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Abstract

The pervasive nature of modern computer systems has led to an increase in our

reliance on such systems to provide correct and timely services. Moreover, as

the functionality of computer systems is being increasingly defined in software,

it is imperative that software be dependable. It has previously been shown that

a fault intolerant software system can be made fault tolerant through the design

and deployment of software mechanisms implementing abstract artefacts known

as error detection mechanisms (EDMs) and error recovery mechanisms (ERMs),

hence the design of these components is central to the design of dependable

software systems. The EDM design problem, which relates to the construction

of a boolean predicate over a set of program variables, is inherently difficult,

with current approaches relying on system specifications and the experience of

software engineers. As this process necessarily entails the identification and

incorporation of program variables by an error detection predicate, this thesis

seeks to address the EDM design problem from a novel variable-centric per-

spective, with the research presented supporting the thesis that, where it exists

under the assumed system model, an efficient EDM consists of a set of criti-

cal variables. In particular, this research proposes (i) a metric suite that can

be used to generate a relative ranking of the program variables in a software

ii



with respect to their criticality, (ii) a systematic approach for the generation

of highly-efficient error detection predicates for EDMs, and (iii) an approach

for dependability enhancement based on the protection of critical variables us-

ing software wrappers that implement error detection and correction predicates

that are known to be efficient. This research substantiates the thesis that an

efficient EDM contains a set of critical variables on the basis that (i) the pro-

posed metric suite is able, through application of an appropriate threshold, to

identify critical variables, (ii) efficient EDMs can be constructed based only on

the critical variables identified by the metric suite, and (iii) the criticality of the

identified variables can be shown to extend across a software module such that

an efficient EDM designed for that software module should seek to determine

the correctness of the identified variables.
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CHAPTER 1

Introduction

Dependability has been a concern for mankind throughout history. Be it the

availability of food, the reliability of building materials or the security of new

settlements, the need for humans to justifiably place trust in some set of services

is inherent to the functioning of society. Indeed, the notion of dependability

has long been used to capture the properties of services that individuals use

on a daily basis, such as the health and transport services. In the context of

computer systems, the notion of dependability has, for many decades, been

synonymous with specific application domains that have stringent requirements

with respect to the functioning of computer system components, including the

avionics, automotive, defence and telecommunications industries. However, the

pervasive nature of modern computing has led to an increase in the reliance

of individuals and organisations on computer systems outside these traditional

application domains, thus making computer system dependability a significant

issue for systems engineers working across all industries. Moreover, the cost and

inflexibility of bespoke hardware development, combined with the flexibility and
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1. Introduction

availability of general purpose computing platforms, has led to the functionality

of computer systems being increasingly defined in software, thus making the

issue of more specific issues of software dependability paramount in the design

and development of modern computer systems [16].

The earliest electronic computer systems made use of inherently unreliable

components, such as relays and vacuum tubes, to provide designated services.

The nature of these components and the architecture of these early computer

systems made solving even the most modest computational problems relatively

challenging [144]. However, in the period since these early years of computer

systems engineering, countless advances have been made with respect to the de-

sign and development of dependable computer systems, even in situations where

systems must be constructed using unreliable components [3] [19] [143]. This

is especially true in the context of dependable software systems, where practi-

cal techniques such as N-version programming (NVP) [14], checkpointing and

rollback [85], error detection and correction codes [123], recovery blocks [131]

and modular design [149] have facilitated the design and development of the

software systems that underpin the pervasive technologies on which individuals

and organisations rely. However, whilst these practical advances have provided

software engineers with approaches that aid in the engineering of software sys-

tems of unprecedented scale and complexity, theoretical contributions made in

this period have provided software engineers with equally important approaches

for reasoning about dependable software systems. Indeed, several such contri-

butions are central to the research presented in this thesis. In particular, it has

been shown that aspects of dependability, such as fault tolerance, can only be

achieved through some form of redundancy in the spatial and temporal domains,

e.g., through the replication of software components or the software re-execution

of software statements [53]. Further, the process of imparting fault tolerance

to a software system can be carried out as post-pass, meaning that an unde-

pendable software system can be made dependable once a functionally correct

software system has been implemented [71]. Finally, it has also been shown

2



1. Introduction

that techniques and approaches for imparting fault tolerance, with respect to

a software system, can be characterised by a combination of abstract artefacts

known as error detection mechanisms (EDMs) and error recovery mechanisms

(ERMs) [12]. When considered in combination, the main implication of these

contributions can be taken to be that a fault intolerant software system can be

made fault tolerant through the design and deployment of software mechanisms

implementing EDMs and ERMs which incorporate some degree of spatial or

temporal redundancy. It is this central premise that underpins the intention of

the work presented throughout this thesis.

1.1 Motivation

As it has been demonstrated that techniques and approaches for the provision of

fault tolerance in software systems can be reduced to the suitable application of

EDMs and ERMs, it is natural to consider how these abstract artefacts can be

realised [12]. In the case of an EDM, which is the focus of the research presented

in this thesis, it has been shown that this artefact is characterised by (i) the

error detection predicate that it implements and (ii) its location in a software

system [70]. This characterisation of an EDM gives rise to two related problems;

the error detection predicate design problem and the EDM location problem.

The focus of the work in this thesis is on the error detection predicate design

problem for EDMs, i.e., designing effective error detection predicates, where an

error detection predicate is a boolean expression over a some set of programs

variables. Specifically, the work presented in this thesis demonstrates that the

error detection predicate design problem can be approximated and addressed

through the identification and incorporation of a set of critical variables. That

is, in order to be effective with respect to the detection of errors, the error de-

tection predicate associated with an EDM should incorporate program variables

from this critical set. Throughout this thesis, the terms “critical” and “critical

variables” are used to described program variables that, due to them holding

3



1. Introduction

erroneous values, are likely to result in a software system failure.

It is desirable to develop error detection predicates based on the correctness

of as few program variables as possible, as this can allow the complexity and

overheads of the associated EDMs to be reduced. However, incorporating few

program variables typically reduces the efficiency of the associated EDMs. The

vast state space associated with real-world software systems typically prohibits

the consideration of all program variables in a software module, hence current

approaches to the design of error detection predicates rely on the experience of

software engineers and software system specifications. In effect these approaches

mimic the design of error detection predicates based on critical variables, with

some notion of variable criticality being understood with respect to the expe-

rience of software engineers or a system specification. As might be expected,

such approaches succeed in reducing the state space that must be considered

but lack the objectivity and repeatability that could be provided by a system-

atic approach to error detection predicate design. The identification of critical

variables, with respect to the characterisation of criticality proposed in this the-

sis, serves to reduce the state space that must be considered in the design of

error detection predicates for a software system, thus facilitating the design of

effective and simple error detection predicates.

1.2 Thesis and Contributions

The contributions made in this dissertation with respect to the design of error

detection predicates for EDMs are made based on the thesis that:

Where an efficient EDM exists under the defined system model,

that efficient EDM consists of a set of critical variables.

Henceforth, accordance with the defined system model and the existence of

an efficient EDM is presumed. In support of this thesis, the following specific

contributions are made to the design of efficient error detection predicates for

EDMs:
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• A metric suite that generates a relative ranking of variables with respect

to the notion of criticality applied throughout this thesis is proposed, as

well as a fault injection approach for its evaluation. The metric suite is

proposed with a view to facilitating the identification of critical variables.

This identification is performed through the application of a threshold to

the relatively ranking generated, thus allowing a cost-benefit analysis to

be undertaken in the design of error detection predicates.

• A systematic approach for the design of efficient error detection predicates

is proposed based on the application of data mining techniques to fault

injection data sets. As well as providing an effective mechanism for the

generation of efficient error detection predicates for real-world, infinite-

state software systems, this approach is also used to demonstrate that

error detection predicates generated using only critical variables achieve

similar levels of efficiency as those generated using all program variables.

This result is central to the thesis stated above, as it implies that the set of

critical variables identified by the proposed metric suite can be exclusively

used in the design of efficient EDMs.

• A methodology for the design of dependable software systems based on the

replication of critical variables using software wrappers is proposed and

applied to demonstrate that significant dependability enhancements can

be achieved through the protection of a relatively small number of critical

variables. This result serves to further substantiate the thesis that efficient

EDMs consists of a set of critical variables. This is because the protection

of relatively few program variables using error detection predicates that

are known to be efficient, e.g., the combination of variable replication and

majority voting, yields significant improvements in system failure rates.
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1.3 Thesis Overview

This chapter has detailed the main motivations and contributions of the research

to be presented in this thesis. The remainder of this thesis is organised as follows:

Chapter 2 provides an account of the concepts, principles and terminology in

software dependability that are central to the appreciation of the work presented

in this thesis. This account includes an overview of dependability attributes,

impairments and means, as well as discussion of EDMs and ERMs, and the role

they play in the design of fault tolerant software systems.

Chapter 3 describes the models under which the contributions made in this

thesis have been developed, including details of the assumed model of software

systems, the fault model under which software dependability was considered

and the experimental setup applied in dependability evaluation.

Chapter 4 develops a metric suite that yields a relative ranking of program

variables with respect a notion of criticality. This metric suite consists of the

spatial impact, temporal impact and importance metrics, where importance is a

function of spatial impact and temporal impact. In addition to its development,

this metric suite is applied to a set of complex software systems and analysed

for metric sensitivity to demonstrate the type of results that can be generated.

Chapter 5 presents an approach for the generation of efficient error detection

predicates for EDMs based on the application of data mining techniques to

data sets obtained during fault injection analysis. Following its development,

the proposed approach is applied and the efficiency of the derived predicates

measured. The results generated are then used as a basis for validating the

capability of the proposed metric suite to identify critical variables.

Chapter 6 demonstrates the potential dependability enhancement that can be

achieved through the protection of critical variables. In particular, a software

system design methodology based on the replication of critical variables through

6



1. Introduction

the deployment of software wrappers is applied in order to demonstrate that

significant dependability enhancements can be achieved through the protection

of a relatively small number of critical variables.

Chapter 7 discusses the various implications, applications and limitations of

the stated thesis in the context of the research presented. This is done with an

emphasis on how these implications, applications and limitations may influence

the design and development of dependable software systems.

Chapter 8 concludes this thesis with a summary of the research contributions,

a reiteration of the conclusions that can be drawn and a discussion of several

issues relating to efficient EDM design that may be addressed by future research.
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CHAPTER 2

Software Dependability

The pervasive nature of modern computer systems has led to an increase in our

reliance on such systems to provide correct and timely services. Further, as

the functionality of computer systems is being increasingly defined in software,

it is imperative that software be dependable. In order to give an appropriate

context and provide a consistent perspective for the work presented in this

thesis, this chapter presents a detailed account of fundamental concepts and

terminology in software dependability, with a focus on providing an in-depth

discussion of topics and issues that will be developed in subsequent chapters.

In particular, a widely accepted taxonomy of dependability is presented as a

basis for the consideration of the attributes along which dependability may be

considered, the potential impairments to dependability and the possible means

for providing dependability. This discussion is then used as a basis for the

presentation of several concepts and problems that are central to this thesis,

including the fault-error-failure cycle, the erroneous state propagation problem

and theoretical basis for achieving fault-tolerance based on EDMs and ERMs.
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2. Software Dependability

A set of statements is also provided in this chapter regarding the focus of the

work presented in this thesis and how it relates to these concepts and problems.

2.1 Fundamentals of Dependability

The fundamental concepts of dependability adopted throughout this thesis are

assumed directly from the comprehensive compilation of concepts developed

by Laprie [93]. Hence, the dependability of a computer system is defined as

“the trustworthiness of a computer system such that reliance can justifiably

be placed in the service it delivers”. Further, the dependability of a computer

system may be considered with respect to a set of dependability attributes, may

be compromised by a set of dependability impairments and may be imparted by

a set of dependability means. This characterisation is shown in Figure 2.1, which

depicts a dependability taxonomy that was originally synthesised by Laprie in

1985 [92], with work by the members of IFIP-WG 10.4 [67] resulting in its

incorporation in the collection of concepts and terminology provided in [93].

Whilst the taxonomy of computer system dependability shown in Figure 2.1 was

subsequently refined [16] [94], with further tree levels being added to account for

more specific facets of dependability, this tree structure remains widely accepted

as a characterisation of computer system dependability.

2.1.1 Dependability Attributes

The concept of computer system dependability is a multifaceted concern that

incorporates many properties, each of which relates to a different viewpoint

from which the quality of the services provided by a computer system may be

evaluated. As shown in Figure 2.1 these properties are availability, reliability,

safety, confidentiality, integrity and maintainability. A description and formal

definition, where appropriate, of these dependability attributes is given below.

Availability: The availability attribute is concerned with the likelihood that

9
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Attributes

Dependability Means

Impairments Errors

Failures

Faults

Fault Prevention

Fault Tolerance

Fault Removal

Fault Forecasting

Availability

Reliability

Safety

Confidentiality

Integrity

Maintainability

Figure 2.1: The taxonomy of computer system dependability

a service provided by a computer system is ready for use when invoked. More

formally, availability is defined as a function of time representing the probability

a service provided by a computer system is operating correctly and able to

perform its designated function at a given time [82]. Intuitively, the higher the

availability of a service provided by a computer system, the more likely that it

is to be available when requested. The availability of a service provided by a

computer system can be approximated by the ratio of the total time that the

computer system has been capable of providing its designated services correctly

to the total time that the system has been operational. In [82] it was shown that

steady-state availability of a service provided by a computer system was given

by Equation 2.1. The MTTF and MTTR terms in Equation 2.1 represent the

mean time to failure and the mean time to repair for the service respectively.
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2. Software Dependability

Asteady =
MTTF

(MTTF +MTTR)
(2.1)

Reliability: The reliability of a computer system is a measure of how likely a

system is to provide its designated service for a specified period of time. That

is, the reliability of a computer system is defined as the conditional probabil-

ity that the system will provide correct service throughout the interval [t0, t],

given that the system was providing correct service at time t0. It is typically

assumed that time t0 is the current time, hence R(t) is conventionally used to

denote reliability. On the other hand, the unreliability of a computer system is

defined as the conditional probability that the system will provide incorrect ser-

vice throughout the interval [t0, t], given that the system was providing correct

service at time t0. Again, time t0 is usually assumed to be the current time. The

unreliability of a computer system is conventionally denoted by Q(t) = 1−R(t).

Safety: The safety attribute of dependability reflects the extent to which a

system can operate without damaging or endangering its environment [145]. A

safe computer system may deliver correct, incorrect or degraded services but

it will never damage or endanger its environment or users. Computer systems

where the safety attribute of dependability is the paramount concern, usually

due to the potential for the loss of life or high-value resource, are commonly

known as safety-critical systems [151].

Confidentiality: The confidentiality attribute is concerned with the non-

disclosure of undue information to unauthorised entities [83]. The confiden-

tiality attribute serves as a measure of the extent to which a computer system

will allow those without sufficient privilege to obtain information that should

be not be made available.

Integrity: The integrity attribute relates to the capacity of a computer system

11
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to ensure the absence of improper system alterations, with regard to the with-

holding, modification and deletion of information [16]. The concept of integrity

is typically interpreted such that “improper system alterations” relates only to

information alterations performed by an unauthorised entity, though it also en-

compasses acts where an unauthorised party prevents modifications or causes

information corruption. The composite of the availability, confidentiality and

integrity attributes is usually considered to account for the computer system

security aspect of computer system dependability.

Maintainability: Formally, maintainability is defined as a function of time

representing the probability that a failed computer system will be repaired in

t time or less [41]. The maintainability attribute is conventionally denoted by

M(t). Where a constant rate of repair, µ, can be assumed, the maintainability

of a system can be estimated by Equation 2.2

M(t) = 1− exp−µt (2.2)

A computer system satisfying all dependability attributes for a given application

domain can be said to be dependable in that application domain. However, the

process of developing dependable computer systems is made challenging by the

presence of impairments to dependability.

2.1.2 Dependability Impairments

A computer system is said to provide correct service when the service it provides

complies with its functional specification. Conversely, a computer system is said

to provide incorrect service, i.e., a system failure is said to have occurred, when

the service it provides differs from its a functional specification. In general,

such a failure occurs due to the presence of impairments to dependability. As

shown in Figure 2.1, dependability impairments are faults, errors and failures.

A description of each of these dependability impairments is given below.

12
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Fault: In the design, development, deployment and operation of a dependable

computer system, events can occur that can potentially reduce computer sys-

tem dependability, i.e., the trustworthiness of services provided by the computer

system. Such occurrences are termed faults. A fault is the hypothesised cause

of an error, thus in a fault-free system there can be no errors. A fault may orig-

inate from within a system boundary or may find its origins in the surrounding

environment. A fault is considered to be dormant until it is activated, at which

points it results in an error. The period of time between fault activation and

the manifestation of the associated error is know as the latency of the fault,

whilst the notion of removal latency corresponds to the period of time between

occurrence and removal.

Error: An error is the manifestation of a fault, i.e., a fault that has been acti-

vated. An error may be detected or undetected in a computer system. Following

its activation, the erroneous state induced by an error may cause other errors to

occur in a system. This process is known as error propagation, i.e., the propa-

gation of erroneous state. The period of time between the occurrence of an error

and the detection of that error, or the manifestation of the associated failure if

the error is not detected, is known as the latency of the error.

Failure: A failure is the result of an error propagating beyond a system bound-

ary, i.e., an erroneous state becoming visible to the environment in which a

computer system operates. Given this definition, a failure can also be consid-

ered to be an observable deviation from an agreed system specification. Dis-

tinctions have often been made between different types of failure. For example,

the failure characterisation in [38] classified failures as omission failures, timing

failures, response failures or crash failures. However, whilst this categorisation

is often relevant and useful in dependability analysis, it is not required for the

appreciation of the research presented in this thesis.
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Fault

Software 
Module 1

Software 
Module 2

System
Boundary

Error

Failure

System
Failure

Figure 2.2: The fundamental cycle of computer system dependability

The Fundamental Chain: The fault-error-failure causality cycle, represented

below with arrows to indicate causality, is known as the fundamental chain [92],

as all dependability attributes are impacted by the interplay of dependability

impairments, i.e, faults, errors and failures, at various levels of abstraction.

fault→ error → failure

As shown in Figure 2.2, the fundamental chain is recursively defined, which

means that a failure at one level of abstraction can represent a fault at another

level of abstraction. Note that these levels of abstraction are considered to be

software modules in Figure 2.2. This recursive nature leads to the definition

extended chains of causality to represent the error propagation process, such as

the causality chain shown below.

. . . fault→ error → failure→ [fault→ error → failure]→ fault . . .

A fundamental capability of any dependable system is to limit the extent of

error propagation. Given the nature of the fundamental chain this capability

can be characterised as the system being able to prevent chains of causality from

growing to the point where a system failure occurs.
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2.1.3 Dependability Means

There are four dependability means that may be employed in combination to

provide dependability attributes in the presence of dependability impairments.

As shown in Figure 2.1 and described below, these dependability means are

fault prevention, fault tolerance, fault removal and fault forecasting.

Fault Prevention: The intention of fault prevention is to hinder and obstruct

the occurrence, introduction and spread of faults. Established examples of fault

prevention techniques include modular software design, software development

methodologies and process quality assurance.

Fault Tolerance: Techniques that actively handle the occurrence of faults and

errors, thus ensuring that a computer system is able to provide its designated

service regardless of these dependability impairments, are termed fault tolerance

techniques. In general, such techniques focus on the recognition of an erroneous

state in a computer system and restoring a suitably correct state, or at least a

safe system state, following the occurrence of an error.

Fault Removal: It is the intention of fault removal techniques to reduce the

number, likelihood of activation and wider consequences of faults in a computer

system. Typically fault removal is a three stage process, where these steps are

validation, diagnosis and system correction. In particular, the validation stage

seeks to determine whether a system adheres to a set of defined properties, the

diagnosis stage identifies problems, i.e., faults, which prevent these properties

from being fulfilled and the system correction stage seeks to modify the system

to allow the defined properties to be fulfilled.

Fault Forecasting: Fault forecasting techniques are primarily concerned with

estimating the number, likelihood of activation and wider consequences of faults

in a computer system. The fault forecasting process typically involves the iden-
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tification and classification and analysis of modes by which a computer system

can fail, as well as an evaluation of dependability attributes using probabilistic

and analytical approaches. Fault injection analysis is a commonly adopted ap-

proach when attempting to establish dependability measures and forecast fault

proneness. Fault injection is a dependability validation approach whereby the

response of a system to the artificial insertion of faults or errors is analysed so

that insights can be gained regarding the dependability of the system [8]. Fault

injection analysis is commonly used in the validation of dependable software

systems [24] [25], hence many specialised fault injection tools and approaches

have been developed for the validation of specific software system architectures

and implementation paradigms [4] [152].

The contributions made in this thesis are primarily related to the areas of fault

tolerance and fault forecasting. More specifically, the research presented in this

thesis is concerned with demonstrating that fault tolerance be achieved through

the design of EDMs based on a set of critical variables, whilst fault forecasting

approaches, including software metrics and fault injection analysis, are used for

dependability assessment and validation.

2.2 Achieving Fault Tolerance

Computer systems that are capable of providing their designated services in the

presence of faults and errors are considered to be fault tolerant. The idea of

deliberately designing computer systems that are able to tolerate the presence

of impairments to dependability can be traced back to systems that were imple-

mented entirely in hardware [134]. In this domain it was accepted that hardware

components would fail, whether due to specific component properties or their

operating environment, thus a degree of tolerance with respect to dependability

impairments was necessitated. In general, the activities that a system under-

takes to provide fault tolerance can be characterised by two processes; error
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processing and fault treatment [7]. These system processes are described below.

Error Processing: The processing of errors involves three sub-processes; error

detection, error diagnosis and error recovery. Error detection involves detecting

the existence of an erroneous system state, ideally before that erroneous system

state results in a system failure. The diagnosis of an error relates to assessing

the impact that an erroneous state has had on a system, including the erroneous

states that were present before error detection. Once detection and diagnosis

have taken place, error recovery is performed in order to replace an erroneous

system state with a suitably correct system state.

Fault Treatment: The process of fault treatment focuses on preventing faults

that have been activated from being reactivated. In general, fault treatment is

composed of fault diagnosis and fault passivation, where fault diagnosis involves

the identification of the cause of errors with respect to a location and an under-

lying fault, and fault passivation relates to the actions taken to prevent a fault

from being reactivated. Fault diagnosis is subtly different from error diagnosis,

as the focus of fault diagnosis is on the origin and type of fault, whilst error

diagnosis focuses on the impact of an error. Typically fault passivation may be

encompassed by steps taken in error processing, more specifically during error

recovery, though it is likely that some level of system reconfiguration will be

required during fault passivation to ensure that the system state accounts for

the any actions taken to make faults passive.

The research presented in this thesis is primarily related to the error processing

aspect of fault tolerance. In particular, the contributions made are related to

the design of software components that are sufficient for the detection of errors.
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Masking Fault Tolerance
(EDMs and ERMs)

Non-Masking Fault Tolerance
(ERMs) Fail-Safe Fault Tolerance

(EDMs)

Fault Intolerance
(Nothing)

Figure 2.3: The partial ordering of fault tolerant system types established by
the presence of EDMs and ERMs

2.3 Error Detection and Recovery

It has been shown that two dependability artefacts, known as EDMs and ERMs,

are integral to the design of fault tolerant software systems [12]. In particular, it

has been shown that EDMs are necessary and sufficient for the design of fail-safe

fault tolerance, whilst ERMs are necessary and sufficient for the design of non-

masking fault tolerance. That is, a software system equipped with only EDMs

can satisfy the safety component of a system specification, whilst a software

system equipped with only ERMs can satisfy the liveness component of a system

specification. To provide masking fault tolerance both EDMs and ERMs are

necessary and sufficient. Masking fault tolerance is strictly stronger than both

fail-safe and non-masking fault tolerance, hence a partial order is established

among types of fault tolerant software systems based on the presence of EDMs

and ERMs. This partial order of fault tolerance types is depicted in Figure 2.3.

When a dependable software system is executing, an EDM in the software

system will attempt to detect whether the state at a given time during execution
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Figure 2.4: The states transition system of a fault tolerant system expressed in
the context of EDMs, ERMs and the fundamental cycle

can threaten the proper functioning of the system. Such a state is generally

referred to as an erroneous state, i.e., EDMs attempt to detect whether a state

is erroneous. If a state is found to be erroneous, then an EDM can be said

to have detected an error [93]. When an EDM detects an error, an ERM may

attempt to restore a suitable system state, i.e., to recover from the erroneous

state, so that the error is contained within a certain boundary and does not

propagate throughout a software system. A failure to contain the propagation

of errors within a software system is known to make recovery more difficult

and increase the likelihood of a system failure [10]. The actions undertaken by

EDMs and ERMs can be related to the fundamental cycle and the provision of

fault tolerance as shown in Figure 2.4. This figure captures the general states

that a fault tolerant system can transition between when equipped with EDMs

and ERMs. It is interesting to note that the interplay between dependability

impairments remains intact despite the presence of EDMs and ERMs.

The effectiveness of EDMs and ERMs is usually evaluated using measures

such as coverage and latency [126]. The effectiveness of an EDM has been shown

to depend on two factors. These factors are (i) the error detection predicate that

it implements and (ii) its location in a software system [70]. This gives rise to

two related problems, i.e., the error detection predicate design problem and the

EDM location problem. The location of an EDM is the program statement it is
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protecting, i.e., an EDM ensures that the software state in which a statement

is executed will not result in an erroneous state or system failure. For some

program statements this predicate, which is a boolean predicate over a set of

program variables, is non-trivial [11]. The properties of this non-triviality have

been shown to be accuracy and completeness [70]. In contrast to an EDM, an

ERM will seek to restore a suitable safe state for a software system, i.e., an

ERM focuses upon error recovery rather than error detection. When system

state is characterised by the assignment of values to variables, this recovery

process implies that a number of corrupted variables must be overwritten with

appropriate values. The described observations regarding EDMs and ERMs

imply that, in order to maintain correct and timely software execution, some

set of variables must hold suitable values to make the software state safe for

further execution. Clearly, if these variables are known, it is easier to develop

error detection predicates and to determine appropriate locations for EDMs.

Thus, knowledge of this set of variables is of significance when addressing the

location and design problems associated with EDMs.

2.3.1 The EDM Location Problem

The EDM location problem focuses on the identification of software locations at

which an EDM will be most effective or is most required, i.e., statements where

a located EDM would be effective or statements that should be protected in

order to achieve some level of dependability. Often this problem is interpreted

as the error containment problem. Indeed, many approaches to the containment

of errors have focused on experimentally evaluating the coverage and latency

of EDMs [9] [59] [159], often using fault injection analysis [66]. Through these

approaches it was established that EDMs exhibiting high coverage and low la-

tency reduced the propagation of errors. These observations served to inform

research relating to the location of EDMs [64] [71] [84]. Indeed, the approach

developed in [64] extended work in [61] and [62] to provide a framework for the

identification of vulnerabilities in software. This framework is based upon a soft-
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ware measure, known as error permeability, which uses data-flow information

to capture how likely errors are to propagate from a module input to a module

output. In situations where it can be employed, i.e., where data flow informa-

tion is available, this framework identifies modules with a high permeability,

which then become candidate locations for EDMs. In contrast, approaches such

as [160] and [161] developed error propagation analysis techniques that aimed

to estimate the probabilities of given source code locations propagating data

errors, when starting from an initially erroneous system state, with a view to

informing the location of EDMs. This research was subsequently extend, largely

in [111], to aid in the design of test cases that would reveal significant defects and

vulnerabilities in software components, again informing the location of EDMs.

2.3.2 The EDM Design Problem

The EDM design problem concerns the derivation of a boolean predicate over

program variables that can be used for the detection of erroneous system state,

i.e., errors. In contrast to the substantial body of knowledge that relates to the

location of EDMs, comparatively little is known that pertains to the design of

efficient error detection predicates for EDMs, particularly for real-world, infinite

state software systems. Note that the phrase “infinite-state software systems” is

used to refer to software systems whose state space makes finite-state modelling

impractical. Indeed, most real-world software systems will be of this kind, as

given a software system with a reasonably small number of program variables,

even where these variables have a limited set of associated states, the state space

of the software system can be too large for a human to interpret and analyse as

a set of actions and state transitions.

