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Abstract 

The transient variation of the shielding gas present in the alternating shielding gas 

process produces a dynamic action within the liquid weld metal. Flow vectors 

opposite in direction have been reported due to the various forces acting on the weld 

metal when argon and helium are present, however no data has been provided to 

substantiate this claim. This part of the study evaluates the various forces acting on 

the liquid weld metal when using argon and helium and their effects discussed.  

It was determined that argon produces a greater vertically downward force in the 

central region than helium for both the arc force and Lorentz force. While helium 

produces a greater radially outwards force at the pool surface than argon due to 

plasma shear stress and Marangoni convection. In addition, the buoyancy force, i.e. 

the vertically upward force in the central portion of the weld metal, was greater for 

helium. 

 

List of Symbols 

arcP   Arc pressure (stagnation pressure at anode) (N/m2),  

gρ  Density of the shielding gas (kg/m3) 

v  Velocity (m/s) 



pµ  Dynamic viscosity of the arc plasma (kg/(m.s)) 

I  Current (A) 

J  Current density (A/m2) 

pτ  Plasma shear stress (N/m2) 

r  Distance in the radial direction (m) 

arcF  Arc force (N) 

R  Radius of arc (m) 

LF  Lorentz force (N/m3) 

B  Self-induced azimuthal magnetic field (N/(A.m)) 

0µ  Permeability of free space (N/A2) 

BF  Buoyancy force 

wρ  Density of the weld metal (kg/m3) 

g  Gravitational acceleration in negative z direction (m/s2) 

β  Thermal expansion coefficient of the weld metal (1/K) 

T  Local reference temperature (K) 

refT  Arbitrary reference temperature (K) (melting temperature) 

Ma  Marangoni number (dimensionless) 

δγ
δT  Temperature coefficient of surface tension (dyne/(cm.K)) 

ΔT  Temperature difference between centre and edge of pool surface (K) 

L  Characteristic length (mm) (distance from weld centreline to fusion boundary) 



mµ  Dynamic viscosity of the weld metal g/(cm.s) 

α  Thermal diffusivity (cm2/s) 

	  

Introduction 

The final weld geometry, in both gas tungsten arc welding (GTAW) and gas metal arc 

welding (GMAW), is influenced by the shielding gas used due to the unique arc 

characteristics each process generates. Fluid flow and heat flow are key factors in 

determining the final weld shape [1], with the direction of the liquid weld metal fluid 

flow being estimated based upon the various body forces acting upon it. The arc 

pressure distribution allows for the numerical derivation of various forces acting on 

the liquid weld metal including arc force, plasma shear and Lorentz force. In addition, 

the buoyancy force can also be determined numerically, whilst the surface tension 

gradient governs the Marangoni convection mode.  

Alternating shielding gases is a relatively novel method of shielding gas delivery, and 

has been shown to produce a range of benefits including productivity [2-4], geometry 

[4,5], distortion reduction [2,3,6] and mechanical property improvements [2,3]. The 

process involves discretely supplying two different shielding gases (to date, argon or 

an argon based mixture and helium) in order to take advantage of the beneficial 

properties of each gas. The advantages generated previously have been based upon 

three independent phenomena [7]: a) variation in weld pool fluidity, b) arc pressure 

variation, and c) arc pressure peaking, that create fluid flow vectors opposite in 

direction for argon and helium [5].  

Part 1 of this two part study discussed the effects that various welding parameters, 

i.e. welding current, shielding gas composition and pressure, tungsten electrode tip 

geometry, arc length and nozzle outlet diameter, have on the peak pressure and 



pressure distribution within the arc column. As a result of the arc pressure distribution 

and other mechanical/material properties being a function of the shielding gas 

configuration, it can be inferred that the body forces acting upon the weld metal will 

also be affected. The measurements conducted show that there is a variation in arc 

pressure during the alternating shielding gas process but disproved the arc pressure 

peaking effect when both argon and helium are present whilst alternating from one 

gas to the other.  

However, only limited data is available for the forces acting upon the liquid weld 

metal when using argon, with the equivalent data for helium being minimal. Thus, 

there is a requirement for data to validate the fluid flow assumptions in the alternating 

shielding gas process. Therefore, the aim of the present study is to evaluate the 

forces acting upon the liquid weld metal when using argon and helium, and describe 

the flow direction present when using each gas in order to more fully evaluate the 

flow regimes present when using alternating shielding gases. 

