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Abstract In this paper we study the heterogeneous vehicle routing prob-
lem under demand uncertainty, on which there has been little research to our
knowledge. The focus of the paper is to provide a strong formulation that
also easily allows tractable robust and chance-constrained counterparts. To
this end, we propose a basic Miller-Tucker-Zemlin (MTZ) formulation with
the main advantage that uncertainty is restricted to the right-hand side of
the constraints. This leads to compact and tractable counterparts of demand
uncertainty. On the other hand, since the MTZ formulation is well known to
provide a rather weak linear programming relaxation, we propose to strengthen
the initial formulation with valid inequalities and lifting techniques and, fur-
thermore, to dynamically add cutting planes that successively reduce the poly-
hedral region using a branch-and-cut algorithm. We complete our study with
extensive computational analysis with different performance measures on dif-
ferent classes of instances taken from the literature. In addition, using sim-
ulation, we conduct a scenario-based risk level analysis for both cases where
either unmet demand is allowed or not.
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1 Introduction

The Capacitated Vehicle Routing Problem (CVRP), with its many variants, is
one of the most widely studied NP-hard problems in combinatorial optimiza-
tion due to its many practical applications and theoretical challenges. The
classical CVRP is defined on an arc weighted directed graph G = (V, A) with
routing costs ¢,, a € A. It consists in serving a set of customers V., = {1,...,n}
with known demand ¢;, i € V, using a fleet of vehicles with identical capacity
Q and located at the same (unique) depot (usually denoted as 0 in the graph,
ie., V. ={0} UV,). Each vehicle takes exactly one route starting from the de-
pot, visiting a subset of the customers and returning to the depot. Customer
demand cannot be split among different routes and the sum of demands in
each route must not exceed the vehicle capacity Q. The solution of the CVRP
is a minimum cost partition of the customers according to the vehicle routes.

There is a broad literature on heuristic algorithms for the CVRP, but
there are much fewer exact methods available, especially for its more complex
variants. In this paper, we consider an important generalization of the classical
CVRP known as Heterogeneous Vehicle Routing Problem (HVRP), in which a
heterogeneous fleet of vehicles is stationed at the depot and is used to serve
the customers. There are m different vehicle types: K = {1,...,m}. For each
type k € K, Uy vehicles are available at the depot with capacity Q, where
Q1 < -+ < Q. Each vehicle type k can also be associated with a fixed cost
F}, and the routing costs can be vehicle dependent ¥, a € A, k € K. This
is usually called Heterogeneous VRP with Fized Costs and Vehicle Dependant
Routing Costs (HVRPFD). A strongly related problem that has received much
attention in the literature is the Multi-Depot VRP (MDVRP), characterized
by a fleet of unlimited identical vehicles of capacity @, located at p depots.
Any MDVRP instance can be converted into an equivalent HVRP instance.
Finally, variants with an unlimited number of vehicles are called Fleet Size
and Miz (FSM).

The focus of this paper is to study the HVRP when customer demands
are uncertain. There are many ways to deal with uncertainty. Here we con-
sider three uncertainty frameworks: two robust counterparts of Ben-Tal & Ne-
mirovski [4] and Bertsimas & Sim [5], and a chance-constrained counterpart
(see Charnes & Cooper [8],[9]).

To achieve this, our first step is to formulate the deterministic problem
in such a way that the corresponding counterparts of uncertainty remain
tractable via mixed integer linear programming (MILP). We propose a basic
Miller-Tucker-Zemlin (MTZ) [21] formulation, the main advantage being that
uncertainty is restricted to the right-hand side of the constraints. This leads
to compact and tractable uncertain counterparts. Since the MTZ formulation
is well known to provide a rather weak linear programming (LP) relaxation,
which performs poorly when plugged into a branch-and-bound framework,
our work in the following steps aim to overcome this weakness. Exact solu-
tion methods employ two general strategies to improve the approximation of
the convex hull of an MILP problem. The first strategy is “static” and tries
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to tighten the polyhedral representation of the initial formulation before any
computational solution procedure is started, while the second strategy is “dy-
namic” and keeps adding cutting planes during run-time, which successively
reduces the size of the polyhedral region. The second step of our work is to
integrate both strategies using lifting techniques and cutting-planes within a
branch-and-cut algorithm.

A solution obtained from the above approaches is known as pre-planned
routes and does not consider failure cost. In order to have a realistic picture of
a vehicle routing problem, we perform an extensive computational analysis. We
first compare deterministic, robust and chance-constrained solutions based on
three performance measures: (i) the extra cost required for achieving a certain
level of validity for routes of the deterministic solution, (ii) the unmet demand
and the number of unmet customers whom the vehicles fail to serve on their
planned routes, (iii) the recourse cost, which is the extra cost, in case of failure,
of returning to the depots for replenishment and resuming the route. Moreover,
using a scenario-based analysis, we analyze and search for the best risk level
at which the total of the pre-planned route cost and the recourse, or lost sale,
cost is minimized.

In this paper, we study the HVRP with unlimited number of vehicles and
the multi-depot HVRP with limited number of vehicles. The structure of the
paper is as follows. Section 2 is devoted to a brief literature review. In Section 3,
we present our basic MTZ deterministic model followed by valid inequalities
along with lifting techniques to strengthen the initial formulation, i.e., at the
root node of the branch-and-bound tree. In Section 4, the uncertainty coun-
terparts are presented for the three aforementioned frameworks. Also, new
probability bounds are proposed to calculate the parameters of the Bertsimas
& Sim robust approach. In Section 5, we present extensive computational re-
sults using different classes of instances taken from the literature. We complete
our study with some concluding remarks in Section 6.

2 Literature Review

The first study on the HVRP is by Golden et al. [16], which presents various
lower bounds. Yaman [29] moves forward and shows six different formulations,
derives valid inequalities and lifting techniques. Apparently, the most effective
algorithms are based on a set-partitioning formulation and exploit advanced
column-generation techniques. In particular, Baldacci & Mingozzi [3] present
a first unified framework based on a set-partitioning formulation for solving
HVRP and some variants that can be seen as special cases. The framework is
extended in Baldacci et al. [1] to include other variants. Finally, Baldacci et al.
[2] present new valid inequalities for a two-commodity flow HVRP formulation.

