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This thesis has two parts, summarized below. The links between

them are discussed at the end of this introduction.

Part 1 is concerned with the problem of giving necessary and
sufficient conditions for a family of surfaces to have a simaltanecus
resolution; this property can be regarded as a very weak form of
equisingularity (cf. [Te]). I conjecture that, roughly speaking, the
plurigenera Pn of a family of singular surfaces of general type are
upper semi-continuous and that simultanecus resolution is possible if
and only if Pn is locally constant for same n > 2  (equivalently,
for all n > 2). Two cases of this conjecture are proved, under different
hypotheses on the special fibre. The techniques used are the use of
adjunction ideals, suggested to me by Reid, and the results of Brieskorn,
Tyurina and others on deformations of Du Val singularities (also known as
rational double points, ...). A very similar approach was used by Lipman

[L1] for the study of deformations of arbitrary rational singularities.

Part 2 is concerned with canonical singularities, as defined by
Reid [RB] We first prove that in dimensions < 4 they are Cohen-Macaulay,
and then deduce a corollary on the invariance of plurigenera in scme special
circumstances; this answers, in part, questions asked me by Reid. Since
these results were proved, Elkik and Gabber have shown that canonical

singularities are Cohen-Macaulay in all dimensions. We then consider
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same specific classes of singularities, and prove that they are
canonical. The idea of using the techniques and results of Kulikov
in this situation was suggested to me by Dave Morrison, and I
subsequently learnt that Theorem 5 was already known to him and
others, including Pinkham and Wahl. The point of this section is
twofold; firstly it gives an analysis of what are the simplest
canonical singularities, and secondly it shows quite explicitly that
the contractibility of a given configuration of surfaces in a 3-fold
is a much more delicate question than in the case of curves lying on
a surface. The problem of contractibility underlies Chapter 1 as well;
a sufficiently strong result would kill certain cochamology groups that

are the obstruction to proving the conjecture.

I am very grateful to Miles Reid, without whose generosity with
both time and ideas this dissertation would not exist, to Rodney Sharp
for teaching me algebra and to Dave Morrison, Henry Pinkham and

Jonathan Wahl for their discussions and correspondence.

This work was supported largely by the S.R.C.



Notation, definitions and well known facts:

1) w denotes a dualizing sheaf.

K : a canonical divisor on a normal variety, so that w = O(K)

and by definition, m[n]=9_(nK) for n>1 [R3 sl Appendix].

Iet P e X be a point of the normal variety X , and let f:X > X be

a resolution.

2) P is rational if R'£,0 =0 for all i > O ; by a theorem of Remf [Ke]
X
this is equivalent to the following condition:

P is Cohen-Macaulay and f.u_ = Wy
X
3) If dmX =2, then P is rational and Gorenstein <=>
P is rational and a hypersurface point <=> P is rational and a double
point. Such singularities have many names; e.dg. Du Val singularities,

rational double points, Kleinian singularities. For more details, see

[D].

4) If dimX =2, then P is minimally elliptic or elliptic Gorenstein

if P is Gorenstein and dim le*Q~ =1 ; equivalently, P is Gorenstein _
X

and f,w =M. o (see ch.1, Cor. 3). Suppose that f is a minimal
X
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resolution (i.e. that f—l (P) contains no exceptional curve of

the first kind); then we can write K}~(=f*KX—Z, where Z > O
and Supp Z = £ (P) . The degree deg P is defined by deg P = —7° .

The following facts are proved in [La], E%Z] and [Sal].
(i) If degP >3, then deg P = mult P = embdim P
(i) If degP <2, then mult P=2, embdimP =3 .

(iii) If deg P > 3, then the tangent cone TP(X) is projectively
Gorenstein, and BL X is obtained fram X by contracting all

the (-2) curves.

5) Of particular interest in the surface case are the simple elliptic

singularities and the cusps for the Hilbert modular group. The former
(resp. latter) are characterized by having a resolution whose exceptional

locus is a smooth elliptic curve (resp. a cycle of smooth rational curves).



CHAPTER 1.

Simultaneous resolution of Gorenstein surfaces.

§0. In this chapter we consider the problem of simultaneous resolution
of a family of normal surfaces. Our approach is via the sheaves ot
of n-fold 2-forms, which limits us in general to Gorenstein surfaces.
This technique was first used in this context by Lipman and Wahl ([Li],

[Wa 2]) in their study of rational singularities.

The chapter is organized as follows. In §1 we define the relative
canonical model of a singular surface and prove same results of a local
nature, analogous to those of Bambieri [Bo] The proofs, however, are
very much simpler; indeed, they are valid in any characteristic. In
§8 2 and 3 we state a conjecture, and prove it for singularities satisfying
a certain very simple and explicit condition on their minimal resolutions,
and for double points. A corollary is a result of Wahl's on minimally

elliptic singularities ([la], [RZ], [Wa 1]).

§1. Throughout this section, f£:X + X will denote a desingularization
of the unique singular point P of the normal affine surface X , defined
over an algehraically closed field of arbitrary characteristic.

Lema 1: There is a natural inclusion £, > w)En-.l , independent of
X

the resolution chosen.



Proof: This is well-known. In Zariski's notation, the sections of
&n

-~

X

¥ are the absolutely regular n-fold 2-forms.

Henceforth we shall assume that f is the minimal resolution.
Recall that the intersection matrix of the exceptional locus of f is
negative definite [Mul], and that if E is an irreducible exceptional
curve, then E.Ki_>_0, with equality <=>E2=—2 and pa(E)=O .

Such curves are called Du Val curves or (-2) curves.

Definition: Iet F be a coherent Oi—nndule. Then we say that F

*
is generated by its sections if the natural map f £,F > F is surjective.

Theorem 2: m?n is generated by its sections for all n > 2.
X

Proof: Lethf( be a closed point; it is enough to prove that the
natural inclusion £, (gb.m?n) > f*m?n is not an isamorphism for any
X X

n>2.

Let g:Y—*f( be the blow-up of Q ; put !L=g_l(Q) , h=f0qg:¥Y »~ X .
By the Leray spectral sequence, it is enough to show that

*
th*(o(—z) @g m&jn) =0 for all n>2.
X

Suppose that El""'Er are the exceptional curves on ;(; let

‘E:i denote the strict transform of Ei on Y and Er+l denote 2 .

By the holamorphic functions theorem, it is enough to show that



Hl(Oc(ng*IS—-(—!.))=O for all curves C=2mi]§i>0. We argue by

r+l

induction on i:mi=y, say.
i=1

Suppose Y=1.

Case (i) : C = g. 'llmhl((_)c(nKY - (m#1)2)) =h°(© ,(-D)) =0
- P

Case (ii): C # 2. h' (O (K, ~ (n+D)2)) = h°(Q,(C + ()e - @1)K)) .

- - *
Say C=E1:E1=gEl—u.2., where u=muth(El) >0 .

_ 2 _ 2 _ 2 _
& C-f'—'u'c —El u a.l'ﬂ. C.KY"“ 1.&""“ e

Hence C.(C+ (n#l)2 - (1K) = x-:i - i % @) - (el (E, Ky + 1)

_ 2 - 2 .
= Ei = (n—l)El.KX —u +2p<-~ (p-1)° , since £ is a minimal resolution
and n>2 .

Hence h'(Q.(nK, - (n+1)2)) = O in this case.

Now assume that y > 1 and that the result holds for all smaller
curves. Iet E be a camponent of C, andset C - E=C' . Tensoring
the exact sequence

L}
0+9E(—C)+_QC—>_QC'+O
with Q(nlgl—(n-l-l)z) and applying Serre duality, we see that it is enough

to find a component E of C with E.(C + (n+l)g - (n-1)K,) <O . Then

clearly we can assume that C is not a multiple of 2 . So choose Ei



*
such that C.gEi<O; set u=1mth(Ei) . Then

B * - -
Ei' (C+ (ntl)e - (n-l)KY) = (g Ei) L—-pe.C+ (ntl)u - (n_l)Ei’KX - u(n-1) ;

r

hence we can assume that ¢2.C <1 . Then £.(C+ (ntl)2 - (-1K,)) <-1,
and so we can assume that £ is not a camponent of C . If 2.C=0,

*
then C=gD for some D > O supported on the exceptional locus of

X . If we choose Ei such that Ei'D <0 , then Ei’ (C+ (ntl)e - (n—l)I%{) < O.