The efficiency properties of an error detection predicate can be characterised

along two dimensions; accuracy and completeness. The accuracy property re-

flects the capability of an error detection predicate to avoid detecting non-

erroneous states as errors, whilst completeness refers to the capability of an

error detection predicate to detect erroneous states as errors [70]. In the con-
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text of finite state systems, which are typically represented as state transition

systems, the issue of error detection predicate design has been well considered.

In particular, research in [70] and [91] developed polynomial-time algorithms for

the automatic refinement of error predicates predicates, i.e., algorithms capable

of improving the efficiency properties of an existing error detection predicate

in polynomial-time. However, as finite-state systems can be viewed as an ap-

proximation to real-world, infinite state software systems, these approaches are

not applicable for most real-world software systems. Indeed, the EDM design

problem has received little attention in existing research literature.

The research presented in this thesis is primarily concerned with addressing

the EDM design problem for real-world, infinite state software systems. More

specifically, the work presented provides novel approaches for (i) the automated

identification of program variables that must be captured by efficient error de-

tection predicates, (ii) the generation of efficient error detection predicates, and

dependability enhancement through the protection of identified program vari-

ables with software-wrappers implementing efficient EDMs. Crucially, when

taken in contribution these contribution serve to support the thesis that an ef-

ficient EDM consists of a set of critical variables.

The concepts described in this chapter are by no means exhaustive in their

coverage of topics in software dependability. However, the overview of topics

presented provides a sufficient perspective on software dependability to allow

the contributions of this thesis to be appreciated.
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CHAPTER 3

Models

The models described in this chapter provide information about the context in

which the contributions made by this thesis have been developed. In particular,

the software system model assumed in the development of these contributions,

and the fault model under which they were evaluated are detailed in this chapter.

Information regarding the experimental setup that embodied these models is

also provided in this chapter, including full details of all target systems, test

cases, system failure specifications, software system instrumentation procedures,

and dependability validation techniques used throughout this thesis.
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3.1 System Model

A software system S is considered to be a tuple, consisting of a set of software

modules, M1 . . .Mn, and a set of connections. A software module Mk consists of

an import interface Ik, an export interface Ek, a set of non-composite program

variables Vk and a sequence of actions Ak1 . . . Aki. Each program variable in Vk

has a specific domain of values. Each action in Ak1 . . . Aki may read or write to

a subset of Vk. Two software modules Mk and Ml are connected if the export

interface of Mk is matched with the import interface of Ml, i.e., a connection

exists if Ek is matched with Il. Thus, a software system S = (MOD,CON),

where MOD = {M1 . . .Mn}, and CON = {(Ma
k ,M

a
l )}, where Mk exports

to the import interface of Ml over connection a. We assume a software mod-

ule ENV that exports inputs to the software system and imports output from

the software system. Figure 3.1 shows an example of the assumed system

model. Relating this example to the definitions given, it follows that if a soft-

ware system S = (MOD,CON), then MOD = {ENV,M1,M2,M3,M4} and

CON = {(M b
1 ,M

b
2), (M c

1 ,M
c
3 ), (Md

1 ,M
d
3 ), (Me

2 ,M
e
3 ), (Mf

2 ,M
f
4 ), (Mg

3 ,M
g
4 ),

(ENV a,Ma
1 ), (Mh

4 , ENV
h)}.

A software system is assumed to be grey box, meaning that access to source

code is permitted, but knowledge of functionality, implementation details and

structure is not assumed. It is the variable-centric focus of the contributions

made in this thesis that necessitates this white box access, whilst the adoption

of a generic model of software systems is motivated by the desire to ensure that

the contributions made are widely applicable.

3.2 Fault Model

A fault model has been shown to contain two parts; a local part, and a global

part [165]. The local fault model, known as the impact model, states the type

of faults likely to occur in the system, while the global model, known as the

rely specification, states the extent to which the local fault model can occur. In
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Figure 3.1: A software system represented under the adopted system model

general, the rely specification constrains the occurrence of the local model so

that dependability can be imparted. For example, a rely specification will state

that “at most f of n nodes can crash” or “faults can occur only finitely often”.

In this thesis it is assumed that a software system has to tolerate a transient

data value fault model [125]. Here, the local fault model is the transient data

value failure, i.e., a program variable value is corrupted and this corruption

may never occur again. The global fault model is that we assume that any

program variable can be affected by transient faults. A transient fault model is

generally used to model hardware faults in which bit flips occur in memory areas

that cause instantaneous changes to values held in memory. The transient fault

model has also been shown to mimic the presence of software bugs [33]. Thus,

through the assumption of a transient data value fault model, consideration is

effectively being give to random hardware failures in which random single bit

flips may occur and software bugs whose effect is to cause program variables to

hold erroneous data values. A transient data value fault model is often assumed

during dependability analysis due to the fact that it can be used to mimic several

more severe fault models [125]. It is this characteristic that makes the transient

data value fault model a good candidate for a base fault model.

25



3. Models

3.3 Target Systems

The target systems used throughout this thesis were selected based on their

complex nature, widespread usage, modular structure and varying development

profiles. An overview of each target system used in this thesis is provided below.

7-Zip Archiving Utility: The 7-Zip utility is a high-compression archiver

which supports many file archiving and encryption formats [1]. The 7-Zip utility

is widely-used, modular, written in C/C++ and has been designed, developed

and maintained by a community of software engineers. Most source code and

resources associated with the 7-Zip utility are freely available under the GNU

Lesser General Public License.

FlightGear Flight Simulator: The FlightGear Flight Simulator project is an

open source project that aims to develop an extensible yet sophisticated flight

simulator to serve the needs of the academic and hobbyists communities [50].

The software is modular, contains over 220,000 lines of C/C++ and simulates

a situation where dependability is of utmost importance. All source code and

resources associated with the FlightGear Flight Simulator project are available

under the GNU General Public License.

MP3 Gain: The MP3Gain analyser is an open-source volume normalisation

suite for MP3 files [112]. The MP3Gain analyser is modular, written in C/C++

and has been predominantly developed by a single software engineer. All source

code and resources associated with the MP3Gain analyser are available under

the GNU General Public License.

3.4 Test Cases

Fault injection analysis forms a basis for the formulation and evaluation of the

contributions made in this thesis. To perform fault injection analysis on a given
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target system a set of test cases must first be identified. The test cases used in

the analysis of all target systems in this thesis are described below.

7-Zip Archiving Utility: An archiving procedure was executed in all test

cases. A set of 25 files of varying file formats were input to the procedure. Each

of these files was then compressed to form an archive and then decompressed to

recover the original content. The temporal impact of faults, an issue that will

be discussed at length in Chapter 4, was measured with respect to the number

of files processed. For example, if a fault were injected during the processing of

file 15 and persisted until the end of a test case, then its temporal impact would

be 10. To create a varied system load, the experiments associated with each

instrumented program variable were repeated for 25 distinct test cases, where

each test case involved a distinct set of 25 input files.

FlightGear Flight Simulator: A takeoff procedure was executed in all test

cases. This procedure executed for 2700 iterations of the main simulation loop,

where the first 500 iterations correspond to an initialisation period and the

remaining 2200 iterations relate to pre-fault injection and post-fault injection

periods. The temporal impact of injected faults was measured with respect to

iterations of the main simulation loop. A control module was used to provide a

consistent input vector at each iteration of the simulation. To create a varied and

representative system load, the experiments associated with each instrumented

program variable were repeated for 9 distinct test cases; 3 aircraft masses and 3

wind speeds uniformly distributed across 1300-2100lbs and 0-60kph respectively.

MP3 Gain: A volume-level normalisation procedure was executed in all test

cases. The procedure took a set of 25 MP3 files of varying sizes as input and

normalised the volume across each file. The temporal impact of injected faults

was measured with respect to the number of files processed. To create a varied

system load, the experiments for each instrumented program variable were run
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for 3 distinct test cases, where each test case used a distinct set of input files.

3.5 System Failure Specifications

Conducting any form of software system dependability analysis will typically

necessitate the definition of a system failure specification. In the case of fault

injection analysis, such a specification is particularly important, as it captures

the worst-case impact of an injected fault, i.e., a software system failure. The

system failure specifications for all target systems are described below.

7-Zip Archiving Utility: A test case execution was considered a failure if the

set of archive files and recovered content files were different from those gener-

ated during the corresponding golden run, i.e., a fault free test case execution.

FlightGear Flight Simulator: A failure specification was established using

golden run observation and relevant aviation information. A failure in the exe-

cution of a test case was considered to fall into at least one of three categories;

speed failure, distance failure and angle failure. A run was considered a speed

failure if the aircraft failed to reach a safe takeoff speed after first passing through

critical speed and velocity of rotation. A run was considered a distance failure if

the takeoff distance exceeds that specified by the aircraft manufacturer, where

the specified distance is increased by 10 meters for every additional 200lbs over

the aircraft base-weight. A run was considered an angle failure if a Pitch Rate of

4.5 degrees is exceeded before the aircraft is clear of the runway or the aircraft

stalls during climb out.

MP3 Gain: A test case execution was considered a failure if the set of output

files, normalised by the MP3 Gain analyser, were different from those generated

by the corresponding golden run, i.e., if these files differed from those produced

under a fault free test case execution.
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Table 3.1: Summary of fault injection experiment totals for 7-Zip

Module 8-bit 32-bit 64-bit Total
Injections Injections Injections Injections

7Z1 (ZDecode) 10000 5508000 1680000 7198000
7Z2 (ZInput) 24000 10608000 4144000 14776000
7Z3 (ZHandle) 2000 480000 48000 530000

36000 16596000 5872000 22504000

Table 3.2: Summary of fault injection experiment totals for FlightGear

Module 8-bit 32-bit 64-bit Total
Injections Injections Injections Injections

FG1 (FMass) 864 38880 774144 813888
FG2 (FProp) 77760 743904 155520 977184
FG3 (FGear) 46656 12096 399168 457920

125280 794880 1328832 2248992

3.6 System Instrumentation

Instrumented software modules in each target system were chosen randomly

from all software modules used in the execution of the test cases defined in

Section 3.4. Summaries of the fault injection experiments performed for the

target modules in each target system are shown in Tables 3.1-3.3. All program

variables in each target system were instrumented.

3.7 Fault Injection and Data Logging

The Propagation Analysis Environment (PROPANE) tool was used for all fault

injection and system state logging experiments undertaken in this thesis [63]. A

golden run was created for each test case, where a golden run is a reproducible

fault-free run of the system for a given test case, capturing information about

the state of the system during execution. In-line with the adopted fault model,

bit flip faults were injected at each bit-position for all instrumented program

variables. Each fault injected test case execution entailed a single bit flip in

a program variable at one bit-position, i.e. no multiple fault injections were
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Table 3.3: Summary of fault injection experiment totals for MP3 Gain

Module 8-bit 32-bit 64-bit Total
Injections Injections Injections Injections

MG1 (MLaunch) 86400 4454400 259200 4800000
MG2 (MGain) 9000 201600 7833600 8044200
MG3 (MAnalysis) 0 806400 504000 1310400

95400 5462400 8596800 14154600

performed during a single test case execution. In the case of the FlightGear

Flight Simulator each single bit flip experiment was performed at 3 distinct

injection times uniformly distributed across the 2200 simulation loop iterations

that follow system initialisation, i.e. 600, 1200 and 1800 control loop iterations

after the initialisation period of 500 iterations. In that cases of 7-Zip and MP3

Gain, each single bit-flip experiment was performed at 25 distinct injection

times uniformly distributed across the 25 time units associated with each test

case. The state of all software modules used in the execution of all test cases was

monitored and recorded during each fault injection experiment. The data logged

during fault injection was compared with the corresponding golden run, with

deviations being deemed erroneous subject to the adopted fault model. Any

module containing an erroneous variable, i.e., a variable whose value deviates

from its corresponding value during a golden run, is considered to be corrupted.
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CHAPTER 4

Towards the Identification of Critical Variables

The identification of program variables that should be incorporated by an error

detection predicate is central to the design of an effective EDM. To this end,

this chapter proposes a metric suite that can be used to generate a relative

ranking of the program variables in a software with respect to their criticality.

The intention is then for a threshold to be subsequently applied to the relative

ranking generated, in a cost-benefit analysis, to allow for the identification of

program variables that should be incorporated by an error detection predicate.

The proposed metric suite is composed of three metrics, namely spatial impact,

temporal impact and importance, where the importance metric is a function

of spatial impact and temporal impact. In order to demonstrate the type of

results that the metric suite is capable of generating, the proposed approach

is applied to three complex software systems and analysed for sensitivity with

respect to parameterisation. Analysis of the results presented indicates that the

relative ranking of program variables generated by the metric suite is consistent

with the rationale underpinning its development and that this ranking is robust
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with respect to parameterisation, indicating that the metrics proposed in this

chapter are suitable for use in the identification of critical variables.

4.1 The Identification of Critical Variables

The identification of the program variables that should be captured by error

detection predicates, i.e., critical variables, is fundamental to the thesis an EDM

consists of a set of critical variables. It is the intention of the metric suite

developed in this chapter to provide a systematic approach for the generation of

a relative ranking among program variables that can be thresholded in order to

identify critical variables and, hence, aid in the design of efficient error detection

predicates for EDMs. Such a variable-centric focus is, in-part, motivated by

research which has demonstrated that a relatively small number of variables

can be effective in fault forecasting and fault tolerance. For example, while not

directly concerned with the identification of critical variables, research in [65]

demonstrated that the use of very few system variables could allow a predictive

accuracy in excess of 80% to be achieved in call availability predication for

telecommunication systems. Moreover, it was shown in [117] that adopting a

variable-centric focus in the placement of EDMs can allow a detection coverage

in excess of 80% to be achieved through the protection of an extremely modest

number of program variables, e.g., 10 program variables in the cases of the

studies presented.

To demonstrate how the metric suite proposed in this chapter differs from

approaches already used in the design and development of dependable software

systems, Sections 4.1.1-4.1.4 discuss current approaches to the identifications

of critical software components and vulnerabilities, with a particular emphasis

on how this identification can aid in the detection of errors and the notion of

criticality employed by these approaches. Note that the phrase “software com-

ponents” is used to capture approaches that are not focused on the identification

of program variables, e.g., approaches focusing on vulnerable software modules
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or code locations. Following this discussion of current approaches, the novelty

and distinctive characteristics of the proposed metric suite are then discussed in

Section 4.1.5. The discussion shown in Sections 4.1.1-4.1.4 deliberately avoids

the consideration of approaches for the design and composition of error detection

predicates, as this topic is addressed at length in Section 5.1 of Chapter 5. More

specifically, in considering the identification of critical variables, Sections 4.1.1-

4.1.4 classify techniques as being related to experimental evaluation, experience

and heuristics, system specifications or static analysis.

4.1.1 Experimental Evaluation

Experimental approaches to the identification of critical software components

and vulnerabilities typically involve the application of a dependability validation

approach and an assessment of the results derived with respect to some notion of

criticality. Such notions of criticality often incorporate aspects of measures such

as coverage and latency, particularly when software system has been developed

with EDMs [126]. Dependability validation techniques such as fault injection

analysis have been shown to be a particularly effective means for estimating

difficult to establish software measures, including coverage and latency, where

EDMs already exist in a software system [61]. In [126] it was shown that if ni

faults are injected into a software system and nd of these are detected by an

EDM, an unbiased estimate of the detection coverage for that EDM, cd, is given

by Equation 4.1.

cd =
nd
ni

(4.1)

A caveat on this evaluation of detection coverage is that the faults or errors

injected into a software system should be representative of the errors that could

be experienced during its operation. Indeed, the issue of representativeness in

fault injection analysis, and more generally in software testing, remains an open

issue in research.
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When evaluating an existing EDM, the latency associated with that EDM

is typically interpreted as detection latency, which corresponds to the period

of time between the occurrence of an error and that EDM detecting the exis-

tence of the error. As well as being used to estimate software measures that

can be difficult to establish, fault injection analysis can also permit more ana-

lytical and software system specific analyses to be undertaken with respect to

the identification of critical software components and vulnerabilities. For exam-

ple, Khoshgoftaar et al. proposed a set of metrics to identify software modules

that do not propagate errors. More specifically, it was the goal in [84] to de-

termine whether data errors could propagate from a code location of interest,

i.e., a potentially vulnerable location or component, to the system boundary

when testing using inputs drawn from a representative operational profile. The

intention here was to identify situations where a fault in a program variable

at a location may not be detected during software testing, i.e., a vulnerability

in a software component that was likely to go undetected. Further, Steininger

and Scherrer demonstrated that fault injection techniques can be used to find

optimal combinations of EDMs in hardware, though little attention was given

specifically to the identification of what should be incorporated by the error

detection predicates of these EDMs [148]. Instead, the focus of this work was

on determining the most efficient combination of EDMs when a set of EDMs

is already available. A set of measures were also introduced to assist in sys-

tematically forming and evaluating the efficiency of sets of EDMs, potentially

offering various notions of criticality based on detection coverage and latency.

Similar to this approach, the experimental techniques detailed in [161] and [164],

which largely focused on locating executable assertions, i.e., specific instances

of EDMs, proposed to use sensitivity analysis conducted during fault injection

analysis or program mutation, in order to identify component vulnerabilities;

a technique subsequently applied in [163]. However, the aims of this technique

are not focused on the identification of what should be incorporated by error

detection predicates, rather it is concerned with the rationale underlying the
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identification of locations where EDMs should be located. In [120] and [121],

Pattabiraman et al. developed a technique for the prevention of data errors

through the derivation of fine-grained, i.e., variable-centric, EDMs. This was

based on dynamic application traces and the use of six generic rule templates,

where a single rule template corresponded to a different class of errors that could

be detected. For example, a single template is used capture situations where a

variable should have a constant value. As the EDMs derived in this work are

based on the value of a single program variable at a specific location, rather

than a single predicate capturing the values of multiple variables at a specific

location, a multitude of effective EDM locations may need to be identified in

order to achieve the coverage and efficiency. Further, if a class of error falls

outside the set of rule templates employed, then any errors associated with that

class may not be detected. Hence, the effectiveness of this approach depends on

the capability of a software engineer to generate representative rule templates.

4.1.2 Experience and Heuristics

A variety of guidelines and heuristics have been proposed to characterise the

criticality of software components, which has led to the definition of various no-

tions of criticality, though often not with respect to programs variables or groups

of program variables. For example, the high-level approaches described in [60]

and [62] advocate a rigorous approach to code location analysis, combined with

the use of an established methodology, such as failure mode and effects analysis

(FMEA) or failure mode, effects and criticality analysis (FMECA) [20] [51] [56],

to aid in identification of critical software components. Such advocation pre-

sumes the existence of a criticality heuristic with little consideration for what

form that heuristic might take or what it might incorporate. Other research in

software dependability measures has more explicitly set out a notion of software

component criticality. For example, with a view to quantifying error propa-

gation between interacting modules, the inter-module influence and separation

measures, originally proposed in [153], were augmented and evaluated in [72]
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through the introduction of software measures known as error transmission

probability and error transparency. These related measures focused on charac-

terising the error propagation between interacting modules at a high-level of

abstraction, such that identified modules can be aggregated and located on dis-

tinct processors in order to confine errors to these processors. The problem of

error propagation was investigated at the operating system level in [80], where

the authors profiled the propagation of errors due to failures of device drivers.

This lead to the development of a measure, known as driver error diffusion,

that aims to capture the impact of a given device driver on operating system

services. Although it is analogous to the metric suite proposed in this chapter,

the fact that driver error diffusion focuses on quantifying the impact of device

drivers means that the approach can be considered to operate at the level of

software modules, rather than at the level of program variables.

4.1.3 System Specifications

A formal specification can be used in the identification of critical software com-

ponents, not least because the constraints that are commonly defined in a formal

specification often relate to aspects of functional correctness. In [132] and [150]

it was proposed that a formal specification can be used to derive programatic

tests which capture aspects of functional correctness. This is similar in intent

to the identification of critical software components, as tests derived will be

based on the components and values stored in some model-based representation

of a software system. In [132], Richardson et al. concluded that specification-

based checks, i.e., boolean predicates over program variables derived from a

model-based specification, should be combined with self-checks, i.e., code-based

assertions defined without a model-based specification, in order to facilitate the

detection of a wider range of errors. The reason for this was based on the as-

sertion that self-checks were more able to consider internal system state, whilst

specification-based checks were removed from such implementation issues. De-

spite this suggestion it was also shown that it can be difficult to design effective
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error detection predicates for programatic tests on the basis of a formal spec-

ification [102]. In support of the assertion that specification based EDMs are

insufficient by themselves, work in [130] suggested that online checks should con-

sider both intermediate data values and the correctness of control flow, which

may or may not be discerned from a system specification. Interestingly, the pro-

cess by which error detection predicates can be derived using [130] requires the

identification of critical software components for EDM enhancement, a process

that necessitates the definition of some notion of software component criticality.

4.1.4 Static Analysis

Static analysis refers to any type of analysis that can be performed without

the execution of the software system being analysed. Static analysis is known

to be complete, though the potential for false positives can make the approach

less appealing in several application domains [29]. With respect to the iden-

tification of critical software components, static analysis has commonly been

used in the identification of software components that have specific vulnerabil-

ities. For example, research by Zheng et al. demonstrated that static analysis

techniques were an economic approach to the detection of a range of software

system implementation issues [173]. More specifically, it was shown that static

analysis is a particularly effective mechanism for the identification of vulnera-

bilities relating to assignment and checking faults. Based on these findings, it

was asserted that static analysis should be used to identify vulnerabilities early

in the development of dependable software, thereby allowing subsequent devel-

opment phases to focus on functional and algorithmic issues. Similar to this

approach, Nagappan and Ball proposed an approach to the early prediction of

defect density based on the number of vulnerabilities identified through static

analysis [113]. More closely aligned with the identification of critical variables,

research by Pattabiraman et al. adopts a notion of variable criticality based

on the sensitivity of variables with respect to random data errors in a software

system [118] [119]. This measure of variable criticality can be evaluated based
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on the highest dynamic fan-out of variables, which can be computed using back-

ward application slices. The premise underlying the use of highest fan-out for

variable criticality is that program variables with a high fan-out, with respect

to other program variables in a function in the case of [118] and [119], are more

capable of propagating errors than program variables with a low fan-out, thus

these high fan-out program variables can be considered to be more critical.

In some situations static analysis has been used to dramatically simplify

or circumvent the problem of identifying critical software components. For ex-

ample, several approaches have used static analysis to compute control-flow

graphs and other abstract representations in order to base EDMs directly on

the control-flow and structure of a software system, potentially obviating the

need for the explicit identification of critical software components or vulnera-

bilities [6] [168]. Indeed, the approaches developed in [2] and [115] operate by

ensuring that a statically generated control-flow graph is preserved during the

execution of a software system. This is achieved by associating software checks

with all program statements that result in branching or a transition between

different program statement blocks. In contrast to this use of static analysis,

the approach described in [130] aimed to detect control-flow errors through the

application of a time trace technique that allowed expected behaviour to be

specified by a software engineer and monitored by a generic control-flow au-

tomaton. However, as a study in [158] showed that around 33% of transient

faults result in a control-flow error, the general applicability and effectiveness of

the approaches discussed here is questionable, even if it is assumed that perfect

coverage can be achieved by the associated EDMs.

4.1.5 Evaluation of Existing Predicate Design Approaches

Current approaches to the identification of critical software components and

vulnerabilities in software systems generally suffer from one of two deficiencies.

Firstly, many current approaches operate at a level of abstraction that prohibits

the identification of program variables that must be incorporated by error detec-
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tion predicates. For example, approaches which operate at the level of software

modules generally do not provide a sufficient level of granularity to aid in the

design of error detection predicates within a software module, meaning that the

process of predicate implementation may be entered without knowledge of the

program variables that must be captured. Secondly, many approaches fail to

provide a systematic, objective and independently-repeatable method by which

the prescribed analysis can be undertaken. For example, approaches which

focus on providing guidelines, metrics and heuristics, even where these have

been shown to be effective for some software systems, rely on the ability of the

software engineer applying them. As a result of this it is possible for two in-

dependent engineers to apply the same approach and produce entirely different

results, which means that the program variables identified may not be composed

to form error detection predicates with the levels of accuracy and completeness

that are required in dependable software systems. Despite these criticisms of

existing techniques, the approach presented in [118] and [119] avoids both pit-

falls, i.e., it is both variable-centric and can be applied systematically to provide

objective, independently-repeatable results. However, despite being the closest

existing work to the proposed metric suite, the notion of variable criticality is

based on statically identified variables that may or may not have a high criti-

cality when the associated software system is in operation. Put differently, the

use of static analysis results in a potential for false positives, which may lead

to the unnecessary identification and protection of variables that do not have

a high criticality when the software system is in operation. To circumvent this

issue a dynamic measure of criticality must to used in order to capture variable

criticality with respect to the execution of a software system.

The metric suite developed in this chapter provides the first dynamic, variable-

centric framework that can, through the application of a threshold, be used for

the identification of program variables that should be incorporated by the error

detection predicates of EDMs. The benefits of this metric suite, with respect

to error detection predicate design, are that (i) error detection predicates can
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be simplified through the identification of the set of variables that should be

captured, (ii) the location of EDMs is informed based on the occurrences of the

program variables identified, and (iii) a cost-benefit analysis can be undertaken

when determining where the dependability enhancement efforts of software en-

gineers should be focused. In contrast to many current approaches, which are

open to some degree of interpretation or subjectivity, the proposed approach is

systematic, objective and independently-repeatable. These characteristics mean

that the proposed metric suite has the potential to provide both transparency

and accountability in the design of dependable software systems.

The proposed metric suite is composed of three metrics; spatial impact,

temporal impact and importance, where the importance metric is a function of

spatial and temporal impact. The reason that the spatial and temporal impact

of variables is considered, as opposed to any other such impact that could be

defined, is the fact that it has been shown that fault tolerance can only be in-

corporated along these two dimensions [53]. The spatial impact metric captures

the extent to which a system is corrupted when a given variable is corrupted.

In contrast, the temporal impact metric captures the duration during which a

system remains corrupted when a given variable is corrupted. To minimise the

likelihood of a software failure, each of these aspects must be handled, i.e., the

number of corrupted variables and the duration of the corruption must be taken

into account. In the following sections the spatial impact, temporal impact and

importance metrics are introduced alongside a fault injection approach for their

evaluation based on the experimental setup described in Chapter 3.

4.2 The Spatial Impact Metric

The aim of the spatial impact metric is to quantify the extent of the affected

area when a particular program variable is corrupted. The intention is then

for the value of this metric for each program variable in a software module to

contribute to the ranking of program variables in that software module with
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respect to criticality. Intuitively, program variables that cause a higher extent

of perturbation should contribute more to a chosen measure of criticality than

program variables that cause a lower extent of perturbation.

4.2.1 A Definition for Spatial Impact

Given a software system whose functionality is logically distributed over a set of

distinct software modules, the spatial impact of program variable v of module

M in a run r, denoted by σrv,M , is defined as the number of software modules

that are corrupted in r as a result of a corruption in v. The spatial impact

of a program variable v of software module M , denoted by σv,M , can then be

defined as:

σv,M = max{σrv,M},∀r (4.2)

Thus, σv,M captures the extent of the affected area whenever a program variable

v in a module M is corrupted. The higher σv,M is, the more difficult it may be

to recover from the extent of corruption in the spatial domain. Observe that it

is possible to have alternative definitions for spatial impact, e.g., by accounting

for the average number of corrupted modules, rather than accounting for the

worst-case situation by using the maximum extent of corruption in the way that

is done in this thesis.