The main consequence of uncertain demand is that a planned vehicle route
may exceed the vehicle capacity. In such a case, failure is said to occur. There
are two main approaches to dealing with uncertainty: stochastic optimization
and robust optimization.
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Stochastic optimization models take advantage of the fact that probability
distributions on the data are known or can be estimated. The goal is to find
a solution that maximizes (or minimizes) the expectation of some function of
the decision and the random variables. There are several studies on stochastic
CVRP (SVRP) in the literature. The most recent surveys are Gendreau et al.
[15], Dror [12] and Erera et al. [14]. The first result on SVRP dates back to
the late 1960s with Tillman [28]. In the 1980s SVRP received more attention
with Stewart & Golden [26], Dror & Trudeau [13], Laporte & Louveau [17] and
Laporte et al. [18]. We distinguish two main stochastic optimization models:
two-stage recourse and chance-constrained. The two-stage recourse models, in
case of failure, implement a recourse action (generating extra cost). There are
two different solution concepts within the two-stage recourse model:a priori
optimization as described by Bertsimas [6], and the re-optimization strategy
(see Secomandi & Margot [23]). On the one hand, re-optimization gives better
results in terms of solution quality. On the other hand, a priori optimization
is preferable from a computational point of view since it entails solving only
one instance of VRP. Algorithmically, the two-stage recourse strategy can be
either tackled using heuristics or branch-and-cut methods based on the integer
L-Shaped method by Laporte & Louveaux [19]. Alternatively, Novoa et al. [22]
and Christiansen & Lysgaard [10] propose a set-partitioning formulation and
use column generation to solve it. In the chance-constrained models failure
can happen within some (small) probability bound. Stewart & Golden [26],
Laporte et al. [18] showed that chance constrained counterparts are equivalent
to the deterministic VRP for a number of routing problems and uncertainty
assumptions.

If we have no knowledge on the data, one approach to tackling such prob-
lems is called robust optimization. Here the goal is to find routes that are
feasible for all demand (scenario) realizations, so failure can never occur. Lit-
erature is rather scarce on this topic and we are only aware of a recent study
by Sungur et al. [27], who use the robust optimization methodology introduced
by Ben-Tal & Nemirovski [4] to formulate the Robust CVRP (RVRP).

To our knowledge there is no literature on HVRP under uncertainty. It is
important to point out that our aim in this study is to compare robust and
chance-constrained HVRP models under demand uncertainty. So the main fo-
cus is not on effectively solving the deterministic problem, but on formulating
it in such a way that the uncertainty counterparts remain tractable. For this
reason, we resort to a Miller-Tucker-Zemlin formulation [21] that, although
providing a rather weak LP relaxation, allows us to represent the uncertainty
counterparts as tractable MILP models. In particular, we consider three un-
certainty frameworks: two robust counterparts according to Ben-Tal & Ne-
mirovski [4] and Bertsimas & Sim [5], and a chance-constrained counterpart
(see Charnes & Cooper [8],[9]).
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3 Deterministic Model

In this section we present an MTZ formulation for the (deterministic) HVRP
and some techniques to strengthen the model.

3.1 Formulation

The HVRP can be formally defined as follows. We are given a complete directed
graph G = (V, A), where V = {0,...,n} is the set of vertices, A the set of
arcs and A. C A is the subset of arcs between customers. Node 0 denotes the
(unique) depot and the other vertices V. = {1,...,n} represent customers.
A fleet of heterogeneous vehicles is stationed at the depot. Without loss of
generality we assume that there are m different vehicle types K = {1,...,m}
and, for each type k € K, there is only one vehicle available with capacity
Qr > 0, where Q1 < -+ < Q. Accordingly K corresponds to the set of all
vehicles and m is the total number of vehicles available at the depot. The cost
of traveling from node i to node j (arc a = (4, 7)) by vehicle k is denoted by c¥.
Each customer i has an integer demand ¢;, with 0 < ¢; < @,,,. Each customer
must be served by exactly one vehicle, so demand cannot be split. No vehicle
can serve a set of customers whose total demand exceeds its capacity. The
problem is to find m vehicle routes of minimum cost, where each vehicle leaves
the depot, visits a subset of customers and finally returns to the depot.

There are three main classes of formulations: vehicle flow, two-commodity
flow and set partitioning. Among the vehicle flow formulations, we distinguish
the two-index vehicle flow formulation, which uses z;;, a = (i, ) € A variables,
and the three-index vehicle flow formulation, which uses xi—“j, a= (i,j) € A,
k € K variables. We will use the later formulation as it is particularly suited
for heterogeneous vehicles.

Let z* be a binary variable, indicating whether vehicle k travels from node
i to node j (arc a = (4,7)). Also, let u;, i € V., be a continuous variable
representing the total demand of nodes on the route till (customer) node i
(including node ). Finally, given a node i € V, let 6~ (i) and 67 (i) denote the
set of incoming and outgoing arcs, respectively, of node i (§(z) = 6T (3)Ud™ (7).
The MILP formulation is then:

min D keK 2aca chry (1)
st Yaest() Ta ~ Laes-(nTa =0 1€V, KEXR 2)
D keK 2acst (i) ak=1, ieV, (3)

D keK 2aacs- (i) k=1, i€V, (4)

Ea€5+(0) gk =1, keK (5)

2 aes-(0) k=1, keK (6)

(7)
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G Sui £ per @k Daest (i) ah, eV, (8)
k€ {0,1}, a€ A, ke K. (9)

The degree equations (2-6) ensure that all customers are visited exactly
once and for each vehicle there is exactly one route starting from the depot
and returning to the depot. Inequalities (7-8) are known as Miller-Tucker-
Zemlin (MTZ) constraints. They ensure that the routes are connected and,
at the same time, impose vehicle capacity restrictions. Constraints 9 are the
integrality conditions on the x* variables.

Let Vg ={n+1,.., N} be the set of depots. In the above model, to obtain
MDHVRP, we can replace V with V = V., U V; and accordingly A will be
updated to the set of arcs connecting the nodes in V.

3.2 Valid Inequalities

We present two well-known types of valid inequalities for the CVRP, which
can be easily extended to the HVRP.

3.2.1 Capacity Inequalities

The first type of inequalities forbids any route exceeding the vehicle capac-
ity. Note that the current MTZ constraints (7-8) already forbid such routes.
The only reason for introducing these inequalities is to strengthen the LP
relaxation, as also mentioned by Yaman [29]:

YooY amh<Qi keK. (10)

1€Ve a€dt(7)
3.2.2 Subtour Elimination Inequalities

It is well known that any valid inequality for the two-index vehicle flow for-
mulation can be transformed into a valid inequality for the three-index vehicle
flow formulation by using z, = > -, xk. These inequalities are called aggre-
gated by Letchford & Salazar-Gonzdlez [20]. Subtour elimination inequalities
are rather common constraints for the CVRP two-index vehicle flow formu-
lation, sometimes called rounded capacity inequalities. They forbid subtours
and routes that exceed the vehicle capacity by imposing, for any subset S
of customers that does not include the depot, that at least [¢(S)/Q] vehi-
cles enter and leave S, where ¢(S) = >,.g ¢ and Q is the vehicle capacity.
Here we present an extension to the three-index vehicle flow representation
for the heterogeneous case. Let (S : T) = {(i,j) € A:i1 € S,j € T} and
X(S:T) =2 ke 2o.5)es:T) a};. For any S C V., the inequality

Y

X(S:8) {%W (11)
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is a valid inequality for the HVRP three-index vehicle flow formulation (S =
V. \S). Note that, although this extension provides valid inequalities for HVRP
and forbids all subtours, it may allow routes that exceed the vehicle capacity.
This is due to the fact that in the HVRP the right-hand side of the inequality
depends on the capacity of the vehicle (and hence, by using @, we overesti-
mate the denominator), whereas in the classical CVRP, all vehicles have the
same capacity @. To overcome this problem we use Yaman [29] and disaggre-
gate such inequalities in the following way:

X(S:S)z[%},ke[(,sg%. (12)

3.3 Lifting Technique

It is known that valid inequalities can be strengthened via lifting. Desrochers
& Laporte [11] propose a simple lifting technique for the MTZ constraints for
the TSP. Here we extend their technique to the HVRP. To simplify notation
we denote by zi; = Y, g 5.