*
So assume that 2.C=1. Then C=gD- % , same D as before.

Say QeEa; then for all camponents E' of D with E'#Ea ;, we
can assure that E'.D >0, for else E'.(C+ (ntl)2 - (n-1)K,) <O for

some such E' .
Now E.(C+ @2 - (-D1)K)
=E.D-u+u (t]) - (-1)E K5 - u(n-1)
= Ea.D + 1 - (n—l)Ea.KX ;, Ssince p=1.

Hence we are done unless Ea.D = -1 and Ea.K;( =0 , since n> 2.
In this case, D2 =-1 and E'.D = O for all camponents E' of D with
E_vl # Ea . Then D contains a non-Du Val camponent - F , say; F'IS? >0,

and so F.(C+(mt+l) s~ (-1)K) <O .

Corollary 3 (of proof): le*mi.n =0 forall n>1.
X

Definition: X is canonically free if g is generated by its sections.



Proposition 4: X is canonically free if there does not exist an
effective divisor C supported on the exceptional 1ocu$ X with
C2 = -1 and that is reduced at at least one of its generic points.

The proof is almost identical to that of the ﬁrecedjng theorem. In
fact, we see that X is-carmicallyfreelmless there is a cycle C
as above that is generically reduced along some camponent F such that

C.F=-1 and C.E =0 for all other camponents E of C.

Recall fram B&l] that we can contract the Du Val curves on X

to get a camutative diagram
X 9+ %
lh

f
X

_— * -
where X has only Du Val singularities and K)~(=gK5(— . X is the

Du Val model or the RDP model [LJJ or the relative canonical model of

X . By oonstruction, for all effective Weil divisors D supported on
the exceptional locus of X , D.Xz > O . Hence wy is ample relative
to h, so that the graded Oy-algebra S= @ hu™ = @ Fful

n0 X n>0 X

is of finite type and iéProjg as schemes over X . We can improve
this as follows.

Corollary 5 (i) (conjectured by Reid [Rl]) : The algebra S is

generated by its hamogeneous camponents of degrees 1, 2, 3 and 4.



(ii) : If X is cancnically free, then the camponents
of degrees 1 and 2 suffice.

(iii): If X has only a rational singularity, then S

is generated by f*mf(' .

Proof: Recall Mumford's fomm of Castelnuoro's lemma I:MuZ] z

Iet ¢:¥Y > S be a projective morphism of Noetherian schemes,
F a coherent Oymodule and L an invertible Oy module that is
ample relative to ¢ and generated by its sections. Suppose also that

R¢,(FRL ) =0 forall i>0.

Then the natural map ¢,(FRL") @ byls > %@QEM:L

) is surjective for
all n > O. (Mumford in fact assumes that S = Spec k for a field k ,

but his proof carries over to the present context.)

The proof of (i) and (ii) is now immediate, by Theorem 2 and Corollary
3. Part (iii) follows similarly, once we know that rational singularities
are canonically free. This is so because if C is a cycle as in the
statement of Propositionr4,_ it must be the fundamental cycle of its support.
Then by Artin's results [A2] it must be contractible to a smooth point,
contradicting the minimality of the resolution.
2
X
I have been unable to settle this, however.

Remark: Reid conjectured also that f,uf @ foug > fu is surjective.



Corollary 6: Suppose that X is Gorenstein, so that we can write

&n _ &n &n ;
f*m)ni =L .0y as subsheaves of Wy for same ideal I, of Oy -

I, is the n th adjunction ideal of X [R1]. Then for dl n>4, X=Bl_ X,
n

and if X is canonically free then X 2Bl X for all n > 2. Moreover, X
n :
is the normalization of B]I X for all n > 2 (resp. the normalization of
n

B]__[X for all n >1 if X is canonically free).
n

Proof: Immediate. In fact, @ I_ is finite over ® (I )™ for all r > 2
n>0 B o T -

(and if X is canonically free then this holds for all r > 1) , so that

Irn is the integral closure (Ir)n of (Ir)n for all r > 2, n > 1 (reso. for
allr>1, n>1 if X is canonically free). Note that in any case

n
(Il) c In .

- .
Lemma 7 (Laufer): dim R £,0g = dJ.m(wX/f*mi) .

Proof: This follows immediately fram Grothendieck's duality theorem
[Ha, pP- 210:|. In fact the two sheaves are dual under the functor

Ext}z(‘(—,mx) . dim le*OX is the arithmetic genus of the singularity P .

1] *
Lemma 8 (Knoller): Suppose that X is Gorenstein, so that IS~(= fKX—Z i

with 2 >0 and Z=0 <=> X has only a Du Val singularity. Then

. _ 52
In-l-l gIn ;, and dJJn(In/In+l) = -n.Z2" .



Proof: Apply the Riemann-Roch theorem and Corollary 3 to the exact

sequence .
0 > O(-(ntl)Z) + O(-nZz) '*QZ(—nZ) +0.
: : 3 . . 2 3.6
Examples (i) : Suppose that XSAC is defined by X +y+z =0
(a simple elliptic singularity of degree 1). Then the exceptional locus
of the minimal resolution X consists of a smooth elliptic curve E
with E2=-l r sothat Z=E . It is easy to see that Il= x,v,2) ,

2 2 3 2 2 2 4
I, = (x,¥,27), I3 = (x,y ,y2,27) and I,= (x",xy,xz,y ,y2°,2) , so
2

that I4 # Ig s although I4 = Il'I3 + I2 . X is not canonically free,
for O.(E) =0(-Q) forsame Qe E: Q is then a base point of vy .

(ii) : Suppose that XgAg is defined by x2+y4+z4=0 (a

simple elliptic singularity of degree 2). The exceptional locus of X
is as above, except that E2=—2 . This time

2 2 2
I, = ®y,2), I,= (XY ,y2,2") , so that L, #7I] .

82. Henceforth we work over the camplex numbers € .

Definition: Iet X + S be a flat family of surfaces, where S is a
€C-scheme or analytic space. A base point O € S is fixed; we assume
that 3(0 is nommal. shrinking S around O if necessary, it follows

that X is normal for all ¢ ¢ S. We say that the family X > S admits



a (minimal) simultarecus resolution if there is a finite surjective

map S' > S and a proper map §{_—>X'=§_xss‘ such that X is flat
ower S' forall o e S', the inducedmap X -+ X! is a (minimal)
resolution of the singularities of 2{.:; . We shall usually suppress

mention of the base change.

From now on we shall consider only families where the base S is

a smooth curve.

The next result shows that there is essentially no distinction

between minimal and non-minimal simultaneous resolutions.

Proposition 9 (Wilson E/hl:]) : If the family X+ S admits a simultaneous

resolution, then it admits a minimal simultaneous resolution.

Proof Suppose that there is a simultaneous resolution f:X + X .

By Kodaira's stability theorem [Ko] we can assume that X is minimal,

so that le*mgz =0 . Then the usual upper semi-continuity theorems
_o

show that R'£,ui =0 forall o in a neighbourhood of O in S .

—a

Following Wilson, this implies that gc is minimal for all such o .

Definition: Iet X + S be as above, and suppose that X, is Gorenstein;
then we can assume that X is Gorenstein for all oeS . For each

ceS, let g(o) :Y(o) —>)_(U be a minimal resolution, and write



lgl =g,(:0)}3( —Z(G) . Define functions r,d : S+ ¥ by
(o) =
R
r{c) =dim Rg O, and
(G)LY(G)

2
—Z (@) -

d{o)

Note that r{s) =0 <> d{g) =0 <=>_}_((7 has only Du Val singularities.

Proposition 10: Iet XS beasabove,withz(o Gorenstein. Then

if the family admits a simultanecus resolution, the functions r and d

are constant near O .