4.3 The Temporal Impact Metric

The aim of the temporal impact metric is to quantify for the duration of the

perturbation when a particular variable is corrupted. The intention is then

for the value of this metric for each program variable in a software module

to contribute to the ranking of program variables in that software module with

respect to criticality. Intuitively, program variables that cause a higher duration

of perturbation should contribute more to a chosen measure of criticality that

program variables that cause a lower duration of perturbation.
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4.3.1 A Definition for Temporal Impact

Given a software system whose functionality is logically distributed over a set

of distinct software modules. The temporal impact of program variable v of

moduleM in a run r, denoted as τ rv,M , is defined as the number of time units over

which at least one software module of the software system remains corrupted in

r following the corruption of v. The temporal impact of a program variable v

of software module M , denoted as τv,M , can then be defined as:

τv,M = max{τ rv,M},∀r (4.3)

Thus, τv,M captures the period of time that the software system state remains

affected whenever a program variable v in a software module M is corrupted.

The higher τv,M is, the more difficult it may be to recover from the extent of

corruption in the spatial domain. As with the spatial impact metic, it is possi-

ble to have different definitions for temporal impact, e.g., by accounting for the

average duration of system corruption, rather than the worst-case situation by

using the maximum duration of corruption in the way that is done in this thesis.

Having defined the spatial and temporal impact metrics it remains to provide a

definition for the importance metric, which will form the basis for the rankings

that can be used, following the application of a suitable threshold, to identify

variables that should be incorporated by the error detection predicates of EDMs.

Note that “important” and “critical” are not used interchangeably. The notion

of criticality is considered to be more abstract than the notion of importance,

which refers specifically to definition and application of the importance metric.

4.4 The Importance Metric

As argued earlier, both spatial and temporal impact must be accounted for when

assessing the criticality of program variables. Hence, a general form for a soft-
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ware metric that accounts for the described factors in expressing the criticality

of a program variable v in a software module M , using arbitrary functions G,

K and L, can be taken to be:

Iv,M = G[K(σv,M )), L(τv,M ))] (4.4)

Equation 4.4 captures the notion that a metric to measure importance should

be a function of spatial impact and temporal impact, which is the role of G. Of

course, as these impact metrics capture different aspect of error propagation it

is reasonable to expect that they might be adjusted before combination, hence

the presence of K and L in Equation 4.4. Further, the general form given in

Equation 4.4 does not preclude the inclusion of measures other than spatial

impact and temporal impact. Indeed, the inclusion of such information into

an instantiated form of this general form can serve to enrich the importance

metric. In particular, as spatial impact and temporal impact capture specific

notions of error propagation it would be reasonable to include measures that

capture other aspects of dependability. For example, the instantiation of Equa-

tion 4.4 proposed in this chapter includes system failure rate, derived through

fault injection, as a supplementary measure, largely because metric provides

information not afforded by spatial impact and temporal impact. In general,

instantiations of the general form should seek to find a combination of spatial

impact and temporal impact that is consistent with the notion of importance

to be applied. For example, where the quantification of vulnerability expose is

a concern it may make sense to combine spatial impact and temporal impact

unevenly, and perhaps to include measures such as coverage, it should be noted

that the variable centric focus of the general form, as imposed by σv,M and

τv,M , should be maintained.

In Section 4.4.1 the general form shown in Equation 4.4 is instantiated. An

approach, based on fault injection, for the evaluation of this instantiation is

subsequently described in Section 4.4.2.
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4.4.1 A Definition for the Importance Metric

Having set out a general form for an importance metric that incorporates both

spatial and temporal impact, a concrete instantiation of this general form is

now provided. This instantiation will be used throughout this thesis to identify

variables that should be incorporated by the error detection predicates of EDMs.

Instantiated Importance Metric: Numerous instantiations of Equation 4.4

could be conceived. For example, an instantiation may incorporate a definition

of erroneous state that is based on deviations from expected values, as was done

in [61]. In this thesis a more general instantiation of the importance metric

is adopted, whereby both erroneous states and system failure are taken in to

account. This view, which is motivated by a focus on the detection of erroneous

states that lead to system failure, means that the adopted instantiation of the

importance metric should enable the generation of a relative ranking where

program variables are ordered based on their association with system failure

and the propagation of erroneous state. With this in mind, the importance of

a variable v in a module M is defined as:

Iv,M =
1

(1− f)n

(1

2

(σv,M
σmax

+
τv,M
τmax

))m
(4.5)

The importance metric instantiation shown in Equation 4.5 accounts for factors

which influence the importance of a variable but are not directly captured by

the spatial and temporal impact metrics. Specifically, the instantiation ensures

that the observed rate of failures f , associated with variable v in module M is

accounted for in the definition of importance, allowing the definitions of σv,M

and τv,M to remain independent of failure rate. Normalisation of the spatial and

temporal impact factors is performed in order to ensure that the combination of

these quantities does not mask or enhance the significance of the spatial impact

or temporal impact metric. This normalisation is achieved by expressing the

spatial impact and temporal impact metrics as a proportion of the maximum
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possible extent of corruption, σmax, and duration of corruption, τmax, respec-

tively. As each normalised impact metric can not be greater than 1, the 1
2 term

in Equation 4.5 served to bound the sum of normalised impact metrics above

by 1. The definition of importance given in Equation 4.5 allows a balance to

be reached between the need to detect errors and recover from them. Specif-

ically, this can be achieved by varying the values assigned to n and m, which

dictate how much emphasis is placed upon the need to avoid failures or the

need to prevent widespread system corruption in the spatial and temporal do-

mains. By setting n = 0 and m > 0 the importance metric can be made to focus

solely upon state corruption in the spatial and temporal domains, i.e., erroneous

states, whilst setting m = 0 and n > 0 focuses the importance metric solely on

system failures. In general, system specific analysis requirements can be met

through the parameterisation of Equation 4.5. Note that this refocusing of the

importance metric can be achieved with or without system specific knowledge

with respect to system structure and functionality.

4.4.2 Evaluating the Importance Metric

To evaluate the importance metric for all instrumented program variables, the

failure rates and the values of the spatial and temporal impact metrics, σ and

τ , associated with these program variables must be determined. In this thesis

these values are experimentally estimated using fault injection analysis.

Spatial Impact: Applying the definition given in Section 4.2.1, the spatial

impact of a program variable is the maximum number of software modules that

were corrupted during any run where that program variable was the target of a

fault injection, i.e., when that program variable was corrupted.

Temporal Impact: Similarly, applying the definition given in Section 4.3.1,

the temporal impact of a program variable is the maximum duration over which

at least one software module remains corrupted during any run where that pro-
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gram variable was the target of a fault injection, i.e., when that program variable

was corrupted. In the analysis shown, corruption duration is measured by the

number of iterations of a main simulation loop or the number of files processed

by an application. For example, if a program variable has a temporal impact of

1, it is an indication that the software system remained corrupted for exactly

1 simulation loop iteration or file processing tasks. In other words, a temporal

impact of 1 is an indication that, when an error was injected into a program

variable in iteration n, the state corruption remained in iteration n+ 1 but was

such corruption was not present in iteration n+ 2.

Failure Rate: The system failure rate, f , associated with a program variable

v is the number of failure executions where v was the target of a fault injection

expressed as a proportion of the total number of executions where v was the

target of a fault injection.

Weightings: The instantiation of the importance metric shown in Equation 4.5

is adaptable, in the sense that the instantiation can be configured to yield an

importance ranking that focuses on the need to avoid failures or the need to

prevent widespread corruption in the spatial and temporal domains. In order

to demonstrate the type of results that can be generated using the instantiation

shown in Equation 4.5, an initial parameterisation of n = 1 and m = 2 is

adopted. Hence, this initial analysis attempts to balance the identification of

program variables that have been implicated in widespread system corruption

against the identification variables that are implicated in system failure. Several

alternative parameterisations of the instantiation shown in Equation 4.5 are

considered in Section 4.6, where the sensitivity of the instantiation is analysed.

Iv,M =
1

(1− f)1

(1

2

(σv,M
σmax

+
τv,M
τmax

))2
(4.6)

Once the spatial and temporal impact metrics have been estimated for each
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Table 4.1: Importance ranking for 7Z1 variables (σmax = 34, τmax = 25)
Identifier f σ τ I

1 processedPosition 0.012869 2 1 0.002473
2 remainLen 0.010028 2 1 0.002466
3 distance 0.010085 1 1 0.001217
4 posState 0.008381 1 1 0.001215
5 ttt 0.006903 1 1 0.001213
6 matchByte 0.005063 1 1 0.001211
7 probLit 0.004625 1 1 0.001210
8 dicPos 0.004438 1 1 0.001210
9 range 0.002125 1 1 0.001207
10 kMatchLen 0.001600 1 1 0.001206

program variable, the system failure rates associated with program variables

have been determined and the configuration of the importance metric has been

set, the value of the importance metric for each program variable can be directly

calculated using Equation 4.6. Section 4.5 presents several case studies in order

to demonstrate the capability of the importance metric to generate a relative

ranking of program variables that, through the use of an appropriate threshold,

may be used as a means to identify critical variables.

4.5 Importance Metric Case Studies

The importance ranking of program variables in all target software modules are

shown in Tables 4.1-4.9. Tables 4.10-4.12 show the importance rankings of the

most important program variables, with respect to the importance metric, for

each target system. In all tables the top 10 highest ranking program variables,

with respect to the importance metric, are shown. Information used in the

calculation of the importance metric for each program variable can also be found

in these tables. Specifically, an identifier, system failure rate, spatial impact

and temporal impact is shown for each program variable. Unique identifiers are

assigned here to account for situations where two program variables at different

levels of scope have an identical name.

The importance rankings shown in Tables 4.10-4.12 demonstrate the type of
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Table 4.2: Importance ranking for 7Z2 variables (σmax = 34, τmax = 25)
Identifier f σ τ I

1 numberStreams 0.013882 5 15 0.141488
2 highPart 0.015526 3 15 0.120285
3 unpack 0.010994 3 9 0.050787
4 sizeIndex 0.002756 2 8 0.035976
5 i unpack 0.002699 3 4 0.015447
6 attribute 0.018011 2 2 0.004906
7 numInStreams 0.002443 2 1 0.002448
8 numSubstream 0.002386 2 1 0.002447
9 unpackSize 0.002375 2 1 0.002447
10 nextHeaderOffset 0.002313 2 1 0.002447

Table 4.3: Importance ranking for 7Z3 variables (σmax = 34, τmax = 25)
Identifier f σ τ I

1 seekInStreamSint 0.009250 2 8 0.036212
2 wMode 0.008188 2 8 0.036173
3 res 0.001417 2 6 0.022356
4 oSize 0.001375 2 2 0.004825
5 moveMethod 0.001292 2 2 0.004824
6 CFIp 0.000958 2 2 0.004823
7 pos 0.000417 1 2 0.002994
8 lenghR 0.004000 1 1 0.001209
9 pHandle 0.000104 1 1 0.001205
10 cSize 0.000083 1 1 0.001205

Table 4.4: Importance ranking for FG1 variables (σmax = 312, τmax = 2000)
Identifier f σ τ I

1 Weight 0.003472 13 2000 0.272212
2 EmptyWeight 0.011905 2 2000 0.256266
3 bixx 0.000992 2 2000 0.253467
4 bixy 0.000992 2 2000 0.253467
5 bixz 0.000992 2 2000 0.253467
6 bizz 0.000868 2 2000 0.253435
7 biyz 0.000868 2 2000 0.253435
8 biyy 0.000772 2 2000 0.253411
9 Mass 0.011905 12 1432 0.144018
10 PMTotalWeight 0.000771 7 1432 0.136427

results that the importance metric is capable of generating. Relating the vari-

ables ranked in these tables to the component information in Tables 4.1-4.9, it

is evident that the importance metric generally attributes a higher importance

value to variables which are implicated in high levels of spatial and temporal
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Table 4.5: Importance ranking for FG2 variables (σmax = 312, τmax = 2000)
Identifier f σ τ I

1 currentThrust 0.010417 8 2000 0.265753
2 hasInitEngines 0.003472 3 2000 0.255719
3 numTanks 0.004630 1 2000 0.252775
4 totalFuelQuantity 0.004167 1 2000 0.252658
5 firsttime 0.001736 1 2000 0.252043
6 dt 0.005208 3 983 0.063108
7 electricEng 0.122272 8 799 0.051481
8 throttleAdd 0.114087 2 600 0.026494
9 enme 0.120536 1 600 0.026133
10 te 0.009425 1 600 0.023202

Table 4.6: Importance ranking for FG3 variables (σmax = 312, τmax = 2000)
Identifier f σ τ I

1 compressLen 0.013889 17 1311 0.127795
2 groundSpeed 0.001984 5 831 0.046646
3 steerAngle 0.011111 15 8 0.000686
4 contractType 0.062066 8 48 0.000657
5 bDampRebound 0.027778 12 8 0.000464
6 eDampType 0.027344 11 8 0.000396
7 serviceRe 0.032407 4 43 0.000304
8 GearPos 0.120370 4 4 0.000062
9 rfrv 0.100694 3 4 0.000038
10 retractable 0.009549 1 6 0.000010

Table 4.7: Importance ranking for MG1 variables (σmax = 17, τmax = 25)
Identifier f σ τ I

1 selfWrite 0.028650 4 1 0.019506
2 bitridx 0.012650 4 1 0.019189
3 whiChannel 0.008400 4 1 0.019107
4 gainA 0.016700 3 1 0.011914
5 curFrame 0.015300 3 1 0.011897
6 inf 0.014925 3 1 0.011892
7 cuFile 0.005850 1 1 0.002456
8 wrdpntr 0.004167 1 1 0.002452
9 inbuffer 0.003906 1 1 0.002451
10 done 0.000156 1 1 0.002442

corruption, thus demonstrating that the results generated by the importance

metric are consistent with the intentions underpinning its design. However, it

should be remembered that the importance metric takes into account failure

rate, as well as the extent and duration of software corruption. For example,
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Table 4.8: Importance ranking for MG2 variables (σmax = 17, τmax = 25)
Identifier f σ τ I

1 sampleWin 0.194400 2 24 0.360391
2 batchSample 0.031100 2 21 0.236631
3 curSamples 0.008350 2 20 0.212292
4 first 0.006250 2 20 0.211843
5 op 0.014375 8 4 0.100860
6 linpre 0.071250 4 1 0.020400
7 rinpre 0.037917 4 1 0.019693
8 totsamp 0.034583 4 1 0.019625
9 cursamples 0.136458 3 1 0.013566
10 cursamplepos 0.129792 3 1 0.013462

Table 4.9: Importance ranking for MG3 variables (σmax = 17, τmax = 25)
Identifier f σ τ I

1 maxAmpOnly 0.011825 2 25 0.316021
2 dSmp 0.009200 2 14 0.115867
3 winCont 0.000800 2 14 0.114893
4 sum 0.009583 3 12 0.108781
5 mSamp 0.001375 4 10 0.101039
6 bandPtr 0.000250 4 8 0.077107
7 window 0.010179 3 8 0.062254
8 windowSL 0.014643 2 8 0.048595
9 sBuffs 0.002143 1 1 0.002447
10 b0 0.001964 1 1 0.002446

Table 4.10: Importance ranking for instrumented modules in Z-Zip
Rank Identifier Module I
1 numberStreams 7Z2 0.141488
2 highPart 7Z2 0.120285
3 unpack 7Z2 0.050787
4 seekInStreamSint 7Z3 0.036212
5 wMode 7Z3 0.036173
6 sizeIndex 7Z2 0.035976
7 res 7Z3 0.022356
8 i unpack 7Z2 0.015447
9 attribute 7Z2 0.004906
10 oSize 7Z3 0.004825

7Z2 program variables attribute and numInStreams both have a spatial impact

of 2, paired with a temporal impact of 2 and 1 respectively, making these pro-

gram variables comparable in terms of the widespread corruption that they can

incur. However, the fact that their associated failure rates are 0.018011 and
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Table 4.11: Importance ranking for instrumented modules in FlightGear
Rank Identifier Module I
1 Weight FG1 0.272212
2 currentThrust FG2 0.265753
3 EmptyWeight FG1 0.256266
4 hasInitEngines FG2 0.255719
5 bixx FG1 0.253467
6 bixy FG1 0.253467
7 bixz FG1 0.253467
8 bizz FG1 0.253435
9 biyz FG1 0.253435
10 biyy FG1 0.253411

Table 4.12: Importance ranking for instrumented modules in MP3 Gain
Rank Identifier Module I
1 sampleWin MG2 0.360391
2 maxAmpOnly MG3 0.316021
3 batchSample MG2 0.236631
4 curSamples MG2 0.212292
5 first MG2 0.211843
6 dSmp MG3 0.115867
7 winCont MG3 0.114893
8 sum MG3 0.108781
9 op MG2 0.100860
10 mSamp MG3 0.101039

0.002443 respectively, means that the importance metric considers attribute to

be significantly more important than numInStreams, as indicated by the fact

that the importance value of attribute is double that of numInStreams. This

is because the failure rate associated with attribute is significant enough, given

values of n and m in Equation 4.6, to enhance the importance of attribute far

beyond that of numInStreams. Allowing the supposedly dominant component

of Equation 4.6, i.e., the spatial and temporal impact metrics, to be led in this

way is entirely desirable, as the potential for system failure when attribute is

corrupted justifies it being afforded a higher value. It is also interesting to note

how spatial and temporal impact contribute to the value of the importance met-

ric for each program variable. For example, the electricEng variable in FG2 has

a spatial impact of 8 combined with a seemingly high temporal impact of 799.

However, as the importance metric interprets these values as proportions of the
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associated maximum possible values, the overall importance of electricEng is

lower than might otherwise be expected. Most crucially, the case studies asso-

ciated with the relative rankings shown in Tables 4.10-4.12 provide a means for

assessing the capability of the importance metric to identify critical variables,

a process that is undertaken later in this thesis.

4.6 Sensitivity Analysis

In order to demonstrate the robustness of the importance metric definition,

details of the rankings that would be generated by changing the values of n and

m in Equation 4.5 are shown in Tables 4.13-4.21. The tuple (p1, p2) is used to

represent a single parameterisation of Equation 4.5, where p1 = n and p2 = m.

Tables 4.13-4.21 show how the relative rankings for each module differ when

(4, 1), (2, 1), (1, 1), (1, 2) and (1, 4) parameterisations are used. For example,

in Table 4.17 the variable dt is considered the 7th most important program

variable under (4, 1), whilst variable electricEng is considered to be the 7th

most important variable under the (1, 1) parameterisation. If the definition of

the importance metric given in Equation 4.5 is robust there should be little

variation in the ranking of program variables across parameterisations, unless

there exists a justification, with respect to spatial impact, temporal impact

and system failure rate, for such variation. Table rows where there is any

discrepancy in the ranking across parameterisation are indicated by a ∗ symbol

in the Identifier column.

The sensitivity analysis presented in Tables 4.13-4.21 demonstrates that the

importance metric given in Equation 4.5 is robust across many possible parame-

terisations. Observe that the relative ranking generated by the (1, 2) parametri-

sation of the importance metric is often replicated by all parameterisations con-

sidered. In cases where the ranking is not replicated, discrepancies are minor,

localised and sensible given the parameterisation of the importance metric. For

example, Table 4.17 shows that the ranking of program variables throttleAdd and
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Table 4.13: Sensitivity analysis of the importance ranking for 7Z1
Identifier (4,1) (2,1) (1,1) (1,2) (1,4)

processedPosition 1 1 1 1 1
remainLen 2 2 2 2 2
distance 3 3 3 3 3
posState 4 4 4 4 4
ttt 5 5 5 5 5
matchByte 6 6 6 6 6
probLit 7 7 7 7 7
dicPos 8 8 8 8 8
range 9 9 9 9 9
kMatchLen 10 10 10 10 10

Table 4.14: Sensitivity analysis of the importance ranking for 7Z2
Identifier (4,1) (2,1) (1,1) (1,2) (1,4)

numberStreams 1 1 1 1 1
highPart 2 2 2 2 2
unpack 3 3 3 3 3
sizeIndex 4 4 4 4 4
i unpack 5 5 5 5 5
attribute 6 6 6 6 6
numInStreams 7 7 7 7 7
numSubstream 8 8 8 8 8
unpackSize 9 9 9 9 9
nextHeaderOffset 10 10 10 10 10

Table 4.15: Sensitivity analysis of the importance ranking for 7Z3
Identifier (4,1) (2,1) (1,1) (1,2) (1,4)

seekInStreamSint 1 1 1 1 1
wMode 2 2 2 2 2
res 3 3 3 3 3
oSize 4 4 4 4 4
moveMethod 5 5 5 5 5
CFIp 6 6 6 6 6
pos 7 7 7 7 7
lenghR 8 8 8 8 8
pHandle 9 9 9 9 9
cSize 10 10 10 10 10

enme, as well as dt and electricEng, are interchanged under the (4, 1) and (2, 1)

importance metric parameterisations. This discrepancy is minor and localised,

as these program variables represent the only changes to the ordering gener-

ated by all other parameterisations for the software module. Indeed, the top
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Table 4.16: Sensitivity analysis of the importance ranking for FG1
Identifier (4,1) (2,1) (1,1) (1,2) (1,4)

Weight 1 1 1 1 1
EmptyWeight 2 2 2 2 2
bixx 3 3 3 3 3
bixy 4 4 4 4 4
bixz 5 5 5 5 5
bizz 6 6 6 6 6
biyz 7 7 7 7 7
biyy 8 8 8 8 8
Mass 9 9 9 9 9
PMTotalWeight 10 10 10 10 10

Table 4.17: Sensitivity analysis of the importance ranking for FG2
Identifier (4,1) (2,1) (1,1) (1,2) (1,4)

currentThrust 1 1 1 1 1
hasInitEngines 2 2 2 2 2
numTanks 3 3 3 3 3
alpha 4 4 4 4 4
firsttime 5 5 5 5 5

∗ dt 7 7 6 6 6
∗ electricEng 6 6 7 7 7
∗ throttleAdd 9 9 8 8 8
∗ enme 8 8 9 9 9

te 10 10 10 10 10

Table 4.18: Sensitivity analysis of the importance ranking for FG3
Identifier (4,1) (2,1) (1,1) (1,2) (1,4)

compressLen 1 1 1 1 1
groundSpeed 2 2 2 2 2

∗ steerAngle 4 4 4 3 3
∗ contractType 3 3 3 4 4

bDampRebound 5 5 5 5 5
eDampType 6 6 6 6 6
serviceRe 7 7 7 7 7
GearPos 8 8 8 8 8
rfrv 9 9 9 9 9
retractable 10 10 10 10 10

5 program variables remain consistent across all parameterisation considered.

The discrepancy observed is sensible given the orientation of the importance

metric, since under (4, 1) and (2, 1) the importance metric attributes greater

weight to program variables with a higher system failure rate, which is why the
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Table 4.19: Sensitivity analysis of the importance ranking for MG1
Identifier (4,1) (2,1) (1,1) (1,2) (1,4)

selfWrite 1 1 1 1 1
bitridx 2 2 2 2 2
whiChannel 3 3 3 3 3
gainA 4 4 4 4 4
curFrame 5 5 5 5 5
inf 6 6 6 6 6
cuFile 7 7 7 7 7
wrdpntr 8 8 8 8 8
inbuffer 9 9 9 9 9
done 10 10 10 10 10

Table 4.20: Sensitivity analysis of the importance ranking for MG2
Identifier (4,1) (2,1) (1,1) (1,2) (1,4)

sampleWin 1 1 1 1 1
batchSample 2 2 2 2 2
curSamples 3 3 3 3 3
first 4 4 4 4 4
op 5 5 5 5 5

∗ linpre 8 6 6 6 6
∗ rinpre 9 7 7 7 7
∗ totsamp 10 8 8 8 8
∗ cursamples 6 9 9 9 9
∗ cursamplepos 7 10 10 10 10

Table 4.21: Sensitivity analysis of the importance ranking for MG3
Identifier (4,1) (2,1) (1,1) (1,2) (1,4)

maxAmpOnly 1 1 1 1 1
dSmp 2 2 2 2 2

∗ winCont 4 3 3 3 3
∗ sum 3 4 4 4 4

mSamp 5 5 5 5 5
bandPtr 6 6 6 6 6
window 7 7 7 7 7
windowSL 8 8 8 8 8
sBuffs 9 9 9 9 9
b0 10 10 10 10 10

program variable enme rises in these rankings. In some cases, such as the (4, 1)

parameterisation for module MG2, the metric is more sensitive to changes in

parameterisation, though when interpreted alongside the associated values for

spatial impact, temporal impact and failure rate, it is clear that this apparent
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sensitivity can be explained by the orientation of the importance metric in these

situations. Specifically, as this parameterisation emphasises the importance of

variable with a high failure rate, those variables with a failure rate that is suf-

ficiently large will rise above variables whose importance ranking is mainly the

result of a high spatial and temporal impact. For example, variables cursamples

and cursamplepos have risen in the (4, 1) ranking for module MG2 due to them

having failure rates of 0.136458 and 0.129792 respectively. Overall, the sensitiv-

ity analysis in Tables 4.13-4.21 has shown the importance metric to be robust

with respect to parameterisation, with all ranking variations being accounted

for by the orientation of the metric.

4.7 Implications and Discussion

The identification of program variables that should be incorporated by error

detection predicates can simplify and guide the design of efficient EDMs. The

importance metric, when used in conjunction with an appropriate threshold,

can enable this identification process through the generation of an importance

ranking of program variables. The application of a threshold to an importance

ranking would essentially entail the selection of an importance value or ranking

position, where all program variables with an importance metric value greater

than the selected value or occupying a position greater than the selected position

would be considered critical variables. Such an application of the importance

metric would allow software engineers to precisely target those variables which

have the most significant impact upon the correct functioning of a software

system. For example, from Table 4.12 it can be observed that program variables

processedPosition and remainLen have the highest importance values. If a

threshold were set such that these program variables could be considered critical

then it would follow that an EDM must ascertain that these program variables

hold appropriate values during the execution of the associated software system.

The relative rankings generated by the importance metric can also be used
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to focus the efforts of software engineers on specific software modules. For

example, from Tables 4.10-4.12 it can be seen that program variables associated

with software modules 7Z1, FG2 and MG2 feature heavily in the importance

rankings for their respective software systems, suggesting that these software

modules should be equipped with dependability mechanisms, re-engineered or

closely monitored. This use of the importance metric is particularly applicable

in the context of commercial software system development, where subsequent

software system releases can not address all known issues and, hence, software

engineers will seek to address software vulnerabilities in order of severity. In such

a situation it would be possible to threshold the relative rankings generated as

part of a cost-benefit analysis, thus ensuring that the most severe vulnerabilities

are readily addressed. Further, observe that the relative rankings presented

in Tables 4.1-4.12 have been generated without prior knowledge of software

system structure or functionality. As the importance measure does not take

into account composition or communication paths, it can be readily applied

in situations where dependability is to be assessed post-implementation or by

software engineers who were not directly involved in the implementation of a

software system. Again, this is consistent with current approaches to commercial

software engineering, where dedicated teams often deal with the maintenance

and on-going support for previously developed software systems.

Over 38 million fault injection experiments were performed in order to es-

timate values for failure rate, spatial impact and temporal impact of program

variables in all target software modules. The PROPANE fault injection suite

allowed these experiments to be conducted in an automated fashion. Provided

that the instrumentation of the target system is concerned with maximising the

number of program variables instrumented in a given module, which will gen-

erally be the case for most software systems, there is no reason why this level

of automation can not be achieved for any given target software system. Once

the values for the spatial and temporal impact metrics have been determined,

the importance metric can be automatically calculated for each instrumented
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variable. As the definition of the importance metric is fixed for a software sys-

tem, rather than individual variables or modules, the cost of employing the

proposed approach, in terms of engineering effort, is relatively low. Further, in

the case of dependable software systems, the fact that fault injection analysis

is a commonly adopted dependability validation techniques means that the in-

formation required to evaluate the importance metric is likely to be available

during software system development.