Proposition 1 The lifted version of constraints (7) is as follows:
—uj + Ui +QmTij + (Qm — ¢ — ¢)Tji < Qm — g5, (i,7) € Ac. (13)

Proof. If x;; = 1 then x;; = 0, so we obtain the original MTZ inequality. On
the other hand, if z;; = 1, then the inequality reduces to u; < u; + ¢;, which
is again valid according to MTZ. [J

Similarly it is possible to lift the MTZ upper bound in (8) as follows:

wi <Y Qk Yy al =Y qwy, i€ Ve (14)

kEM  jEV JEV.

For any customer ¢ € V., its successor can be either another customer or a
depot. If it is a customer j € V,, then u; < u; —g; is valid. If it is a depot, the
term Zjevc gjx;; is zero and we obtain the original MTZ upper bound. We
call the model of (1-6) & (8-9) & (13-14) HVRP-DL for brevity.

3.4 Reformulation and Linearization Technique

We apply a specialized version of the well-known Reformulation-Linearization

Technique (RLT) by Sherali & Adams [24]. In particular, to contain the size of

the resulting model, we follow Sherali & Driscoll [25], who only apply a partial

first-level RLT version and provide a relatively tight formulation for the TSP.
We start by restating the MTZ constraints (7) as follows:

UjTi5 = (Uz + qj)xij, (’L,]) S AC (15&)
ujTo; = qjTos, Jj € Ve (15b)
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We call the model (1-6) & (8-9) & (15a-15b) HVRP-NL for brevity.

We now apply the specialized version of RLT by Sherali & Driscoll [25]
to HVRP-NL. The approach consists of two steps. First, we reformulate by
generating additional (nonlinear) implied constraints. Second, we linearize the
nonlinear terms using a substitution of variables in place of each distinct non-
linear term.

Reformulation: We reformulate the HVRP-NL by generating three sets
of quadratic constraints as follows.

(S1): Multiply by u; both of the degree constraints (3) and (4).

(S2): Multiply the first inequalities in (8) by x;; and (1—x;;—x;;), respectively.

(S3): The second inequalities in (8) suggest that (Q,, — u;) > 0, which we
multiply by z;; and (1 — z;; — x;;), respectively.

Linearization: We linearize the HVRP-NL along with the three new sets
of constraints (S1)—(S3) generated above using the following substitution of
variables:

Yij = WiTij and Zig = UjLqj. (16)
Note that y;; can be interpreted as the load of the vehicle before visiting
customer j, if j is served after customer 7, zero otherwise. Similarly, z;; can be
interpreted as the load of the vehicle after visiting customer j, if j is served
after customer i, zero otherwise. Also, we can replace u;xg; by g;zo; using
(15b), and we can bound u;z o from above using Qrz;o. Note that we can
always eliminate z;; using the relationship z;; = y:; + gjx;;. The linearization
step yields the inequalities given below.

Proposition 2 Denote by 6} (i) the set of arcs (i,j) € A.. Linearization of
(S1) leads to the following:

Syt Y Qraky—ui >0, (17)
(4,5)€6% (3) kek

and
Z Z4i + q;To; — U = 0. (18)
(4,1)€dc (4)

Proof. Multiplying (3) by u; we obtain
Z UiLq5 — Uq = 0.
(4,5)€8% (4)

Then substituting y;; and observing that the load of a vehicle u; leaving cus-
tomer ¢ and entering the depot must be less than or equal the capacity of the
vehicle Qy, yields the inequalities. Similarly, multiplying (4) by w; we obtain

E UiTj; — Us = 0.

(4:)€6(4)
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Then substituting z;; and using (15b) we obtain the equations. O

Next, (S2) and (S3) can be linearized simply by substituting the quadratic
terms with their corresponding variables. Hence, linearization of (S2) leads to

Zij 2 QjTij, (19a)
Uj > zi5 + Yji + 45 — 4iTi5 — ¢T3 (19b)

and linearization of (S3) leads to:

zij < QmTij, (20a)
uj < Q1 — x5 — 5) + 2ij + Yji- (20Db)

Note that in all the new sets of constraints introduced above, z;; can be elim-
inated with substitution of y;; + gj;;.

Extending the argument of Sherali & Driscoll [25], we conclude on validity
and the tightness of our new formulation as follows.

Proposition 3 The formulation obtained by replacing (7-8) with (17), (18),
(19a-20b) is valid and provides an LP relazation that is tighter than the LP
relaxation of the HVRP-DL.

Proof. The validity follows by construction. Hence it suffices to show that the
constraints (17), (18), (19a-20b) imply (13). To do so, first we replace z;; with
¥ij + qjzi; in (19b) and in (20b), then we multiply (20b) by —1 and finally
we interchange ¢ and j in (20b). By surrogating the resulting inequalities we
obtain

0>wui —uj — Qm+ (Qm — ¢ — ¢j)xji + Qmxij + g5,
which is (13). O

This proposition will be supported by computational experiments in Sec-
tion 5.

4 Models of Demand Uncertainty

Now we are ready to move to the models we are interested in, i.e., when
customer demands ¢ are subject to uncertainty. We present two robust coun-
terparts of Bent-Tal & Nemirovski and of Bertsimas & Sim, and a chance-
constrained counterpart.

4.1 Ben-Tal & Nemirovski Robust Model

In Ben-Tal & Nemirovski (BN) model, the uncertain demand vector ¢ belongs
to a bounded uncertainty set U, which is constructed as a set of deviations
around a fixed expected value ¢°. In the following, we let s denote the number
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of (demand) scenario vectors: q', ..., ¢°. The uncertainty set U consists of
linear combinations of the scenario vectors with weights £ € =

U—{qéRnrq—qOJrZéqu,&GE}- (21)

=1

In particular, we consider two uncertainty sets for =:

={eeR: ¢l <1}, (22a)
={¢eR": [l < p}, (22b)

which represent, respectively, a boxr and a ball of radius p. In this section,
we present the robust counterparts for the above two sets and show that our
formulation mainly results in linear robust counterparts for both sets. However,
in Section 5, we present computational results for =.

Note that in the model of Section 3.1, only the right-hand side of the MTZ
constraints (7-8) is subject to (demand) uncertainty. For such case and the
case where the left-hand side of each constraint contains only one coefficient
of uncertainty, Sungur et al. [27] prove that the BN-robust counterpart can be
obtained simply by substituting ¢; (j =1...n) with

a5+ i1 g, (23a)

a5 + py/ 2= (d5)?, (23b)

for =1 (22a) and =5 (22b), respectively. Therefore, the BN-robust counterpart
of (7-8) retains the same structure, since only the right-hand side changes.