	  

Forces Acting on the Liquid Weld Metal 

A schematic diagram of the GTAW process and the forces acting on the liquid weld 

metal are shown in Figure 1. As can be seen, the arc force and Lorentz force are 

opposite in direction to the plasma shear and buoyancy force, whilst the direction of 

flow due to Marangoni convection is dependent upon the surface tension gradient.  

Plasma shear is due to the arc plasma moving radially outwards on the weld pool 

surface, causing a drag force, and is therefore a function of the dynamic viscosity 

and radial velocity of the shielding gas. Lee and Na [10] used numerical modelling to 

simulate the GTAW process and presented results for the plasma shear over a range 

of welding currents and electrode vertex angles. They determined that a maximum 



shear force occurred between 1 and 2 mm from the arc centreline, which for a 60° 

vertex angle they found to be approximately 15, 75 and 155 N/m2 for a 100, 200 and 

300 A welding current respectively. Hu and Tsai [11] also used numerical modelling 

to simulate a GMAW arc and found that a plasma shear of approximately 90 N/m2 

was produced for a welding current of 220 A. 

The arc force is defined as the force of the arc plasma impinging upon the weld pool 

surface for which there are several methods of determining; experimentally measure 

the arc force using a torsion bar and displacement transducer [8], or numerically 

integrate the arc pressure over the impingement area of the arc [9]. Lin and Eagar [9] 

presented arc force data for a range of welding currents and electrode vertex angles 

whilst using argon, showing that the arc force is proportional to the square of the 

current.  

The Lorentz (or electromagnetic) force is one of the driving forces for fluid flow in the 

weld pool [12-15]. Kou and Wang [12] demonstrated using 3D mathematical 

modelling, and by considering various driving forces individually (electromagnetic, 

buoyancy and surface tension), that the electromagnetic force produced deeper 

penetration than those attributed to the buoyancy force or surface tension effects. 

Computational simulations generally include the effect of buoyancy and surface 

tension on the weld metal, however, modelling only has only been used to simulate 

the driving forces individually or as part of a combination of driving forces, and the 

effect of the shielding gas has never been considered. Kou and Sun [13] 

demonstrated experimentally using alternative heat sources that the buoyancy force 

produced shallower penetration in the central location but was radially wider than the 

Lorentz force.  



(a) 

(b) 

Figure 1: Schematic diagram of (a) GTAW process and (b) Forces acting on liquid 

weld metal 

 

Experimental Setup 

The forces acting on the liquid weld metal are derived from the arc pressure 

measurements generated in Part 1 of this research. 

Subsequent trials for the measurement of weld geometry were conducted on an 

automated welding rig, which moved the plate beneath a stationary welding torch. 

Trials were performed on 250 x 100 x 6 mm thick DH36 grade steel, with the travel 

speed being altered to maintain a constant power input due to the varying arc 

voltage; a variation of less than 1% was achieved whilst assuming a constant thermal 



efficiency of unity. The weld parameters for this element of investigation are shown in 

Table 1. 

Shielding Gas 

Configuration 

Arc Length 

(mm) 

Current 

(A) 

Voltage 

(V) 

Travel Speed 

(mm/s) 

Heat Input 

(J/mm) 

Argon 2 200 14.2 3.7 767.6 

Helium 2 200 19.2 5.0 768.0 

Alternating 

Shielding Gases 

2 200 16.8 4.4 763.6 

GTAW-P 2 200 (peak) 

100 (background) 

14.2 2.8 760.7 

Table 1: Weld parameters for bead on plate trials  

 

Results and Discussion 

Figure 2 shows the radial pressure distribution with respect to the arc centreline for 

argon and helium shielding gases generated in Part 1 of this research. The arc 

pressure distribution allows for the derivation of other important plasma aspects 

including the plasma shear force, arc force, and Lorentz force. 

 

Figure 2: Steady-state arc pressure 

Since the pressure reported is essentially the stagnation pressure of the plasma jet 

arrested at the anode plate surface, the velocity of the plasma jet can be determined 

using Bernoulli’s theorem, equation (1). While Lin and Eager [9] reported that 



equation (2), derived by Maecker based upon Bernoulli’s theorem, was the most 

consistent with their experimental data. 

arcP =
1
2 gρ

2v       (1) 

v = pµ IJ
g2πρ

      (2) 

Figure 3 shows the axial velocity distribution of the arc plasma at the plate surface. 