Proof: Iet f:g +> X be a simultanecus resolutions; by Prop. 9, we

can assume that it is minimal. mlderﬂleCart&smndJagxan

I
Ib[t

M
I <

31 3
{c}&——> S

By the base change theorem [EGA IIT 6.9.8] there are two spectral

sequences whose E2 terms are

ES = 'Ibr;’(R‘qf g

_ P S, én . .
”qu =R f*Torq(mg/S i _QU )  respectively, which have the same



abutment. By the minimality of £ ,;
2 2

= = = ' =
"qu O unless p=g=0. So Eo,—l O, and so
le*mX/S 0 for alln> L Thus gi _, =0 also, and so the matural

)QO —>f*m§n are isomorphisms for all c ¢ S and for all n e N .

maps X/S %

We have a cammutative diagram of natural maps

&n - &n
(f*mx/s) 80 —m—r f*mf(
= ° =
5 | 1
o
&n &n
Wz &0 = W .
X/S~ —¢ - X

and so BG is injective for all oceS, neN.

@n &n :
Thus (wz(_/s/f*ug/s) is S- flat for all n 2 1 . The result now

follows fram Iemmas 7 and 8.

Elkik has proved that for an arbitrary family of nommal surfaces
r is upper semi-continuous, and that if there is a simultaneous resolution

then r is locally constant [E] .

Conjecture 1: The function d is also upper seami-continuous, and r

and d are both constant near O <= the family X + S admits a

simuitanecy: vesolution.

The point is straightforward. We first make same notation; for each



o 4D e

ceS,;, let IU denote the n th adjunction ideal of Z‘v .

7

Now consider the following assertion, where n e N :

A : There is an ideal —Iﬂ of O, such that for a general point

n X

, while T .0, =2 I R
- X
-0

nof s L0 sT, om

I claim that if A holds for same n > 2, then Conjecture 1

is true. To establish this, we need a lemma.

Lemma 11: Suppose that I , J are ideals of O, such that gog(_I_o)

X
(bars again denoting J_ntegral closure) .

Then JeI .

Proof: Clearly we can assume that I ¢J . Write O =0. Let xeJd
Consider the graded rings e(lm.'Im) [_xT] < Q[TJ  where T is an
indeterminate of degree one and every element of O is of degree zero.
By hypothesis, ea(_fgtr’“) [x T is finite over ®(I T ; ie. there
exists n_ e N such that @& (Im_lQH. ) > H is surjective for
(@] o —0 —l,O —l'll,O
i=0
13 i
allmino, where H =12 I'x . Then by Nakayama's lemma,
j=0 '
n
O mi
& (Im_ ® H.) +H is surjective for all m>n_, and the lema is
i=0 =i —m -0

proved.

Suppose then that n > 2 and that An holds, giving an ideal In

as stated. ‘oreach s>1, set Esnz(-I—i) . Then by Lemma 11 and
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Corollary 6, Asn holds for all s > 1 . Letting Igm denote the

F

m th adjunction ideal of }_(0 , we see that dim(Q, /Io,sn) > dim(_(_)_zn/lmsn) .

%

and the upper semi—continuity of d follows from Lemma 8 by letting s > = .
Conversely, suppose that r and d are locally constant. Then for all

s>1, dim(ggo /Len,0 = djm(9_§n/;S n,g) ¢ SO that O/Ig, is s-flat

and I forall ceS. Then I_ @0, =,I_  for all

T =
=sn,6 ~ ~g,sn =en © “X_
s

ceS, and so Proj( @ Esn)ﬁk(o)iProj(e I U) ;, which is just
s>0 s>0 !

the relative canonical model of Kc . Hence we have constructed a
similtaneous Du Val model; this can be similtanecusly resolved by the
results of Tyurina and Brieskarn [Ty], [Br 1-3] (cf. also Remark 5) at

the end of Ch. 2).

It follows fram the Riemann-Roch formula for the plurigenera of
a surface of general type and (a slight extension of) Wilson's results
on the "arithmetic plurigenera” [Wi 1,2:] that for suitably campactifiable

families of surfaces, Conjecture 1 can be written in the following form.

Conjecture 2: Suppose that X-»S is a proper morphism with _)_(O normal,

Gorenstein and having a smooth model of general type. For each n XN,

define ™S >N by nn(c) = Pn@ being a smooth model of

@) " 2
. Then for all n €M™ " is upper semi-continuous, and if for same

B A

2 T, S locally constant, then the family has a simultaneous resolution.



Remark: Note that Conjecture 2 can be stated without the restriction

that X/ be Gorenstein. However, the difficulty with families X > S
of arbitrary normal surfaces is that although it is possible to define
sheaves "’)EI/I]S of relative n—fold 2-forms (see [Ll]) ; their formation
needmtc:xmtewith-basedlange. For example, consider the cone on
the Veronese and the cone on a normal rational scroll of degree 4 as
total spaces of l-parameter smoothings of the cone on a normal rational
quartic. Then (see [Pi]) the first example does not admit a simultanecus

resolution, while the second does; if “%JS 2] 90 = m}];n] always, then
== oy

the argument of Prop. 10 would imply the impossibility of the second

example.

Theorem 12: Iet X+ S be a family of normal Gorenstein surfaces, and

assume that is canonically free. Then Conjecture 1 holds.

X
—o
Proof: We first show that in any case the assertion A1 holds.

This is proved by Elkik [E], but we give a proof both for ccmpleteness
and because hers (which is adapted to a much more general situation)

carries rather more notation.

By Hironaka's theorems [Hi] there is a desingularization f£:X + X
such that the strict transform Z of 3(0 is smooth; by generic
smoothness, _}"gc - 3% is a desingularization for all ¢ ¢ S — {O}. By the

Grauert-Riemenschneider vanishing theorem [_G—RJ le* %/

S=0foralli>0,
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and so by the base change theorem the natural map
(£ o3 S) & 90 -5 f*m}-( is an isamorphism for all o e S . Fram the
= ]

natural inclusion mZ“—* wg we see that we can define a suitable I
o)

by f*mz/s = E.m}_i/s .

Now suppose that 50 is canonically free. As noted in the proof

T = - /7 ST =
of Corollary 6, To,n (Ig,l) . Moreover, _I_n.g}_(gs Ic,n for all

ceS—- {0}, and by Lamma 11 En.gxg Ion . Hence assertion An
5 7

holds for all n e N , and we are done.

§3. 1In this section we consider families where the special fibre §o

is a double point.
Theorem 13: Conjecture 1 holds in this case.

Proof: We can assume that 3{05 A3 is defined by z2 + £(x,y) =0 ;

C
then considering a vexrsal deformation of l(o ;, we can assume that if
t is a local paramster at O e S , §+A§ is defined by 22+F(x,y,t) =0,

where F(x,y,0) = £(x,¥) . f(x,y) is square-free, since X  1is normal,
and so the family F - Ag + S of curves defined by F(x,y,t) =0 is

reduced. We regard X as the double cover of Ag branched along F .



Write A = Aé . Pulling back (over S) by a camponent of the

normmalization of the singular locus of ¥ , we may assume that the
projection A + S has a section contained in the singular locus of
F . Blowup A along this section. Continue this prccess until the

reduced total inverse image of the pull-back of F has normal crossings

over t #0 .

We have a commutative diagram

o
R ——

where g is the composite of the blow-ups and 7 is the double cover
branched along ¥ . g is the nommalization, so that p is the double
cover branched along ¥ , where F is obtained from q*F by subtracting
even multiples of exceptional divisors until we are left with something
reduced. Blowing up some more if necessary, we can assume that F is
smooth (but probably disconnected) over t # O . Then gt is smooth for
all t # 0, while go + X is proper and biraticnal.