On the other hand, this is not true for all the inequalities presented in
Sections 3.2-3.4. In fact, while the box uncertainty set (22a) always retains
linearity, the ball uncertainty set (22b) may lead to conic quadratic inequali-
ties when demand uncertainty is not restricted to the right-hand side of the
constraints. In what follows, we only present the linear counterparts, since we
do not intend to solve Mixed Integer Non Linear Programs (MINLP). Unfor-
tunately, this implies that for some uncertainty sets we will not be able to use
all the (strengthening) inequalities presented in the previous section for the
deterministic model.

First, we consider the capacity inequalities (10). The BN-robust counter-
part corresponding to the box uncertainty set (22a) is the inequalities:

Yoo drr )] D) Zlqlx < Qi keK, (24)

1€Ve a€dt (i) 1€Ve acdt (i) I=1

—
=1
—
—2

whereas the BN-robust counterpart corresponding to the ball uncertainty set
(22b) is a set of conic quadratic inequalities, which we do not consider here.

Second, we consider the subtour elimination inequalities (11). Here, only
the right-hand side is subject to uncertainty. To construct the BN-robust coun-
terpart it suffices to substitute ¢; with (23a) for =7 and (23b) for =», respec-
tively.
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Third, we consider the lifted inequalities (13), which lead to conic quadratic
inequalities for the ball uncertainty set (22b), whereas for the box uncertainty
set (22a) the BN-robust counterpart is:

_Uj+ui+Qmfoj‘F(Qm_Q?_qu)Zx?i

keK keK

Y |(=dh=d) >k + df| < Qm— Y, (5,4) € A (25)
=1

keK

Finally, we consider the RLT inequalities of Section (3.4). These always re-
tain linearity since there is only one uncertain (demand) parameter in each in-
equality, either in the right-hand side or in the left-hand side. So the BN-robust
counterpart for =7 (22a) and =3 (22b) can again be obtained by substituting
¢; with (23a) and (23b), respectively.

4.2 Bertsimas & Sim Robust Model

The robust counterpart developed by Bertsimas & Sim (BS) has two main
features: It contains in each constraint a parameter I' (the protection level)
that controls the degree of conservatism of the robust solution; it is computa-
tionally tractable if the original problem is tractable. Regarding tractability,
Bertsimas & Sim give a compact robust counterpart of a given nominal model
by introducing a polynomial number of new variables and constraints. We will
apply such a approach and use the (strengthening) inequalities presented in
Sections 3.2-3.4.

According to BS-model of uncertainty set U, the uncertain demand vector
q takes value of the interval [¢° — §,¢° + 4], symmetric around the nominal
value ¢". The parameter I" mentioned above denotes the maximum number
of coefficients that are allowed to change simultaneously with respect to their
nominal values in each constraint. In particular, at most |I"| ¢;s will change
to their bounds ¢;s and one will change by (I" — | I'|) portion of its bound.

Note that for the MTZ constraints (7-8), there is only one demand pa-
rameter in each constraint. Hence, the BS-robust counterpart can be simply
obtained by substituting ¢; with the quantity qjQ + I'g;, where 0 < I' < 1.

First, consider the capacity inequalities (10). To construct the BS-robust
counterpart we denote, for each given k € K, by ¥* C V, the subset cor-
responding to those coefficients ¢; that are subject to uncertainty and by I'*
the control parameter for the constraint. Following Bertsimas & Sim construc-
tion, we obtain the following BS-robust counterpart with additional variables
pk and 7*:



12 Noorizadegan et al.

diev, & Za65+(i) T+ g PE+TFTF < Qp, ke K (26a)
T PE > @Y ey 2k, i€V K EK (26D)
>0, ke K (26¢)

pk>0,iev* keK. (26d)

Second, consider the subtour elimination inequalities (11), where the uncer-
tainty only appears on the right-hand side of the constraints. For the constraint
corresponding to S C V., denote by ¥ the subset of V. that corresponds to
those ¢;s that are subject to uncertainty and I"® the control parameter for the
constraint. Clearly, in this case, we can simply sort ¢; in non-increasing order
and choose the first ™S demands where LF SJ can change up to their bounds
and the last of the selected demands can only change by (I'S — [I"®|) portion
of its bound.

Third, for the lifted inequalities (13), the BS construction is similar to the
one used for the capacity inequalities (10) (see 26a—26d).

Finally, in each of the RLT inequalities of Section 3.4, there is at most
one demand coefficient. Hence, the BS-robust counterpart can be obtained by
simply substituting g; with the quantity q? + I'g;.

After setting up the robust counterparts, we need to define the parameter
I" for each constraint. On the one hand, I" controls the degree of conservatism
of the robust solution, that is guaranteed to be feasible up to I' simultaneous
changes of the coefficients of a given constraint. On the other hand, Bertsimas
& Sim also introduce probability bounds depending on the value of I" and rep-
resenting the probability of violation of a constraint if more than I' coefficients
change at the same time. They show that the larger the number of uncertain
coefficients in a constraint, the more accurate are the bounds. However, since
in many of our inequalities only a few uncertainty coeflicients appear, these
bounds are not very helpful for deciding the value of I'. For this reason, we
give the following two propositions that allow us to calculate exactly the value
of I' corresponding to a given probability of violation for two specific types
of constraints. Note that the concept of probability of violation for a given
constraint is strictly related to the chance-constrained models that we will
present in the next subsection.

Proposition 4 applies when only one uncertainty coefficient is present as,
for example, in the MTZ constraints(7-8).

Proposition 4 If q; (j € V) is a uniformly distributed random variable in
[qJQ — qj, qJQ + gj], then any constraint with q; the only uncertainty coefficient
has a probability o of violation for I' =1 — 2a.

Proof. Since ¢; follows a uniform distribution, we can easily calculate the
corresponding cumulative distribution function. Hence, by setting ¢j = qJQ +
¢j(1 — 2a), we can guarantee that Prlg; < ¢;] < a. Therefore, I' = 1 — 2«
provides the desired probability of violation. O
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Remark. The above proposition also applies to inequalities (19b) as well
as to (19a) since 1 — x;; — x;; = 0 or 1 due to the integrality condition.
Proposition 5 applies to subtour elimination inequalities (11).