The shielding gas densities (0.05 kg/m3 for argon and 0.01 kg/m3 for helium) and 

dynamic viscosities (both approximately 2.75x10-4 kg/ms) were taken from graphs 

presented by Traida et al. [16] based on a temperature of the plasma of 10000 K 

adjacent to the plate surface [17]. The axial velocity of the helium plasma is 

considerably higher than that of argon, primarily due to the respective densities of the 

shielding gases. 

 

Figure 3: Steady-state plasma velocity 

The plasma shear stress can be calculated using equation (3). The plasma shear 

stress causes the liquid weld metal to flow from the centre of the pool surface 

towards the pool boundary and return beneath the pool surface.  

pτ = pµ
δv
δr

      (3)  



The plasma shear stress distribution on the plate surface is shown in Figure 4. As 

can be seen, the peak shear stress occurs away from the weld centreline, this is 

because the plasma shear stress is a function of the gradient of the radial velocity. 

The maximum shear stress for argon (~80 N/m2) was found to be 1 mm from the 

weld centreline, which was in agreement with Lee and Na [10] and Hu and Tsai [11] 

who reported values of ~75 N/m2 and ~90 N/m2 respectively at a distance 

approximately 1 mm from the weld centreline for argon.  

As can be seen in Figure 4, the maximum shear stress generated when using helium 

(~240 N/m2) was approximately three times greater than that of argon. This implies 

that the liquid weld metal is more likely to flow radially outwards at the pool surface 

when using helium than argon.  

 

Figure 4: Plasma shear stress distribution 

The arc force can be determined by integrating the arc pressure distribution over the 

area of the arc: 

arcF = 2πrParc dr0
R∫      (4)  

A diameter of 7.5 mm and 6.5 mm for argon and helium respectively was measured 

using image analysis software in Part 1. This allowed for the arc force over the 

effective area of the arc to be determined; an arc force of ~1800 dyne and ~1140 



dyne was calculated for argon and helium respectively. The arc force for argon is in 

good agreement with the experimental parabolic arc force relationship with current 

that Lin and Eagar [9] reported for argon. The arc force distribution, Figure 5, was 

determined by numerical integration being performed over 0.0625 mm segments 

using equation (4), and, as shown, the peak arc force occurs approximately 1-2 mm 

from the weld centreline. 

 

Figure 5: Arc force distribution 

The Lorentz force can be calculated using: 

LF = JB       (5)  

Where , the current density, and , the self-induced azimuthal magnetic field, can 

be derived using equation (6) and Ampere’s equation (equation (7)) respectively: 

J = arcP I
arcF

      (6)  

B = 0µ
r Jr dr0

R∫      (7)  

Combining equation (6) and (7) yields: 

B = 0µ I
2πr

      (8)  



The Lorentz force distribution is shown in Figure 6, as with the arc force distribution, 

calculations have been performed over 0.0625 mm segments. As can be seen, at the 

arc centreline the Lorentz force is zero, this is because the integration constant  

term (equation (7)) tends to zero when  tends to zero. Moving radially outwards, 

<1.25 mm, argon produced a Lorentz force approximately double that of helium. 

However, helium produced a higher Lorentz force >1.25 mm to the edge of the arc. 

Summating the results over the arc area produced a total Lorentz force of 5.08*105 

N/m3 for argon and 3.25*105 N/m3 for helium.  

 

Figure 6: Lorentz force distribution 

The buoyancy force can be calculated using the Boussinesq approximation: 

BF =− wρ gβ(T − refT )     (9)  

Recently, linear thermal expansion data for the weld metal produced for different 

shielding gases has been produced for temperatures up to 1200°C (1473K) [18]. It 

was found that the weld metal produced using an argon/CO2 shielding gas mixture 

has a higher coefficient of thermal expansion than helium. However, the maximum 

difference in thermal expansion between shielding gases, approximately 0.6 x 10-6 

/K, equates to only 4.6%, and can be considered negligible in comparison to the 

(T − refT )  term, when considering a peak temperature in the weld pool of 



approximately 2350K and 3700K for argon and helium respectively [19]. This results 

in helium having a (T − refT )  term in excess of three times that of argon and, by 

assuming that the other terms are negligible, helium would have a buoyancy force 

approximately three times greater than argon. 

The surface tension (or Marangoni convection mode) is generally discussed as a 

function of the surface-active elements, such as sulphur or oxygen [20,21]. The 

surface tension gradient is also a function of temperature; a negative surface tension 

gradient acts to pull the weld metal outwards and, conversely, a positive surface 

tension gradient acts to pull the weld metal inwards. Limmaneevichitr and Kou [22] 

simulated the fluid flow due to Marangoni convection in a transparent NaNO3 solution 

using a laser power source for a range of power inputs and laser diameters. They 

found that a high beam power input produced faster, shallower convection than a low 

beam power input. In addition, they demonstrated that a small beam diameter 

produced faster, deeper convection than a larger beam diameter.  