% * ~ - v .
We har= mg/s=pm§/5tz;p9_(D) ; where F =2D (F is even, by



construction). Writing F = 2D , we see that

TR X/S zr/ls = [O(HD}QR 2,0(2)60 (n-1) D) @R a0 (B)]

~

where A and B are divisors on A supported on the exceptional

locus of g . Hence to prove that R]h wx/s

it is enough to prove the following result.

is S-flat for all n>1,

. ™
Lemma 14: Iet S=Sr—r>... —]—'->SO=S be a seguence of

blow-ups of points on smooth surfaces. Fix Ajree-sa, € Z . For

i=0,...,r define I_._ieP:Lc Si by L'O=QS ,_Ei=1rlLll®9(aiEi) ;

where Ei is the curve contracted by ™o Set py = mMO...om

Then djm(Rlp*E) depends only on (al,...,ar) and not on the

configuration of points blown up.

Proof: We shall show also that dim(coker (p, (wg & ;.__l) + wg))
depends only on (al,...,ar) . We argue by induction on r .

r =1 : Obvious.

Assume that r > 1 and that the result holds for all shorter

sequences of blow-ups.

Case (i) a >0,
————— e r.—

leray : E‘gq = Rppr_]'_* anr* L = ! Pe L .



= I8 =

. 1 . 1 . 1
So dim Rp,L dJmRirr,é+dJmeI_l*ﬂr*E

. 1 . 1
dim R ﬂr* _Q(arEr) + dim R p

r—l’ér—l '
and half the induction is complete in this case.
Case (ii) a. < o .

The duality theorem gives two spectral sequences with the same
abutment:

= Rpp*Extg(E,wg)

Py _ —q
II;7 = ExtS (R o L, ug) .

Note that I§q=o if g#0 .

There is another Leray spectral sequence:

'qu - Rppr-l*Rqﬂr*(“:'(wS 2 E;'1-1) & ot (l-ar)Er))

r—1

= Ip—Hzllo

- 1 oo xd =
IEIZDq B Rppr—l*(msr_:L 2L, 2R TTJ:*Q((J‘ ar)Er)) )

. 1,0 _ .. 1 -1
Hence dim 12 = dim R pr_l*(wsr—]_ (] Er—l)

1
+dim Rom , O((1-a )E) ,
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and so is a function of (al,...,ar) byﬂlejildlxctionllypottlesis.

1(2),0 = pr—l* (ms L e E;i‘l) > g with cokernel F , say, of finite
r—- ,

length; by hypothesis, this is a function of (al""'ar—l) .

IICZ)’o = Han(p,é,ws) = w, , and generally ]:[Iz’q = 0 unless either

P=9q=0 or p=2 and g=-1 .

Camparing the diagrams for ng and Ing, we get an exact

sequence

1,0

2 o .

O+F+]I§'_l+1

Now TI2'" is dml to Ro,L, via Exti(-ug) , andso dim R'p,L

is a function of (al,...,ar) .

To camplete the induction, we must show that

. -1 . .
dim coker(p*(mg QL") > ms) is a function of (al,...,ar) .

. -1, _ =],
Case (i) : a_<O . Then p*(mSQ;._ )—pr_l,,‘(mS Qg_l) .

T T
1

and we are done, by the induction hypothesis.

Case (ii) : a >0 . Then = (w~eL‘l)= ar—l( S
—_— r - r*'s T = T -\

L)) o
Sr—l -1

where Q is the centre of L and so we have an exact sequence

a-1
h of

O—>mQ

-1 -1 ar—l
. (w QL ") > w &L +0:( -0 .
Sr—l r-1 Sr—l -1 -Q



There is a ILeray spectral sequence

vE = Lz el ) > P wze™

1 ar—l
from whence dim R™ Pr* (mQ

-1 2 =1
@L ;) = dim Rlp*(mgﬂg )

-1

which we know to be a function of (a ,...,ar) .

Now the induction is camplete and the lemma proved.
Returnlng to the proof of the theoren, we see that th*mx %/S is

S-flat. Con51deratlon of the ideal I defined by h*mX/S =1 .mg;s

shows that_» A, holds.

Corollary 15 (Wahl): Conjecture 1 holds for l-parameter deformation

of minimally elliptic singularities.

Proof: Such singularities are either canonically free or are double

points, [La] 7 [RZ] .
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CHAPTER 2.

1. Reid has introduced the following definition [R3):

Definition: A variety X has canonical singularities if

(1) X is normal;

(ii) K, is locally principal for same r #0 (the least
positive such r is the index of X );

(iii) for same (and hence every) desingularization f£:X > X,
f,0(nK;) = O(nK,) for all neN .
Given (i) and (ii), (iii) is eguivalent to (iii)"' F0(xKg) = 0(xKy)

where r is the index. -

Reid asked (loc. cit.) whether canonical singularities are Cohen-

Macaulay; in this section we prove the following result.

Theorem 1: Suppose that X has canonical singqularities and that

dim X <4 . Then X is Cohen-Macaulay.

The proof hinges on the following two results, where f£:X + X

denotes a desingularization of the variety X .

X W, Choflr oM variehs ke 0 o(a{m'cd over He Cmfln( Wotuobers
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Theorem 2 [GR]: Rfuuz =0 forall i>0.

Theorem 3 [Ke]: The following are equivalent:

(i) X isnommal and R£0;=0 forall i>0;

(ii) X is Cohen-Macaulay and f*mi=mx .

The proof of Theorem 1 goes as follows: for dim X <2 , it is
well known that X can have only Du Val singularities if dim X = 2
([R3], but this is also implicit in [Wal]), or that X mst be smooth

if dim X =1 . We first prove the result for dim X = 3 ; this enables

us to apply the results of [R3§2]toproveﬂle 4—-dimensional case.

Proof of Theorem 1: First note that by [R3 Cor. 1.9] and the fact

that the quotient of a Cohen-Macaulay variety by a finite group is itself
Cohen-Macaulay [Ho,lamnas_],wemyassmeﬂ'xat X is of index 1 ,

i.e. that Wy is invertible.

Now suppose that dim X = 3 . Then by [R3 Prop. 5.4] there is a
O-minimal resolution f:X > X, in the sense that Kz =f K +Z ,
where 7% >0 and dim £(Z) <O . In the notation of [R], 2 is the
discrepancy of the resolution. We giwve a proof of this, both for
campleteness and because it provides a clear picture of our approach

to the 4-fold case.

Recall fram [HJ.] that we can construct a resolution f:X > X as

a sequence of blowings-up gi:Xi > Xi—l with a centre Y contained in
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Sing Xi—l along which Xi—l

apart perhaps from some finite set ¥ , Sing X is a smwooth carve C ,

is normally flat. By [R3. Cor. 1.14],

say, of Du Val points (in the sense that for P € C-Z , a general
hyperplane section of X through P has only Du Val singularities).
In the first place X is nomally flat along C-I (for example by
the numerical criterion of [Si]), and secondly blowing up along C can
give rise only to O-minimal discrepancy (lying over I). Moreover,
such a blow-up is normal (except possibly over ), by Du Val's
characterization of these singularities as being absolutely isolated.
Thus consideration of each step 9; as above shows that we can find a

O-minimal resolution.

Consider the short exact sequence
0+9§(+9(Z)+Qz(z) +0.

The corresponding cohamology sequence, together with Theorem 2 and
the projection formila, gives isomorphisms

Hl(QZ(Z)) = +R1+1f*95( for all i>0.

Thus HZ(QZ(Z)) = 0 . By the adjunction formula, w, = QZ (22) ,

so that Serre duality on Z gives H(0,(2)) =0 ; hence R'£,0 =0 .
That R°E,0p = O follows via the duality theorem [Ha. p. 210] from the
hypotheses that f*wf( = wy and that X be nommal, exactly as in Kempf's

proof of Theorem 3. Then by Theorem 3 X is Cohen-Macaulay.
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We now give a proof in the case dim X = 4 . Since this is rather
camplicated and we are in any case more concerned with 3—-folds, the

reader might like to go straight to Corollary 4.

Suppose that dim X = 4 . We aim to construct a model f£:X + X
such that X is a Gorenstein variety whose locus of non-rational
singularities is at most one-dimensional and which is O-minimal over
X . We in fact define a sequence gi:xi—)xi—l of models O-minimal
over X (so that if Gi:xi+x is the camposite morphism, then there exists
open U< X such that XU is finite and if V=G;1(U) , then
w, = Guy - In particular, therefore, V is nomml in codimension 1).