There are limitations associated with the use of the importance metric. In

particular, the relative ranking generated by the importance metric is sensitive

to the set of program variables under consideration. Ideally, all variables within

a software module should be analysed, thus ensuring that no variable with a

potentially high importance, which may subsequently lead it it being considered

a critical variable, is overlooked. However, performing such a comprehensive

analysis may be impractical in some situations, as it may require a prohibitive

number of fault injection experiments, particularly if all the software modules

in a software system are to be analysed. However, this limitation is, to a large

extent, mitigated by the extended validation and testing periods associated

with dependable software systems and the automated nature of the analysis

process. Another perceived limitation of the importance metric is that its value

for a particular program variable is not an objective representation of the real-

world importance of that program variable. Rather it is a value which, when

viewed relative to others produced during the same analysis, can focus the efforts

of dependability engineers and allow a meaningful cost-benefit analysis to be

undertaken. Finally, although it is not a directly limitation of the metric itself,

the fault injection analysis approach proposed for estimating the importance

metric suffers from the inherent limitations of the fault injection process, such

as a dependence upon a the identification of a representative set of test cases.

As these are limitations of the evaluation mechanism, and more generally of

fault injection analysis as a dependability validation technique, they do not

negatively impact on the use of the importance metric as applied in this thesis.
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4.8 Conclusion

In this chapter a variable-centric, dynamic metric suite that can be used, in con-

junction with an appropriate threshold, for the identification of program vari-

ables that should be incorporated by the error detection predicates of EDMs has

been proposed. The proposed metric suite is composed of three metrics, namely

spatial impact, temporal impact and importance. The spatial and temporal

impact metrics capture the spatial and temporal degree to which a system is

corrupted respectively, whilst the importance metric was defined as a function

of the spatial and temporal impact metrics. After a specific instantiation of the

importance metric was provided, an experimental approach to evaluate the im-

portance metric was presented in order to demonstrate the type of results that

can be generated. These results took the form of a relative ranking amongst the

program variables in a software module. Through the application of a threshold

on importance values or ranking position, this relative ranking can be used in

the engineering of dependable software systems to facilitate the design of EDMs

based on critical variables, as well as informing the positioning of EDMs based

on the premise that critical variables should always hold appropriate values and

permitting a cost-benefit analysis to be undertaken when deciding where the

dependability enhancement efforts of software engineers should be focused.

Having defined, applied and demonstrated the type of results that can be

generated by the proposed metric suite, it is important to consider the capability

of the importance metric to identify variables that should be incorporated by

the error detection predicates of EDMs. To this point it has been presumed

that accounting for the extent and duration of corruption in the spatial and

temporal domains respectively, coupled with consideration of system failure

rate and analysis alignment, will necessarily ensure that the importance metric

identifies critical variables. However, as this capability can not be presumed, a

mechanism must be found for its evaluation. In the next chapter we develop

an approach for the generation of efficient error detection predicates for EDMs.
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Crucially, as this approach is independent of the metric suite developed in this

chapter and does not rely on the experience of software engineers or a system

specification, it can be used in evaluating the suitability of using the importance

metric in the identification of critical variables.
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CHAPTER 5

Generating Efficient Error Detection Mechanisms

In the previous chapter a dynamic metric suite was proposed to facilitate the

identification of program variables that should be captured by the error de-

tection predicates of EDMs. In order to validate the capability of this metric

suite to identify program variables that are critical, when used in conjunction

with an appropriate threshold, an approach for the generation of efficient error

detection predicates is necessitated. To be fit for this purpose, the developed

approach must be unrelated to the proposed metric suite, systematic and re-

peatable. This is in contrast with current approaches for the design of error

detection predicates for EDMs, which generally rely on system specifications

and the experience of software engineers. This chapter develops the first sys-

tematic approach for the generation of efficient error detection predicates for

real-world, infinite-state software systems. More specifically, the proposed ap-

proach employs data mining techniques, including decision tree induction and

rule induction, for the analysis of fault injection data sets, in order to discover

efficient error detection predicates. The results presented demonstrate that this

61



5. Generating Efficient Error Detection Mechanisms

approach can be used to generate error detection predicates that are efficient

by design, removing the reliance on system specifications and the experience of

software engineers. Analysis of the error detection predicates generated by the

proposed approach serves to validate the capability of the metric suite developed

in Chapter 4 to identify critical variables.

5.1 The Design of Error Detection Predicates

Predicates for EDMs are commonly designed based on a system specification [60]

or the experience of software engineers [102]. As highlighted previously, it has

been shown that the efficiency properties of EDMs can be classified along two

dimensions; (i) completeness and (ii) accuracy [70]. The completeness of an

EDM relates to its ability to detect erroneous states, i.e., to flag true positives,

whilst accuracy relates to its ability to avoid making incorrect detections, i.e.,

to avoid false positives. Throughout this thesis it is assumed that an erroneous

state is one that will lead to a system failure if the error is not handled. A system

failure is characterised as a violation of a behavioural specification. An EDM

that is both complete and accurate is known as a perfect detector. However,

due to implementation constraints, such as read and write restrictions, it is, in

general, not possible to develop perfect detectors [76]. A perfect detector at

a given location in a program is therefore the most efficient detector for that

location. As previously stated, the term efficient EDM is used to refer to EDMs

that implement detection predicates with high completeness and high accuracy.

Research that has addressed the systematic design of efficient detectors has

generally focused on finite-state software systems. However, little work has

focused on the systematic design of efficient detectors for real-world, infinite-

state software systems. To address this issues, this chapter proposes a systematic

approach to the design of efficient error detection predicates. Most significantly,

the proposed approach is applicable in the context of real-world, infinite-state

software systems and generates error detection predicates whose efficiency is
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guaranteed by design. The premise of the proposed approach is that, since fault

injection analysis captures relationships among the program variables and the

success of software system executions, data mining techniques can be applied to

learn these relationships and how they impact the success of software executions,

with a view to applying these derived relationships as error detection predicates

for failure-inducing software system states.

In order to illustrate the novelty and significance of the proposed approach,

Sections 5.1.1-5.1.5 discuss current approaches to the design of error detection

predicates for EDMs. The work discussed in these sections is also intended to

complement the research surveyed in Chapter 4, which focused on the identifica-

tion of critical software components and vulnerabilities, rather than approaches

for the derivation or composition of error detection predicates.

5.1.1 Heuristics and Experience

Many approaches to the error detection predicate design problem have focused

on the refinement of proposed error detection predicates based on evaluations

carried out with respect to coverage and latency. Often such approaches have

concentrated on the refinement of error detection predicates through the assess-

ment of executable assertions using fault injection analysis [17] [162]. Through

approaches such as these it was established that EDMs with high coverage and

low latency reduced error propagation. However, designing error detection pred-

icates for EDMs is difficult and error-prone, as highlighted in [102], where it was

remarked that “...the process of writing self checks is obviously difficult”. To

remedy this, the authors suggested that “...more training or experience might be

helpful”. Indeed, the use of experience in the design of error detection predicates

for EDMs is commonplace in software engineering, not least due to a shortage

of systematic approaches for the design of efficient error detection predicates.
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5.1.2 System Specifications

Aside from the experience of software engineers, approaches to the design of er-

ror detection predicates have also used the software system specifications and the

constraints placed on signals, parameters and variable to design corresponding

executable assertions [60] [159]. However, such executable assertions may not

exhibit the high levels of efficiency required in dependable software systems. In

particular, it has been shown that the error detection predicates associated with

such executable assertions may not flag erroneous states, i.e., false negatives, or

may incorrectly flag correct states as being erroneous, i.e., false positives [75].

When a particular EDM does not meet the coverage and latency thresholds

required of a software system, it must be redesigned. However, little research

has focused on the refinement of such mechanisms in practical software systems.

The refinement of EDMs has been investigated in finite-state software systems,

which are usually represented as state transition systems [70] [91]. Through

these approaches, polynomial-time algorithms were developed to automatically

refine existing error detection predicates. In contrast, the approach proposed

in this chapter targets the systematic derivation and subsequent optimisation

of error detection predicates for real-world, infinite state software systems, a

problem that has received little attention in existing research.

5.1.3 Verification and Validation Techniques

A number of software validation and verification techniques have been applied in

the design of error detection predicates for EDMs, such as model checking [34],

data-flow analysis [138] and abstract interpretation [37]. Many such approaches

have relied on some form of static analysis. For example, a static analysis-based

approach was used in [118] and [119], specifically to derive detection predicates

for the prevention of data error propagation. Model checking approaches, which

are typically concerned with software verification, generally consider software

systems that have finite-state or may be reduced to finite-state by some degree
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of abstraction, whilst data-flow analysis is a lattice-based software validation

technique for gathering information regarding sets of permissible values. Ab-

stract interpretation is a software validation approach where the aim is to model

the impact that program statements have on the state of an abstract machine,

i.e., a software system is executed based on the mathematical properties of each

program statement. Such abstract machines are known to over-approximate the

behaviours of a software system. The abstract system is therefore made simpler

to analyse at the expense of incompleteness, as not every property that is true

of the original software system is also true of the abstract system. However, if

properly performed, abstract interpretation is sound, which means that every

property that is true of the abstract system can be mapped to a property that

is true of the original software system. Further, it is well known that, barring

some hypothesis that the state space of all computer programs is finite and

small, finding all possible run-time errors, or more generally any kind of viola-

tion of a specification on the final result of a program, is undecidable. Thus,

static analyses-based techniques applied to a software system are, in general,

sound, in the sense that the properties they report are true, but not complete.

5.1.4 Data Mining Techniques

With regard to the derivation of error detection predicates, the application of

data mining techniques have generally focused on the analysis of failure data and

service logs for dependable software systems. For example, research in [124] used

a combination of data mining techniques on data recorded during benchmarking

to identify key infrastructural factors in determining the behaviour of systems

in the presence of faults. These investigations can also serve to help to identify

weaknesses or vulnerabilities in a software system. In contrast, the data mining-

based approach proposed in this chapter seeks to discover predicates for EDMs in

order to enhance dependability and address vulnerabilities in software systems.

Data mining techniques have also been applied to address a number of other

software dependability issues. For example, in the context of computer security,
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data mining has been shown to be an effective approach to intrusion detection

and anomaly identification [105] [167].

5.1.5 Likely Program Invariants

A program invariant is a property that holds throughout the execution of a

program. It is know that determining all the sound invariants for a program

may be undecidable. Further, invariants reported may not be sound, i.e., an

invariant may hold for most executions, but not for some. Thus, determining

likely program invariants may be the best approximation, though steps must be

taken to handle false positives [44]. The use of program invariants is potentially

valuable in many aspects of software development, including program design,

implementation, testing and maintenance. Unfortunately, explicit invariants are

usually absent from programs, depriving programmers and automated tools of

their benefits. The seminal work on discovering likely program invariants shows

how invariants can be dynamically detected from program traces that capture

variable values at specified points of interest [44]. Typically a target program is

executed alongside a test suite to create program traces. An invariant detector

will then process these traces to determine which properties and relationships

hold over program variables. A software tool, called Daikon, exists that supports

the discovery of likely program invariants. Subsequently, several applications of

the techniques have been proposed. For example, Demsky et al. applied these

techniques to discover invariants of abstract data types [39]. More recently, these

techniques have also been applied to detect permanent hardware failures [135].

Dynamic invariant detection is a machine learning technique that can be applied

to arbitrary data. However, program invariants generally do not hold in presence

of transient failures. Indeed, the approach proposed in this chapter seeks to

detect erroneous states that lead to failure rather than all erroneous states,

which contrasts with the intention of likely program invariants.
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5.1.6 Evaluation of Existing Design Approaches

In the context of finite-state systems, the design of error detection predicates

for EDMs can be considered to be well understood [70] [91]. However, state-of-

the-art approaches to the design of EDMs do not provide a systematic approach

for the generation of error detection predicates that exhibit high accuracy and

completeness for real-world, infinite-state software systems. Indeed, the most

efficient EDMs for real-world, infinite-state software systems are often designed

based on some interpretation of a system specification and the experience of

software engineers, with repeated redesign being an accepted part of the EDM

design process. Further, whilst static analysis and the use of likely program

invariants are systematic, the theoretical limitations of static analysis, with

respect to accuracy and completeness, and the necessary focus of likely program

invariants on a constrained definition of erroneous state, i.e., likely program

invariants do not consider erroneous software states that do not result in a

system failure to be permissible, means that these approaches do not solve the

error detection predicate design problem for real-world, infinite-state software

systems.

5.2 Data Mining Concepts

Technology related to the modelling, collection, storage and querying of data

generated by real-world processes have advanced significantly in recent years.

Data pertaining to a real-world process is usually modelled as a set of entities,

their attributes and their relationship to other entities. This is commonly known

as the relational model of data. Data generated, and hence stored, within such

a relational data model is a sample of all the data that may be generated by the

process. Often, rather than being interested in the retrieval of stored data, it is

more interesting and useful to be able to forecast behaviours of the process not

previously encountered or derive knowledge about the process if the process itself

is not well understood. For example, in the context of the research presented in
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this chapter, it is interesting to understand how a software module under test,

and its associated software system, is likely to behave when confronted with an

injected fault.

5.2.1 Fundamentals of Data Mining

It is the aim of data mining to learn useful and actionable knowledge from

large collections of data. In simple domains, it is common to assume that

data exists as a single relation consisting of a set of n input attributes that

define an n-dimensional space called the Instance Space, I. Every point in I

is a potential state of the process being modelled. In supervised learning a

data mining algorithm is tasked with learning a good approximation, f̂ , of an

unknown function f , referred to as the target function, given a training data set,

T ⊆ I, consisting of the N pairs 〈xi, f(xi)〉. If the function is discrete then the

task is referred to as classification. In the case of learning a function from data

generated through fault injection analysis, the function is binary as a system

state is either going to lead to a system failure or a successful execution. The

task of learning a binary function is often referred to as concept learning, which

is a special case of classification. Within a data set to be analysed by a data

mining algorithm, instances of the class of interest, known as the concept, are

referred to as positive instances. In contrast, all instances within a data set that

do not belong to the concept are referred to as negative instances.

A number of algorithms have been proposed to solve classification problems,

including many that employ näıve Bayes, nearest neighbour methods, support

vector machines (SVMs), logistic regression, rule induction, neural networks

or decision tree induction. The key difference between algorithmic solutions

to classification problems is in the kind of decision boundary that is defined

between classes, i.e., their functional form and the set of parameters they fit,

and the heuristic they employ in searching for the optimal function, also known

as the hypothesis, within the space of possible hypotheses as defined by the

functional form of the hypotheses. In this chapter the aim of the proposed

68



5. Generating Efficient Error Detection Mechanisms

approach is to generate efficient error detection predicates, hence there is a

focus on evaluating symbolic pattern learning algorithms, such as decision tree

induction and rule induction, as their output can easily be represented as first-

order predicates. In addition, results for classifiers based on the näıve Bayes and

logistic regression algorithms are also shown in this chapter. This is done to

illustrate the levels of error detection predicate efficiency that can be achieved

through the application of relatively modest data mining algorithms.

The function approximation learnt, often referred to as the model, by the

classification algorithm from training instances needs to be evaluated, in order

to obtain a measure of the expected accuracy of the model, on unseen data.

Typically the accuracy of a model is measured by the percentage of test data

instances correctly classified, hence most algorithms seek to learn hypotheses

that minimise the number of errors. However, this implicitly assumes that all

types of misclassification incur an equal cost, which is not always the case. For

example, in the context of a safety-critical software system, a model incorrectly

classifying a failure-inducing state as non-failure-inducing will, in the majority of

circumstances, result in a much more significant cost than a non-failure-inducing

state being classified as failure-inducing. In such situations, the predictions of a

model on a test data set can be cross-tabulated with the actual classes assigned

to the instances by the target function to produce a confusion matrix. Table 5.1

shows the general form of a confusion matrix for a concept learning problem. In

Table 5.1, TP is the number of positives instances labelled as positive instances

by f̂ , known as true positives, whilst FN is the number of positive instances

labelled as negative, known as false negatives. Further, FP is the number of

negative instances labelled as positive, known as false positives, whilst TN is

the number of negative instances labelled as negative, known as true negatives.

Finally, npos/nneg are the number of positive/negative instances in the test data

and n̂pos/n̂neg are the number of instances predicted as positive/negative. In the

design of efficient error detection predicates, it natural to seek out models that

maximise true positives and minimise false positives, not least because these
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Table 5.1: The general form of a confusion matrix for concept learning.

Predicted Class
Pos. Neg. Marginal Sums

Actual Class
Pos. TP FN npos
Neg. FP TN nneg
Marginal Sums n̂pos n̂neg n

correspond closely with the concepts of accuracy and completeness. However,

as a balance must be struck between these related concerns, it is appropriate to

identify an aggregated measures of model quality.

5.2.2 Measuring Model Quality

A variety of metrics for model evaluation have been proposed based on the

structure of the confusion matrix. The most common of these are specificity

or true negative rate (TNR), as shown in Equation 5.1, and sensitivity or true

positive rate (TPR), as shown in Equation 5.2.

specificity = TNR =
TN

TN + FP
(5.1)

sensitivity = TPR =
TP

TP + FN
(5.2)

Kubat et al. used the geometric mean of the TPR and TNR as an evaluation

metric [88]. In contrast, ROC analysis is based on a plot in two dimensions where

each model is a point defined by the coordinates (1−specificity ,sensitivity),

where (1−specificity) is also referred to as the false positive rate (FPR), as

shown in Equation 5.3.

1− specificity = FPR =
FP

TN + FP
(5.3)

For different configurations, the same classification algorithm will produce

multiple points on such a plot. The area under the curve (AUC) obtained by

joining these points to (0, 0) and (1, 1) is a common measure of the expected

accuracy of a classification algorithm. For a single model, the simple trapezium
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obtained by connecting the coordinates (0, 0), (FPR, TPR), (1, 1) and (1, 0)

has an area given by Equation 5.4.

AUC =
TPR− FPR+ 1

2
(5.4)

The Euclidean distance from the perfect classifier, which has coordinates (0, 1),

i.e, FPR = 0 and TPR = 1, may be used in the ranking of single models. This

measure is given by the well known formula in Equation 5.5.

distance =
√

(FPR− 0)2 + (1− TPR)2 (5.5)

A model quality metric from the domain of information retrieval is the F1

measure that combines precision and recall by computing their harmonic mean,

where precision is given by Equation 5.6 and recall is identical to the sensitivity

measure shown in Equation 5.2.

precision =
TP

TP + FP
(5.6)

When the cost associated with a false positive is different from that of a false

negative, a more appropriate measure of the quality of a model is the expected

misclassification cost, rather that the expected error. This requires the definition

of a cost matrix. Assuming there are m class labels, Li, an m×m cost matrix,

C, needs to be defined such that the value C(i, j) is the cost of misclassifying

an instance of class Li to the class Lj . Clearly C(i, i) = 0 as there should be no

cost associated with correctly classifying an instance. Minimising the error is a

special case of minimising misclassification cost when the cost matrix is defined

as C(i, j) = 1, where i 6= j and C(i, i) = 0. The expected misclassification

cost, mcost, can then be calculated as shown in Equation 5.7, where CM(i, j)

is represents index access to the associated confusion matrix using i and j.

mcost =

m∑
i

m∑
j

C(i, j) ∗ CM(i, j) (5.7)
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The focus of the approach proposed is this chapter is on the generation of

efficient error detection predicates, which means that the measurement of model

quality is performed with respect to the efficiency, i.e., the levels of accuracy

and completeness, that can be achieved by these predicates. With this in mind,

the AUC measure, which represents an aggregate of accuracy and completeness

in the form of TPR and FPR, is used in model quality evaluation. However, as

misclassification costs are likely to vary in the context of dependable software

systems, steps must be taken to ensure that high AUC values are not achieved

through the neglect of accuracy or completeness. With this in mind, TPR and

FPR are also considered when evaluating the quality of generated models.

5.2.3 Addressing Class Imbalance

The approach proposed in this chapter is founded on the premise that the data

generated during fault injection analysis captures aspects of the relationships

between system states and system failures. Based on the states sampled and

behaviours observed during fault injection analysis, a data mining algorithm can

then generate error detection predicates through learning about these captured

relationships. However, data sets derived from fault injection analysis are often

imbalanced, in the sense that most of the logged states will not lead to a system

failure, i.e., only a small proportion of runs lead to failure. Such an imbalance in

the data sets to be processed must be addressed for the data mining process to

be effective with respect to the generation of efficient error detection predicates.

A key assumption made by concept learning algorithms that are based on

error minimisation is that the training data used is well balanced [68]. That is to

say, such algorithms assume that the distribution of class labels in training data

sets is approximately uniform. However, there are a number of domains, such

as network intrusion detection, fraud detection and software reliability, where

the number of positive instances are often fewer than the number of negative

instances. In addition to this skew in distribution, it is often the case that

the minority class is the more interesting class to predict. Indeed, with respect
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the examples of generating efficient error detection mechanisms and detecting

network intrusion, it is the minority classes, i.e., system failures and network

intrusions, that are of most interest.

Two approaches have been used to address problem of class imbalance. The

first of these is to act as if there is a higher cost associated with misclassifying

instances of the minority class. Specifically, it is possible to define a cost matrix

based on the class imbalance and then use the same error minimisation-based

concept learning algorithms. However, this approach assumes that such a cost

matrix can be incorporated by the learning process. This incorporation can,

for example, be achieved by the altered priors technique proposed by Breiman

et al. [21]. The second approach to addressing the problem of class imbalance

is to replace error minimisation metrics with cost minimisation metrics when

searching the hypothesis space. However, Pazzani et al. showed that using mis-

classification costs as a greedy selection criteria in decision tree induction does

not provide cost minimisation for the model generated [122]. Further, Ting et

al. compared instance weighting to using minimum expected cost metrics for

assigning labels to leaf nodes in a decision tree induced to minimise errors [157].

The results of these experiments suggested that instance weighting is more ef-

fective than a cost minimisation-based approach.

The assignment of distinct weights to training examples, in effect, changes

the data distribution within the training data [40] [46] [122] [157]. The associ-

ated cost matrix must be converted to a cost vector, V, which can be difficult

in the context of multi-class classification problems. Breiman et al. proposed

using the sum of all misclassification costs for instances of the class, though al-

ternatives, such as V (i) = arg max
j

(C(i, j)), have also been proposed [21]. Ting

et al. assign the same weight to all instances of a particular class, Lj , based

on V (j) using the formula shown in Equation 5.8, where Nj is the number of

instances in the data labelled Lj and N =
∑
iNi [157].

w(j) = V (j)
N∑

i V (i)Ni
(5.8)
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An alternative to implicitly changing the data distribution is to resample an

original data set, either by oversampling the minority class or undersampling

the majority class to make the class distribution more uniform [68] [89] [103]. A

variety of resampling approaches have been investigated, with the most common

approaches being those which resample with replacement and sample without

replacement for undersampling the majority class. Japkowicz also experimented

with focussed sampling approaches that oversampled from the boundary regions

and undersampled from regions far from the decision boundary but experiments

in these investigations suggested that there is little value over random sampling

approaches [68]. Chawla et al. proposed the generation of synthetic data for

minority classes along the line segment joining an example to k minority class

nearest neighbours rather than simply sampling with replacement [26]. Empiri-

cal tests showed their method, known as Synthetic Minority Oversampling Tech-

nique (SMOTE), to outperform simple sampling with replacement. Zadrozny

et al. proposed the use of a cost-proportionate rejection sampling technique,

while Kubat and Matwin suggest undersampling by removing redundant and

borderline negative examples [89] [172]. A criticism of the oversampling and

undersampling approaches is that it is not clear how much over oversampling

and undersampling should be carried out. Chawla et al. proposed the use of

cross validation for setting the level of oversampling and undersampling of the

majority and minority classes automatically, ultimately demonstrating that this

process can improve model accuracy [27].

5.3 Error Detection Predicate Generation

The proposed approach for the generation of efficient error detection predicates

is a four stage process. In the first stage, fault injection analysis is performed

on a target software module in order to generate data logs pertaining to system

state that can be used to learn error detection predicates. In the second stage,

an appropriate data mining algorithm is selected and data preprocessing is per-
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Figure 5.1: An overview of efficient error detection predicate generation

formed on the fault injection logs. The goals of preprocessing are to (i) transform

the format of the fault injection data for analysis, (ii) address the class imbal-

ance that is prevalent in fault injection data sets, e.g., using the techniques

identified in Section 5.2.3, and (iii) perform any operations that are know to

specifically improve the effectiveness of the adopted data mining algorithm. In

the third stage, the selected data mining algorithm is used to analyse the trans-

formed fault injection data set in order to generate and evaluate first-attempt

error detection predicates. To improve the efficiency properties, i.e., accuracy

and completeness of the derived predicates, the final step of the approach is to

vary the parameters associated with the selected learning algorithm in search of

improved detection efficiency. The four stages of the error detection predicate

generation process are depicted in Figure 6.1, with detailed description of each

step being provided in Sections 5.3.1-5.3.4.

5.3.1 Step 1: Dataset Generation

The first step of the proposed approach is to perform fault injection analysis on a

target system in order to generate fault injection data sets which capture aspects

of the relationship between system state and system failure. The specific nature

of the fault injection performed will depend on the adopted fault and system
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models, which will in-turn depend on the characteristics and requirements of the

target software system. It should be noted that there will be a direct relationship

between the nature of the fault and system models adopted and the nature of

the predicates that can be derived. For example, in this thesis a transient,

single bit-flip fault model is assumed, which means that the set of system states

from which a relationship to system behaviour can be discerned is constrained.

System states not captured by the adopted fault model will not necessarily be

accounted for by the generated error detection predicates, which means that

the representativeness of the adopted models and test cases is, as always in

fault injection analysis, of utmost importance if the results generated are to

be relevant and useful in dependability enhancement. A further consideration

that must be made when performing fault injection in order to derive data sets

for the generation of error detection predicates is the code location at which

program state is sampled, as this will determine the code location at which the

generated predicate will be relevant and, hence, the code location at which the

associated EDM will be effective. In practice this means that the code location

where program state is sampled should correspond with the location where an

EDM is to be located. Further, extent of system state observed during sampling

will govern the set of program variables that can be captured by a generated

error detection predicate and, hence, the efficiency of that predicate. The results

presented in this chapter are based on sampling all in-scope system state for a

given code location, i.e., sampling all variables in scope at a given code location.

5.3.2 Step 2: Data Preprocessing

Following the compilation of fault injection data, an appropriate data mining

algorithm must be selected for data analysis. To derive first-order predicates

over the program variables whose values were captured during fault injection

analysis, the use of symbolic pattern learning algorithms, such as rule induction

or decision tree induction, is advocated. This use of symbolic pattern learning

algorithms is advocated for the generation of error detection predicate because
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these algorithms learn concepts, such as application-specific system failure, by

constructing a predicate-like structure, such as a decision tree, that describes

a class of objects in a manner that can be easily interpreted as a first-order

predicate. Following the identification of an appropriate data mining algorithm,

the data set collected during fault injection analysis may be preprocessed in

order to maximise the likelihood that an efficient error detection predicate will

be generated. In general, the motivations for this process are threefold:

• To transform the format of the data set derived from fault injection anal-

ysis for processing by the selected data mining algorithm.

• To address the issues of the class imbalance that is prevalent in data sets

obtained through fault injection analysis.

• To perform any and all operations that may be required to improve the

effectiveness of the adopted data mining algorithm.

The transformation of fault injection data to a format that is compatible with

the adopted data mining analysis software will be specific to the adopted fault

injection tool and data mining suite or algorithm. In the case of the results

presented in this chapter, the format transformation was between the logging

format of PROPANE [63] and the Attribute-Relation File Format (ARFF) used

by the Weka Data Mining suite [58].

An imbalance in class distribution, i.e., a skewed distribution of positive and

negative instances, is common in fault injection data sets, due to the factors such

as the inherent resilience of software and the difficulty in inducing system failures

under a given fault model. In order for effective predicates to be generated this

imbalance must be addressed through approaches such as undersampling and

oversampling with replacement for the minority class. Oversampling can be

viewed as a case of SMOTE [26]. In SMOTE, synthetic examples are generated

from positive instances in the training data set, ti+. These positive instances are

known as seed instances, as they are used to generate new, synthetic, instances.