Proposition 5 Given any S C V¢, if g; for any j € V. is an independently and
symmetrically distributed random variable in [q? —qj, q? + ¢;] with cumulative
distribution function F; and joint distribution F,(s), then

Pr[X(S:8)>[q(9)/Qk]] 21—, k€K,

for I' computed as follows:

min I” (27a)

s.t. Dieg&i < T (27b)
Siesibi = Fb (1 - a) (27¢)
0<&<1,ies. (27d)

Proof. Since the inverse joint distribution function ]-"q_(g)(l — «) can be eas-

ily calculated for some classes of distribution functions (e.g., Normal), the
LP (27a—27d) selects the uncertainty coefficients such that the sum of their
deviations gives the desired value and I is minimized. [

4.3 Chance-Constrained Model

In a chance-constrained model, constraints are required to be satisfied with
some big probability. We start with the MTZ constraints (7-8), which have
the chance-constrained counterpart is follows:

Prluj —ti—Qm Y 2h+Qm>qj| 21—, a=(i,j) €A, (28a)
keK

Pr qiguiSZQk Z 2l >1-a, icV, (28b)
kK acot ()

which mean that the constraints can be violated with probability at most a.
In particular, given a cumulative distribution F; for the demand parameter
gj, the above are equivalent to:

wj— i = Qum Y a4 Qu > Fl(1-a), a=(i,j) €A, (29)
keK
Fill—a) <u; < Z Qk Z zh, i€ Ve (29b)

kEK  acst(i)

Note that the chance-constrained counterpart (29a—29b) retains linear.
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The chance-constrained counterpart of the capacity inequalities (10) in-
volves nonlinear constraints. To ease notation we let aF =" 5+ () zk and let

.4 € V,). The chance-constrained counter-

z¥ denote the (column) vector (z}

part can be written as follows:
Prl¢"z" < Qi) >1—a, k€ K. (30)

When ¢ follows a normal distribution N (i, A) with mean (vector) p and
covariance (matrix) A, the above chance constraint can be reformulated as the
following second order cone constraint:

Qi — " a*

T ppk <
(AT < i —ay

ke K, (31)
where @ is the cumulative distribution function of the standard normal distri-
bution. Here we are interested in the case where demands are not correlated
(i.e., A\ij =0, i # j € V;). So we can rewrite (31) in the following way:

plrak + 071 —a) |3 A(2F)2 < Qk, ke K. (32)
i€Ve

To obtain a linear formulation we can substitute the non-linear term on the
left-hand side with the linear over-estimator (1 — a) Y,y Az, obtain-
ing an approximated (linear) chance constraint (\; is the demand standard
deviation for costumer ).

Next let us consider the chance-constrained counterpart of the subtour

elimination inequalities (11), which is as follows:

Pr(X(S:5)>[q(S)/Qx]] >1-a, ke K, SCV.. (33)
If Fy(s) is the joint distribution function of the random variables ¢;, i € S,
then the above is equivalent to:

X(8:8) = [F b (- a)/Qi|, ke K, SCV., (34)

where .7-'(17(;)(1 — «) can be calculated for some classes of distribution func-

tions (e.g., Normal), when demands are independently distributed and follow
the same distribution with different parameters. For example, when ¢(S) ~
N(ps, A), where s = >, g i is the sum of the means and A is the covariance
matrix, then we have a tractable case and (34) can be replaced by

X(8:8)=[q"(9)/Qil, ke K, SC V.,

where ¢*(S) is calculated as follows:

S)—ps _ a°(S) —ps

Pr{q(S *(S)] = Pr a ,
($) > 4°(5)] - -
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and
¢'(8) = ps + 811 — a)y/TA].

The chance-constrained counterpart of the lifted inequalities (13) also in-
volves nonlinear constraints, which we do not consider here.

Finally, the chance-constraint counterpart of the RLT inequalities of Sec-
tion 3.4 retains linearity, since there is only one random variable which appears
as a coefficient of one or more decision variables. In this case we can apply
the same idea used for the MTZ constraints. For example, considering the
chance-constrained counterpart of the RLT inequalities (19b), we get

Pr [Uj > zij +yji + Qj(l — Xij — CL‘W)] >1-—aq,
which is equivalent to

uj > zig o+ i+ Fy (L= ) (1= 2y — 250).

5 Computational Experiment

In Section 5.1, we present percentage gaps for the lower bounds corresponding
to the LP relaxation of different formulations for the deterministic model. In
Section 5.2, we present three performance measures, by which we analyze the
solutions of the three uncertainty models considered in Section 4 (i.e., BN, BS
and CC).

Our computational experiments use two sets of benchmark instances: Golden
et al. [16] and Prins & Prodhon (http://prodhonc.free.fr/), which are de-
noted by G and P, respectively. G instances correspond to single-depot HVRP
with wunlimited fleet size and fixed costs. P instances were originally gener-
ated for the homogeneous location routing problem, so we modify them to
obtain multi-depot HVRP with limited fleet size. In particular, according to
the solutions presented in http://prodhonc.free.fr/, we limit the number
of vehicles to that needed to serve the customers. We change the capacity of
vehicles to define a heterogenous fleet (Qf). We assign a coefficient (OC}) as
operational (traveling) cost for each type, so that the matrix c¥ is calculated
by taking the distance between nodes and multiplying it by OC%. In Table 1
we report for each instance of type P, the number of vehicles (NO. Veh.),
the original capacity (Cap.) and for each type (k = 1...5) the corresponding
operational cost (OCy) and capacity (Qx).

5.1 Lower Bounds for the Deterministic Model

Table 2 shows percentage gaps between the lower bounds and the upper bounds
for different formulations of the deterministic HVRP. The lower bounds are
obtained by relaxing the integrality conditions and the upper bounds are ob-
tained from Yaman [29]. The single-depot HVRP with fixed cost is considered.
We do not claim that these bounds are the best known bounds. Instead we
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Table 1 Vehicle type details

Instance NO. Veh. | Cap. k=1 2 3 4 5
P-20-5-5-1a 5 70 OCk 1 1.2 1.4 1.6 2
Qk 70 100 130 160 190
P-20-5-3-1b 3 150 OCy 1 1.2 1.4
Qk 150 200 250
P-20-5-5-2a 5 70 OCk 1 1.2 1.4 1.6 2
Qk 70 100 130 160 190
P-20-5-3-2b 3 150 OCy 1 1.2 1.4
Qk 150 200 250

Table 2 Gap on percentage for the deterministic models

Instance  MTZ Cap. DL RLT RLTM

G-n20-k5 76.78 13.46 11.30 11.16 9.93
G-n20-k3  96.56  3.50 3.17 3.16 3.04
G-n20-k5 77.84 18.09 17.09 16.96 13.25
G-n20-k3  96.60  5.01 4.81 4.78 4.27
G-n50-k6  84.75  9.55 9.03 9.01 7.88
G-n50-k3  95.99  5.91 5.74 5.73 5.51
G-n50-k3  84.87 13.72 12.85 12.79 11.06
G-n50-k3  85.70 10.06  9.18 9.15 7.39
G-n75-k4 7195 1218  9.80 9.79 8.17
G-n75-k6  79.55 15.30 13.69 13.68 12.74
G-n100-k3  93.31 6.53 6.06 6.06 5.59
G-nl100-k3  85.53 1294 12.09 12.06 10.35

would like to compare the performance of the RLT approach presented in Sec-
tion 3.4 and the lifting approach presented in Section 3.3. The first column
represents the instances. For example, G-n20-k5 has 20 vertices, 5 types of
vehicles and unlimited number of vehicles of each type. The second column
(MTZ) corresponds to the LP relaxation of the standard MTZ formulation
(1-9). The third column (Cap.) corresponds to the LP relaxation of the stan-
dard MTZ formulation after adding the capacity inequalities (10). The fourth
column (DL) is obtained by substituting (7) and (8) with (13) and (14) in
(1-9). The fifth column (RLT) is obtained by replacing (7) and (8) with (17)-
(20b). The big-M method can be used to linearize the nonlinear term in the
RLT (16) as follows. The gap for the RLT™ is provided in its corresponding
column.

yl_] S Us, Z,] S ‘/Ca (35&)
Yij Zul_M(l_ZkeK'rfj)’ Z,j S ‘/C, (35b)
Yij <MD ek x?ja 1,7 € Ve, (35¢)
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5.2 Experiments with Demand Uncertainty

We start with describing how the data uncertainty is constructed, then we ex-
plain the performance measures used and finally we analyze the computational
results.