Define X0=X. Suppose that i > O and that xi has been

i
amstructed as required. Iet S be an irreducible smooth Samel stratum

(see [Be]) lying in Sing(X; ;) . There are several cases to consider:
(i) dim Gi_l(S) =0 : then set X, =BLX. ; -

(ii) d:imGi_l(S)>O . By the nommality of V as abowe, dimS < 2 .
(@) dimS =2 . Then a general surface section of X. 1
through a general point of S has only Du Val singularities EB. Thm. 1.1?_;},

so that blowing up along S introduces no discrepancy. Set Xi=Blsxi.

b) dimS=1 and multP(Xi_l)33 for a general point P

of S . Again a general hyperplane section of Xi—l through P is
canonical of index 1, and so Gorenstein, as already shown. Then by

[R3. T™m. 2.11] blowing up along S introduces no discrepancy; set

X =BlgX;q -
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(c) dmS=1 and mltp(Xi_l) =2, P as before. Then

by hypothesis, every point of S has the same Hilbert-Samel function
(not just polynomial) as P, and so is a double point (of a hypersurface);
in particular it is Gorenstein as a point of Xi—l - We may assume then
that none of (i), (ii) (a) or (ii) (b) hold for any Samuel stratum and
that every singularity of Xi—l is a double point. Moreover, since
the normalization of a double point is a double point, we can take
X;; ‘to be nommal. Consider the locus NR(X, ;) of ron-rational
singularities of Xi-l ; it is clearly closed in the Zariski topology.
By construction, 3 dense open U X such that X-U is finite and
contains NR(X) , and if V = Gﬁl © , then w_= G;_lmu , so that
U and V are rational Gorenstein. So G (R, ,))€ XU, and
so is finite. Suppose that NR(Xi_l) has a 2-dimensional component W ,
say. Then W is a camponent of Sing (Xi_l) » and so contains a smooth
Samuel stratum; this contradicts our assumptions. So dim MR(X, ;) <1:
take X=X _; in this case. |

Note that there is clearly a resolution g:X + X such that if
h = fog:X + X , then X is l-minimal over X (i.e. K5~(=h*KX+Y ,

with Y >0 and dimh(Y) < 1) .

There is an exact sequence O+g*mi‘(+mi+g+0 .
Theorem 2 and the Leray spectral sequence give le*(g* X) =0 for all i >0 ;

dim(supp H) €1 , and so sz*uK=R3f*m}~(=O .

*

Say K5(=fKX+Z; the same argument as before shows that

2. . _ 3. _
Rf05 = R£,0; =0 .
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Say Ki‘(=h*ls(+Y, Y > 0 . Fram the exact sequence
(@) 0+95(+Q(Y) +_O_Y(Y) »+0

and the fact that R 05(=0 (via duality as before), we get

8  Eho (M =Kho () =0 .

Say X+ S, S smooth of dimension s . Then the duality theorem

gives a spectral sequence
5 = Bl PR o, M g = Fho,m -

Consideration of this, together with (a¢) and (B), gives first that
h0,(Y) =0 and then that th,,Qf(=0. By the Leray spectral sequence,
le*_Qi=O. 'Ihendualltymthemxptusm X+>X>S gives an isomorphism

s—44p = . =
Extg (in,ms) = Rpf*mx =0 forall p>2.

I.e. depth X > 3 everywhere. Then by a theorem of Hartshorne and
Ogus ]:Ha-o '111.1.6] (pointed out to me by Wahl), X is Cohen-Macaulay.

Corollary 4: Suppose that X is a smooth complete 3-fold with the
following properties:
(i} X is of general type;

(ii) the canonical ring R= & Ho(m;m) is finitely generated;
n>0
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(iii) the birational map m:X - - > X =Proj R is a morphism;

(iv) the canonical model X is of index 1.

Then the plurigenera of X are deformation-invariant.

Proof: The point is a theorem of Wahl's [Wa 2], that deformations of
a resolution of a rational singularity "blow down" to deformations of

the singularity. The details are as follows.

Suppose X + S is flat, with o e S and X=X . Write §=>_(o,
Anz-QS,oﬁ—[Po' Take an affine cover {U; =Spec B;} of X, and set

Vi = n_l (Ui) . We have a Cartesian diagram
V. &—— V.(n)
J J
;, Where ngn) is the n'th infinitesimal

U. neighbourhood of Vj in X .

Speckt‘————>SpecAn

By Theorem 1, Rln*_QV =0 for all i > O, and so by the base change theorem
J

_ n(n) . _ (n) -
I‘(ij(n)) = Bj , say, is An flat, and Bj @Ank = Bj naturally (for
details, see [Wa 2 §1]).
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I.e. Spec B:.fn) = Uj(n) y Say, is a deformation of Uj over An -

and the diagram

v, e—s v

J
| |
U. ¢— U_(n)
J J

| !

Spec k &——Spec An

is Cartesian. Moreover, by [ThZIama 1.2] the U;n) are uniquely

defined, and so can be glued together to give a deformation X of
X over A . Set g=§/ » the completion of X along X, and
X
g=]ﬂ§(n) - By the results of [P@ III, §5], X is an algebraizable
formal scheme (note that li.m«n_(n) gives a polarization), and so
X" /A
n

we have a Cartesian diagram

o

[ S—Y 2(_'
¥
€ )_("
¥
Spec k«——Spec(0,".) = S' .
—S,0

<« XNl «

Clearly we can assume that S' =S = Spec k[[t]] {O,n} , with O (resp. n)

the closed (resp. gemeric) point. X' =X, X' =X, say. Put Y =X
) =h'(™) =0 foralli>o0, n> 2,
X Y

Y= ht (2

| >4l

- Since w is ample,
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and so P~ 1s deformation-invariant for all n > 2. P, = Py is invariant

anyway, by Hodge theory.

Remark: (i) This also shows that properties (i)-(iv) above are together

deformation—invariant.

(ii) Entirely similar remarks hold for 4-folds.

52. In [R3, Thm. 2.11], Reid shows that if P is a rational Gorenstein
singularity of the local 3-fold X , then a general hyperplane section

Y of X through P has a Du Val or minimally elliptic singularity at

P, and that if P is a Du Val point of Y , then it is a rational point
of X . Tt is easy to see that P € Y can be minimally elliptic without

P ¢ X being rational, even if X-{P} is smooth; what we prove here is

a best possible converse, at least for isolated singularities. This has also

been noted by several others, including Morrison, Pinkham and Wahl.

Theorem 5: Suppose that X -~ A is a l-parameter deformation of the
cusp or simple elliptic singularity P ¢ Y , where the general fibre
Xt has only Du Val singularities (we call such a deformation a rationalization

of Y). Then X has only rational singularities. Moreover, if P e Y is

a smoothable normal Gorenstein surface singularity which is neither simple
elliptic nor a cusp, then there is a l-parameter smoothing X + A of Y

having a non-rational singularity.



Proof: We shall give two proofs of this result. The first is only
valid if multpY>2 and the general fibre Xt is smooth, but has the
advantage of being explicit. The second uses the ideas and techniques

First proof: We begin with same lemmas.

Iemma 6: Suppose that Tc.Pd is a non—degenerate (i.e. spanning Pd)
projectively Gorenstein surface of degree d having a hyperplane section
that is either a smooth elliptic curve or a rational cycle (i.e. either
a nodal rational curve or a cycle of at least two smooth rational curves,
crossing normally). Then T is reduced and is of one of the following

forms:

(1) T 1is irreducible: then T is either a Del Pezzo surface
(possibly with Du Val singularities) or a normal quadric embedded by

0(2) or a cone over a normal elliptic curve or a projection of a surface

S of degree d inPd"-l fram a point Q*S, but coplanar with a

reduced conic in S ;

(ii) T has 2 camponents Xl'XZ : then Xi is of degree di in

Pdi+l and Xl and X2 cross generically transversely in a reduced conic;

(iii) T has n > 3 caomponents Xl,...,Xn: then each Xi is of

di+1

degree di in P and, re-ordering if necessary and writing

Xn = Xl ; -he configuration satisfies
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(a) Xin Xi+l is a line for all i ;

n
(b) n X. is a single point Q , say;

i=1 *
(c) Xin Xj = {Q} unless Xj = Xi or Xiil -

(d) no X. is the Veronese. If X. is a cone, then X. a X.
i i i izl

is a generator; if Xi is a scroll, then Xin Xi—l is a

generator and Xin Xi+1 is a directrix (or vice versa).