This process occurs as follows. First, the k nearest neighbours, nit’s of ti+
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are retrieved. Next, r of these nearest neighbours are chosen through sampling

by replacement, where r is the number of synthetic examples that each of the

positive training instances will contribute to the new oversampled training data

set. For example, if 300% oversampling is to be carried out then r = 3. The

synthetic data instance sij is then generated as shown in Equation 5.9, where q

is a random number between 0 and 1. Oversampling with replacement is a case

of SMOTE where q = 0.

~sij = ~ti+ + q.(~nij − ~ti+) (5.9)

The skewed nature of data sets generated by fault injection analysis, particularly

when using a transient data value fault model, means that it is appropriate,

when using certain algorithms, to perform some form of attribute transformation

before learning begins. For example, when the intention is to use data mining

algorithms, such as näıve Bayes or logistic regression, to generate error detection

predicates, mapping the original attribute values using the logarithm function

shown in Equation 5.10 can improve model quality.

g(xi) =

 log(xi + 1) if xi ≥ 0

− log(|xi|+ 1) if xi < 0
(5.10)

In practice the three stated aims of data preprocessing may not be fully realised

at this stage. For example, the transformation of data formats and the learning

enhancement techniques are likely to be simple processes that can be contained

to the preprocessing stage. However, the task of addressing class imbalance can

not completed until data mining has been used to generate some initial model,

hence it is an aim that is only realised during the optimisation of the generated

predicates, as described in Section 5.3.4.
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5.3.3 Step 3: Model Generation

The aim of the third stage of the approach is to generate first-attempt error

detection predicates from the transformed fault injection data. To do this a

baseline configuration of the data mining algorithm selected in the previous stage

is applied the transformed data sets. At this stage the aim is not necessarily to

generate highly-efficient error detection predicates, but to establish a baseline

model that can be optimised and refined in the next stage of the approach.

The evaluation of the generated error detection predicates may take place

by equipping the relevant location in the target system with a runtime assertion

that implements the corresponding predicates or by evaluating the effectiveness

with which predicates classify unseen instances, i.e., instances not used in er-

ror detection predicate generation. In either case, the aim is to evaluate the

effectiveness of the predicate on previously unseen data in order to measure its

efficiency properties.

5.3.4 Step 4: Model Refinement

Once a baseline predicate has been generated and evaluated, it may be refined in

order to improve its level of accuracy and completeness. This can be achieved by

varying the parameters associated with the configuration of the adopted learning

algorithm. In particular, it is useful to vary the levels of undersampling and

oversampling, including the levels and number of nearest neighbours used by any

sampling techniques applied, in order to establish an algorithm configuration

which yields the most efficient error detection predicates.

It is possible to generate an error detection predicate for a location that

will yield a perfect EDM, i.e., a predicate that is both accurate and complete

for a given code location. However, due to theoretical constraints, this is not

always achievable [76]. In reality it may be the case that an error detection

predicate for a given location can not be optimised beyond a certain level of

efficiency. Hence, when evaluating refined error detection predicates, it should
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be remembered that achieving a perfect TPR, FPR, and hence AUC, may not

be possible. Note that this is not a direct limitation of the proposed approach,

rather it is an established theoretical limitation of any approach that addresses

the EDM design problem for real-world, infinite-state software systems.

5.4 Case Studies

To demonstrate that the proposed approach for the generation of error detection

predicates yields efficient error detection predicates, the results of applying each

stage of the approach are presented in Sections 5.4.1-5.4.4.

5.4.1 Step 1: Data Set Generation

In order to generate data sets, fault injection analysis was conducted on all target

systems under the experimental conditions described in Chapter 3. During

fault injection it is possible to inject at the specific code location and then

record the state at any subsequent code location. Broadly, the code location at

which an injection is performed will govern the set of erroneous states explored,

whilst the code location at which program state is recorded is relevant to the

location of an EDM. The code locations selected for EDM deployment, i.e., the

input to the approach as depicted in Figure 6.1, were chosen based on the need

to identify preconditions and postconditions for the execution of instrumented

modules. This meant that entry and exit points of each modules were used as

code locations for fault injection and program state recording. As illustrated in

in Figure 5.2, the fact that a fault injection must be performed before system

state is recorded meant that three fault injection data sets were generated for

each instrumented module. A description of the data sets, as characterised by

injection location and sample location, i.e., whether an entry point or exit point

was used for each, is shown in Table 5.2. The results of fault injection analysis

were stored in the PROPANE analysis and logging format [63].
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Action 1

Action 2

...

...

Action n-1

Action n

Entry

Exit

(Entry, Entry)

(Entry, Exit)

(Exit, Exit)

(Inject, Record)

Figure 5.2: An overview of instrumentation for data set generation

@RELATION newRelation
    
@ATTRIBUTE var1 NUMERIC
@ATTRIBUTE var2 NUMERIC
@ATTRIBUTE failure {TRUE,FALSE}
    
@DATA
32, 3.14    FALSE
33, 3.14    FALSE
34, 3.14    FALSE

Figure 5.3: An overview of instrumentation for data set generation

5.4.2 Step 2: Data Preprocessing

A purpose-built tool was used to convert from the PROPANE analysis and

logging format to the ARFF format used by the Weka Data Mining Suite [58].

An example of ARFF format, consisting of two program variables and three

experiments, is shown is Figure 5.3.

Näıve Bayes: The näıve Bayes classification algorithm estimates the prior

probability distribution of the classes, i.e., failure and non-failure in the case

of learning error detection predicates, and the class conditional probabilities of

input vectors. It assumes conditional independence of input variables given the

class. Given an input vector, x, it assigns the class label that has the maximal

posterior probability, as shown in Equation 5.11.

ci = arg max
ci

p(ci|x) = arg max
ci

n∏
j=1

p(xi|ci)p(ci)

∑
k

n∏
j=1

p(xj |ck)p(ck)

(5.11)
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Table 5.2: Fault injection location-sample information for all data sets
Software Data Set Fault Injection State Recording
Module Location Location

7Z1
7Z1-A Entry Entry
7Z1-B Entry Exit
7Z1-C Exit Exit

7Z2
7Z2-A Entry Entry
7Z2-B Entry Exit
7Z2-C Exit Exit

7Z3
7Z3-A Entry Entry
7Z3-B Entry Exit
7Z3-C Exit Exit

FG1
FG1-A Entry Entry
FG1-B Entry Exit
FG1-C Exit Exit

FG2
FG2-A Entry Entry
FG2-B Entry Exit
FG2-C Exit Exit

FG3
FG3-A Entry Entry
FG3-B Entry Exit
FG3-C Exit Exit

MG1
MG1-A Entry Entry
MG1-B Entry Exit
MG1-C Exit Exit

MG2
MG2-A Entry Entry
MG2-B Entry Exit
MG2-C Exit Exit

MG3
MG3-A Entry Entry
MG3-B Entry Exit
MG3-C Exit Exit

In the case of continuous input attributes, kernel density estimation is used to

estimate the class conditional probability density functions as opposed to the

common assumption of a single Gaussian distribution. The implementation of

the näıve Bayes classification algorithm used to generated the results presented

employs the gaussian kernel, g, as shown in Equation 5.12

p(Xi = x|cj) =
1

n

∑
k

g(x;xk, σj) (5.12)

The näıve Bayes classifier implementation associated with the results presented

is based on the classification process described in [81].

82



5. Generating Efficient Error Detection Mechanisms

Logistic Regression: As opposed to the näıve Bayes classification algorithm,

which uses Bayes’ rule to estimate posterior probabilities of the class labels

given an input vector, logistic regression assumes a parametric form for the

distribution p(cj |Xi) directly. Specifically, for concept learning Equations 5.13

and 5.14 are assumed.

P (c|x) =
1

1 + exp(w0 +

n∑
i=1

wixi)

(5.13)

P (¬c|x) =

exp(w0 +
n∑
i=1

wixi)

1 + exp(w0 +

n∑
i=1

wixi)

(5.14)

The parameterisation of the a posteriori class probabilities in Equations 5.13

and 5.14 results in a simple linear decision boundary where an instance is defined

as belonging to the concept if Equation 5.15 is satisfied, where the wi parameters

are chosen to maximise the conditional log-likelihood.

w0 +

n∑
i=1

wixi > 0 (5.15)

The implementation of the logistic regression-based classifier associated with

the presented results is based on the model described in [95].

Decision Tree Induction: Decision tree induction is a data mining algorithm

that learns a disjunction of conjunctive rules describing a concept. A decision

tree consists of two types of nodes, decision nodes and leaf nodes. A decision

node contains an input attribute value, and each edge emanating from the deci-

sion node is labelled with one of the unique values in the domain of the attribute

labelling the decision node. A leaf node is labelled using one of the classification

labels. Each path of the tree from the root node to a leaf node is interpreted
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as a set of conjunctive expressions that lead to the classification label at the

associated leaf node.

The decision tree induction algorithm works by performing a greedy search

of the space of all possible trees, choosing decision node attributes that max-

imise the reduction in entropy of the class label at each stage. In other words,

at each stage the decision tree induction algorithm selects the attribute that

provides the most information with respect to the class label and uses it to

label a decision node. The C4.5 decision tree induction algorithm was used to

construct the decision trees that represent error detection predicates [128].

Rule Induction: Rule induction is a desirable approach to learning because

the knowledge generated is a set of conjunctive rules that are easy to under-

stand and have a straightforward mapping to first-order logic [127] [129]. The

RIPPER algorithm is used as the rule induction implementation for the results

presented in this chapter [36]. The RIPPER algorithm is an enhancement of the

incremental reduced error pruning (IREP) rule-learning algorithm [52]. Simi-

larly, IREP is based on reduced error pruning (REP), an established pruning

technique that has been shown to function effectively when used in rule learning

systems [22].

The REP algorithm works by splitting all training data into two sets, a

growing set and pruning set. An initial set of over-fitted rules is derived using a

heuristic method, before the rule set is iteratively simplified by applying pruning

operators, where these operators typically delete a rule-part or delete a rule. At

each iteration the pruning operator that most significantly reduces the error on

the pruning set is applied. This pruning terminates only when the application

of any pruning operator would not reduce the error on the pruning set. In

contrast to REP, the IREP rule-learning algorithm constructs a rule set, one

rule at a rime, using a greedy choice. When a rule is identified, all instances,

both positive or negative, captured by the rule are removed. This process is

repeated until the error rate meets a specified threshold or no positive instances
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remain. The key difference between IREP and RIPPER is that each identified

rule is optimised immediately following identification. That is, RIPPER builds

and optimises one rule at a time and post prunes to improve accuracy.

5.4.3 Step 3: Model Generation

Following the application of the four data mining algorithms to each generated

fault injection data set, 10-fold cross validation was used in order to generate the

confusion matrix for each algorithm on each data set. In 10-fold cross validation

the entries in each data set are partitioned into 10 stratified samples, then for

each cross validation run, one of these partitions is used as a test sample, whilst

the other nine are used as the training set for a particular data mining algorithm.

Tables 5.3-5.6 summarise the results of applying the näıve Bayes, logistic

regression, decision tree induction and rule induction data mining algorithms

to each fault injection data set. The statistics shown in these tables relate to

error detection predicates generated using a baseline configuration of each data

mining algorithm, i.e., no attempt was made to search for algorithm parameters

that would yield the most effective predicates. In these table, the FPR and

TPR columns give the mean false positive and true positive rates taken across

all 10 cross validations. A false positive here corresponds to the situation where a

model incorrectly detects a state as being failure-inducing, whilst a true positive

corresponds to a model correctly identifying a failure-inducing state. The AUC

column shows the area under the ROC curve, as described in Section 5.2.2,

whilst the SD column gives the standard deviation in AUC across all 10 cross

validations.

The results shown in Table 5.3 relate to error detection predicates gener-

ated by the näıve Bayes algorithm. Observe that the predicates generated for

each data set have varied TPR values, with entries in Table 5.3 being in the

range 0.78996 to 0.98797. The value of mean FPR for näıve Bayes are equally

diverse across different data sets, with these values being in the range 0.00423

to 0.14218. In general, the TPR and FPR values shown in Table 5.3 mean that
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Table 5.3: Predicate efficiencies for näıve Bayes with no sampling

Data Set TPR FPR AUC SD

7Z1-A 0.78996 0.05100 0.86948 0.02049

7Z1-B 0.82856 0.01811 0.90522 0.03782

7Z1-C 0.96218 0.02446 0.96886 0.02387

7Z2-A 0.94278 0.09042 0.92618 0.00707

7Z2-B 0.94822 0.09940 0.92441 0.03225

7Z2-C 0.92569 0.11010 0.90780 0.01612

7Z3-A 0.92819 0.00711 0.96054 0.04817

7Z3-B 0.97607 0.01881 0.97863 0.05119

7Z3-C 0.81070 0.00423 0.90324 0.00548

FG1-A 0.98610 0.09512 0.94549 0.01414

FG1-B 0.96755 0.11886 0.92435 0.00548

FG1-C 0.89957 0.14218 0.87869 0.02345

FG2-A 0.85122 0.04435 0.90344 0.01000

FG2-B 0.88874 0.05842 0.91516 0.01581

FG2-C 0.86244 0.04684 0.90780 0.01000

FG3-A 0.84521 0.10611 0.86955 0.02280

FG3-B 0.93145 0.01092 0.96027 0.04483

FG3-C 0.83131 0.09440 0.86846 0.04940

MG1-A 0.85461 0.02563 0.91449 0.00316

MG1-B 0.85812 0.02783 0.91515 0.08509

MG1-C 0.87785 0.10835 0.88475 0.02121

MG2-A 0.89966 0.10882 0.89542 0.04712

MG2-B 0.96666 0.11393 0.92636 0.02236

MG2-C 0.84404 0.13106 0.85649 0.04604

MG3-A 0.98797 0.05419 0.96689 0.04472

MG3-B 0.81853 0.04340 0.88757 0.00316

MG3-C 0.88492 0.03537 0.92477 0.04743

0.8951 0.0663 0.9144 0.0281

the worst performing predicates generated by näıve Bayes may not have the

levels of efficiency that are required in the context of dependable software. In

contrast, the best performing of these predicates may be useful in the design of

dependable software. For example, the predicates associated with 7Z3-B have

a TRP and FRP of 0.97607 and 0.01881 respectively, yielding a promising AUC

of 0.97863. Perhaps the most interesting characteristic of the results presented

in Table 5.3 is the consistently low standard deviation in mean AUC, which

indicates that high levels of detection efficiency, i.e., TPR and FPR rates, were
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Table 5.4: Predicate efficiencies for logistic regression with no sampling

Data Set TPR FPR AUC SD

7Z1-A 0.86935 0.01328 0.92804 0.10025

7Z1-B 0.83851 0.03274 0.90289 0.02915

7Z1-C 0.85139 0.03743 0.90698 0.30232

7Z2-A 0.87851 0.044711 0.91690 0.02000

7Z2-B 0.85862 0.053304 0.90266 0.03240

7Z2-C 0.87938 0.043068 0.91816 0.00632

7Z3-A 0.82177 0.09813 0.86182 0.15103

7Z3-B 0.88461 0.09631 0.89415 0.04593

7Z3-C 0.92025 0.02983 0.94521 0.03332

FG1-A 0.94544 0.08762 0.92891 0.00707

FG1-B 0.92391 0.08175 0.92108 0.00548

FG1-C 0.78287 0.18602 0.79843 0.15388

FG2-A 0.90671 0.03645 0.93513 0.02608

FG2-B 0.89962 0.04620 0.92671 0.01871

FG2-C 0.91344 0.04210 0.93567 0.00632

FG3-A 0.93917 0.00869 0.96524 0.01049

FG3-B 0.97946 0.09830 0.94058 0.03000

FG3-C 0.88357 0.04952 0.91703 0.03302

MG1-A 0.85564 0.05326 0.90119 0.04785

MG1-B 0.88434 0.07482 0.90476 0.00775

MG1-C 0.88471 0.06335 0.91068 0.00632

MG2-A 0.95960 0.02203 0.96879 0.00775

MG2-B 0.87028 0.07887 0.89571 0.00949

MG2-C 0.88397 0.08470 0.89964 0.17745

MG3-A 0.95524 0.03913 0.95806 0.00949

MG3-B 0.88327 0.03726 0.92300 0.00707

MG3-C 0.90740 0.08961 0.90890 0.00775

0.8911 0.0603 0.9154 0.0479

consistently achieved during each of the 10 cross validations.

The results presented in Table 5.4 demonstrate that the error detection pred-

icates generated by the logistic regression classifier are comparable with, but

marginally less efficient than, those generated using näıve Bayes, with all mean

AUC values being in the range 0.79843 to 0.96879. Indeed, the näıve Bayes

classifier surpassed the logistic regression classifier, with respect to mean AUC,

for all but 7 of the data sets. Logistic regression also yielded the worst results for

a single data set, with FG1-C having a TRP and FPR of 0.78287 and 0.18602
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Table 5.5: Predicate efficiencies for rule induction with no sampling

Data Set TPR FPR AUC SD

7Z1-A 0.96456 0.00157 0.98150 0.00010

7Z1-B 0.94018 0.03494 0.95262 0.00008

7Z1-C 0.94009 0.02147 0.95931 0.00014

7Z2-A 0.94648 0.04554 0.95047 0.00063

7Z2-B 0.91891 0.02253 0.94819 0.00447

7Z2-C 0.92471 0.02635 0.94918 0.00141

7Z3-A 0.93912 0.07671 0.93120 0.00026

7Z3-B 0.92937 0.09719 0.91609 0.00006

7Z3-C 0.90103 0.06047 0.92028 0.00045

FG1-A 0.94151 0.09568 0.92291 0.00045

FG1-B 0.98804 0.01560 0.98622 0.00028

FG1-C 0.92306 0.04026 0.94140 0.00045

FG2-A 0.97342 0.03998 0.96672 0.00200

FG2-B 0.97722 0.02533 0.97595 0.00084

FG2-C 0.98387 0.03895 0.97246 0.00063

FG3-A 0.94786 0.00033 0.99376 <0.00000

FG3-B 0.98716 0.02340 0.97188 0.00045

FG3-C 0.95952 0.09413 0.93269 0.00045

MG1-A 0.95481 0.00922 0.97280 0.00632

MG1-B 0.93365 0.02219 0.95573 0.00837

MG1-C 0.92935 0.02006 0.95465 0.00224

MG2-A 0.96559 0.00332 0.98114 0.00004

MG2-B 0.97930 0.09288 0.94321 0.00032

MG2-C 0.99393 0.07091 0.96151 0.00014

MG3-A 0.90587 0.04206 0.93190 0.00024

MG3-B 0.93431 0.05055 0.94188 0.00004

MG3-C 0.94874 0.04487 0.95193 0.00022

0.9493 0.0414 0.9544 0.0012

respectively. Interestingly, the standard deviation in mean AUC remains consis-

tently low, again indicating the consistency with which similarly efficient error

detection predicates are generated during cross validation.

The results presented in Table 5.5 indicate that the error detection predicates

generated using rule induction surpass those generated under näıve Bayes and

logistic regression with respect to the level of efficiency achieved, with all mean

AUC values in Table 5.5 being in the range 0.91609 to 0.99376. The standard

deviation in AUC is also markedly lower than for the näıve Bayes and logistic
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Table 5.6: Predicate efficiencies for decision tree induction with no sampling

Data Set TPR FPR AUC SD

7Z1-A 0.94347 0.00012 0.97168 0.01732

7Z1-B 0.96912 0 0.98456 0.00003

7Z1-C 0.96541 0 0.98271 0.00003

7Z2-A 0.99001 0.00048 0.99477 0.00020

7Z2-B 0.98922 0.00201 0.99361 <0.00000

7Z2-C 0.99111 0.00181 0.99465 0.00014

7Z3-A 0.99792 0.00002 0.99895 0.00017

7Z3-B 0.99792 0 0.99896 0.00010

7Z3-C 0.99868 0 0.99934 0.00010

FG1-A 0.79282 0.00011 0.89636 <0.00000

FG1-B 0.95842 0.00001 0.97920 0.00100

FG1-C 0.82232 0.00014 0.91109 0.00024

FG2-A 0.98622 0.00010 0.99306 0.00017

FG2-B 0.99218 0.00021 0.99599 0.00001

FG2-C 0.98108 0 0.99054 0.00008

FG3-A 0.99063 0.00021 0.99521 0.00026

FG3-B 0.98071 0.00317 0.98877 0.00173

FG3-C 0.98780 0.00060 0.99360 0.00173

MG1-A 0.97922 0.00092 0.98915 0.00014

MG1-B 0.98084 0.00010 0.99037 0.00008

MG1-C 0.97990 0.00210 0.98890 <0.00000

MG2-A 0.97404 0 0.98702 <0.00000

MG2-B 0.97404 0 0.98702 <0.00000

MG2-C 0.97280 0 0.98640 <0.00000

MG3-A 0.99381 0 0.99691 0.00003

MG3-B 0.99381 0.00032 0.99675 0.00026

MG3-C 0.99890 0 0.99945 <0.00000

0.9697 0.0005 0.9846 0.0009

regression classifiers, with the highest observed standard deviation being less

than the lowest value associated with näıve Bayes and logistic regression. In

general, the results associated with rule induction are promising with respect

to the generation of efficient error detection predicates, not least because these

results relate to a baseline configuration of the rule induction algorithm.

Table 5.6 suggests that decision tree induction is the most effective of the

data mining algorithms applied to this point. Observe from Table 5.6 that the

mean AUC of all baseline predicates generated through decision tree induction
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is greater than 0.97168. As this measure reflects both FPR and TPR, this is

an indication that the predicates generated are effective classifiers for failure

inducing states. Observe also that, aside from data sets FG1-A and FG1-C,

the mean TPR for all predicates is greater than 0.94347, with the maximum ob-

served being 0.99890. Further, the mean FPR is extremely low in all cases, with

the maximum observed value being 0.00317. This indicates the discriminatory

nature of the predicates generated by the decision tree induction algorithm. It

is also interesting to note that the standard deviation of the predicates gener-

ated, regardless of the data mining algorithm applied, is consistently low, which

demonstrates the consistency with which efficient predicates can be generated

when using a decision tree induction-based approach.

Interestingly, despite the differing levels of efficiency achieved by the data

mining algorithms applied, the results presented for each algorithm generally

outperform existing approaches to the error detection predicate design. Indeed,

in [75] it was shown that predicates, realised as executable assertions, designed

on the basis of a system specification and domain knowledge could have an

accuracy as low as 0.75 and a completeness as low as 0.75. Further, it was shown

in [159] that, when component replication and repeated execution was employed

for error detection and correction, the number of transient value failures could

only be reduced to a minimum of 3%. In most cases, these levels of efficiency

are surpassed by the predicates evaluated in Tables 5.3-5.6, each of which was

generated under a baseline configuration. Moreover, even under such a baseline

configuration, the levels of efficiency achieved by the error detection predicates

generated by rule induction and decision tree induction, i.e., the advocated

symbolic pattern learning algorithms, are appropriate for use in dependable

software systems, i.e., they have high accuracy and completeness.

5.4.4 Step 4: Model Refinement

Having generated and evaluated a set of baseline error detection predicates,

these predicates can now be refined by varying the parameters associated with
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the applied data mining algorithms. In particular, it is interesting to vary

parameters that are independent of any data mining algorithm, such as data set

sampling levels prior to learning. This allow the same refinement process to be

applied regardless of the selected data mining algorithm.

The results of model refinement process for the presented case studies are

summarised in Tables 5.7-5.10. The columns of Tables 5.7-5.10 are identical to

those as those given in Tables 5.3-5.5, except for the Sampling and N columns,

which show the sampling level and the number of nearest neighbours used in

sampling to generate the associated predicates respectively. Each entry in the

Sampling column also shows the type of sampling performed, where an O in-

dicates oversampling and a U indicates undersampling. A total of 20 under-

sampling and 15 oversampling percentage levels were used in model refinement.

These levels were uniformly distributed over [5,100] and [100,1500] for under-

sampling and oversampling respectively, giving increments of 5 and 100 respec-

tively. The number of nearest neighbours considered in the sampling process

were uniformly distributed over [1,15] with increments of 1. The values in the

Sampling and N columns of Tables 5.7-5.10 represent optimal observed values,

with regard to achieved AUC, across all candidate values considered.

All entries in Table 5.7 improve on the results presented for the näıve Bayes

classifier in Table 5.3, clearly indicating that varying the sampling parameters

associated with the application of näıve Bayes can improve the efficiency of the

error detection predicates generated. More specifically, all mean TPR and FPR

values have been improved, which lead to a increase in mean AUC. The standard

deviation in AUC is consistently low and remains comparable with the results

generated under a baseline configuration of the näıve Bayes classifier.

Similar to the results derived from varying the sampling parameters of the

näıve Bayes classifier, Table 5.8 indicates that varying the parameters associated

the logistic regression classifier yields a universal improvement in the level of

efficiency that can be achieved by generated predicates. Again, the mean AUC

is improved and the associated standard deviation remains low in all cases.
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Table 5.7: Predicate efficiencies for näıve Bayes with sampling

Data Set Sampling N TPR FPR AUC SD

7Z1-A 200 (O) 8 0.85697 0.00375 0.92661 0.08473

7Z1-B 900 (O) - 0.90012 0.00680 0.94666 0.02646

7Z1-C 400 (O) - 0.96784 0.00033 0.98376 0.05657

7Z2-A 1100 (O) - 0.94912 0.07931 0.93491 0.02145

7Z2-B 1200 (O) 4 0.95865 0.08899 0.93483 0.03619

7Z2-C 700 (O) - 0.94933 0.07554 0.93690 0.03317

7Z3-A 200 (O) 4 0.96851 0.00037 0.98407 0.24958

7Z3-B 100 (O) 2 0.99043 0.00339 0.99352 0.08497

7Z3-C 500 (O) 2 0.83297 0.00257 0.91520 0.18163

FG1-A 200 (O) - 0.99118 0.07037 0.96041 0.00775

FG1-B 300 (O) 2 0.98234 0.00000 0.99117 0.14856

FG1-C 35 (U) - 0.94226 0.10326 0.91950 0.00775

FG2-A 200 (O) 6 0.87420 0.03232 0.92094 0.07450

FG2-B 1300 (O) 4 0.89994 0.03893 0.93051 0.07280

FG2-C 100 (O) 11 0.89825 0.03089 0.93368 0.03146

FG3-A 500 (O) 9 0.87823 0.00000 0.93911 0.04919

FG3-B 600 (O) 3 0.97470 0.01004 0.98233 0.04506

FG3-C 20 (U) - 0.83824 0.03941 0.89942 0.01844

MG1-A 500 (O) 12 0.86274 0.02019 0.92128 0.04405

MG1-B 200 (O) 10 0.96827 0.02000 0.97414 0.01703

MG1-C 1100 (O) 2 0.85213 0.03607 0.90803 0.09808

MG2-A 1100 (O) 5 0.95668 0.04734 0.95467 0.04147

MG2-B 600 (O) 3 1 0.00576 0.99712 0.08556

MG2-C 100 (O) 9 0.88544 0.11873 0.88336 0.06411

MG3-A 900 (O) - 0.99620 0.00153 0.99734 0.08485

MG3-B 800 (O) - 0.85319 0.00119 0.92600 0.09690

MG3-C 200 (O) - 0.91393 0.01157 0.95118 0.06542

0.9238 0.0314 0.9462 0.0677

A notable improvement can be seen in the predicates associated with FG1-C,

where the mean TRP and FPR have increased to 0.85503 and 0.005 respectively.

This is a particularly notable improvement, as the value of TPR and FPR

were previously 0.78287 and 0.18602 respectively, which resulted in the lowest

mean AUC observed for any baseline configuration of any data mining algorithm

employed.