Uncertain Data To build demand uncertainty sets for the BS and BN robust
models, we allow g; to vary up to a fixed percentage of its nominal value so that
¢ € [¢) —ve?, ¢ +vq?], where ¢) is the demand nominal value and v = 0.1
or 0.2. To build uncertainty sets for the CC model, it is quite common to
consider a normal distribution based on the mean and the variance calculated
for a sample. Hence, we assume that the demand of each customer follows
the normal distribution NV (1, A?) with 11; = ¢f, and A? = %1849, Notice that
we set the variance equal to the variance of the uniform distribution that we
calculated for the RO cases. In this case, 91% of the interval defined previously
is covered by the normal distribution function.

Performance Measures We compare our solutions according to three perfor-
mance measures.

First, we compute the extra cost E* required to pay for achieving a certain
level of validity of routes:

P Zdet

E*:=2—~ %100,
Z(l

where 2% denotes the optimal value of the uncertain model (a can be bs, bn
and cc for BS, BN and CC models, respectively) and 2% is the optimal value
for the deterministic case.

In case of failure, there are two possible strategies. On the one hand, one
may assume that vehicles return to the depot and do not resume the inter-
rupted (failed) route, so the remaining customers on the failed route are left
unserved. This is known as allowed lost sales (ALS). The second performance
measure represents the number of unmet customers (and the corresponding
unmet demand). On the other hand, if lost sale is not allowed (NALS), the
vehicle returns to the depot for a replenishment and then resumes the route
starting from the first customer who was left unserved. The third performance
measure calculates the recourse cost.

Since the probability of failure (risk level) and the cost are conflicting goals,
we would like to find a proper threshold. Risk level is an important parameter
in CC and BS models (denoted by « in Sections 4.2 and 4.3) by which we
can adjust the conservativeness of the solutions. From the sensitivity analysis
for MIP, we know that for small perturbations of parameters, the optimal
solution may remain unchanged and from some point, the optimal solution
will change. However, the behavior of the optimal solution with respect to
changes in MIP parameters is not quite predictable and the value function
in MIP is in general non-convex. This topic has been widely studied (see
[7]). By changing the risk level we can measure the sensitivity of the optimal
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solution and find the thresholds at which the optimal solution will change.
In many cases of MIP, a full description of the convex hall of the feasible
region is not available and constraints may not define facets of the convex
hull, hence changing the parameters may affect neither the optimal solution
nor the objective value. On the other hand, if an optimal solution is cut off as
a result of varying parameters, the effect can be dramatic from changing the
optimal solution to infeasible solution. Therefore, particularly in practice when
resources are limited, it is vital to define appropriate risk levels so that not
only the solution is feasible but also unnecessary extra costs are not imposed.
One way of identifying the threshold is to define different scenarios for the
risk level. Here in addition to the nominal case which represents oy = 0.5, we
consider 9 scenarios for the risk level (a; = 0.40, as = 0.30, az = 0.25, a4 =
0.20,a5 = 0.10, ag = 0.05, a7 = 0.03, ag = 0.01, a9 = 0.001). Note that
the larger the risk level, the higher the probability of violating a constraint.
We solve the CCP and BS-RO deterministic counterparts of the instances for
all these scenarios and calculate the aforementioned performance measures for
each scenario. As formulated in the previous section, the protection level of
the BS-RO (I") is calculated for each risk level. Then, among the risk level
scenarios, the optimal one can be suggested.

Computational results In this experiment, we consider the variable routing
cost for the data sets. All experiments are carried out on a Dell Precision T1600
computer with a 3.4 GHz Intel Xeon Processor and 16 GB RAM running
Ubuntu Linux 12. Also note that we use our B&C method for the nominal
problem and the BN-RO and the default CPLEX solver for the BS-RO. When
a user defined B&C method is run in CPLEX, by default CPLEX uses only
one thread.

Tables 3 and 4 present E** and E*™ values with v = 10% and v = 20%,
respectively. Table 5 presents E¢ values with v = 20%. All running times
are in seconds. Note that, when the BS optimal value equals the BN optimal
value, we do not need to run other risk levels since they will give the same
results. When this happens, we use bold numbers in Tables 3 and 4 for the
corresponding percentage of extra cost.

In order to calculate for the second and third performance measures, we
generate random demands for all customers from their defined distribution
functions to simulate the actual situations. Table 6 reports the results for the
average of the second and third performance measures for 100 simulations with
v = 20%. For each instance, we use abbreviations as follows: U (Unmet De-
mands), N (Number of Unmet demands), R (Recourse Cost) and NR (Number
of Routes). As the numerical result suggests, we do not need to set a very low
risk level to achieve 100% valid routes.

Figure 1 illustrates the actual costs, the optimal costs of the BS-RO for
the defined scenarios of the risk level and also the optimal cost of the BN-RO.
The actual cost is calculated based on the BS-RO solution for each scenario
as follows. For each scenario of the risk level, the routes are set according
to its BS-RO solution and then customer demands are generated from their
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pre-defined intervals, assuming that they follow a uniform distribution (100
realizations for each demand). Since in only one scenario the risk level is zero,
there is a possibility of failure for the other scenarios. First, we assume that
no lost sale is allowed, so the recourse actions are performed to serve unmet
customers and the related recourse costs are calculated and added to the op-
timal costs obtained by the BS-RO. We call this total cost as the actual cost
with recourse action. Figure 1 illustrates these three cost graphs for instance
G-n20-k5. One can observe that if the risk level is set at a big value (o = 0.40),
the actual cost is even less than when the risk level is very small (« < 0.10). It
suggests that the extra cost paid to prevent the route validity for certain level
is not necessary. In this specific problem, if the risk level is set to a = 0.20, the
total cost will be minimum. We can conclude that a lower risk level does not
necessarily lead to a better result. Some unnecessary costs may be imposed
without any significant outcome for the system. Figure 1 and Table 8 (NALS)
provide the optimal level of risk level for each problem of the BS-RO and
the CCP. Obviously, the BN-RO is too conservative and imposes unnecessary
costs.

