b > na, then with notation
an = b in addition to (7), the utility function of the manufacturer is: for any aℓ−1 < x ≤ aℓ
(1 ≤ ℓ ≤ n),

Π1(x) =

(
n− ℓ

n
+

1

n

n∑

k=n−ℓ+1

F̄ (kx/n)− r

)
x

= (1− r)

(
n− ℓ

n
+

a

x

n∑

k=n−ℓ+1

1/k

)
x

= (1− r)

(
n− ℓ

n
x+ a(Hn −Hn−ℓ)

)
,
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where Hn =
∑n

k=1 1/k denotes the nth harmonic number. For any ℓ = 1, . . . , n − 1, the
above is maximized uniquely at aℓ to a(1 − r)(1 +Hn −Hn−ℓ) ≤ (1− r)aHn, the constant
that Π1(x) is always equal to while ℓ = n. Therefore, if b > na, we can have xd = na, which
together with (8) implies that

PoA ≥ Π(b)

Π(na)
=

1 + ln ρ

1 + lnn
.

A.4 Proof for Theorem 4

Lemma 6 For any t ≥ 0,

α(0, t) ≤ rt+ (1 − r)a
(a
t

)n−1

+

(
1−

(a
t

)n−1
)(

α(0, xd) +
xd

n− 1
(F̄ (xd)− nr)

)
.

Proof of Lemma 6. For the subgame played by the n retailers, the profit function of
retailer i is given by:

Πi(x1, . . . , xn) = −wxi +
xi

x

∫ x

0

F̄ (y)dy, where x =

n∑

i=1

xi.

Any Nash equilibrium satisfies the first-order condition:

∂Πi(x)

∂xi
= −w +

1

x

∫ x

0

F̄ (y)dy + xi

xF̄ (x)−
∫ x

0
F̄ (y)dy

x2
= 0, i = 1, . . . , n.

Due to symmetry: x = nxi (i = 1, . . . , n), the above is reduced to a simple equation:

w =
1

x

∫ x

0

F̄ (y)dy +
x

n

xF̄ (x)−
∫ x

0
F̄ (y)dy

x2
=

1

x

∫ x

0

F̄ (y)dy +
1

n

xF̄ (x) −
∫ x

0
F̄ (y)dy

x
.

Therefore, the objective of the manufacturer’s problem becomes:

Π0(x) ≡ (w − r)x =

(
1

x

∫ x

0

F̄ (y)dy +
1

n

xF̄ (x)−
∫ x

0
F̄ (y)dy

x
− r

)
x

=

(
1− 1

n

)
α(0, x) +

1

n
xα′(0, x)− rx,

which implies

Π0(x
d) ≥

(
1− 1

n

)
α(0, x) +

1

n
xα′(x)− rx, ∀a ≤ x < xc,

or equivalently

−
(
α(0, x)− rx − nΠ0(x

d)

n− 1

)
≥ x

n− 1
(α′(0, x)− r) > 0, ∀a ≤ x < xc.

Therefore,
−(α′(0, x)− r)

−
(
α(0, x) − rx− nΠ0(xd)

n−1

) ≥ 1− n

x
, ∀x,

or equivalently

(
ln

[
−
(
α(0, x) − rx− nΠ0(x

d)

n− 1

)])′

=
−
(
α(0, x) − rx− nΠ0(x

d)
n−1

)′

−
(
α(0, x)− rx − nΠ0(xd)

n−1

) ≤ 1− n

x
, ∀x.

Integrating on both sides from a to t and substituting γ(xd) back leads to the desired result.
�
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Proof of Theorem 4

Denote w =
(

a
xc

)n−1
.

Π(xc)

Π(xd)
≤ 1 +

−r(xc − xd) + α(0, xc)− α(0, xd)

−rxd + α(0, xd)
.

Note that the numerator above can be bounded above as follows:

−r(xc − xd) − α(0, xd) + α(0, xc)

≤ rxd − α(0, xd) + (1− r)aw + (1 − w)

(
α(0, xd) +

xd

n− 1
(F̄ (xd)− nr)

)

= rxd + (1− r)aw + (1− w)

(
xd

n− 1
(F̄ (xd)− nr)

)
− wα(0, xd)

≤ rxd + (1− r)aw + (1− w)

(
xd

n− 1
(F̄ (xd)− nr)

)
− wxdF̄ (xd)

= (1 − r)aw +
1− nw

n− 1
xd(F̄ (xd)− r)

≤ xd(F̄ (xd)− r)w +
1− nw

n− 1
xd(F̄ (xd)− r)

=
1− w

n− 1
xd(F̄ (xd)− r),

where the first inequality follows from Lemma 6, the second inequality follows from (5), and
the third inequality follows from the optimality of xd. Moreover the denominator above is
bounded from below as follows from (5):

−rxd + α(0, xd) ≥ xd(F̄ (xd)− r).