The results presented in Table 5.9 demonstrate that the refinement process

has improved the efficiency properties of the error detection predicates gener-
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Table 5.8: Predicate efficiencies for logistic regression with sampling

Data Set Sampling N TPR FPR AUC SD

7Z1-A 900 (O) 14 0.89954 0.03100 0.94094 0.08136

7Z1-B 500 (O) 2 0.90605 0.04017 0.93233 0.04817

7Z1-C 500 (O) 12 0.88466 0.00620 0.93893 0.03082

7Z2-A 200 (O) - 0.88193 0.00404 0.93895 0.00949

7Z2-B 100 (O) - 0.88843 0.00209 0.94317 0.01095

7Z2-C 900 (O) 2 0.90612 0.00099 0.95257 0.09586

7Z3-A 300 (O) 3 0.89451 0.00044 0.94704 0.01549

7Z3-B 800 (O) - 0.90967 0.00237 0.95365 0.04336

7Z3-C 100 (O) 2 0.92072 0.00073 0.96000 0.17378

FG1-A 100 (O) 8 0.94857 0.00525 0.97166 0.09143

FG1-B 200 (O) - 0.98993 0.04967 0.97013 0.01789

FG1-C 800 (O) - 0.85503 0.00538 0.92483 0.08894

FG2-A 400 (O) - 0.91415 0.02554 0.94431 0.02098

FG2-B 200 (O) 5 0.90290 0.02712 0.93789 0.02881

FG2-C 100 (O) 3 0.92941 0.02920 0.95011 0.04669

FG3-A 1000 (O) - 0.94612 0.01542 0.96535 0.09965

FG3-B 500 (O) 12 0.98173 0.00111 0.99031 0.02983

FG3-C 700 (O) 11 0.89350 0.00049 0.94651 0.04817

MG1-A 400 (O) - 0.85906 0.04914 0.90496 0.08781

MG1-B 1300 (O) 4 0.90654 0.06572 0.92041 0.08025

MG1-C 800 (O) - 0.89453 0.06003 0.91725 0.02864

MG2-A 35 (U) - 0.96054 0.00001 0.98027 0.08136

MG2-B 900 (O) 6 0.87469 0.00629 0.93420 0.06519

MG2-C 900 (O) 7 0.93115 0.00039 0.96538 0.03362

MG3-A 500 (O) 7 0.96200 0.00001 0.98100 0.09418

MG3-B 200 (O) 11 0.89273 0.00463 0.94405 0.05000

MG3-C 100 (O) 10 0.91559 0.00350 0.95605 0.04940

0.9130 0.0162 0.9486 0.0575

ated using rule induction. Indeed, the results show an improved mean AUC

in all cases, though in several cases this improvement is less than a 0.000001

increase. The standard deviation in mean AUC is easily comparable with stan-

dard deviation observed under a baseline configuration of rule induction, with

some generated predicates even yielding a reduction in standard deviation with

respect to mean AUC.

Despite being the best performing algorithm under a baseline configuration,

the entries in Table 5.10 show consistent improvements, with respect to the mean

93



5. Generating Efficient Error Detection Mechanisms

Table 5.9: Predicate efficiencies for rule induction with sampling

Data Set Sampling N TPR FPR AUC SD

7Z1-A 100 (O) 2 0.96456 0.00157 0.98150 0.02646

7Z1-B 1200 (O) - 1 0.03494 0.98253 0.00245

7Z1-C 900 (O) - 0.94009 0.02147 0.95931 0.02449

7Z2-A 400 (O) 4 0.98554 0.01241 0.98657 0.00316

7Z2-B 800 (O) - 0.99521 0.00470 0.99526 0.01414

7Z2-C 200 (O) 8 0.98529 0.00955 0.98787 0.01000

7Z3-A 200 (O) 3 0.93912 0.07671 0.93120 0.00245

7Z3-B 700 (O) 9 0.92937 0.09719 0.91609 0.00095

7Z3-C 100 (O) - 0.92103 0 0.96052 0.00141

FG1-A 25 (U) - 0.94151 0.09568 0.92291 0.02236

FG1-B 1100 (O) 8 0.99804 0.01560 0.99122 0.08367

FG1-C 200 (O) - 0.92306 0 0.96153 0.02646

FG2-A 1100 (O) 3 0.98244 0.00420 0.98912 0.00707

FG2-B 800 (O) - 0.98974 0.01000 0.98987 0.00141

FG2-C 200 (O) 2 0.99877 0.00711 0.99583 0.00141

FG3-A 1100 (O) 5 0.98786 0.00033 0.99376 0.00894

FG3-B 400 (O) 3 0.96716 0.02340 0.97188 0.07746

FG3-C 300 (O) 8 0.95952 0.09413 0.93269 0.00089

MG1-A 100 (O) - 0.97130 0.00001 0.98565 0.00632

MG1-B 1200 (O) 3 0.96972 0.00055 0.98459 0.00316

MG1-C 300 (O) 2 0.96818 0.00034 0.98392 0.00300

MG2-A 10 (U) - 0.99559 0 0.99780 0.00300

MG2-B 900 (O) 2 0.97930 0.09288 0.94321 0.00020

MG2-C 200 (O) - 0.99393 0.07091 0.96151 <0.00000

MG3-A 100 (O) - 0.90587 0.04206 0.93190 0.00084

MG3-B 600 (O) - 0.93431 0.05055 0.94188 0.00001

MG3-C 500 (O) 9 0.94874 0.04487 0.95193 0.03000

0.9658 0.0300 0.9679 0.0134

AUC measure, during the error detection predicate refinement process. In some

cases this improvement is small, again less than a 0.000001 increase in some

cases, though in the context of an error detection mechanism this magnitude

of increase can be significant. In almost all cases the standard deviation of

all predicates is increased, though it should be noted that these values remain

extremely low, particularly in comparison to the results shown for other data

mining algorithms.

In addition to evaluating the efficiency of the error detection predicates gen-
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Table 5.10: Predicate efficiencies for decision tree induction with sampling

Data Set Sampling N TPR FPR AUC SD

7Z1-A 300 (O) 12 0.99849 0.00100 0.99875 0.00077

7Z1-B 900 (O) 6 0.98768 0.00035 0.99367 0.00775

7Z1-C 700 (O) 7 0.99998 0.00007 0.99996 0.00017

7Z2-A 1200 (O) 4 0.99914 0.00009 0.99953 0.00028

7Z2-B 900 (O) 2 0.99901 0.00005 0.99948 0.00003

7Z2-C 500 (O) 5 0.99091 0.00006 0.99543 <0.00000

7Z3-A 85 (U) - 0.99826 0.00002 0.99912 0.00004

7Z3-B 300 (O) 4 0.99836 0.00005 0.99916 0.00022

7Z3-C 500 (O) 14 0.99919 0 0.99960 <0.00000

FG1-A 35 (U) - 0.79633 0.01311 0.89161 0.00447

FG1-B 500 (O) - 0.96280 0.00024 0.98128 0.00002

FG1-C 500 (O) - 0.82292 0.00020 0.91136 0.00002

FG2-A 100 (O) 3 0.99982 0 0.99991 0.00001

FG2-B 200 (O) 8 0.99950 0 0.99975 0.00100

FG2-C 300 (O) 7 0.99121 0.00011 0.99555 0.00100

FG3-A 500 (O) 12 0.99662 0.00111 0.99776 0.00028

FG3-B 900 (O) 1 0.99952 0.00405 0.99774 0.00010

FG3-C 500 (O) 11 0.99631 0.00151 0.99740 0.00032

MG1-A 200 (O) 2 1 0.00990 0.99505 <0.00000

MG1-B 35 (U) 2 1 0.00995 0.99503 <0.00000

MG1-C 200 (O) - 0.99904 0.00009 0.99948 0.00004

MG2-A 30 (U) - 0.97403 0 0.98702 <0.00000

MG2-B 5 (U) - 0.97403 0 0.98702 <0.00000

MG2-C 5 (U) - 0.97281 0 0.98641 <0.00000

MG3-A 100 (O) 2 0.99380 0 0.99690 <0.00000

MG3-B 40 (U) - 0.99380 0 0.99690 <0.00000

MG3-C 5 (U) - 0.99892 0 0.99946 <0.00000

0.9794 0.0016 0.9889 0.0006

erated by different data mining algorithms, it is meaningful to consider the

efficiency of predicates across the same fault injection and state recording loca-

tions, e.g., data sets where an module entry point was used for fault injection

and state recording. As explained previously, each target software module is

associated with three data sets, where each data set related to a distinct pair

of fault injection and state recording locations, i.e., entry-entry, entry-exit and

exit-exit data sets. Table 5.11 shows the average efficiency achieved by each

data mining algorithm across all data set using the same fault injection and
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Table 5.11: Fault injection location-sample information for all data sets
Locations Mean AUC

NB LR RI DTI
Entry-Entry 0.94882 0.95272 0.96893 0.98507
Entry-Exit 0.96403 0.94735 0.96850 0.99444
Exit-Exit 0.92567 0.94574 0.96612 0.98718

state recording locations. The result presented reflect the mean AUC of error

detection predicates following predicate refinement.

The results presented in Table 5.11 demonstrate that there is no clear rela-

tionship between error detection predicate efficiency and the code locations used

in fault injection analysis. As can be seen from Tables 5.7-5.10, the standard

deviation in AUC of the generated predicates varies across data sets. Given

these observations it is clear that, whilst the results presented suggest that the

data mining algorithm plays a significant role in determining the efficiency of the

error detection predicates generated, no such relationship is evident regarding

fault injection and state recording locations. However, more research is required

in this area before general conclusions can be reached.

The application of the proposed approach has illustrated its capability to

generate predicates that are efficient by design. Indeed, the levels of efficiency

achieved by the derived error detection predicates make them suitable for use

in dependable software systems, not least because the approach has been shown

to generate predicates that are complete or accurate. The standard deviation

associated with the generation of predicates has also been shown to be low,

particularly when the evaluation employed used stratified samples in the cross

validation process, i.e., having little or no data repetition across the training

and test data should hinder the derivation of similar predicates during cross

validation. Perhaps most crucially, the case studies presented have served to

demonstrate that the proposed approach can be used as a systematic approach

to generating error detection predicates for real-world, infinite-state software

systems. Indeed, the results presented surpass those achieved where a functional

specification and domain knowledge were available, as well as those where repli-

96



5. Generating Efficient Error Detection Mechanisms

cation and repeated execution were employed to detect and tolerate transient

value errors [75] [159].

5.5 Efficient Predicates and Variable Criticality

To this point a systematic approach for the generation of efficient error detection

predicates has been proposed, with case studies demonstrating the application

of the approach in the context of various algorithms, configurations and software

systems. As well as being the first systematic approach to generation of error

detection predicates for real-world, infinite-state software systems, the fact that

the proposed approach is independent of the metric suite developed in Chapter 4,

means that the predicates it generates may serve as a basis for assessing the

capability of the importance metric to identify critical variables. In particular,

it is possible to determine how critical the program variables identified by the

importance metric are by evaluating the levels of efficiency that can be achieved

by error detection predicates generated using only these critical variables.

5.5.1 Variable Importance and Error Detection

If efficient error detection predicates can be constructed using only critical vari-

ables, then this is a strong validation of the thesis that an efficient EDM consists

of a set of critical variables, not least because it would demonstrate that there

is at least one set of justifiably critical variables that facilitate efficient error de-

tection for specified locations in a target system. To determine whether efficient

error detection predicates can be constructed using the critical variables identi-

fied through the application of a threshold to the importance metric, a new set

of error detection predicates for each software module are now evaluated.

Table 5.12 shows the evaluation of the error detection predicates that were

generated using all variables in each software module, whilst table Table 5.13

shows the evaluation of the error detection predicates generated using only the

most important 25% of the variables in each software module, i.e., a threshold
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was set based on ranking position. The statistics shown in Table 5.12 are based

on the error detection predicates previously generated and optimised under the

most effective data mining algorithm, i.e., decision tree induction. These result

have been repeated here for convenience. In Tables 5.12 and 5.13 the FPR

and TPR columns give the mean false positive and true positive rates taken

across all cross validations. A false positive here corresponds to the situation

where a predicate incorrectly detects a state as being failure-inducing, whilst a

true positive corresponds to a predicate correctly identifying a failure-inducing

state. The AUC column shows the area under the ROC curve. To reiterate,

the AUC column aggregates the performance of the generated predicates with

respect to TPR and FPR. Again, a mean AUC close to 1 is desirable in the

design of error detection predicates, though may not always be achievable due

to theoretical constraints [76], whilst an AUC of 0.5 is indicative of random

performance. To provide a measure of how the efficiency of the generated error

detection predicates varied during cross validation, the SD column gives the

standard deviation in AUC for 10-fold cross validation. It would be hoped that

no significant increase would be observed in the SD column when generating

error detection predicates using only important variables.

Observe from Tables 5.12 and 5.13 that the difference in the efficiency of

the predicates generated using all variables and those generated using only the

most important 25% of variables is small. The largest difference in AUC when

comparing these results is associated with data set 7Z1-A. For this data set the

predicates generated using all variables have a mean AUC of 0.97168, whilst

those generated using only important variable have a mean AUC of 0.96535,

giving a difference of just 0.00633 in this worst case. Observe also that the

absolute AUC values for predicates generated using important variables are

consistently high, with the maximum and minimum being 0.99924 and 0.89616

respectively. These consistently high AUC values, which are indicative of high

true positive and low false positive rates, serve to suggest that error detection

predicates generated using important variables can safeguard the functioning of
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Table 5.12: Predicate efficiencies achieved using all variables (also Table 5.6)
Data Set TPR FPR AUC Var

7Z1-A 0.94347 0.00012 0.97168 0.01732

7Z1-B 0.96912 0 0.98456 0.00003

7Z1-C 0.96541 0 0.98271 0.00003

7Z2-A 0.99001 0.00048 0.99477 0.00020

7Z2-B 0.98922 0.00201 0.99361 <0.00000

7Z2-C 0.99111 0.00181 0.99465 0.00014

7Z3-A 0.99792 0.00002 0.99895 0.00017

7Z3-B 0.99792 0 0.99896 0.00010

7Z3-C 0.99868 0 0.99934 0.00010

FG1-A 0.79282 0.00011 0.89636 <0.00000

FG1-B 0.95842 0.00001 0.97920 0.00100

FG1-C 0.82232 0.00014 0.91109 0.00024

FG2-A 0.98622 0.00010 0.99306 0.00017

FG2-B 0.99218 0.00021 0.99599 0.00001

FG2-C 0.98108 0 0.99054 0.00008

FG3-A 0.99063 0.00021 0.99521 0.00026

FG3-B 0.98071 0.00317 0.98877 0.00173

FG3-C 0.98780 0.00060 0.99360 0.00173

MG1-A 0.97922 0.00092 0.98915 0.00014

MG1-B 0.98084 0.00010 0.99037 0.00008

MG1-C 0.97990 0.00210 0.98890 <0.00000

MG2-A 0.97404 0 0.98702 <0.00000

MG2-B 0.97404 0 0.98702 <0.00000

MG2-C 0.97280 0 0.98640 <0.00000

MG3-A 0.99381 0 0.99691 0.00003

MG3-B 0.99381 0.00032 0.99675 0.00026

MG3-C 0.99890 0 0.99945 <0.00000

0.9697 0.0005 0.9846 0.0009

a software system. Further, the fact that standard deviation in AUC remains

low, even unchanged in many cases, when only important variables are used in

the generation of error detection predicates means that efficient predicates can

be consistently generated across separate cross validations. This implies that the

proposed approach remains robust when using only important variables, which

is particularly important given that using data sets containing fewer variables,

in effect, reduces the amount of information available during the construction

of error detection predicates for EDMs.
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Table 5.13: Predicate efficiencies achieved using important variables
Data Set TPR FPR AUC SD

7Z1-A 0.93090 0.00020 0.96535 0.05477

7Z1-B 0.95873 0.00005 0.97934 0.00014

7Z1-C 0.96011 0 0.98006 0.00007

7Z2-A 0.98802 0.00238 0.99282 0.03162

7Z2-B 0.98765 0.00355 0.99205 0.00173

7Z2-C 0.98990 0.00202 0.99394 0.00707

7Z3-A 0.99574 0.00477 0.99549 0.00200

7Z3-B 0.99520 0.00011 0.99755 0.00141

7Z3-C 0.99361 0.00006 0.99678 0.00141

FG1-A 0.79232 0.00001 0.89616 <0.00000

FG1-B 0.95708 0.00002 0.97853 0.00100

FG1-C 0.82100 0.00024 0.91038 0.02828

FG2-A 0.98502 0.00042 0.99230 0.04472

FG2-B 0.99196 0.00342 0.99427 0.00100

FG2-C 0.98027 0.00093 0.98967 0.00283

FG3-A 0.98862 0.00003 0.99430 0.00024

FG3-B 0.97994 0.00437 0.98779 0.00141

FG3-C 0.98608 0.00501 0.99054 0.00004

MG1-A 0.97809 0.00111 0.98849 0.01414

MG1-B 0.98004 0.00084 0.98960 0.00173

MG1-C 0.97902 0.00492 0.98705 0.01000

MG2-A 0.97328 0.00003 0.98663 <0.00000

MG2-B 0.97346 0.00028 0.98659 0.00141

MG2-C 0.97261 0.00030 0.98616 0.00141

MG3-A 0.99330 0.00305 0.99513 0.00003

MG3-B 0.99368 0.00086 0.99641 0.00026

MG3-C 0.99847 0 0.99924 <0.00000

0.9676 0.0014 0.9831 0.0077

5.5.2 Variable Importance and Decision Tree Depths

In order to understand why efficient error detection predicates can be con-

structed using only critical variables, the predicates structures generated by the

decision tree induction algorithm, i.e., the data mining algorithm used to gener-

ate these efficient error detection predicates, should be analysed. As described

previously, the decision tree induction algorithm performs a greedy search of

the space of all possible trees choosing decision node attributes that maximise

the reduction in the entropy of the class label. Figure 5.4 shows an example

of the type of tree generated by the decision tree induction algorithm in the
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context of generating efficient error detection predicates. The tree is based

on a predicate generated during the decision tree induction experiments pre-

sented preciously. In Figure 5.4, non-leaf nodes are labelled with variables,

edges are labelled with potential variable states and leaf nodes are labelled

with a failure classification, where true indicates failure and false indicates non-

failure. An error detection predicate is derived from the structure shown in

Figure 5.4 by interpreting the tree as a conjunction of disjunctions. For ex-

ample, the program variable V arOne is labelling the root node and each edge

emanating from it represents a set of values for V arOne, e.g., ≤ 43.32. Fol-

lowing two such these edges from the root results in a conjunctive expression

being created, i.e., (V arOne ≤ 43.32) ∧ ((V arTwo > 523)). If edges are fol-

lowed from the root node to a leaf node then a complete conjunctive expression

will be associated with a class label, failure or non failure in the case of this

thesis, and the number of instances captured by the conjunctive expression,

e.g., consistently taking the leftmost edges yields the conjunctive expression

(V arOne ≤ 43.32) ∧ ((V arTwo > 523)) ∧ (V arFour > 0) that captures 126

instances of failure in the data set used in decision tree construction.

The premise of this analysis method is that critical variables will feature

near the root, i.e., at a lower depth measured from the root, of a decision

tree constructed during decision tree induction because these program variables

capture the most information regarding the ultimate success of a software system

execution, i.e., critical variables provide the greatest reduction in the entropy

of the class label. This validity of this evaluation approach is ensured by (i)

the mutual focus on failure-inducing states, (ii) the independence of the error

detection predicate generation mechanism from the importance metric and (iii)

the manner in which decision trees are constructed in the generation of error

detection predicates.

The case studies shown in Section 5.4 used 10-fold cross validation to ac-

curately asses the effectiveness of generated error detection mechanisms. This

meant that data set was partitioned into ten stratified samples, then for each
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VarFour

< 43.32 ≥ 43.32

< 42 ≥ 42

> 523 ≤ 523 > -0.99 ≤ -0.99

> 0 ≤ 0 > 1 ≤ 1 > 522 ≤ 522

> 0 ≤ 0 > 10 ≤ 10

Figure 5.4: An example decision tree constructed during decision tree induction

cross validation run, one of the partitions was used as the test sample, whilst

the other nine were used as the training set. This meant that three predicates

were generated for each fault injection data set. As 3 fault injection data sets,

corresponding to three distinct pairs of injection and sampling locations, were

compiled for each software module, a total of 30 separate error detection predi-

cates were generated for each target software module.

Tables 5.14-5.21 show the importance ranking and importance values of the

ten most important variables in each instrumented module. These values were

calculated using the approach described in Chapter 4 and the experimental

conditions described in Chapters 3. Tables 4.1-4.8 can be used to assess the

correlation between the importance of a variable and its depth in a decision

tree representing a predicate, as they show the minimum tree depth at which a

variable was used to label a decision node in any predicate for a given module.

The root of a decision tree is assumed to have a depth of 1. The decision was

taken to use this as a basis for comparison with the importance ranking because,
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Table 5.14: Importance values and minimum decision tree depths for 7Z1
Importance Variable Importance Min. Tree

Ranking Identifier Metric Depth

1 processedPosition 0.002473 1

2 remainLen 0.002466 1

3 distance 0.001217 2

4 posState 0.001215 2

5 ttt 0.001213 2

6 matchByte 0.001211 3

7 probLit 0.001210 3

8 dicPos 0.001210 3

9 range 0.001207 4

10 kMatchLen 0.001206 3

at each state of decision tree construction, the decision tree induction algorithm

selects a decision node attribute that maximise the reduction in entropy of the

class label. In effect, the decision tree induction algorithm selects the variable

whose value can be viewed as providing the most information regarding system

failure. This is commensurate with the stated aims of the importance metric.

To appreciate why the minimum decision tree depth is appropriate, as opposed

to a measure such as average tree depth, consider Figure 5.4. V arTwo is used

to label decision nodes at depths of 2 and 4. In the former case, this allows 249

instances of failure to be discerned using a simple predicate, i.e., ((V arOne <

43.32) ∧ (V arTwo ≤ 523)), whilst the latter allows only 49 instances of failure

to be discerned using a more complex predicate, i.e., ((V arOne ≥ 43.32) ∧

(V arThree ≤ −0.99) ∧ (V arSix > 522) ∧ (V arTwo ≤ 10)). The selection of a

decision node attribute that maximise the reduction in entropy of the class label

means that nodes at a lower depth will capture more failure information, hence

the pattern in the V arTwo example will always be observed. This reasoning is

the basis for the decision to use minimum decision tree depth in this evaluation.

Observe from Tables 5.14-5.22 that there is a pattern between the importance

ranking and the minimum tree depth of the variables in each software module.

Variables with a higher importance ranking generally feature at the lower levels

on the predicate structures generated during decision tree induction. Further,
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Table 5.15: Importance values and minimum decision tree depths for 7Z2
Importance Variable Importance Min. Tree

Ranking Identifier Metric Depth

1 numberStreams 0.141488 1

2 highPart 0.120285 1

3 unpack 0.050787 1

4 sizeIndex 0.035976 2

5 i unpack 0.015447 2

6 attribute 0.004906 2

7 numInStreams 0.002448 3

8 numSubstream 0.002447 3

9 unpackSize 0.002447 3

10 nextHeaderOffset 0.002447 4

Table 5.16: Importance values and minimum decision tree depths for 7Z3
Importance Variable Importance Min. Tree

Ranking Identifier Metric Depth

1 seekInStreamSint 0.036212 1

2 wMode 0.036173 2

3 res 0.022356 2

4 oSize 0.004825 3

5 moveMethod 0.004824 3

6 CFlp 0.004823 3

7 pos 0.002994 3

8 lengthR 0.001209 2

9 pHandle 0.001205 3

10 cSize 0.001205 3

it is interesting to note the relationship between the value of the importance

metric and the minimum decision tree depth observed for the highest ranked

variables. For example, the two highest ranked variable in Tables 5.14 and 5.19

have importance metric values that are much greater than the other variables

in their respective tables. This is then mirrored in the minimum decision tree

depth, which shows that these variables are the only variables that feature at

the root of the decision trees generated for their respective software modules.

Variables in 5.14-5.22 that do not feature in an error detection predicate, such as

inf and done in Table 5.20, have a lower importance relative to other variables

in their respective tables. Indeed, every variable with an importance ranking

of 1-5 features in an error detection predicate. This observation demonstrates
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Table 5.17: Importance values and minimum decision tree depths for FG1
Importance Variable Importance Min. Tree

Ranking Identifier Metric Depth

1 Weight 0.272212 1

2 EmptyWeight 0.256266 1

3 bixx 0.253467 2

4 bixy 0.253467 2

5 bixz 0.253467 2

6 bizz 0.253435 2

7 biyz 0.253435 3

8 biyy 0.253411 2

9 Mass 0.144018 3

10 PmTotalWeight 0.136427 3

Table 5.18: Importance values and minimum decision tree depths for FG2
Importance Variable Importance Min. Tree

Ranking Identifier Metric Depth

1 currentThrust 0.265753 1

2 hasInitEngines 0.255719 2

3 numTanks 0.252775 2

4 totalFuelQuantity 0.252658 2

5 firsttime 0.252043 2

6 dt 0.063108 3

7 electricEng 0.051481 3

8 throttleAdd 0.026494 4

9 enme 0.026133 -

10 te 0.023202 4

that variables identified by the importance metric feature in the efficient error

detection predicates generated through decision tree induction.

Having applied the proposed approach for the generation of efficient error

detection predicates to assess the capability of the importance metric to identify

critical variables, it has been shown that efficient error detection predicates can

be generated using only critical variables and that program variables identified

by the importance metric feature in efficient error detection mechanisms. As

well as serving to validate the capability of the importance metric to identify

program variables that should be captured by error detection predicates, these

results also serve to validate the thesis that an efficient EDM consists of a set

of critical variables. Indeed, in this chapter it has been shown that an efficient
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Table 5.19: Importance values and minimum decision tree depths for FG3
Importance Variable Importance Min. Tree

Ranking Identifier Metric Depth

1 compressLen 0.127795 1

2 groundSpeed 0.046646 1

3 steerAngle 0.000686 2

4 contractType 0.000657 2

5 bDampRebound 0.000464 2

6 eDampType 0.000396 2

7 serviceRe 0.000304 3

8 GearPos 0.000062 4

9 rfrv 0.000038 2

10 retractable 0.000010 4

Table 5.20: Importance values and minimum decision tree depths for MG1
Importance Variable Importance Min. Tree

Ranking Identifier Metric Depth

1 selfWrite 0.019506 1

2 bitridx 0.019189 1

3 whiChannel 0.019107 2

4 gainA 0.011914 2

5 curFrame 0.011897 2

6 inf 0.011892 -

7 cuFile 0.002456 3

8 wrdpntr 0.002452 4

9 inbuffer 0.002451 -

10 done 0.002442 -

EDM can consist only of a set of critical variables.

5.6 Implications and Discussion

The case studies presented have demonstrated that the proposed approach is

capable of generating predicates for efficient error detection mechanisms. In

particular, decision tree induction and rule induction have, even under a baseline

configuration, been shown to be effective and consistent methods for generating

predicates which exhibit high accuracy and completeness. In the case of decision

tree induction and rule induction, generated predicates are represented as a tree

structure to be interpreted as a conjunction of disjunctions and directly as a

first-order predicate respectively. This reduces the implementation of an EDM
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Table 5.21: Importance values and minimum decision tree depths for MG2
Importance Variable Importance Min. Tree

Ranking Identifier Metric Depth

1 sampleWin 0.360391 1

2 batchSample 0.236631 2

3 curSamples 0.212292 2

4 first 0.211843 2

5 op 0.100860 3

6 linpre 0.020400 -

7 rinpre 0.019693 -

8 totsamp 0.019625 -

9 cursamples 0.013566 -

10 cursamplepos 0.013462 -

Table 5.22: Importance values and minimum decision tree depths for MG3
Importance Variable Importance Min. Tree

Ranking Identifier Metric Depth

1 maxAmpOnly 0.316021 1

2 dSmp 0.115867 2

3 winCont 0.114893 3

4 sum 0.108781 2

5 mSamp 0.101039 2

6 bandPtr 0.077107 2

7 window 0.062254 2

8 windowSL 0.048595 3

9 sBuffs 0.002447 3

10 b0 0.002446 -

based on the representations generated by these algorithms to the process of

interpreting a decision tree or first-order predicate.