On the other hand, we can assume that lost sales/unmet customers are
allowed in some cost. This means when a failure occurs the vehicle returns
to the depot and does not resume the route, so the remaining customers on
the failed route will be left unserved. To identify the optimal risk level in this
case, let us assume a simple case where each lost sale has the same cost of
f. We undertake a pairwise comparison among different scenarios to find out
under which condition one is better than the other. Let Cy, Cs, ny and ns be
the optimal cost and the number of unmet customers for two risk scenarios 1
and 2, respectively. If (n; —ng)f < Co — C, then scenario 1 is better than
scenario 2. Otherwise, scenario 2 is better than scenario 1. Therefore, a risk
level can be the best scenario for a specific range of lost sale costs.

Table 9 presents intervals for f in which a risk level is the optimal when
lost sales is allowed (ALS). For instance, for Instance G-n20-k5, for the BS-
RO when f € [0, 19.97] and f € [19.97, 40.23], then the best risk levels are
a = 0.4 and o = 0.3, respectively. However, o = 0.25 cannot be the optimal
risk level as it has the same cost of & = 0.2 while there are unmet customers.
So, when f € [40.23, c0) o = 0.2 is the optimal risk level. As this analysis
also suggests, the smaller risk levels are not necessarily the best options.

6 Conclusions

Robust optimization and chance constrained programming are important tools
in the presence of data uncertainty. We have studied the HVRP under de-
mand uncertainty. Rather than choosing a particular uncertainty model, we
have considered three well-known models and analyzed them using different
performance measure.

The notion of risk level allows us to undertake insightful comparisons.
From a computational point of view, a potential topic for future research is to
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improve the branch-and-bound algorithm in order to consider larger instances.
From a theoretical point of view, it would be interesting to see if the concept
of risk level can be addressed more systematically, with possible consideration
of bi-objective models and computing Pareto solutions.
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Table 3 The deterministic optimal objective value and the first performance measure for
BS-RO and BN-RO (v = 0.1), where N indicates unsolved.

Inst. Nom. BS BN
I'=1.14 234 3.01 3.77 5.74 7.35 8.76
a=0.40 0.30 0.25 0.20 0.10 0.05 0.03

UL. Veh.
G-n20-k5 E 623.22| 1.07 1.33 145 1.91 3.19 3.19 4.30| 4.30
T 4147 2199 1264 859 2103 1366 4429 | 2183
G-n20-k3 E 387.18| 0.82 1.04 1.04 1.04 1.92 3.31 - 3.31
T 24561 5208 6317 1889 2470 29387 43392
G-n20-k5 E 742.87 N N N N 4.97 4.97 N 6.06
T 5632 1079 1206
G-n20-k3 E 415.03| 0.00 0.00 1.96 220 2.35 2.59 - 2.59
T 1967 6755 4168 2528 2364 21450

L. Veh.
P-20-5-5-1a| E 234.36| 0.65 N N 0.77 - - - 0.77
T 30806 11679 37518
P-20-5-3-1b| E 217.58| 0.00 0.00 0.00 0.00 0.55 - - 0.55
T 1354 626 956 733 793 3427
P-20-5-5-2a| E 194.46| 0.00 3.06 - - - - - 3.06
T 1124 1714 2228.71
P-20-5-3-2b | OE 180.48 | 0.00 0.00 0.00 0.00 3.99 - - 3.99
T 14 117 417
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Table 4 The deterministic optimal objective value and the first performance measure for
BS-RO and BN-RO (v =0.2)

Inst. Nom. BS BN
I'=1.14 2.34 3.01 3.77 5.74 7.35 &.76 10.39 16.99
a=0.40 0.30 0.25 0.20 0.10 0.05 0.03 0.01 0.001
UL. Veh.
G-n20-k5 |E 623.22 1.31 3.09 4.12 4.12 6.72 7.23 7.87 8.55 855| 9.11
T 2102 1879 3324 1439 915 1225 1187 959 806 | 1163
G-n20-k3 |E 387.18| 1.03 1.89 3.20 3.20 4.15 4.56 - - - 4.56
T 4355 5025 3269 1245 1269 1409 - 494
G-n20-k5 [E 742.87 N 549 7.39 N N 10.35 10.35 10.35 N |11.07
T 3921 3679 17680 48302 10205 545
G-n20-k3 |E 415.03| 2.15 2.53 2.5 N 7.62 8.15 8.89 10.49 - 10.49
T 20488 9939 4446 15668 6528 25907 38829 38794
L. Veh.
P-20-5-5-1a|E 234.36| 0.77 0.76 0.76 1.04 4.65 - - - - 4.65
T 20929 4903 - 14132 21130 88165
P-20-5-3-1b|E 217.58| 0.00 0.55 - - - - - - - 0.55
T 467 645 122
P-20-5-5-2a|E 194.46| 2.97 297 297 297 4.59 - - - - 4.59
T 3114 835 1682 950 1229
P-20-5-3-2b|E 180.48| 0.00 3.84 3.84 3.84 3.84 5.08 5.73 - - 5.73
T 22 158 156 146 114 64 250 104

Table 5 The deterministic optimal objective value and the first performance measure for
CCP (v =0.2)

Nom. CCP
Inst. a=0.40 0.30 0.25 0.20 0.10 0.05 0.03 0.01 0.001

UL. Veh.

G-n20-k5 | E 623.22| 2.72 6.84 8.80 10.01 18.81 24.79 29.21 34.79 41.73
T 278 190 69 37 102 40 21 25 6

G-n20-k3 | E 387.18| 2.56 4.27 5.09 5.16 11.63 14.65 17.51 19.87 28.92
T 1287 864 402 132 312 172 212 118 38

G-n20-k5 |E 742.87 5.87 10.21 14.01 14.01 24.17 32.43 38.08 43.16 58.12
T 2622 293 2096 264 1674 242 532 53 22

G-n20-k3 | E 415.03| 2.20 8.52 10.23 11.41 17.75 24.70 27.89 31.09 38.73
T 509 3435 2472 1044 389 408 547 257 38

L. Veh.

P-20-5-5-1a| E 234.36 N N N N N N N N N
T

P-20-5-3-1b| E 217.58| 0.00 0.55 0.55 0.55 0.98 6.62 6.62 12.03 13.23
T 786 408 195 139 162 399 295 1197 694

P-20-5-5-2a|jE 194.46| 3.06 3.06 4.81 4.81 7.10 7.10 15.41 18.19 21.95
T 1722 1702 2357 566 1003 439 4366 7845 1808

