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Abstract. Intra-class variability in the texture of samples is an im-
portant problem in the domain of histological image classification. This
issue is inherent to the field due to the high complexity of histology im-
age data. A technique that provides good results in one trial may fail
in another when the test and training data are changed and therefore,
the technique needs to be adapted for intra-class texture variation. In
this paper, we present a novel wavelet based multiresolution analysis
approach to meningioma subtype classification in response to the chal-
lenge of data variation. We analyze the stability of Adaptive Discriminant
Wavelet Packet Transform (ADWPT) and present a solution to the issue
of variation in the ADWPT decomposition when texture in data changes.
A feature selection approach is proposed that provides high classification
accuracy.

1 Introduction

Histology image analysis presents a new set of challenges to the scientific commu-
nity. Histology images are real world data considerably different from synthetic
textural data which is acquired using controlled procedures. Texture in histology
images is non-stationary i.e. different areas in an image can have different tex-
tural properties which may represent different textural classes. Moreover, intra
class variation amongst the samples belonging to the same class may be high and
to make matters worse inter class differences amongst the samples may be low.
This is true in the case of meningioma subtype images, as shown in Figure 1.
Meningiomas account for about 20% of all brain tumours and exist in three differ-
ent grades of malignancy (WHO Grade I-III), most being benign (over 80%) but
some showing increased propensity to recurrence and malignancy. The problem
of meningioma subtype classification essentially involves discriminating between
four different subtypes of meningiomas. As can be seen in Figure 1, there can be
large variation in the texture of images belonging to the same meningioma class.
Moreover, there is also the problem of low inter-class differences amongst the
texture samples. For instance, transitional resembles fibroblastic and fibroblas-
tic resembles meningotheliamatous. This can be seen in the case of fibroblastic
and meningiotheliamatous subtypes for first samples from left in (b) and (c) in
Figure 1. This variation raises the issue of how a texture classification technique
responds to the challenge of variability in texture samples belonging to the same
textural class. A feature representation and extraction technique that works for
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one set of data may fail completely for another set. To resolve this issue for
meningioma classification, we have taken up the Adaptive Discriminant Wavelet
Packet Transform (ADWPT) proposed by Qureshi et al. [1] and improved it to
resolve the problem of texture variation. The proposed method is more robust
and at the same time produces higher accuracy results.

a. b.

c. d.

Fig. 1. Various Meningioma Images belonging to each subtype a. Meningiothelial, b.
Fibroblastic, c. Transitional, d. Psammomatoes

Some work on meningioma subtype clustering was carried out by Lessman
et al. [2], who described how self organizing maps can be combined with wavelet
transforms for effective clustering of meningioma images. Qureshi et al. [1, 3]
have performed classification of meningioma subtypes using the wavelet pack-
ets based ADWPT. Wirjadi et al. [4], on the other hand, perform classification
between two meningioma subtypes using cell shape analysis. Shape and struc-
tural analysis of constituents of images has found wide application in histology
image analysis [5]. Numerous segmentation techniques such as thresholding [6,
7], adaptive thresholding [8, 9], watershed algorithms [10], fuzzy clustering and
active contours [11] have been used for the segmentation of nuclei and glands
in histology images. But there are issues in using each of these techniques as
thresholding tends to work better for uniform images and produces inconsistent
results if the variability within the image sets is high as stipulated by Gurcan
et al. [12]. Watershed algorithms tend to suffer with the same problem. Active
contours deal better with the variability but multiple overlapping objects pose a
difficult challenge for active contours as they may be enclosed to form one object.
As can be seen from the images in Figure 1, meningioma images suffer from all
the issues mentioned above. There is considerable variation within the texture
samples and overlapping of structural components is frequent as can be seen for
meningiothelial and psammomatous samples. Furthermore, the high intra-class
variation and low inter-class variation would pose serious issues for any segmen-
tation technique as the segmented constituents would differ greatly for different
image samples belonging to the same class. On the other hand, techniques such
as cell graphs [13], gray-level co-occurrence matrices [14, 15], Fourier transforms
[16], wavelet transforms [2, 17], multi-wavelets [18] and fractal geometry [19–21]
have found application in the domain of histology image classification. Classifica-
tion algorithms based upon these techniques aim to perform a holistic structural
or textural analysis of histology images rather than constituent parts obtained
using segmentation, just as ADWPT does.



