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a b s t r a c t

The solutions for the unidirectional flow of a thin rivulet with prescribed volume flux down an inclined
planar substrate are used to describe the locally unidirectional flow of a rivulet with constant width
(i.e. pinned contact lines) but slowly varying contact angle as well as the possible pinning and subsequent
de-pinning of a rivuletwith constant contact angle and thepossible de-pinning and subsequent re-pinning
of a rivulet with constant width as they flow in the azimuthal direction from the top to the bottom of a
large horizontal cylinder. Despite being the same locally, the global behaviour of a rivulet with constant
width can be very different from that of a rivulet with constant contact angle. In particular, while a rivulet
with constant non-zero contact angle can always run from the top to the bottom of the cylinder, the
behaviour of a rivulet with constant width depends on the value of the width. Specifically, while a narrow
rivulet can run all the way from the top to the bottom of the cylinder, a wide rivulet can run from the
top of the cylinder only to a critical azimuthal angle. The scenario in which the hitherto pinned contact
lines of the rivulet de-pin at the critical azimuthal angle and the rivulet runs from the critical azimuthal
angle to the bottom of the cylinder with zero contact angle but slowly varying width is discussed.
The pinning and de-pinning of a rivulet with constant contact angle, and the corresponding situation
involving the de-pinning and re-pinning of a rivuletwith constantwidth at a non-zero contact anglewhich
generalises the de-pinning at zero contact angle discussed earlier, are described. In the latter situation,
the mass of fluid on the cylinder is found to be a monotonically increasing function of the constant
width.

© 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

The gravity-drivendraining of a rivulet of fluid downan inclined
substrate is a fundamental fluid mechanics problem of enduring
interest, not least because of the wide range of industrial devices
and processes to which it is relevant, including heat exchangers
(see, for example, Vlasogiannis et al. [1]), trickle-bed reactors (see,
for example, Maiti, Khanna and Nigam [2]), various coating pro-
cesses (see, for example, Kistler and Schweizer [3]), and even the
cleaning of the long and narrow tubes found in endoscopes (see,
for example, Labib et al. [4]). In particular, the pioneering studies
by Towell and Rothfeld [5], Allen and Biggin [6], Bentwich et al. [7],
and Davis and co-workers [8–10] have led to a substantial body
of subsequent work on unidirectional (i.e. rectilinear) rivulet flow.
For example, Schmuki and Laso [11] considered the stability of
rivulet flow, Kuibin [12], Alekseenko, Geshev and Kuibin [13] and
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Alekseenko, Bobylev and Markovich [14] considered rivulet flow
on the underside of an inclined cylinder, Perazzo and Gratton [15]
and Tanasijczuk, Perazzo and Gratton [16] studied sessile and pen-
dent rivulet flow, Myers, Liang and Wetton [17] and Wilson and
Duffy [18] considered rivulet flow subject to a constant longitudi-
nal shear stress, and Benilov [19] considered rivulet flow down an
inclined substrate and found that sessile and sufficiently narrow
pendent rivulets are always stable but that sufficiently wide pen-
dent rivulets are stable only when the incline is sufficiently steep.
Duffy andMoffatt [20] used the solution for the unidirectional flow
of a thin rivulet with non-zero contact angle and prescribed vol-
ume flux to describe the locally unidirectional flowof a rivuletwith
constant non-zero contact angle but slowly varying width down a
slowly varying substrate. In particular, they studied rivulet flow in
the azimuthal direction from the top to the bottom of a large hori-
zontal cylinder, and showed that the rivulet becomes wide and flat
near the top of the cylinder, but narrow and deep near the bottom
of the cylinder. Subsequently Duffy andWilson [21] performed the
corresponding analysis for a rivulet with zero contact angle and, in
particular, showed that such rivulets can occur only on the lower
half of the cylinder. Various other physical effects, including lo-
cally non-planar substrates, thermocapillary effects, viscoplasticity
effects, thermoviscosity effects, and a constant longitudinal shear
stress, have also been considered (see [21–27]).