P-20-5-3-2b| E 180.48| 0.00 3.99 3.99 5.35 10.27 11.44 12.35 12.35 21.67
T 21 134 139 58 398 411 895 428 4194
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Fig. 1 Risk levels, optimal costs and actual costs for Instance G-n20-k5
Table 6 Second and third performance measures for the BS (v = 0.2)
Inst. r 1.14 234 3.01 377 574 735 876 10.39 16.99
« 0.40 030 025 0.20 0.10 0.05 0.03 0.01 0.001
UL. Veh.
G-n20-k5 U 18.55 5.93 2.42 0 0 0 0 0 0
N 8.30 2.5 0.80 0 0 0 0 0 0
R 2858 9.55 2.51 0 0 0 0 0 0
G-n20-k3 U 3.93 N 0.25 0 0 0 0 0 0
N 0.25 0.01 0 0 0 0 0 0
R 097 0.36 0 0 0 0 0 0
G-n20-k5 U N 3.07 4.31 N N 0 0 0 0
N 0.27  0.09 0 0 0 0
R 12.93  2.40 0 0 0 0
G-n20-k5 U 0.48 0.73 0 0 0 0 0 0 0
N 0.04 0.03 0 0 0 0 0 0 0
R 1.32 1.40 0 0 0 0 0 0 0
L. Veh.
20-5-5-1a | U N 0 0 0 0 0 0 0 0
N 0 0 0 0 0 0 0 0
R 0 0 0 0 0 0 0 0
20-5-3-1b | U 0.65 0 0 0 0 0 0 0 0
N 0.03 0 0 0 0 0 0 0 0
R 0.40 0 0 0 0 0 0 0 0
20-5-5-2a | U 0 0 0 0 0 0 0 0 0
N 0 0 0 0 0 0 0 0 0
R 0 0 0 0 0 0 0 0 0
20-5-3-2b | U 0.30 0 0 0 0 0 0 0 0
N 0.02 0 0 0 0 0 0 0 0
R 0.16 0 0 0 0 0 0 0 0
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Table 7 Second and third performance measures for the CCP (v = 0.2)

Inst. r 1.14 2.34 3.01 3.77 5.74 7.35 8.76 10.39 16.99

« 0.40 0.30 0.25 0.20 0.10 0.05 0.03 0.01 0.001

UL. Veh.

G-n20-k5 | U 46.96 52.55 43.72 43.01 20.62 4.32 1.89 0 0
N 1.37 1.25 0.99 1.00 0.37 0.09 0.02 0 0
R 4288 46.96 31.93 35.41 13.07 3.12 0.59 0 0

G-n20-k3 | U 19.12 16.05 13.16 16.99 1.62 1.43 0 0 0
N 0.75 0.38 0.25 0.31 0.03  0.03 0 0 0
R 20.51 11.87 7.63 8.9 1 1.33 0 0 0

G-n20-k5 | U 49.21 37.07 29.38 25.38 548 452 1.20 1.19 0
N 1.64 0.97 0.64 0.55 0.1 0.05 0.02 0.03 0
R 50.79 39.3 23.29 23.05 4.85 1.89 1.14 1.63 0

G-n20-k5 | U  40.8 4.56 6.03 17.46  3.24 0 0 0 0
N 0.82 0.17 0.20 0.30 0.06 0 0 0 0
R 34.36  6.91 9.04 9.26 1.90 0 0 0 0

UL. Veh.

20-5-5-1la | U N N N N N N N N N
N
R

20-5-3-1b | U 1.05 0 0 0 0 0 0 0 0
N 0.0 0 0 0 0 0 0 0 0
R  0.67 0 0 0 0 0 0 0 0

20-5-5-2a | U 0 0 0 0 0 0 0 0 0
N 0 0 0 0 0 0 0 0 0
R 0 0 0 0 0 0 0 0 0

20-5-3-2b | U  0.32 0 0 0 0 0 0 0 0
N  0.02 0 0 0 0 0 0 0 0
R 0.16 0 0 0 0 0 0 0 0

Table 8 Best scenario for the risk level when lost sales are not allowed for BS and CCP

«a 0.40 0.30 0.25 0.20 0.10 0.05 0.03 0.01  0.001 | Best Scen.
Inst. BS
UL. Veh.
G-n20-k5 | 5.92 4.72 4.70 430 7.21 7.80 8.55 8.55 8.55 0.20
G-n20-k3 | 3.55 4.65 3.40 3.31 4.33 4.78 4.78 4.78 4.78 0.20
G-n20-k5 N 7.24  7.72 N N 10.35 10.35 10.35 N 0.30

G-n20-k3 | 2.52 2.93 2.59 N 8.25 887 889 1049 10.49 0.40

L. Veh.

20-5-5-1a | 0.77 0.77 0.77 1.05 4.88 4.88 4.88 4.88  4.88 0.25
20-5-3-1b | 0.30 0.55 0.55 0.55 0.55 0.55 0.55 0.55  0.55 0.40
20-5-5-2a | 3.06 3.06 3.06 3.06 4.81 4.81 4.81 4.81 4.81 0.25
20-5-3-2b | 0.09 3.99 3.99 3.99 3.99 5.35 6.08 6.08 6.08 0.40
CCP

UL. Veh.

G-n20-k5 | 0.10 0.14 0.14 0.16 0.21 0.25 0.29 0.35 0.42 0.40
G-n20-k3 | 0.08 0.07 0.07 0.07 0.12 0.15 0.18 0.20 0.29 0.20
G-n20-k5 | 0.13 0.16 0.17 0.17 0.25 0.33 0.38 043 0.58 0.40
G-n20-k3 | 0.10 0.10 0.12 0.14 0.18 0.25 0.28 0.31 0.39 0.30
L. Veh.

20-5-5-1a N N N N N N N N N N
20-5-3-1b | 0.00 0.01 0.01 0.01 0.01 0.07 0.07 0.12 0.13 0.40
20-5-5-2a | 0.03 0.03 0.05 0.05 0.07 0.07 0.15 0.18 0.22 0.30

20-5-3-2b | 0.00 0.04 0.04 0.05 0.10 0.11 0.12 0.12 0.22 0.40
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Table 9 Best intervals of the lost sale cost for each scenario for the BS and the CCP

a=0.4 0.3 0.25 0.2 0.1 0.05 0.03 0.01 0.001
BS

UL. Veh,

G-n20-k5([0,19.97] [19.97,40.23] - [40.23,00) - - - - _
G-n20-k3/[0,36.57] - [36.57,00) - - - - - _
G-n20-k5 N [0,78.22] N N - - - - _
G-n20-k3[0,163.2] - [163.2,00) - - - - _
L. Veh.

20-5-5-1a| [0,00) - - - - - - _ _
20-5-3-1b| [0,39.8]  [39.8,00) - - - - _ . _
20-5-5-2a| [0,00) - - - - - _ _
20-5-3-2b|[0,360.3]  [360.3,00) - - - _ . _ i

CCP
UL. Veh,
G-n20-k5([0,100.25] - - - [100.25,133.19] [133.19, 392.81][392.81,1739.85][1739.85,00) -
G-n20-k3([0,17.84] [17.84, 24.60] - [24.6,115.11] - [115.11, 758.1] [ 758.1, o0) - -
G-n20-k5([0, 48.11] [48.11,85.64] - [85.64, 167.61] [167.61,1227.3] [12273,1399] - [1399, 7445][1399,00)
G-n20-k3|([0, 40.36][40.36, 348.05] - - [348.05, 481.01] [481.01,00) - - -
L. Veh.

20-5-5-1a| N - - - - - - - -
20-5-3-1b([0,23.88]  [23.88,00) - - - _ ) . _
20-5-5-2a| [0,00) - - - - - - - -
20-5-3-2b|[0,360.3]  [360.3, co) - - - - - - -