As indicated earlier, we aim to solve this problem of texture variation by
employing the adaptive wavelet based analysis approach developed in [1, 3] and
improve it so that it is robust to inter and intra-class variation. The advantage
accrued from a multi-resolution analysis is that it helps in resolving the issue of
texture complexity by decomposing the texture at multiple spatial and frequency
resolutions. This implies that each subband in a wavelet decomposition repre-
sents different textural characteristics in terms of the spatial frequency content
at a particular spatial resolution. Another interesting property of wavelet sub-
band decomposition is that it produces sparse representations which get sparser
after every level of filtering. High magnitude coefficients in an otherwise sparse
subband correspond to presence of specific high frequency content in the corre-
sponding image. These high frequency coefficients in a subband as a group form
textural features that may correspond to textons [22]. As we shall soon see, this
localization of features in various subbands using ADWPT will aid in achiev-
ing high classification accuracies. The ADWPT analyzes a histological image at
various scales and spatial resolutions, as depicted in Figures 2 and 3 in Section
2.3, in the same way as neuropathologists carry out their analysis using a micro-
scope. It determines the spatial resolutions which are most useful for analyzing
a histology image and identifies them as the most discriminant subbands.

In this paper, we investigate the stability of the ADWPT and explore as to
how it responds to the challenge of data variation. If there is a lack of stability
in the decompositions produced then spatial frequency resolutions that are most
useful may not be identified and hence the features that are optimal for classifi-
cation of image subtypes may not be found. We resolve this issue by acquiring
the most stable subbands. An estimate of how often a subband is decomposed,
when the data changes, is obtained and only those subbands are selected which
are decomposed more frequently. We show that the most stable subbands, i.e.
subbands that are selected most often, produce the best results. We also intro-
duce Fisher’s discriminant as the distance function of choice for selecting the
most discriminant subbands. Subband selection using Fisher’s discriminant as
the distance function in the algorithm in Section 2.3 produces better classifica-
tion results.

2 The Classification Algorithm

In order to acquire an ADWPT-based representation, a series of steps must be
carried out. The computation of ADWPT involves the following steps:

1. Acquire a Full Wavelet Packet Transform (FWPT) for each image in the
texture sample.

2. Compute Multi-resolution Wavelet based Texture Templates (MWTT) for
each texture class.

3. Determine discrimination power of each subband in MWTT and then per-
form subband selection based upon the discrimination power of a subband.

2.1 Full Wavelet Packet Transform (FWPT)

A full wavelet packet transform is simply the wavelet transform of both the low
and high pass subbands at all levels. A wavelet transform for an image or 2-D



signal is carried out with a scaling function (low pass filter) Φ(x, y) and three
wavelet functions Ψ i(x, y), where i = 1, 2, 3, which may be represented as,

Φ(x, y) = φ(x) ∗ φ(y), (1)

Ψ1(x, y) = φ(x) ∗ ψ(y), Ψ2(x, y) = ψ(x) ∗ φ(y), Ψ3(x, y) = ψ(x) ∗ ψ(y), (2)

where φ represents the scaling function and ψ represents the wavelet function.
Ψ1(x, y) and Ψ2(x, y) perform wavelet filtering in one direction and scaling in
another leading to horizontal and vertical details, whereas Ψ3(x, y) leads to the
diagonal detail with wavelet filtering in both directions. The approximation and
three detail subbands would then be given by,

Wd+1,2p,2q = Φ ∗Wd,p,q (3)

Wd+1,2p+1,2q = Ψ1 ∗Wd,p,q (4)

Wd+1,2p,2q+1 = Ψ2 ∗Wd,p,q (5)

Wd+1,2p+1,2q+1 = Ψ3 ∗Wd,p,q (6)

where d represents the depth of the wavelet tree and p, q are the frequency indices
of the subband. W0,0,0 = I and corresponds to the image being analyzed. All
subbands are decomposed to produce further approximation and detail subbands
up to a predefined level J to produce a full wavelet packet transform (FWPT)
and the FWPT tree is then pruned in a bottom-up fashion to obtain the most
discriminant representation, as described in Section 2.3.