Therefore,

Π(xc)

Π(xd)
− 1 ≤ 1− w

n− 1
=

1−
(

a
xc

)n−1

n− 1
,

implying that

Π(xc)

Π(xd)
≤ 1 +

1−
(
a
b

)n−1

n− 1
.

Under the worst distribution, we have that

α(0, x) = rx +
n(1− r)a

n− 1
+

(
(1− r)a− n(1− r)a

n− 1

)(a
x

)n−1

= rx +
(1− r)a

n− 1

(
n−

(a
x

)n−1
)
,

implying that xc = b, because the objective of the centralized system

Π(x) = −rx+ α(0, x) =
(1− r)a

n− 1

(
n−

(a
x

)n−1
)

is an increasing function.
Secondly, note that xd can be any value within [a, b] because the objective in the decen-

tralized system

Π0(x) = (1− r)a,

a constant, implying that xd = a is a Nash Equilibrium. So for this worst distribution:

sup
xd

Π(xc)

Π(xd)
=

n

n− 1
− 1

n− 1
ρ1−n = 1 +

1− ρ1−n

n− 1
.
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Appendix B: Possible non-existence of equilibria

Let us consider a class F̃ [a, b] of distributions in F [a, b], with each of which there are infinite
number of Nash equilibria for the sub-game concerned at a stage of the supply chain and
any such Nash equilibrium makes the supply chain partner at another stage no profit to
make, which is in direct conflict with our obvious requirement (see Sec. 2.3) that everyone
involved in the supply chain system should have a positive profit in order for them to remain
in business.

For simplicity, let us assume without loss of generality that, in the push assembly system,
there are only n = 2 suppliers with the same component cost c1 = c2 = 1/4 and the assembly
cost is c0 = 0.

A family of distribution functions

Take any member distribution F0(x) from class F [c, b], where c is between a and b: a < c < b

and c ≤ 3a. Define class F̃ [a, b] in such a way that its typical member distribution F (x) is
as follows:

F (x) =

{
(x− a)/d, a ≤ x ≤ c,
1
2 (1 + F0(x)), c < x ≤ b,

where d = 2(c − a) ≤ 4a. It is straightforward to see that, if 1
2 ≤ w ≤ 1, then F−1(w) =

a+ d(1− w). Let

Π1(w;λ) = (w − λ)F−1(w),
1

2
≤ λ ≤ w ≤ 1.

Then the set W (λ) ⊆ R+ of all optimal solutions to the problem of

max
w: λ≤w≤1

Π1(w;λ)

is as follows:

W (λ) =

{
{ 1
2 (λ+ 1) + a/(2d)}, 1

2 ≤ λ < λ∗,
{1}, λ∗ ≤ λ ≤ 1,

(9)

where λ∗ = 1− a/d if d ≥ 2a (i.e., c ≥ 2a) and λ∗ = 1
2 otherwise (note: 1

2 ≤ λ∗ ≤ 3
4 ).

Push assembly system

Suppose the demand distribution is F (x) as given above. In the sub-game of suppliers, the
utility function of player 1 is

Π1(w1;w2) = (w1 −
1

4
)F−1(w1 + w2) = (w − λ)F−1(w),

where w = w1 + w2 and λ = w2 +
1
4 , while the utility function of player 2, Π2(w2;w1), is

symmetric with w1 and w2 above swapped. According to (9), we see that the best-response
correspondence BEST1(w2) ⊆ {w1 : 1

4 ≤ w1 ≤ 3
4} for supplier 1 is as follows:

BEST1(w2) =

{
{− 1

2w2 +
7
8 + a/(2d)}, 1

4 ≤ w2 < λ∗ − 1
4 ,

{1− w2}, λ∗ − 1
4 ≤ w2 ≤ 3

4 .

With a symmetric best-response correspondence BEST2(w1) for supplier 2, we conclude
from the fact λ∗ ≤ 3

4 that any Nash equilibrium w∗ = (w∗
1 , w

∗
2), i.e., w

∗
1 ∈ BEST1(w

∗
2) and

w∗
2 ∈ BEST2(w

∗
1), satisfies that w∗

1 + w∗
2 = 1, which implies that the assembler has zero

profit in the supply chain!
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