We call such a configuration a tent, and Q its vertex.

Proof: First note that a general hyperplane section of T must also be

either a normal elliptic curve or a rational cycle. T is clearly reduced,
(i) This is classical.

(ii) Iet <Z> denote the linear span of a subscheme Z of .

r.
Clearly d:im<XlnX2>_>_2. Saydegxi=di, <Xi>5]P:L ;, So that

d. >r.-1 . Then 3Id, =d<z:r., -2, sothat d. =r.-1 ; the final
i—"4i i — i i i

assertion is obvious.

(iii) A general hyperplane section Ha T is a rational cycle

(Cl,...,Cn) . Order {Xi} so that Xin H= Ci . Say <Xin Xi+1> = Mi ’
Ir-
degXi=diand<X‘_.L>5]Pl . Suppose 1 < j<n; then

dJ_m<Xlu au .qu> £ rl+. .ot rj - {J-1) and

+rn— (n—3-1) ,

dJm<Xj F10 VX > < r:.l ate--

so that dini—j+l—n+j+l—2:Z (ri—l) . So di=ri—lforall i,
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and each Mi is scheme—theoretically a line. Moreover,

(Xlu...qu)n (Xj+lu...uxn)g_MjnMn , and so Mjn Mn#Q} .

n
Finally, we must show that 0 Mi;é¢ . Suppose that Mi=¢ ; then
i=1
without loss of generality Mnn er\ M2 =@ . Say Mln M2 = {R} .
Re Xln(X3U...an) , and so d:i_m<x1 (X3 Xn)> > 2 . However, the

previous argument gives ch'm<Xl (X3 e Xn)> <1, and we are done.

cover
Lemma 7: Suppose that A' is an r-fold cyc]ickof A , ramified

campletely over O . Write X' =X XAA' . Then if X' has only rational

singularities, so does X .

Proof: TILet t (resp.s) be a local parameter on A (resp. A') . We

can assume that s =t . Let w be a local generator of Wy then
/1 is a local generator of wy, . Suppose that R+ S is an
extension of DVR's of the function fields k(X) and k(X') respectively,
and let p,o0 denote the corresponding valuations. We must show that

p(w) >0 . Let x,y be local parameters in R,S respectively;

x=uy® with ueS aunitand e the ramification index. Iet v be
a generator of wp then yx = ¢/ye_l is a generator of wg - Say

0= P/ r @ €Z; then yx = m.xa/ye—l ; So that o(ye—l/ a.sr—l) >0,
by the ration ity of X' . o(y) =1 and e<r, sothat « <O , as

required.
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TLemma 8: Suppose that X - A is flat, with X a local Gorenstein
scheme. Suppose that Xo is either a double point or satisfies the
candition () emb dim(X ) =mlt(X +dimX) -2 (cf. [sal]) .
then there is a base change A' > A such that X'=X xAA' satisfies
the same condition as XO = X;) ; SO that the local parameter t on
A" is superficial of order 1, in the sense of Samuel ([Sam. p.22] and
EZ—S. P. 285 and proof of VIII Th. 22, p. 294]), in the local ring of

X' .

Proof: Denote embdim, mult and dim by e, pn, d respectively.

In any case, u(XO) > uX , e(Xo) =e(X) or e(X)-1 ,

d(XO) =d(X)-1 . Also e(XO) =eX) = u(XO) > 2.u(X) .

(1) u(XO) =2 . Then u(X) <2 . If u(X) =2, we are done;

otherwise make a base change of arbitrary order >2

(ii) u(XO) > 2 and e(XO) = u(Xo) + d(Xo) -2 .

Let m denote the closed point of X . Making a base change of any
order > 2 , we can assume that teg—_lgz. Then e(Xo) =e(X) -1, and
we get e(X) > u(X) +d(X) - 2. If X is not a double point, then
eX) < uX) +dX) - 2, by [:Sal Cor. 3.2:], so we are done in this case.
Suppose that X is a double point, and XO is defined by f(xl,..,xn) =0,
where n = e(XO) . Then X is defined by f(xl,..xn) + t.g(xl,..,xn,t) = 0.

deg f=pX =1yu, say; then a base charmge of order u will give us what
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we want. The last statement follows fram the results of LSal] and

Theorem 1 of [Si].

Recall that the geametrical meaning of superficiality is that the
(projective) tangent cone of the hypersurface defined by a superficial

equation is a hyperplane section of the tangent cone of the variety.

Lemma 9: Suppose that (A,m) is a Gorenstein local ring with t ¢ m
a non-zero-divisor. Write (A,m) = (A/tA, m/tA) and suppose that A
satisfies the condition(§ of Lemma 8. Say mult(d) =y . Then

u>2=>mlt@) =y, while p =2 => mlt @) = 2,3 or 4.
Proof: TImmediate, via the results of [Sal] .

Lemma 10: Iet P e X be a normal Gorenstein 3-fold singularity of
multiplicity >3 such that some section of X through P is minimally
elliptic. Iet g: Xl + X denote the blow-up at P . Then Xl is normal

and Gorenstein, and KXl = g*KX .

Proof: This is an easy converse to the argument in the middle of P-290.
of [R3].

We now proceed with the proof of the theorem. In outline, we blow
up points until we are left with only double lines and double points; we

then blow up che lines, noting that for every blow-up gi:Xl > Xl_l p
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. - ) =
X and X are normal and Gorenstein, and K . =giK i-1 -

X
Finally, we analyze the remaining singularities. This process,

described in detail below, gives a very explicit partial resolution
X'+ X; X' has only canpom'zd—Ak singularities, and X; is reduced.
(Recall that a point 0O of a variety V issaidtobeofcatpomxi—Ak
type (abbreviated to c—Ak) if Q is normal and there is a curve
section of V through Q having only a node there; equivalently,
Q € V is a hypersurface singularity defined locally by an equation

of the form xy = g(zl,...,zr) ; where g does not vanish identically.)

Denote nmltP(XO) by vw; u>3. By lLemmas 7 and 8, we can assume
that mult (X) =yu also. Then T=TX®P' of degree M . Set
X1=B1PX. TY¥ consists either of a smooth elliptic curve or of a
rational cycle, so that a general hyperplane section H of T is of

the same form. There are two cases to considers:

(i) H is a smooth elliptic curve C .

Then T is either a Del Pezzo surface or a normal cone over C .

S the latter; . milt T =y = im T .
uppose the latter; call the vertex Q Then 0 u ande.mQ

In turn ende.mQ =embdimQXl—€, where €=0 orl, andwe_see

readily that muthXl=u=anbdijXl—l . Note that the equation t =0

defines Te Xl near Q , so that t is a superficial element of O

_XllQ
and a general hyperplane section of TQX]' is also a smooth elliptic curve.

Now blow 7  Q and continue in this way until we get a tangent cone that



is a Del Pezzo surface (this must happen, for else the singularity
P ¢ X could not be resolved). Denote the composite of these blow-ups

by h:X > X . 5(0 has the form shown in the diagram:

=a Plr e e A
VD V‘ V’\-'\ Vv\

VO is the strict transform of XO (and its minimal desingularization),
Vl’ ee 'Vn—l are minimally ruled surfaces with the same elliptic base C
and Vn is a Del Pezzo surface, possibly with Du Val singularities.
These last are the only singularities of X ; they do not lie on Vn—l 7
and so X has only cDV singularities. By lemma 10 and the Gravert-

Riemenschneider vanishing theorem, we are done in this case.

Remark: Since Del Pezzo surfaces have degree < 9 , we see that u < 9 ;
this gives a local proof of a result of Pinkham E’l] , that elliptic cones
of degree > 10 are not smoothable, that avoids having first to lift

deformations to the projective cone.
(ii) H is a rational cycle.