Despite the presented case studies suggesting that the decision tree induction

and rule induction algorithms yield significantly more efficient error detection

predicates than näıve Bayes and logistic regression, it is not possible to conclude

that these algorithms will consistently outperform other algorithms, including

näıve Bayes and logistic regression. As any two classification algorithms can

differ only in the class boundary that they define, i.e., the boundary defined

to classify system failures and non-failures in the generation of error detection

predicates, it is not possible to determine which classification algorithm will

define an boundary that is appropriate for a particular data set. Indeed, it is
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current practise in data mining approaches to classification problems to seek out

an acceptable model through the investigation of many classification algorithms.

As fault injection analysis is commonly used in the validation of dependable

software systems, the availability of fault injection data can often be assumed.

This means that the main cost of applying the proposed approach is associated

with the execution of data mining algorithms, which in-turn means that the

cost of generating efficient predicates using our approach is related to data set

magnitude, the data mining algorithm applied and the comprehensiveness of

the refinement undertaken, i.e., the number of algorithm configurations that

are considered in model refinement. It was shown in the cases studies presented

in Section 5.4 that using only a baseline configuration of several data mining

algorithms can yield highly-efficient error detection predicates and that a naive

parameter search, i.e., systematically varying the level of sampling applied to

data sets, can allow the efficiency of those predicates to be consistently improved,

often to levels that would make the associated EDMs applicable in the design

of dependable software systems.

The focus of the analysis presented has been on generating predicates for

EDMs that are capable of detecting failure-inducing system states. Hence, the

fault injection analysis undertaken focused on recording the system state during

varied executions and whether those executions resulted in a system failure. This

focus contrasts with existing work in fault injection analysis, which typically

adopts the view that an error is any deviation from a fault-free execution, i.e.,

a golden run. Interestingly, whilst the approach described in this chapter is not

directly applicable in this context, a similar approach can be adopted to derive

error detection predicates that can identify such deviations from a golden run.

The novelty of the proposed approach for the generation of error detection

predicates is in the application of data mining to fault injection data sets in order

to obtain predicates for efficient EDMs. The main advantage of this approach

is that efficient error detection mechanisms can be obtained by design, rather

than a system specification or the experience of software engineers.
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5.7 Summary and Conclusion

In this chapter a systematic approach to the design of efficient error detection

predicates has been proposed, with a view to providing the first such systematic

design approach for real-world, infinite-state software systems and validating the

metric suite developed in Chapter 4. The premise of the proposed approach was

that, given program locations at which EDMs will be located and for which the

associated error detection predicates must be designed, data mining techniques

can be applied in the analysis of fault injection data sets to obtain efficient error

detection predicates for those EDMs. Following its description, the proposed

approach was applied to software modules in three complex software systems,

with error detection predicates being generated and evaluated for multiple code

locations in each software module. The results presented demonstrated that the

proposed approach can be used to generate efficient error detection predicates,

i.e., error detection predicates exhibiting high accuracy and completeness. To

validate the capability of the importance metric to identify critical variables, the

predicate structures generated under decision tree induction, which was shown

to be the most effective data mining algorithm under test, were compared with

the relative rankings generated by the importance metric. Further, a new set of

error detection predicates were generated using data sets containing information

regarding only important variables, i.e., variables identified by the importance

metric. The comparisons between the generated predicate structures and the

relative rankings derived from the importance metric, in addition to the effi-

ciencies of the newly generated error detection predicates, served to validate

the capability of the importance metric to identify critical variables.

The validation of the importance metric has demonstrated its capability to

identify critical variables and shown that it is possible to generate efficient error

detection predicates using only important variables. However, this validation

does not demonstrate, in any meaningful way, the dependability enhancements

that can be achieved through the protection of critical variables. In order to
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demonstrate the existence of a set of critical variables whose correctness is cen-

tral to the proper functioning of a software system, it must be shown that soft-

ware system dependability can be achieved through the protection of a small

number of program variables. In the next chapter the level of dependability that

can be achieved through the identification and protection of critical variables

is explored, with a view to further validating the thesis that an efficient EDM

consists of a set of critical variables.
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CHAPTER 6

A Validation of Critical Variables

To this point it has been shown that it is possible to generate efficient error

detection predicates for EDMs based only on critical variables, where these

critical variables have been identified through the application of a threshold

to the relative rankings generated by the importance metric. However, as the

error detection predicates generated were concerned with specified locations in

a software module, the program variables captured by these predicates can only

be deemed critical with respect to those locations. As the importance metric

operates at the level of software modules, i.e., it accounts for all locations where

a program variable is used throughout a software module, it is necessary to

demonstrate that the critical variables it identifies are critical throughout a

software module, rather than just at the locations for which error detection

predicates were generated. To determine whether the criticality of the program

variables identified by the importance metric extends to wider context of a

software module, the impact of protecting these critical variables throughout a

software module must be considered. In this chapter an automated wrapper-
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based approach for the design of dependable software is proposed, with a view

to assessing the impact that the protection of critical variables can have on the

dependability of a software system. In contrast to state-of-art approaches, which

operate at the level of software modules, the approach developed in this chapter

operates based on the replication of critical variables identified by the important

metric, i.e., the approach is variable-centric. The results presented demonstrate

that the failure rate associated with a software system where critical variables

are wrapped, even when this is a small number of critical variables in a single

software module, can be several orders of magnitude lower than that of an

unwrapped equivalent. These results serve to substantiate the thesis that an

efficient EDM consists of a set of critical variables, in that they confirm that the

criticality of the program variables identified by the importance metric extends

throughout a software module.

6.1 The Wrapping of Critical Variables

It has been argued throughout this thesis that the design of efficient EDMs is

an inherently difficult task, with the results presented in Chapter 5 being at the

forefront of what can currently be achieved in the generation of efficient error

detection predicates for real-world, infinte-state software systems. One approach

to overcoming this difficulty is to reuse standard dependability mechanisms that

are know to implement efficient error detection predicates, such as majority

voting, in the design of EDMs [14]. This can be viewed as akin to the reuse of

trusted components in software engineering [54] [90] [116]. However, techniques

such as software replication or NVP are expensive, as they typically operate

at the level of a software system, e.g., an entire software system or numerous

software components may be replicated in some way [14] [15].

To address the expensive nature of replication at a software level, it would

be ideal for standard dependability mechanisms, that are known to implement

highly-efficient error detection predicates, to be adapted to operate at a finer
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granularity. To this end, this chapter proposes an approach to dependability

enhancement based on the replication of the critical variables identified by the

importance metric. This application of the importance metric serves to reduce

the cost associated with replication whilst retaining the potential for depend-

ability enhancement through the reuse of dependability mechanisms that are

known to implement efficient error detection predicates. More specifically, the

developed approach operates as follows. Firstly, a lookup table, in which the

program variables in a software module are ranked according to their impor-

tance metric value, is generated. Once this lookup table is obtained, a subset

of important variables is duplicated or triplicated, based on the application of

a threshold to this lookup table, using software wrappers, i.e., shadow variables

are created. Note that these program variables are termed “important”, as op-

posed to “critical”, because they are identified on the basis of the importance

metric. Then, when an important variable is written during the execution of the

software system, the value held by the relevant shadow variables are updated.

Similarly, when an important variable is read during the execution of the soft-

ware system, its value is compared against that of its shadow variables. Subject

to the adopted fault model, any discrepancy amongst these values would be an

indication of an erroneous state. Depending of the level of replication performed

in the application of the approach, i.e., the level of duplication and triplication,

an attempt can then be made to recover from this erroneous state through

majority voting, forced validity methods or random value selection [14] [59].

Software wrappers have been investigated in many fields of research, such

as computer security, software reengineering, database systems and dependable

software systems. Although the approaches and techniques applied in these

domains have commonalities, the motivation for their usage inevitably varies. To

provide context for the described approach, Sections 6.1.1-6.1.3 give an overview

of how software wrapper technology is currently used in various application

domains, before Section 6.1.4 discusses how the characteristics of the approach

developed in this chapter compare with current techniques.

113



6. A Validation of Critical Variables

6.1.1 Software Engineering

Software wrappers have been widely applied in software engineering research and

practice, usually with a view to overcoming problems associated with the inte-

gration of legacy systems [146] [170]. In this context, software wrappers are most

typically employed as connector components, usually to allow independently de-

veloped software systems to interact or as a means of providing or reconciling

supplementary functionality [23] [28] [147]. Indeed, Bartolomei et al. focused

on how an application programming interface (API) can be wrapped to permit

some degree interoperability with alternative APIs, with a particular focus on

using wrappers to span software platforms [18]. A key result of this work was

the identification of common issues and challenges in software wrapper design,

particularly for object-oriented systems. Similarly, Marosi et al. used software

wrappers to allow legacy applications to execute on desktop grid resources with

minimal local modification [107]. This approach was based on the development

of a POSIX like shell scripting environment that was used to describe how ap-

plication software was to be run. Further examples of software wrappers being

used in systems integration can be found in the field of database systems, where

software wrappers are typically used to encapsulate legacy database systems

so that they can be reused or integrated with newly developed systems, often

using the same automated wrapper generation techniques that emerged from

the application of wrappers in software reengineering [35] [156].

6.1.2 Operating Systems

Software wrapper technology has been extensively investigated in the context of

operating systems, where emphasis is often placed on wrapping device drivers

and shared libraries [155] [169]. In the context of wrapping shared libraries

to enhance robustness, Fetzer et al. proposed a highly-automated and adapt-

able approach for the generation and deployment of wrappers that can pre-

vent the crash, hang and abort failures associated with the use of libraries in
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the C programming language [49]. This approach was based on the extrac-

tion of type information from header files and manual pages, followed by the

generation of bespoke fault-injectors that experimentally established robust ar-

gument types for C library function calls. The approach proposed in [49] was

evaluated under Ballista tests, which have previously been use to demonstrate

that many POSIX C library functions are fragile with respect to invalid argu-

ments [86] [87]. Similarly, research in [154] led to the development of protection

wrappers for the enhancement of commercial-off-the-shelf (COTS) components,

including shared libraries. In contrast to research focusing on protecting shared

resources, Ghosh et al. developed software wrappers that allowed applications

to gracefully handle operating system failures, such as those induced by device

driver failures or system stress [55]. This approach was motivated by previous

work in [137], where several operating system calls in the dynamic link libraries

(DLLs) of the Win32 API were shown to be fragile and capable of inducing se-

vere consequences when presented with unexpected inputs. Working at a similar

level of abstraction, Epstein et al. developed a software wrapper-based approach

for improving the resiliency of application proxy-based firewalls [43]. Despite

the effectiveness of this approach, the fact that it entailed the development of

bespoke wrappers for all protocols and protocol variants to be permitted oper-

ation through a firewall, means that a significant level of insight and software

engineering is required for its adoption.

A consequence of wrapping shared resources and application interfaces is a

reduction in error propagation. This is because the behaviours of these com-

ponents are constrained, thus ensuring that erroneous state are less likely to

be entered and propagated. Research in software wrappers for operating sys-

tems has focused specifically on addressing the problem of error propagation.

For example, Johansson et al. proposed approaches for the identification and

wrapping of vulnerable locations in operating systems, with a view to directly

addressing the error propagation problem [79] [80]. This work was built on the

premise that error propagation analysis can reveal the types of errors occurring
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in an operating system that will propagate through the operating system and

impact applications. Similarly, Fabre et al. proposed analysis approaches that

can assist in the the design of fault containment wrappers based on the consid-

eration of failure modes [45]. In particular, these approaches made use of the

MAFALDA fault injection tool, which was specifically designed as an evaluation

tool for microkernel dependability and wrapper design [133].

6.1.3 Dependable Software Systems

With respect to the process of dependability enhancement it is the general

intention of a software wrapper to implement a simple, well-understood predi-

cate that constrains the behaviour of a software component, thus limiting the

occurrence of an erroneous software state. A central premise of software wrap-

per technology is that the component being wrapped should be oblivious to

the wrapping performed, though in practise this ideal may be violated when a

software wrapper imposes a specification constraint that would not have been

enforced before wrapping. These notions of simplicity and transparency are

embodied by standards for component interoperability such as the Common

Object Request Broker Architecture (CORBA), the Distributed Component

Object Model (DCOM) and JavaBeans, each of which has been widely applied

in the development of dependable software systems [104] [166]. The principles

of simplicity and transparency are adhered to in research such as [42], where

software wrappers were used to detect contract violations in component-based

systems. This work also demonstrated that software wrappers could be used

to allow the users of a software system to layer contract-checking components

on top of the system without source code access. Moreover, research in [73]

and [74] developed approaches for the generation of fault containment software

wrappers for the enhancement of component-based systems, with a particular

emphasis on maintaining safety properties when components were composed.

Software wrappers have also been used to address the, widely-acknowledged,

problem of improving dependability in COTS software [136]. For example, work
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in [13] developed an approach for the integration of COTS components to form

idealised fault-tolerant COTS components in a dependable software system, es-

sentially providing a mechanism by which a set of fault-intolerant components

can be transformed into a functioning dependable software system. A focus on

application level issues can also be seen in [47], where software wrappers were

combined with checkpointing mechanisms to address the problem of non-atomic

exception handling. In particular, this work introduced a notion of failure atom-

icity in exception handling to capture the semantics of the software wrappers

developed and govern the management of checkpointing and recovery. Further,

in [48] the authors developed a wrapper-based approach to address the issue of

buffer overrun in the C programming language. The approach, which could be

adopted without source code access, entailed the transparent interception of C

library calls that are known to be unsafe, coupled with argument checking and

a subsequent call to the unsafe function with checked arguments.

In the context of computer security, software wrappers have typically been

used to encapsulate software systems so that a specific set of security policies

can be enforced to protect vulnerable assets, particular when these assets have

a public interface. For example, the wrapper-based approach in [32] focused on

the transparent protection of a domain name system (DNS) through message

inspection. More specifically, a formal system specification was used to char-

acterise DNS clients and name servers with respect to some security objective,

before a DNS wrapper that examines the incoming and outgoing DNS messages

of a name server was formally specified. This DNS wrapper was designed to

detect and drop messages that could cause violations of the defined security ob-

jective, thus providing protection again many common DNS attacks, including

cache poisoning and a subset of spoofing attacks [5] [57]. As a further example,

work in [139] addressed the problem of developing concurrent software systems

using the composition of wrapped software components. Building on the process

calculus developed in [140] and the causal type to capture permissible informa-

tion flows developed in [141], this approach proposed to use software wrappers
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to encapsulate components and enforce specific security policies. Further to

these examples, it has also been shown that security wrappers deployed at the

level of an operating system kernel can be used to meet a range of application

specific security requirements, with work in [109] and [110] proposing the use

of kernel hypervisors to protect against malicious downloadable content and

safeguard firewall services. Most significantly, these kernel hypervisors, which

were implemented as loadable kernel modules for the Linux operating system,

provided an “unbypassable” layer of security within an operating system kernel

but did not necessitate kernel modifications.

6.1.4 Evaluation of Existing Software Wrapper Usage

Despite the widespread application of software wrapper technology, not least

in the design of dependable software systems, the granularity at which exist-

ing approaches have applied serves to differentiate the approach proposed in

this chapter. Specifically, the variable-centric nature of the proposed approach,

as facilitated by the application of the importance metric, is distinctive when

compared to the existing approaches, which are generally concerned with the

wrapping of software components such as software modules and entire software

systems. A justification for the higher-level focus of existing approaches may

relate to the fact that the overheads associated with a software wrapper are

typically linked to the number of invocations of that wrapper, meaning that a

fine-grained approach, where more software wrappers are to be deployed, will

lead to more invocations and, hence, greater overheads. However, the already

significant overhead of wrapping software modules, e.g., over 1200% in [47], com-

bined with the focused approach enabled by the importance metric, motivate

the consideration of a more selective fine-grained approach to the application

of software wrappers. The approach developed in this chapter represents the

first variable-centric approach to dependability enhancement through the use

of software wrappers and variable replication. It is this variable-centric focus,

facilitated by the metric suite developed in Chapter 4, that enables the key ben-
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efits of the approach over current state-of-the-art techniques in dependability

enhancement. Further, the approach described in this chapter (i) circumvents

the need to obtain non-trivial predicates by using standard efficient predicates,

e.g., majority voting (ii) circumvents the need to know the optimal location of

a given predicate by comparing values on all accesses to critical variables, (iii)

allows the efficiency of the associated EDMs to be known a priori, obviating the

need for dependability validation [66], (iv) incurs significantly lower overheads

than approaches that do not operated with such granularity, and (v) reduces

the risk of inserting software bugs during dependability enhancement [47] [142].

6.2 A Wrapper-based Software Design Approach

The approach proposed in this chapter is based on the premise that the replica-

tion of critical variables, as identified by the importance metric, can significantly

increase software system dependability without incurring significant execution

overheads. Thus, the approach serves a mechanism for further validating the

thesis that an efficient EDM consists of a set of critical variables. The proposed

approach is a three stage process. First, a lookup table ranking variables based

on their importance metric value for a given module is generated. Next, all read

and write operations on important variables, as defined by the application of a

threshold, are identified. These identified operations are known as important

actions. Finally, all important actions are protected using software wrappers

that implement error detection and correction predicates that are known to be

efficient, i.e., comparisons between replicated values and majority voting. An

overview of the described approach is shown in Figure 6.1, whilst Sections 6.2.1-

6.2.3 provide a description of each stage of the approach.

6.2.1 Stage 1: Establishing Variable Importance

The first stage of the proposed approach is to establish the criticality of each

variable within a target software module. To achieve this the metric suite and
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Figure 6.1: An overview of enhancing dependability through the replication of
critical variables using software wrappers

fault injection approach developed in Chapter 4 are used to measure variable im-

portance. The importance of all program variables in a target software module

can be evaluated automatically in this way. In Chapter 4, as well as [100], fault

injection analysis was used to estimate variable importance, though, as stated

previously, the metric suite can be evaluated using alternative approaches. Once

this first stage of the approach has been completed, a lookup table relating any

given variable to its importance metric value can be constructed.

6.2.2 Stage 2: Identifying Important Actions

The second stage of the approach is to identify all read and write actions on

important variables. As the replication of a whole software system, or indeed

every program variable in a software system, incurs a large overhead, a subset

of the most important variables are selected for replication. This is done using

thresholds to govern the levels of duplication and triplication performed. Specif-

ically, two thresholds are set to govern the number of duplicated and triplicated

program variables; λd and λt respectively. These thresholds may be defined with

respect to importance metric values, though as the absolute important metric

values will have little meaning in the context of most software systems, it is

reasonable to define thresholds as a proportion of the program variables in a
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module. For example, to specify the triplication of the top 10% and duplication

of the top 15% of program variables in a target software module, λt = 0.10 and

λd = 0.15 would be set. The use of these two thresholds, one for duplication

and one for triplication, allows replication overheads to be reduced, as not every

program variable must be triplicated in situations where perfect error detection

followed by a best-efforts recovery attempt is sufficient. Once threshold values

have been set, the program variables to be wrapped can be identified. How-

ever, before wrapping can be performed, every possible read and write location

on an important variable must be identified. This can be achieved by several

means, including system call monitoring and memory management techniques.

The only requirement is that all possible read and write actions on important

variables must be identified. As will be detailed in Section 6.3, the use of au-

tomated source code analysis is advocated as an means for the identification of

important actions. The completion of this stage of the approach will mean that

all program variables to be wrapped have been identified and a mechanism has

been used, or is in place, to identify read and write actions.

6.2.3 Stage 3: Wrapping Important Variables

Having established the importance of the program variables in a target software

module, based on the importance metric, and identified all locations where read

and write actions could be performed on sufficiently important variables, the

final stage of the described approach is to deploy software wrappers in order

to protect critical variables in these locations. Two types of software wrapper

are employed by the described approach; read -wrappers and write-wrappers.

Description of how these software wrappers operate is given below, whilst pseu-

docode for the write-wrapper and read-wrapper is shown in Figure 6.2 and 6.3

respectively.

Write-Wrapper: This software wrapper is invoked when an important vari-

able is written. When a variable v is assigned a value f(. . .), where f is some
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6. Assessing the Impact of Protecting Critical Variables

Algorithm 1 Write-Wrapper: Writing a variable v

v := f(. . . )
if (rank(v) ≥ λt) then

create(v�);
create(v��);
v, v�, v�� := f(. . . );

else if (rank(v) ≥ λd) then
create(v�);
v, v� := f(. . .);

end if

tions could be performed on sufficiently important variables, the final stage of

the described approach is to deploy software wrappers in order to protect crit-

ical variables in these locations. Two types of software wrapper are employed

by the described approach; write-wrappers and read -wrappers. Description of

how these software wrappers operate is given below, whilst pseudocode for the

read-wrapper and write-wrapper is shown in Algorithms 2 and 1 respectively.

Write-Wrapper: This software wrapper is invoked when an important vari-

able is written. When a variable v is assigned a value f(. . .), where f is some

function, in the unwrapped module, the ranking of the variable is checked. If

the rank of v is in the top λt, then two shadow variables, v� and v��, are created.

Alternatively, if the rank of v is between λt and λd, then a shadow variable v�

is created. Then, v and all of its shadow variables are updated with f(. . .).

Read-Wrapper: This software wrapper is invoked when an important variable

is read. When a variable y is updated with a function g(v, . . .) in the unwrapped

module, where g is a function and variable v is to be read, the rank of v is

checked against λt. If the rank of v is greater than λt then function g uses the

majority of the v, v�, v��. If the rank of v is between λt and λd, then g uses v or v�.

The completion of this final stage will yield a software system where all read

and writes to critical variables are protected by an EDM that implements an

efficient error detection predicate, i.e. duplicate checking. In the case of the
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Figure 6.2: The algorithm executed by a software wrapper when a write action
is performed on a sufficiently critical variable6. Assessing the Impact of Protecting Critical Variables

Algorithm 2 ReadWrapper: Reading a variable v

y := g(v, . . .);
if (rank(v) ≥ λt) then

y := g(majority(v, v�, v��), . . . );
else if (rank(v) ≥ λd) then

y := g(random(v, v�), . . . );
end if

most important variables, which have been triplicated, an effective ERM, i.e.,

majority voting, will also be tightly integrated with the error detection process.

On the other hand, those variables that have been duplicated will be given the

opportunity to recover based on a random selection between the two values that

enabled error detection. In the application of the approach it may be tempting

to consistently triplicate important variables, by setting λd = λt. However,

this incurs the maximum level of replication overhead in order to provide an

effective ERM, hence in situations where an effective ERM already exists or is

not required, i.e., error detection is sufficient for software system function, this

would not be a reasonable approach. Indeed, such a situation may be better

served by a configuration where λt = 0.

The stages of the described approach are intentionally kept independent of

implementation, in that sense that the input and outcomes of each stage are the

focus of the description given, rather than the means by which they are achieved.

For example, whilst it is suggested that the generation of the lookup table in

the first stage of the approach be undertaken using the metric suite proposed

in Chapter 4, this lookup table can be generated using alternative approaches,

e.g., static analysis, software engineer experience or heuristic approaches. Sim-

ilarly, the identification of read and write actions on critical variables could be

undertaken using dynamic analysis and instrumentation, memory management

techniques or system call monitoring, as opposed to the use of automated source

code analysis. Despite this implementation independence there are operational

dependencies between the stages of the approach. In particular, the means by

which software wrappers should be implemented and deployed will be guided by
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Figure 6.3: The algorithm executed by a software wrapper when a read action
is performed on a sufficiently critical variable

function, in the unwrapped module, the ranking of the variable is checked. If

the rank of v is in the top λt, then two shadow variables, v′ and v′′, are created.

Alternatively, if the rank of v is between λt and λd, then a shadow variable v′

is created. Then, v and all of its shadow variables are updated with f(. . .).

Read-Wrapper: This software wrapper is invoked when an important variable

is read. When a variable y is updated with a function g(v, . . .) in the unwrapped

module, where g is a function and variable v is to be read, the rank of v is

checked against λt. If the rank of v is greater than λt then function g uses the

majority of the v, v′, v′′. If the rank of v is between λt and λd, then g uses v or v′.

The completion of this third stage will yield a software system where all read
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and writes to important variables are protected by an EDM that implements

an efficient error detection predicate, i.e. replicated program variable checking.

In the case of the most important variables, which have been triplicated, an ef-

fective ERM, i.e., majority voting, will also be tightly integrated with the error

detection process. On the other hand, those variables that have been duplicated

will be given the opportunity to recover based on a random selection between

the two values that enabled error detection. In the application of the approach

it may be tempting to consistently triplicate important variables, by setting

λd = λt. However, this incurs the maximum level of replication overhead in

order to provide an effective ERM, hence in situations where an effective ERM

already exists or is not required, i.e., perfect error detection is sufficient and

best-efforts recovery is sufficient, this would not be a reasonable approach. In-

deed, such a situation may be better served by a configuration where λt = 0.

Each stage of the described approach has been intentionally kept independent of

implementation, in that sense that the input and outcomes of each stage are the

focus of the description provided, rather than the means by which each stage

should be achieved. For example, whilst it is suggested that the generation of

the lookup table in the first stage of the approach can be undertaken using the

metric suite proposed in Chapter 4, this lookup table can be generated using

alternative means, e.g., static analysis or the experience of software engineers.

Similarly, the identification of read and write actions on critical variables could

be undertaken using dynamic analysis, memory management techniques or sys-

tem call monitoring, as opposed to the use of automated source code analysis.

Despite this implementation independence there are operational dependencies

between the stages of the approach. In particular, the means by which software

wrappers should be implemented and deployed will be guided by the approach

used for the identification of important actions. For example, if memory mon-

itoring techniques were used in the identification of read and write actions on

critical variables then it may be difficult to relate these actions to locations in
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source code, regardless of how well the target software system is understood.

In such situations it would be more appropriate to deploy dynamic software

wrappers, rather than relying on source code transformation.

6.3 Case Studies

To demonstrate the dependability enhancement that can be achieved through

the protection of a small number of critical variables, the results of applying the

described approach to target software modules are shown in Sections 6.3.1-6.3.3.

6.3.1 Stage 1: Establishing Variable Importance

Using the approach developed in Chapter 4 under the experimental conditions

detailed in Chapter 3, the spatial and temporal impact of each variable was

experimentally estimated. This information, as well as the failure rate for fault

injections on each variable, was used to evaluate the importance of the variables

in each software system. Note that system failure rate here is, again, assessed

on a per variable basis. For example, if a variable is target of 100 fault injection

executions and 25 of these result in a system failure, then that variable consid-

ered to have a failure rate of 0.25. The entries in the thresholded lookup tables

generated by the importance metric represent a subset of the entries that were

previously presented in Tables 4.1-4.9. For this reason, the thresholded lookup

tables generated during the first stage of the proposed approach are not shown.

To explore multiple applications of the approach described in this chapter,

threshold settings of (0.10, 0.15), (0.15, 0.20) and (0.20, 0.20) were applied. In

this notation, (0.10, 0.15) denotes λt = 0.10 and λd = 0.15, which indicates that,

for each target software module, the top 15% of variables would be wrapped,

with the top 10% being triplicated and the next 5% being duplicated.
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6.3.2 Stage 2: Identifying Important Actions

Once the importance table for each module had been thresholded, source code

analysis was used to identify read and write actions on important variables. The

implementation of this source code analyser was based on the premise that reads

and writes to important variable are the only operation types that are deemed

to be important actions. When adopting a source code analysis approach it

must be recognised that any analysis tool must work under the assumption that

any unidentifiable operation type could be an action relating to any important

variable. This conservative stance ensures that the coverage of the approach is

maximised, though unnecessary overheads, with respect to runtime and memory

consumption, may be incurred where a location is unnecessarily instrumented.

6.3.3 Stage 3: Wrapping Important Variables

Following the identification of read and write actions on important variables,

the software wrappers described in Section 6.2.3 were deployed. As the locations

for read-wrapper and write-wrapper deployment were necessarily consistent with

the code locations of important read and write actions respectively, information

generated during source code analysis was used to drive wrapper deployment.