2.2 Multi-resolution Wavelet Texture Templates (MWTT)

Multi-resolution Wavelet Texture Templates (MWTTs) are obtained using a
pseudo-averaging of the psuedo-probability density estimates (ppde) of a partic-
ular subband across all the training samples of a particular class. The ppde of a
subband is given by,

sd,p,q(m,n) = x2
d,p,q(m,n)/

M−1∑

i=0

N−1∑

j=0

x2
d,p,q(i, j) (7)

where xd,p,q(m,n) is the coefficient at location (m,n) in the subband Wd,p,q of
size M ×N at depth d and location p, q. The MWTT is computed by iteratively
taking the pairwise average of the ppde of the same subband for all training
images. It is important to note that these are computed for each class separately,

Aa2
d,p,q(m,n) =

sa1
d,p,q(m,n) + sa2

d,p,q(m,n)
2

, i = 2 (8)

Aai

d,p,q(m,n) =
Aai−1

d,p,q(m,n) + sai

d,p,q(m,n))
2

, i = 3 . . . Na (9)

where sai

d,p,q(m,n) is the (m, n)th value of the ppde of a subband Wd,p,q for
the image ai belonging to class a and Na is the number of training samples
available for texture class a. The process is repeated for all subbands of the
FWPT. It is important to note that an average of two subbands is computed



per iteration. The objective is to acquire a basic model of probability density
values for each class so that differences between the classes can be estimated.
The averaging mechanism is referred as pseudo-averaging as it is different from
standard averaging. Pseudo-averaging is done to account for any sudden rise or
fall in the probability density estimates. Figure 2 shows some subbands of the
MWTTs obtained using the pseudo-averaging approach. It must be noted here
that due to the high intra-class variability in the textures and the dependence
of MWTTs on the images being used, the templates change with the data.
These templates help in overcoming the problem of data variation because the
FWPT produces sparse representations with textural data localized both in
space and frequency. Hence, the textural data is decorrelated i.e. filtered into
various domains with low frequency and high frequency content found separately
in different subbands. We use these subbands to estimate the occurrence of
useful textural features over the sample space using the pseudo-averaging of the
ppdes describe above. The MWTT is an estimate of the textural characteristic
represented by a subband over the entire sample space for a textural class. Some
of the template subbands at various decomposition levels are shown in Figures
2 and 3.

a. b.

c. d.

Fig. 2. Texture templates obtained using psuedo-averaging of subbands at a higher
spatial resolution for training samples of a. Meningiothelial b. Fibroblastic c. Transi-
tional d. Psammomatous Meningioma



a. b.

c. d.

Fig. 3. Texture templates obtained using psuedo-averaging of subbands at a lower spa-
tial resolution for training samples of a. Meningiothelial b. Fibroblastic c. Transitional
d. Psammomatous Meningioma

2.3 Best Basis Selection based upon Discrimination Power of a
Subband

The calculation of the most discriminant decomposition is of paramount im-
portance for wavelet packets basis selection. This is acquired by using the sum
of pairwise distances between MWTTs for all texture classes as an objective
function and then selecting the subbands with a higher value using dynamic
programming [23]. The Fisher distance D is used for the purpose which is a
departure from the work of Qureshi et al. [1] who have preferred using Hellinger
distance. The Fisher distance between two MWTTs for classes a and b can be
computed as follows,

Da,b
d,p,q =

(µa
d,p,q − µb

d,p,q)
2

(σa
d,p,q)2 + (σb

d,p,q)2
(10)

where µa
d,p,q and µb

d,p,q represent the mean of the MWTT subband Wd,p,q for
classes a and b and σa

d,p,q and σb
d,p,q represent the variance of the MWTT sub-

band Wd,p,q for classes a and b respectively. Fisher distance is very different from
Hellinger as it does not compute the difference between individual values of a
subband but uses the statistical properties of the corresponding MWTTs repre-
senting each texture class to determine the discrimination power of a subband.
As we shall soon see, the decompositions obtained using Fisher distance generate
much better results compared to those produced by the Hellinger distance. The
overall discrimination power Pd,p,q may be computed by,

Pd,p,q =
∑

(a,b)∈O

Da,b
d,p,q (11)

where O is the set containing all the pairwise class combinations of the 4 dif-
ferent classes (|O| = 6) for subband Wd,p,q. The process is repeated for all the



corresponding MWTT subbands at various levels. The algorithm for the best
basis selection is given below.