Then from Lemma 6, Xl = Ble has at most one point Q , say,

which is not c—Ak; if T has > 3 camponents, Q is the vertex of
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the tent T . Say muthX1 = ul . It is clear fram the gecmetry of the

i ti d i i T im T = ET . if
configurations described in Lemma 6 that a'nde_rnQ mul o Then
u133, byIamasBarﬁ9Tisdefined:i.nXlathyasuperficial

element of O Xl ; namely t . Continue to blow up points of multiplicity
Q
14

> 3 until we are left with only double points (not necessarily isolated).
Denote the camposite of these blow-ups by h:X + X . Then the total

exceptional divisor can be depicted as a set of concentric annuli:

—_—

Each annulus is the strict transform of a tangent cone to a point of
multiplicity > 3 ; the outermost annulus is the strict transform of

TP (X) , and so on. The following properties of X are obvious:

%*
(i) X 1is normal and Gorenstein, and Kf{ =h KX ;

(ii) The special fibre XO of X+ A is reduced; it consists of
the strict transform of Xo together with the exceptiocnal divisor above;

(iii) X is smooth along every arrowed curve in the above figure,
except possioly where two of them meet;

(iv) Every irreducible curve of singularities of X is a smooth

rational curve;
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(v) No annulus has more camponents than any annulus outside it;

(vi) Every component is rational. (A priori, an annulus might
consist of an elliptic cone or its strict transform. Consideration of
the first tangent cone corresponding to such an annulus gives an elliptic
cone containing a hyperplane section that is a rational cycle, which is

absurd. )

(vii) The central annulus (i.e. the tangent cone of the last blow-up)

is of one of the following forms:
(a) a Del Pezzo surfacs:

(b) a projection S of a scroll or Veronese fram a point coplanar

with a reduced conic T ;

(c) 3 smooth camponents with a single common point Q

“e

(d) 4 smooth components with a single cammon point Q

~e

(e) 2 smooth compcnents and a quadric cone, whose vertex is the

unique common point Q ;

(£) One smooth component A , and a quadric cone whose vertex Q

lies on A ;

(g) One smooth component A , and a cone over a twisted cubic

whose vertex Q lies on A ;
(h) The cone over a twisted rational nodal quartic;

\

(i) Tha cone over a plane nodal cubic;
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(3) 2 quadric cones intersecting transversely in a smooth conic
disjoint fram their vertices;
(k) One smooth component and a quadric cone meeting transversely

in a smooth conic which does not contain the vertex of the cone;

(1) 2 smooth surfaces meeting generically transversely in a
reduced conic T (where Q denotes the singular point of T , if such

exists).

In case (b), S has a double line & containing either 2 pinch
points (when T is smooth) or a single "degenerate pinch point", given
locally by the equation w2 = qz (v2+u) (when T is singular). (See
-L-S—R. p.l32] for the case when T is srrboth; for T singular, the

equation may be derived readily.)

(viii) In cases (@), (j), (k) above X has only c-A,_ singularities;
in case (b) X has c—Ak singularities away from the (degenerate) pinch
points of S . In all other cases X has c-A, singularities away from

Q.

Now blow up X along the irreducible double curves, one by one, until
we arrive at a model g:X* > X s say. The singularities of X* consist
of isolated double points, and the special fibre X: of Xﬂr >~ A is
reduced; this is because at the generic point of every double curve, X
is c—Ak » and blowing up along such a curve yields only c—Ak singularities.
Finally, a base change of order 2 followed by further blow-ups may be
necessary to ensure only c—Z—\k singularities. We give the details in

case (2); the others are at least as simple.
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If I‘iss&mo&a,ﬂ}ereisnoﬂ:jngtoprcve,soswse r to be
singular at Q e X . Thennear Q, X is defined as a subvariety of
A4 by x2-ly222+t.g =0, g=gly,z,t) , choosing suitable co-ordinates.

Denote the order of g by O0O(g) ; clearly we can assume O(@) >2.

(@ Q eX is not isolated. Then we can assume that X is singular
along the line {x =y =t=0}; i.e. no power of z apears in g .
Say g=yl'1]_+th2 . By the fact that X is smooth over A*=A—{O}
either same power of t , say tq—l, or a term of the form A.tq_l,
where A is a linear function of (%x,¥,2) , must appear in g .

Say Z =Bl X "™ X . There are 3 affine charts to consider:
(x,y,t)

Z =1+ y'222 + t'y'hl(xyp,z,xt') + t'zhl(xy',z,xt') =0

X
2 2
. ¥ ' ' =
Zy.x + z +th1+t2hl o}
12 l22 | ] 1 1 —_—
Zt : X'T +y'Tz +yh1(y t,z,t) +h2(y t,z,t) =0 .

zxnn’l(Q) =@ and zy is c-A_ along -rr—l(P) . Clearly {x'=z = t = 0}
lies in Sing Zk unless some hi has a linear term in (y',z,t) , but then
Zt has just c—Ak singularities.
Set W=Bl,_ , Z_ : the only chart that needs checking is
x',z, )t

2,2

Wt:x" +vy 2

z'“ + Lz hy (y't,z't,t) + iz h,(y't,z't,t) =0 .
t t

Either this has only c—Ak singularities or it is defined by an equation

similar to that defining X , except that the exponent of t has dropped.
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This reduces us to

(b) Q e X is isolated.

2 + y222 + t(yn+zp+1:q_lJ.-zt.hl + yt.h, + yz.h;) =0
h; e k|ly.z,.t|| -
*
Now make a base change of order 2 , and call the new total space X .

* 2 —
X X +y‘2x2+t2(yn+zp+t2q~2+zt2hl+yt2h2+yz.h3) =0

Bl X* Z X*
'(XIYIt) - v -

2 2q-2 2

Z, : x'2 +y'2z + y'ntn + zp + t hy + y't3h2 + y'zth3 =0

+ + zt

Bl(x',z,t) Zt =W:

2 n, n-2 D

Wt . Xl|2 +yl22| + Yl + 1z 2q—4

1 | 1 —_—
+ t +zthl+yth2+yz'h3—0

hi =hi(y't,z,t) = hi(y't,z't,t) ; and so Wt is defined
*
by an equation of the same form as that defining X . Consideration of
the powers of t that occur showsthat blowing up lines will eventually

give a model with only c--Ak singularities.

Finally we must check the effect of a base change of order 2 on the

rest of X .
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This is very easy; the worst that we have to consider is a point Q
of X such that near Q , io is the union of two Cartier divisors
A and B, each with a singularity at Q with an equation of the form

+ +
xy=zk1 (resp. xy=uql)

(Possibly k or g=«). A and B
intersect scheme-theoretically in the curve {xy = z = u = 0} .
(A and B are components of the total transform of adjacent annuli.)

*
With the same notation as above, X is then defined in AS,

near Q , by equations of the form

xy +0(3) =0

w2 +0(3) =0 ,

o *
unless X had a node at Q ; in this case TQ(X) is at worst a Del
*
Pezzo surface of degree 4 with 4 nodes. Otherwise TQ (X) is of the
form described in (vii) (j) above, so that blowing up Q leaves us with

only smooth curves of c—Ak points, and we are done.

Second proof: Making a base change if necessary, we have a resolution

mX + X' as above; moreover, it is easy to see that we can construct

such a = with the property that for all t # 0, X, is a minimal resolution

Tt
of X1': . Since all blow-ups are centred over the relative singular locus
of X'/a', X =Uv, , say, where V, is the strict transform (and a

desingularization) of Xé and for all i » O, Vi is camplete. We shall
use the ideac and techniques described in [:PP] ’ ﬁ(u] and E\b] without

further explicit reference; these include modifications of types T and II,



puncturing and slitting, generic contraction and patching.