Due to the unique characteristics, helium produces a greater voltage potential than 

argon; in this study 19.2 V and 14.2 V respectively, and therefore a power input 35% 

greater than argon (assuming that the thermal efficiency is constant). The 

impingement diameter of the welding arc was also found to change depending on the 

shielding gas used; as discussed previously, argon and helium produced an effective 

arc diameter of 7.5 and 6.5 mm respectively. Therefore, based on the findings of 

Limmaneevichitr and Kou [22], helium would produce faster convection than argon. 

The Marangoni number has been widely used for the measure of the extent of 

Marangoni convection and is given by equation (10): 

Ma =
−
δγ
δT ( ΔT )L

mµ α

      (10) 



Using values previously published for steel of negligible sulphur content, − δγ
δT

, mµ  

and α , of -0.3 dyne/(cm.K), 5 x 10-2 g/(cm.s) and 5 x 10-2 cm2/s respectively [22],  

of 650 K and 2000 K for argon and helium respectively [19] and a characteristic 

length  of 4.4 mm and 4.8 mm for argon and helium respectively as determined by 

this study, the Marangoni number can be determined. Therefore, since the 

temperature coefficient of surface tension is negative, the flow is radially outwards on 

the pool surface and a Marangoni number of 3.43 x 104 for argon and 1.15 x 105 for 

helium calculated; this implies that the flow becomes stronger [23], i.e. the flow 

velocity increases. The Marangoni number for argon is in line with those presented 

elsewhere [22]. 

Macrographs of the weld geometry produced with constant heat input using the 

various shielding gas and power input methods are shown in Figure 7. As can be 

seen, the weld produced using helium resulted in a considerably wider weld bead 

(~9.6 mm) compared to argon (~8.8 mm), whilst alternating shielding gases (~9.2 

mm) was in between and GTAW-P was narrower (~8.2 mm) due to the fluidity of the 

weld pool during the background current phase. However, the maximum penetration 

in the centre of the weld were fairly similar (3-3.2 mm). Thus there is considerably 

more variation in the weld width than the penetration depth, indicating that the 

plasma shear stress, buoyancy force and Marangoni convection have a greater 

influence on the solidified weld geometry than the arc force and Lorentz force.  



(a) (b) 

(c) (d) 

Figure 7: Weld macrograph for (a) Argon, (b) Helium, (c) Alternating shielding gases, 

and (d) GTAW-P 

 

Conclusions 

A comparison of the forces acting upon the liquid weld metals has been conducted 

for argon and helium shielding gases. The results can be summarised as follows: 

• Helium produces a greater plasma shear stress than argon. The maximum 

shear stress occurs approximately 1 mm from the weld centreline, and is 

approximately 80 N/m2 and 240 N/m2 for argon and helium respectively. 

• Argon produces a greater arc force both in the central location and over the 

effective area of the arc (~1800 dyne and ~1140 dyne, for argon and helium 

respectively). 

• Argon also produces a greater Lorentz force than helium, 5.08*105 N/m3 and 

3.25*105 N/m3 respectively. The Lorentz force distribution showed that argon 

had a considerably greater core (<1.25 mm radius) Lorentz force, whilst 

helium produced a greater Lorentz force outwith the core (1.25 mm to arc 

edge). 



• The buoyancy force was estimated to be approximately three times greater for 

helium than argon due to the higher maximum temperature in the weld pool. 

• The Marangoni convection was estimated based on results from this study 

and previously published data. It was found that using helium resulted in a 

greater Marangoni number 1.15 x 105 than argon 3.43 x 104, indicating that 

the flow became stronger and the outwards flow velocity increased. 

As a result of the forces acting on the liquid weld metal, it can be inferred that the 

flow vectors for helium are opposite in direction to those produced to that using 

argon. This therefore implies that the resulting flow vectors during alternating 

shielding gases will fluctuate from one flow direction to the other; creating a dynamic 

effect within the liquid weld metal.  

This dynamic effect would not be present in GTAW-P, as the flow would all be in the 

direction produced by argon. However, the magnitude of the forces would fluctuate 

when switching between the peak and background current, creating a ‘jerking’ effect 

on the liquid weld metal. 
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