1. Compute the J-level FWPT as described in Sec. 2.1 for each texture class.
2. Compute the MWTTs for all subbands and for all classes using (7)-(9).
3. Calculate the discrimination power Pd,p,q ∀ d, p, q using (11).
4. Initialize d = J − 1.
5. For all 0 ≤ p < 2d, 0 ≤ q < 2d, do the following:

5a. If Pd,p,q < max[Pd+1,2p,2q,Pd+1,2p,2q+1,Pd+1,2p+1,2q,Pd+1,2p+1,2q+1]
Keep the four child subbands at depth d + 1 where Pd,p,q represents the
discrimination power of a node at position p, q and depth d

5b. Otherwise keep the parent at depth d and remove the child subbands.
6. Decrement d by 1.
7. If d < 0, then stop, otherwise goto step 5.

3 Stability of ADWPT

The meningioma histology image data is composed of a total of 960 images for
4 meningioma subtypes with 5 different patients per subtype. The sample data
is identical to the one used by Qureshi et al. in [1, 3] with the difference being
only in the way how the original data is divided. We divide the original image
data of 1300×1030 in blocks of 512×512 and move the sampling window by 256
pixels first in the horizontal direction and then in the vertical direction. After
each increment a subimage of 512 × 512 is extracted from the original image.
Out of the original 4 images per patient, a total of 48 images are produced.

We select 4 patients from each subtype, leaving one out, and use them for
MWTT construction. The process of computation of a decomposition for each
test trial containing 4 different patients is carried out. 256 different combinations
of patient’s data using leave-one-out method are used to produce 256 ADWPT
decompositions. These decompositions are combined to produce a union decom-
position, such as the one shown in Figure 4. This union decomposition contains
all the subbands that are ever decomposed for the distance function and the
given test-trial data. The process of union of basis B from various test-trials is
given by,

F∗ =
NB⋃

i=1

B∗i = B∗1
⋃
B∗2

⋃
. . .B∗NB (12)

where NB is the total number of ADWPT decompositions obtained for a given
trial and B∗i is the ith ADWPT. The decompositions obtained using the above
methodology are often similar, but sometimes they differ significantly. The Fisher
distance in (10) produces a total of 16 different and unique decompositions. We
obtain a measure of stability for each subband decomposed in terms of the
probability of it being decomposed in a test-trial run. The stability of a subband
is computed as,

Sd,p,q = Nd,p,q/NT (13)

where Nd,p,q is the total number of times, the subband Wd,p,q is found in the
decompositions produced for the various trial runs using different patient’s data



combinations. NT is the total number of trial runs which is equal to 256. A
high value of Sd,p,q means that the subband is consistently regarded by the basis
selection part of the algorithm (Section 2.3) as being discriminant and also robust
as it is less likely to be highly dependent on the variation in data and texture
samples. The decomposition showing stability values Sd,p,q for each subband is
given in Figure 4.

In Figure 4, the stability Sd,p,q of all subbands is shown which is given in
the magenta colour whereas the cyan colour denotes the standard deviation of
its frequency of occurrence. As can be seen from Figure 4, many subbands have
a high frequency of occurrence but there are some which can be seen to be less
robust. The subbands with low stability values impact the classification accuracy
in a negative manner. We will see in the results section that discarding less
frequent subbands produces better results. The colour of the subband indicates
its discrimination power. The lighter the colour the more discriminant it is with
black being least discriminant and white being the most discriminant subband.
The most discriminant subband represents the spatial frequency resolution that
best discriminates between the meningioma subtypes under study. The subbands
at those spatial frequency resolutions do not show much to the naked eye.

3.1 Stability for Subband Feature Selection

The selection of subbands from a given Full Wavelet Packet Decomposition based
upon the discriminant function as employed in [1, 3, 17] is inherently a selection
of features. Jain et al. presented a summary of all the various feature selection
methods in [24] and found Sequential Features Selection as the best. Bhalerao
and Rajpoot [25] described how wavelet based feature selection affects classifi-
cation accuracies.

Stability has a direct impact on classification accuracy as it has an effect
on feature selection. The more stable a subband, the more dependable it is for
classification as it has been selected more often. In this paper, we use stability of
the subbands in a decomposition to determine a mechanism for feature selection
and derive a set of most probable discriminant features. This requires selecting
the subbands that have maximum stability Sd,p,q which may be expressed as,

F∗S = {Wd,p,q ∈ F∗|Sd,p,q = 1} (14)

where F∗S represents the set of most stable and discriminant subbands. A sub-
band that is stable is inherently discriminant since the subband selection in
ADWPT is based upon selecting the most discriminant subbands in an FWPT
decomposition. Therefore, a subband which is selected in all decompositions for
different texture data in the various trial runs has a relatively high discrimination
power.