Say KEE:ZIiVi'rieZ; the ri are not well-defined, but
their differences are. It will be enough to show that roirifora]li;
suppose then that r, >, for same i . Then following EPP],wecan
modify X to get a quasi-degeneration, still denoted by X -+ A' ,
in which Vo is strictly maximal; i.e. ro_>_ri for all i, and ro>):j
for some Vj meeting Vo' Note that Vo is unpunctured. V0 is
a resolution of Xc'> ; suppose that it contains an exceptional curve
E of the first kind. Note that E meets at most two other complete

curves in Vo‘ There are three cases to consider:

(1) E meets no double curve.
If E is not itself double, then by [Ko] it is stable and
can be blown down. So assume that E is double; say E=V0nW.

Then clearly rW) = ro+2 , Wwhich is absurd.

(ii) E meets one double curve F=VonU, say. If E is not
double, then it can be transferred onto U by a modification of type I,
so suppose E to be double. Say E=VonT . Then E;§,=O , and T
is generically contractible onto U . Then contract it gemerically,

making any necessary punctures in U and slits in T .

(iii) E meets two double curves F=VonU and G=VonT,

say. Suppose that E is not a double curve. Then Vo’E = -2 , while

RES R T T Ay - e KBS dn -2 -2<-2, by
o o

strict maximality; this is absurd. So suppose that E is double; then



make a type IT modification along it.

In this way we reduce to the case where V0 is 3 minimal
resolution of X(; - This is an obvious contradiction, and we

are done.

Finally, suppose that P € Y is a smoothable nommal Gorenstein
surface singularity such that for every l-parameter smoothing X =+ A
of Y, X has rational singularities. We want to show that P is a

cusp or simple elliptic point.

Choose a smoothing X »> A ; as above, after a base change there
is a semi-stable resolution m:X - X . Say f(o =UVi, as above.

* - -

By hypothesis, Kf(=“KX+EriVi' where riiro,foralll.Thenm
any quasi-degeneration bimeramorphic to X , Vo is never strictly
maximal, so that we can use the methods referred to above to find a

. *
birational modification X -- - X such that the diagram

*
X-———-—->X commutes, XO is reduced with

\ / locally normal crossings and
*

IS(*=0KX'

* * *
Say X =Uvi s with V_ the strict transformof Y =X , D its
divisor of double curves. Then KV* “ =D . As before, we can modify

* % * *
X so that VO is a minimal resolution of Xo , and ri = ro for

* *
all Vi meeting Vo - D still has locally nomal crossings, and we

see at once that P € Y must be a cusp or simple elliptic.



Remrks: 1) The partial resolution constructed in the proof of
the preceding theorem suggeststhat a Il-parameter smoothing X -+ A
of a cusp has, after a base change, a resolution w=:% + X such that
X, is reduced with nomml crossings, K, =Ky and the dual camplex
of fco is a triangulation of the sphere. If the family X > A can
be campactified in such a way that X is of general type and if X
calbe@stnx:tedsoastobeﬁﬂer,ﬂmthisfollmeasﬂyﬂun
[Per. Prop. 2.7.3.] and [Wi 1]. In turn, this implies that if X+ C

is a 3—fold of general type with O € C such that
(1) X is reduced with normal crossings;
(ii) the dual complex of X is a triangulation of the torus, say;

(iii) every component Vi of Xo' except one, say Vo' is
rational, and its dowble curve D ¢ |-K |
i E 4

{(iv) KX'EZO for all corves E in X ;

then the canonical ring of X is not finitely generated. For, briefly,
if it were, then XO—VO would be contracted to a canonical singularity,
and we would have a rationalization of a cusp; this contradicts the

previous caments. I do not know whether such a 3-fold exists.

2) Conversely, one might ask whether all but one of the
components in a semi-stable degeneration of K3 surfaces can be contracted.
In the type II case, this is easy to see (subject to an obvious restriction,
namely that p >0, where p is as defined below), via Grauert's

Criterion.
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Suppose we have

v

-pI -

KXIV Av0 for all i 50, Vl""’vn—l are minimally ruled over the same
i

elliptic base and u >0 . Write VinVi+l=Ei. Then if C is an
irreducible curve on vV, ad C.E _, =0, =2 and p_(C) =0

by the index theorem; any configuration of such C's is negative definite.
Then by E}.—W §3J, regarding X as a deformation of a resolution of Du

Val singularities, we can blow down X so as to contract the (=2)

curves in Vn . (This might also contract (-2) curves in Xt for

t # 0.) Each Vi remains a Cartier divisor. Choose N >>n , and put

_ wY e 2
F—N.Vn +ooot+ (N-i ).Vi +eoot (N-(n-1) ).Vl ‘

n
Then clearly —FIV is ample for all i =1,...,n , and so UVi can be
i i=1
contracted [Gr. Satz 8:| .
Note that when u > 3 and V, 1s smooth, such a configuration

arises as the exceptional locus of a resolution of the singularity
obtained by taking the cone over a Del Pezzo surface of degree u

isomorphic Vn s Projecting it in a sufficiently general way onto

a disc A and then making a base change of order n .



3) As pointed out above, Pinkham ‘[PJ._] has shown that simple
elliptic singularities of degree > 10 are not smoothable, while
Wahl [Wa 4], [Wa 5] has shown that a cusp of degree m with r
components in its minimal resolution is smoothable provided that
r > m2—m - In other words, only "sams" simple elhptlc singularities
arise as hyperplane sections of rational Gorenstein 3-fold singularities,

while "almost all®' cusps SO appear.

4) The explicit approach used in the first proof of Theorem 5

can also be applied to prove the following result.

Proposition 11: Suppose that X + A is a l-parameter deformation

of the cusp P ¢ XO » assumed to be the only singularity of Xo .
Then if Xt for t # O contains a non-raticnal singularity Qt , say,
Qt is the only non-rational singularity of Xt and is either simple
elliptic or a cusp.

Proof: The first statement follows from the upper semi-continuity

result of Elkik [E|. For the second, the results of Karras [Ka] show

us that we can assume multPXo >5 . If muthtXt = multPXo for t#0,
then the result follows from Cor. 15 of Ch. 1. If the multiplicity

drops, then blow up points of multiplicity > 2 1lying over P ;
eventually we get to a model X + X such that X -+ A has a section By v
say, where Aon 5{t S {Qt} for all £t # 0O (Z?(t > Xt for all t #0) and X is
normally flat along Ao . There are 2 cases to consider:



(1) nmtht X >3 for t#0 . Then AN io is the vertex
of some tent or the vertex of the cone in cases (vii) ;s (h)=(i) in the
first proof of Theorem 5. In any case, blowing up along Ao shows that

for allt #0 , Ty (Xt) is a deformation of a rational cycle, and we
=t

are done. This also shows that in this case, # (non-(-2) curves in a
minimal reselution of Q) < ¥ (non-(-2) curves in a minimal resolution

of P).

. — £ 57 =
(ii) mult Xt 2 for t#0 . Say Aon XO {Qo} . By

%

nomal flatness, milt )"(0 =2 , and we are in cases (vii) (b) or

%

(vii) (1) of the first proof of Theorem 5. In (vii) (b), Qo is a
possibly degenerate pinch point on a projected scroll or Vercnese, and
so is defined locally by either x2 = yzz or x2 = y2 (zz+y) . In
case (vii) (1), Qo is defined lccally by x2 = y222 . It is clear
that any singular normal deformation of these equations defines a cusp

or a simple elliptic point or a Du Val singularity.

5)  The ideas and techniques used in the second proof of Theorem 5
can also be applied to show that any l-parameter family of Du val
singularities can be simultaneously resolved. Of course, the methods

of Brieskorn and Tyurina are much more revealing in this context.

6) Consider again the conjecture on simultaneous resolution of
a family X + S of Gorenstein surfaces. Make a semi-stable resolution

~ *
X+8 . I ‘twere possible to contract X to amodel X  dominating



X , having only canonical singularities and with mti invertible
X /s

i ‘
and ample relative to g:X -+ X for some r , then ng*m [fn] would
X /s

vanish for all i >0 and for all n > 0 , and the conjecture would
follow immediately. (In this case,

wEElJ = w[fﬂ ® k(o) for o e S since w[fnJ is invertible.)
X X X /s

This is of course a very special case of the contraction problem for
3-folds of general type; the fact that there are only finitely many

divisors involved might make it easier.
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