Figures 6.4 and 6.5 show concrete examples of write-wrapper and read-

wrapper deployments respectively. The first line in each example shows the

original program statement before wrapping. The second line in each figure

illustrates the use of software wrappers. In Figure 6.5 the dt variable is being

read-wrapped, whilst Figure 6.4 shows the currentThrust variable being write-

wrapped. Observe that, in both cases, it is necessary to provide the wrapping

functions with identifiers for the variable and location. This information is

generated, maintained and known only to the wrapping software following the

identification of important read and write actions. This means that it has no dis-

cernible impact on the execution of the target system, which remains oblivious

to the existence of the read-wrapper and write-wrapper deployments.
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/* currentThrust = Engines[i]->GetThrust();*/
currentThrust = writeWrapper(VARID_17, LOCID_8, Engines[i]->GetThrust());

Figure 6.4: A write-wrapper deployment in source code

/* tankUPD = calc + (dt * rate); */
tankUPD = calc + (readWrapper(VARID_12, LOCID_4, dt) * rate);

Figure 6.5: A read-wrapper deployment in source code

To investigate the dependability enhancement afforded by the described ap-

proach, the fault injection experiments described in Chapter 3 were repeated

on wrapped target systems, i.e., more than 38 million experiments were per-

formed to measure observed to failure rates with wrapped software systems. A

single software module in any target software system has its important variables

wrapped at any one time. Although each target system was deterministic, each

experiment was triplicated to account for the random choice aspect of the de-

ployed software wrappers. The standard deviation for all sets of experiments

was less than 0.00001. Table 6.1 summarises the impact that the described

approach had on the dependability of all target software modules. The Un-

wrapped Failure Rate column gives the original system failure rate with respect

to all fault injection experiments, i.e., the proportion of system failures of the

unwrapped target system when fault injection across all variables in the given

software module are considered. The Wrapped Failure Rate column gives the

same measure for wrapped modules.

Observe from Table 6.1 that the system failure rate of each software module

dramatically decreased in all cases under the (0.15, 0.20) threshold setting, thus

demonstrating the effectiveness of the approach for dependability enhancement.

Further, the decrease in system failure rate of many modules is greater than

combined failure rates of the wrapped variables in those modules. For example,

module MG3 had an unwrapped failure rate of 0.002780830, which corresponded
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Table 6.1: System failure rates for wrapped and unwrapped modules

Target Unwrapped Wrapped Failure Rate

Module Failure Rate (0.10, 0.15) (0.15, 0.20) (0.20, 0.20)

7Z1 0.002407940 0.000017 0.000003 <0.0000001

7Z2 0.007082023 0.000142 0.000014 <0.0000001

7Z3 0.000856604 0.000506300 0 0

FG1 0.001929009 0.000022 0 0

FG2 0.002481621 0.000002047 0.000001 <0.0000001

FG3 0.001471873 0.000135395 0.000002 0

MG1 0.004983750 0.000012083 0.000029 0

MG2 0.007888044 0.000013426 0.0000011 0

MG3 0.002780792 0.000006076 <0.0000001 <0.0000001

0.00354241 0.000095147 0.00000626 <0.0000001

to 39361 failures. The same module had a wrapped failure rate of 0.000006105,

corresponding to 86 failures. This improvement can not be accounted for by

the 1142 failures incurred by the three wrapped variables, hence the wrapping

performed must account for fault injections elsewhere. The results associated

with the (0.15, 0.20) and (0.20, 0.20) threshold settings also show this pattern.

In particular, Table 6.1 shows that, when chosen appropriately using the im-

portance metric, safeguarding just 20% of the program variables in a software

module can be sufficient to reduce the system failure rate of that software mod-

ule to 0. Further, in cases where the same threshold was applied but this level

of dependability was not reached, the associated software module failure rate

was near-zero and dramatically improved over all other threshold settings, thus

indicating the near-sufficiency of the identified critical variable with respect to

safeguarding the proper functioning of these target software systems.

As the focused, fine-grained nature of the replication undertaken by the pro-

posed approach has the potential to permit low executions and memory over-

heads, it is interesting to consider the performance of the approach with respect

to these measures. To this end, Tables 6.2 and 6.3 summarise the worst-case

overhead of applying the approach on all target software modules. Table 6.2

gives the peak percentage increase in runtime, whilst Table 6.3 gives the peak

percentage increase in memory consumption. These increases reflect peak in-
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Table 6.2: Peak increase in execution time incurred by module wrapping

Target Execution Time (Peak % increase)

Module (0.10, 0.15) (0.15, 0.20) (0.20, 0.20)

7Z1 26.05% 22.83% 22.91%

7Z2 31.47% 31.55% 31.79%

7Z3 20.36% 20.36% 22.84%

FG1 18.24% 21.07% 24.21%

FG2 35.83% 35.87% 35.83%

FG3 23.53% 30.10% 31.97%

MG1 25.98% 29.44% 31.28%

MG2 28.09% 31.02% 31.08%

MG3 23.17% 27.02% 27.02%

25.86% 27.70% 28.77%

Table 6.3: Peak increase in memory usage incurred by module wrapping

Target Memory Usage (Peak % increase)

Module (0.10, 0.15) (0.15, 0.20) (0.20, 0.20)

7Z1 07.55% 08.04% 08.82%

7Z2 18.16% 18.92% 20.04%

7Z3 00.94% 00.94% 01.87%

FG1 02.22% 03.28% 03.51%

FG2 03.32% 08.24% 09.04%

FG3 02.03% 03.47% 03.89%

MG1 05.22% 09.22% 10.90%

MG2 04.93% 07.21% 08.84%

MG3 00.58% 04.01% 04.75%

4.99% 7.04% 7.96%

creases observed when comparing non-fault injected executions of a unwrapped

target software module against non-fault injected executions of a wrapped target

software module. The test case executions used for observation were identical

to those used in fault injection analysis. All overheads were measured by mon-

itoring target modules in isolation using the Microsoft Visual Studio Profiler

running in both sampling and instrumentation modes, with the stated over-

heads being the maximum observed under either configuration [108].

Observe from Table 6.2 that the minimum and maximum execution over-

head, across all replication thresholds, of wrapped modules varies between

18.24% and 35.83%. The worst-case absolute increase in the execution time
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of a target module was observed for module 7Z2, which increased by 31.79% to

approximately 28µs. There is a coarse correlation between the increase in exe-

cution time and the number of variables in each module, though the frequency

with which each variable is used is likely to impact this overhead more directly.

Table 6.3 shows that the increases in memory consumption are more varied than

increases in execution time. As the memory usage increases shown are the peak

observed increases for each target software module, the increase is unlikely to

be sustained beyond the execution of a module. Further, the absolute magni-

tude of these increases may be small. For example, the seemingly large 18.16%

increase in memory consumption shown for the 7Z2 target module corresponds

to an absolute additional overhead of less than 3 kilobytes.

6.4 Implications and Discussion

Inserting tailored EDMs and ERMs into a software system is likely to result

in a low overhead, due to the fact that only a small number of variables and

code segments must be added or replicated. However, as argued earlier, this

approach necessitates the design of non-trivial predicates, which is known to

be difficult [102]. Also, the design and deployment of EDMs often introduces

additional bugs into a software system [47]. The approach developed in this

chapter circumvents these problems by using standard efficient error detection

and recovery predicates, though this comes at the cost of greater execution and

memory overheads. This issue can be seen as a tradeoff. Inserting dependability

mechanisms directly is difficult and error prone but imposes less overhead, whilst

approaches such as the one described in this chapter reuse simpler mechanisms

at the expense of greater overheads.

The performance overheads of the proposed approach will vary according

to the extent of wrapping performed, i.e., according to λd and λt. Overhead

comparison with similar approaches are desirable but generally invalid due to

difference in the extent, intention and focus of the wrapping mechanisms em-
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ployed. For example, the results presented in this paper demonstrate that with

λd = 0.15 and λt = 0.10, for a single module measured in isolation, our ap-

proach introduces a additional runtime overhead of approximately 18%-35%

and a memory overhead of approximately 0.5%-20%. In contrast, the approach

developed in [47] had a memory overhead for the masking of a fixed-duration

function, set at 5µs, of over 1200%. However, the software module-centric focus

of the approach in [47], as opposed to the variable-centric focus adopted in this

chapter, invalidates such a comparison of overheads.

Given that the developed software wrappers operate by updating replicated

variables during writes and selecting the most appropriate value during reads,

the described approach will work with variables of different types whenever the

notion of equality exists or can be defined for that type. Equality is well-defined

for integer, real and boolean types but can also be defined for composite types.

The most significant implication of the approach developed in this chapter

can be seen in the results of the case studies presented in Section 6.3. These

results demonstrate that adequately protecting a relatively small set of critical

variables in a target module can serve to safeguard the proper functioning of

a software system. Indeed, the fact that the decrease in system failure rate

observed for many target modules was greater than combined failure rates of

the wrapped variables in those modules, is a clear indication that the protected

variables in each modules are accounting for issues occurring in unwrapped

variables, i.e., the propagation of errors is halted by protected variables before

a system failure can ensue.

6.5 Summary and Conclusion

In this chapter an automated approach to dependability enhancement based

on the replication of the critical variables has been developed, with a view to

further validating the criticality of the program variables identified as critical

by the importance metric. The developed approach operates based on the reuse
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of dependability mechanisms that are known to implement efficient error de-

tection predicates. More specifically, for any target software module, software

wrappers are used for the replication of a set of critical variables identified us-

ing the metric suite developed in Chapter 4, i.e., shadow variables were created

for critical variables. Thus, when an important variable is written during the

execution of a target software module, the value held by the relevant shadow

variables is updated. Similarly, when an important variable is read during the

execution of a target software module, the value of the variable is compared

against that of its shadow variables. Any discrepancy amongst these values is

an indication of an erroneous state. Depending of the level of replication per-

formed, i.e., duplication or triplication, an attempt can then be made to recover

from this erroneous state through majority voting, forced validity methods, or

a random value selection. To investigate the dependability enhancement that

it can achieve, the developed approach was applied to software modules in all

target software systems, with various levels of critical variable duplication and

triplication being applied in each case. The results presented demonstrate that

the system failure rate associated with a software modules can be dramatically

decreased, to 0 in many cases, through the protection of a relatively small set

of variables, thus suggesting that a relatively small set of critical variables can

be use to capture to correctness of a software system and the thesis that an

efficient EDM consists of a set of critical variables.

To this point (i) a metric suite for the identification of critical variables

has been developed, (ii) the effectiveness of the metric suite has been validated

through the development of a separate approach for the generation of efficient

error detection predicates and (iii) the criticality of the program variables identi-

fied by the metic suite has been validated with respect to the associated software

modules. When considered in combination, these contributions serve as evidence

to support the thesis that efficient EDMs consist of a set of critical variables. In

the next chapter the contributions made in Chapters 4-6 are analysed, alongside

a full discussion of their contribution to supporting this thesis.
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Discussion

Chapters 4-6 made novel research contributions in support of the thesis that an

efficient EDM consists of a set of critical variables. To this point these contribu-

tions have been considered in isolation, with each building on those previous and

serving to motivate subsequently presented research. Indeed, the analysis and

discussion presented to this point has focused largely on the implications and

applications of the contributions made, rather than solely on the implications

of these contributions in the context of the stated thesis. In this chapter these

contributions are drawn together in support of the thesis that an efficient EDM

consists of a set of critical variables. In particular, this chapter summaries and

analyses the overarching outcomes of the work presented in each chapter with

respect to the thesis that an efficient EDM consists of a set of critical variables,

before concluding with a discussion of the potential applications and limitations

of the thesis. The discussion presented in this chapter ultimately concludes that

the research presented substantiates the thesis that an efficient EDM contains

a set of critical variables on the basis that (i) the importance metric is able,
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through application of an appropriate threshold, to identify critical variables,

(ii) efficient EDMs can be constructed based only on the critical variables iden-

tified by the importance metric, and (iii) the criticality of identified variables

can be shown to extend across a software module such that an efficient EDM

designed for that software module should seek to determine the correctness of

the identified variables.

7.1 Summary and Implications

In Chapter 4 a metric suite, alongside a fault injection approach for its evalua-

tion, was proposed for the ranking of the program variables in a software module

with respect to a notion of criticality that accounted for the potential impact

of those program variables in the spatial and temporal domains. It was shown

that the rankings generated by this metric suite, which must be thresholded in

order to identify critical variables, were justifiable, robust, and consistent with

the intention underpinning its proposal. The development of a mechanism for

the identification of critical variables serves as the first step towards supporting

the thesis that an efficient EDM consists of a set of critical variables, in that

it facilitates the investigation of the critical variables identified with respect to

the efficiency of the EDMs that incorporate them.

In Chapter 5 a systematic approach to the generation of highly-efficient er-

ror detection predicates for EDMs was proposed based on the application of

data mining algorithms to data sets derived from fault injection analysis. More

specifically, given a location in a software module, an efficient error detection

predicate for an EDM could be generated based on the application of a symbolic

pattern learning algorithm to the problem of learning the relationships between

program variables that influence the success of a software system execution.

The proposed approach enables the design of efficient EDMs with no reliance

on the experience of software engineers or a system specification. Crucially,

this approach provides a means for assessing the capacity of the importance
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metric to identify critical variables, in that it allows the efficiency properties of

EDMs generated using all program variable in a software module to be com-

pared against the efficiency properties of EDMs generated using only the critical

variables identified by the metric suite proposed in Chapter 4. The comparison

demonstrated that EDMs generated using only critical variables were efficient, in

that their efficiency properties were equal or only marginally worse than EDMs

generated using all the program variables in a software module. This outcome

is an indication that a set of critical variables can be used to efficiently detect

errors at a specified location in a software module, which serves to support the

thesis that an EDM consists of a set of critical variables. That is to say, at a

specified location in a software module, a set of critical variables can be used

for efficient error detection.

Chapter 6 proposed an approach for dependability enhancement, based on

the wrapping of critical variables using software wrappers that implement error

detection and correction predicates that are known to be efficient. This approach

provided a means for extending the results presented in Chapter 5 to account

for the criticality of program variables identified as critical across an entire

software module. Put differently, it was shown that, by protecting a relatively

small proportion of the identified critical variables in all locations of a software

module, the system failure rate associated with that software module can be

significantly reduced. The implication of this result is that, in order to design

an efficient EDM that is to be located in a particular software module, the values

of a set of critical variables must be ensured to be correct, i.e., the EDM must

contain such a set of critical variables. Indeed, when taken in conjunction with

the overarching outcomes of Chapter 4-5, this result serves to substantiate the

thesis that an efficient EDM consists of a set of critical variables.

The research presented in Chapters 4-6 support the thesis that an efficient

EDM contains a set of critical variables. This is asserted on the basis that (i)

the metric suite proposed in Chapter 4 is able, through application of an ap-

propriate threshold, to identify critical variables, (ii) the approach proposed in
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Chapter 5 allows efficient EDMs to be constructed based only on the critical

variables identified by the importance metric, and (iii) using the dependability

enhancement approach proposed in Chapter 6 the criticality of identified vari-

ables can be shown to extend across a software module such that an efficient

EDM designed for that software module should seek to ensure the correctness

of the identified critical variables.

At this point it should be noted that the stated thesis does not imply that

any EDM capturing an appropriate set of critical variables will yield the high-

est possible efficiency properties. Ideally it would be possible to ensure the

correctness of all program variables in a software module for all locations in

that software module. However, as discussed in Chapter 1, this is infeasible.

Indeed, even if this were feasible, it may not provide perfect error detection

capabilities [76]. The use of critical variables in the design of EDMs represents

an approach for providing an approximate solution to this problem, whereby far

fewer program variables, hence locations, must be considered in the design of

efficient, yet possibly imperfect, EDMs. This means that, even when an EDM

captures all critical variables, its efficiency properties can still be improved by

the suitable incorporation of further program variables. Indeed, the benefit of

capturing critical variables, as it has been shown in this thesis, is that these

program variables enable high levels of efficiency to be achieved, which means

that the subsequent incorporation of further program variables will yield only

small improvements in EDM efficiency.

The approach presented in Chapter 6 built on the results of previous chapters

to demonstrate that, in order to design an efficient EDM that is to be located

in a particular software module, the values of a set of critical variables must be

ensured to be correct, i.e., the EDM must contain such a set of critical variables.

This approach relied on the importance metric, proposed in Chapter 4, and

the application of a suitable threshold for the identification of critical variable

variables. However, whilst this approach was fit for this purpose, the existence of

a set of critical variables could also have been established by alternative means.

135



7. Discussion

Most notably, the application of feature subset selection techniques would allow

the underlying set of features of the data sets collected during fault injection

analysis, i.e., a set of critical variables, to be identified for incorporation in error

detection predicates of EDM [106] [114] [171]. However, feature subset selection

was not used in this thesis because, in addition to providing a mechanism for the

identification of critical variables, such techniques would also seek to minimise

the set of identified critical variables. As it was the intention of the research

presented to support the thesis that an efficient EDM consists of a set of critical

variables, the cardinality of the identified set of critical variables, assuming that

all program variables in a software module had not been identified as critical,

was not a primary concern.

7.2 Applications

There are two main practical applications of the thesis that an EDM consists

of a set of critical variables, one of which concerns the design of EDMs, whilst

the other concerns the location of EDMs. Firstly, the identification of critical

variables serves to simplify the design of efficient EDMs, as the state space that

a software engineer must consider in the design of error detection predicates is

dramatically reduced. Indeed, the identification of critical variables is comple-

mentary to existing experience and specification-based approaches for the design

of error detection predicates, in that it can easily be combined with other ap-

proaches in an attempt to improve their efficiency or effectiveness through the

aforementioned state space reduction. Secondly, following the identification of

critical variables, their occurrence in a software module can be used to inform

the location of EDMs. Indeed, such an application of the stated thesis is demon-

strated by the approach proposed in Chapter 6, where occurrences of critical

variables were use to guide the enhancement of software dependability. This

potential application can serve to complement existing approaches to the design

and location of EDMs, as the locations associated with occurrences of critical
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variables may govern the error detection predicates that may be implemented

and the efficiency that can be achieved by a proposed EDM.

7.3 Limitations

The thesis that an efficient EDM consists of a set of critical variables has been

substantiated by the research presented in Chapters 4-6. However, aside from

the issues raised above, there remain limitations of this thesis that must be ac-

knowledged in the context of the work presented. These limitations are discussed

below. Note that the limitations of the approaches proposed in Chapters 4-6

are discussed in their respective chapters, whereas the issues raised here focus

specifically on the limitations of stated thesis.

The design of efficient EDMs is a central theme of the research presented

and the thesis that an efficient EDM consists of a set of critical variables. How-

ever, the notion of efficiency applied in this thesis is relatively inexact, in that no

threshold was defined, with respect to the adopted efficiency measures, to deter-

mine whether a particularly EDM could be viewed as efficient. The motivation

of this inexact characterisation of efficiency was based on the fact that, whilst

the maximum efficiency that can be achieved by an EDM is well know, i.e.,

TPR = 1, FPR = 0 and AUC = 1, this maximum level of efficiency may not

always be achievable, particularly in situations where read and write constraints

are places on program variables [76]. As it is not possible to determine when

the maximum achievable efficiency has been reached, this means that a precise

characterisation of efficiency, even on a per software system basis, may discount

EDMs that are as efficient as they could be for a particular location, thereby

violating the intention of the EDM design problem as discussed in Chapter 2.

As mentioned previously, the thesis that an efficient EDM consists of a set

of critical variables does not imply that every variable in that set of critical

variables must be captured by an EDM in order for it to be efficient or that
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doing so would result in the design of an efficient EDM. Indeed, the stated thesis

could less succinctly but equivalently be rephrased to state that an efficient EDM

consists of a subset of program variables from a software module that can be

considered critical. This restatement of the thesis is less succinct but emphasises

the point that not every critical variable in a software must be captured in order

for an EDM to be efficient at a specific location.

The thesis that an efficient EDM consists of a set of critical variables relies on

the existence of some notion of criticality. The research presented in this thesis

focused on a specific notion of criticality, as characterised by the measurement

of spatial impact, temporal impact and system failure rates. However, whilst

demonstrating that a notion of criticality by can be devised to support the

stated thesis is sufficient for the validation of the stated thesis, this work does

not completely specify the notion, or each and every notion, of criticality that is

consistent with the stated thesis. Indeed, an exploration of notion of criticality

with respect to program variables and the stated thesis represents an interesting

area for future work in EDM design.

Finally, though it is not an inherent limitation of the research presented,

the thesis that an EDM consists of a set of critical variables has relatively few

implications for the effective composition of error detection predicates. That

is, understanding that a set of critical variables must be identified and incor-

porated by an error detection predicate does not, by itself, enable the design

of an efficient EDM. This thesis limitation is somewhat circumvented by the

approach proposed in Chapter 5, in that this approach was shown to be capable

of generating efficient error detection predicates on the basis of critical critical

variables, though it should be noted that the approach provides little specific

insight into the general process of composing efficient EDMs and does not pro-

vide any guarantees with respect to the generation of a single most efficient

error detection predicate for a location.
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Having discussed the implications, applications and limitations of the thesis

that an efficient EDM consists of a set of critical variables, as well as relating

the research presented to this thesis, it remains to conclude with a summary of

achievements and a discussion of future work. This concluding summary and

discussion is the focus of the final chapter of this thesis.
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CHAPTER 8

Conclusion and Future Work

To this point a body of research, analysis and discussion has been presented

to substantiate the thesis that an EDM consists of a set of critical variables.

Moreover, the implications of the contributions made with regard to the design

of efficient EDMs have been drawn together to provide a sound basis to support

this notion. In this chapter a summary of these research contributions and

a discussion of future work relating to the EDM design problem is provided

as a conclusion to this thesis. In particular, the research contributions made

throughout Chapters 4-6 are summarised with respect to the stated thesis, whist

the discussion of future work focuses on issues such as the inheritance and

propagation of criticality among program variables, and the potential for the

location of EDMs to be based on achievable efficiency.
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8.1 Thesis Summary

In this thesis the notion of program variable criticality has been used to address

the problem of EDM design. That is to say, it has been shown that efficient

error detection predicates for specified locations, hence EDMs, can be generated

based only on critical variables, where this notion of criticality has been shown

to extend across software modules associated with these variables. These results

were presented in the context of the thesis that:

Where an efficient EDM exists under the defined system model,

that efficient EDM consists of a set of critical variables.

The key implications of this thesis are that, if an appropriate set of critical

variables can be determined, then (i) the problem of EDM design is dramatically

simplified, as the state space that a software engineer must consider in the design

of error detection predicates is dramatically reduced, and (ii) the occurrence of

critical variables can be used to inform the the location of EDMs.

8.2 Contribution Summary

In support of the stated thesis, the following specific contributions were made

to the design of efficient error detection predicates for EDMs:

• A metric suite that generates a relative ranking of variables with respect

to the notion of criticality applied throughout this thesis was proposed, as

well as a fault injection approach for its evaluation. The metric suite was

proposed with a view to facilitating the identification of critical variables.

This identification is performed through the application of a threshold to

the relative ranking generated, thus allowing a cost-benefit analysis to be

undertaken in the design of error detection predicates.

• A systematic approach for the design of efficient error detection predi-

cates was proposed based on the application of data mining techniques to
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fault injection data sets. As well as being shown to provide an effective

mechanism for the generation of efficient error detection predicates for

real-world, infinite-state software systems, this approach was also used to

demonstrate that error detection predicates generated using only critical

variables achieve similar levels of efficiency as those generated using all

program variables. This result is central to the stated thesis, as it implies

that the set of critical variables identified by the proposed metric suite

can be used to capture aspects of software system correctness.

• A methodology for the design of dependable software systems based on

the replication of only critical variables using software wrappers was pro-

posed and applied in order to demonstrate that significant dependability

enhancements can be achieved through the protection of a relatively small

number of critical variables. This result served to further substantiate

the thesis that efficient EDMs consists of a set of critical variables, as the

protection of relatively few program variables using error detection pred-

icates that are known to be efficient, e.g., majority voting and variable

replication, yields significant improvements in system failure rates.

The contributions detailed above represent novel work in the field of EDM

design, where each of these contributions can be drawn together in support

of the thesis that an efficient EDM consists of a set of critical variables.

8.3 Future Work

The design of efficient EDMs remains a key challenge in the development of

fault tolerant software systems, particularly in the content of real-world, infi-

nite state software systems. Through a focus on the criticality of variables and

approaches for the generation of efficient error detection predicates, the research

presented in this thesis has addressed this problem from a novel variable-centric

perspective, allowing steps to be taken towards the design of efficient EDMs.

Despite this progress, there are many areas for future work relating to the EDM
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design problem, many of which are related to the notion of program variable

criticality and the approach for the generation of efficient error detection mech-

anisms proposed in this thesis. Several areas for future research relating to the

work presented in this thesis are discussed below.

Understanding the Inheritance of Criticality: The notion of program

variable criticality established in this thesis is based on the potential worst-case

impact of a program variable with respect to corruption in the spatial and tem-

poral domains, as well as the capability of the program variables to induce a

system failure when corrupted. Under the adopted system model, actions per-

formed in the execution of a software system will necessarily have an impact

on the criticality of a particular variable across different locations in a software

module. Developing an understanding of how criticality is inherited through

interactions between program variables, i.e., actions involving more than one

program variables, would yield several positive results. In particular, such an

understanding may facilitate the identification of the smallest subset of criti-

cal variables that should be incorporated by the error detection predicate of an

EDM. In other words, it would be possible to simplify error detection predicates

based on the identification of program variables where criticality originates.

This identification may then lead to another potential benefit of understanding

the inheritance of criticality among program variables, which is the location of

EDMs based on the origins of criticality within a software module. This is sub-

tly different from using occurrences of critical variables to inform the location

of EDMs, as the identification of an origin of criticality may not necessarily be

an ideal location for an EDM. For example, it is reasonable to speculate that an

effective approach to EDM location may be to allow criticality to be inherited

by variables to a particular threshold before an EDM must ascertain that the

current system state is permissible. Aside from facilitating the simplification

of error detection predicates and the location of EDMs, an understanding of

how criticality is inherited among program variables could also serve to reduce
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the execution overheads associated with the checking of error detection predi-

cates. Indeed, whilst such considerations are beyond the scope of the research

presented in this thesis, in order to appreciate this potential benefit it suffices

to acknowledge that the cost, in terms of runtime overhead, associated with

program variable accesses in non-uniform.

Locating EDMs based on Achievable Efficiency: In this thesis a system-

atic approach for the generation of efficient error detection predicates has been

proposed. The premise of this approach was that, as fault injection analysis

captures relationships among the program variables and the success of software

system executions, data mining techniques can be applied to learn these rela-

tionships and how they impact the success of software executions, with a view

to applying the derived relationships as error detection predicates for failure-

inducing software system states at a specified location. If the specified location

is varied then the levels of efficiency achieved by the associated EDMs may

also vary. A possible approach to the EDM location problem would be to base

the location of EDMs on the level of efficiency that can be achieved by gener-

ated EDMs. That is, following the generation of a set of EDMs for different

locations in a software module, the EDMs at the locations that provide the

greatest level of efficiency with respect to error detection could be deployed to

impart software dependability. This would allow the EDM location problem to

be circumvented and ensure that the EDMs deployed in a software system were

efficient by design. A caveat on this approach is that locating EDMs based on

achievable efficiency presumes that the measured efficiency is accurate, which

itself depends on the representativeness of the adopted fault model.

Fault Models for the Design of Efficient EDMs: The fault model adopted

during a dependable evaluation expresses the set of faults, and hence potentially

erroneous states, that a system must be able to tolerate. The transient data

fault model, as adopted in this thesis, is one of many possible fault models.
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However, as mentioned previously, there is no guarantee that error detection

predicates generated under one fault model will be effective under another fault

model. With this in mind, it is important to understand how the selection of

a fault model impacts the efficiency of the error detection predicates that can

be generated by the approach proposed in this thesis. If such an understanding

could be gained then it may be possible to determine the most effective, with

respect to the efficiency of the EDMs derived, and representative, with respect

to occurrences of faults in real-world software systems, fault models for the gen-

eration of error detection predicates. Indeed, it is anticipated that determining

the most appropriate fault models for the generation of error detection predi-

cates would facilitate the adoption of the contributions made in this thesis for

the design of efficient EDMs.
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