4 Results and Discussion

A leave-one-out mechanism was followed for classification of meningioma sub-
types. At each trial four patients’ data are left out (one belonging to each class)
and the rest of the patients are used for training. There are 48 images per pa-
tient and using four patients data per meningioma subtype yields 192 images per
subtype for training while 48 images per subtype are used for testing. After the



stability analysis, we have two choices: either to select all the subbands that are
ever decomposed or only the ones that are decomposed always. For comparative
purposes we first take a feature from each subband that is decomposed at least
once and refer to them as all the subbands represented by feature set F∗. We
then select only the subbands that have mean frequency of occurrence of 1 and
refer to them as the most stable subbands represented by F∗S . Haralick’s [26]
Gray Level Co-occurrence Matrix (GLCM) based features are used over each
subband to extract a feature set. The GLCM is computed in four directions i.e.
0o 45o, 90o, 135o while the distance remains as 1. The GLCM features were
computed for various number of bins with 32 giving the best results. The results
for 5-fold cross validation with one patient excluded per meningioma from the
template construction and classification stage are presented in Table 1. Support
Vector Machine (SVM) was the chosen classifier for the purpose and the Matlab
version of LibSVM provided by Chang and Lin [27] was used in our analysis.

Test Trial # Features N AccF AccM AccP AccT AccOverall

1 F∗ 247 65 83 94 73 79
F∗S 129 69 75 94 85 81

2 F∗ 247 92 98 100 75 91
F∗S 143 92 100 100 77 92

3 F∗ 244 83 67 100 92 85
F∗S 109 90 69 98 88 86

4 F∗ 244 67 100 96 94 89
F∗S 109 69 100 94 83 87

5 F∗ 244 88 98 98 88 93
F∗S 109 83 96 100 92 93

Avg F∗ 245 79 89 97 84 87
(proposed) F∗S 120 80 89 97 85 88

Avg∗ D∗ [1] 58 91 63 99 77 82

Table 1. Classification accuracy results for all four subtypes F=Fibroblastic,
M=Meningiotheliamatous, P=Psammomatous and T=Transitional. N denotes the to-
tal number of features. Avg∗ indicates the best cross validated results produced by
Qureshi et al. [1] with the most discriminant subbands indicated by D∗.

As can be seen from Table 1, the classification accuracy improves if the
most stable subbands are used. Although the feature space is reduced greatly,
the classification accuracies still improve. In comparison with the best results
reported by Qureshi et al. [1], our results are improved but there is an increase
in the number of subbands and the classification accuracies for the fibroblastic
and psammomatous subtype fall but the results for meningiotheliamatous and
transitional subtypes are greatly improved. The overall classification accuracy
in our method is improved by 6%.

The Table 1 shows how the number of subbands selected change from all
subbands to most stable subbands in the various test/trial runs. Although, the
number of subbands selected falls by more than 50%, the classification accuracy
improves in most cases. Hence, the improved and robust ADWPT offers a mech-
anism for overcoming the issue of data variability by obtaining a set of subband
which represent significant textural characteristics that remain consistent even



when the data changes. Moreover, as can be seen from the results, the most
stable subbands selected provide higher classification accuracies. Therefore, it
can be safely concluded that the robust ADWPT is a good approach for texture
classification in problems where high intra-class and low inter-class variation is
found.

5 Conclusions

In this paper, we have presented a mechanism for obtaining a more robust
ADWPT based representation that overcomes the issue of intra-class variability
in histology images using the union of various decompositions. We show how
subbands can be selected from the union set of subbands using stability as a
measure. Although the feature space is reduced by 50% using our technique, the
classification accuracies still improve, showing that the subbands selected using
our novel stability based approach represent the textures under study better
than the simple ADWPT. Moreover, it is shown that the novel robust ADWPT
is a stable and efficient technique for classification of images for complex texture
classification problems such as meningioma subtype classification.

An important factor that affects the classification accuracy is the discrimi-
nation power of the subbands whose features are included in the feature vector.
When the most stable subbands are selected, in essence the most discriminant
subbands are selected as well since these subbands were found to be highly dis-
criminant in all the decompositions. However, in the most stable decomposition,
lesser stable subbands are ignored. These can be included to see how they effect
the classification accuracy. This would be the subject of future study.
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Fig. 4. Stability of the subbands in a union decomposition of 256 ADWPT decompo-
sitions obtained using the Fisher Distance (the lighter the subband the more discrimi-
nant)