0997-7546/$ – see front matter© 2013 Elsevier Masson SAS. All rights reserved.
http://dx.doi.org/10.1016/j.euromechflu.2013.02.006
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a b

Fig. 1. Sketches of the scaled semi-width a/π as a function of the scaled azimuthal angle α/π for a rivulet with (a) constant non-zero contact angle β = β̄ > 0 and (b)
constant zero contact angle β = β̄ = 0.

a b

Fig. 2. Plots of (a) αmin/π and (b) amin/π as functions of the constant contact angle β̄ when Q̄ = 1, together with their asymptotic behaviour in the limits β̄ → 0+ given
by (6) and β̄ → ∞ given by (7), shown with dotted lines.

In the present work we take a rather different approach
from the earlier studies and show how the solutions for the
unidirectional flow of a thin rivulet with prescribed volume flux
down an inclined planar substrate can be used to describe the
locally unidirectional flow of a rivulet with constant width but
slowly varying contact angle (i.e. pinned contact lines) as well as
the possible pinning and subsequent de-pinning of a rivulet with
constant contact angle and thepossible de-pinning and subsequent
re-pinning of a rivulet with constant width as they flow in the
azimuthal direction from the top to the bottomof a large horizontal
cylinder. In particular, we find that, despite being the same locally,
the global behaviour of a rivulet with constant width can be
very different from that of a rivulet with constant contact angle
described by Duffy and Moffatt [20] and Duffy and Wilson [21].

One specific situation in which flow of the type considered in
the present work can occur is in the falling-film horizontal-tube
evaporators used in a variety of industrial processes, including
refrigeration, desalination and petroleum refining. The review
article on falling-film evaporation by Ribatski and Jacobi [28]
describes how partial film dry-out may occur as a result of a non-
uniform distribution of the fluid on the tubeswithin an evaporator.
This non-uniformity can be caused by the gas flow within the

evaporator or by uneven draining of the fluid from one tube onto
the tube below it in a bundle of horizontal tubes. Typically this
draining occurs in one of three main flow regimes, namely a
continuous sheet of fluid, an array of separate columns of fluid, or
individual drops that drip intermittently. Mitrovic [29] describes
various flow regimes and compares the various experimentally
determined correlations for the boundaries of the regions in which
the different flow regimes occur in Reynolds number–Kapitza
number parameter space. In particular, as Mitrovic [29] shows in
his Fig. 2(h), in the columnar flow regime the fluid in each column
can drain around the tubes in an array of separate rivulets or rings
of fluid. The flow of both a two-dimensional sheet of fluid and a
single three-dimensional column of fluid, falling onto the top of,
and draining round to the bottom of, a horizontal cylinder was
studied numerically by Hunt [30,31].

As well as evidently being of direct relevance to falling-film
evaporators, the results obtained in the present work may also
be relevant to a variety of other practical contexts, such as
the rings of fluid on the outer surface of a uniformly rotating
horizontal cylinder observed byMoffatt [32] and recently analysed
by Leslie,Wilson andDuffy [33], and the banded films of condensed
ammonia–water mixtures on the outer surface of a stationary
horizontal cylinder observed by Deans and Kucuka [34].
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Fig. 3. Sketches of the contact angle β as a function of the scaled azimuthal angle α/π for (a) a ‘‘narrow’’ rivulet with constant semi-width a = ā < π and (b) a ‘‘wide’’
rivulet with constant semi-width a = ā > π . For brevity, the marginal case a = ā = π is not shown.

a b

Fig. 4. Plots of (a) αmin/π and (b) βmin as functions of the scaled constant semi-width ā/π when Q̄ = 1, together with their asymptotic behaviour in the limits ā → 0+

given by (12) and ā → ∞ given by (13), shown with dotted lines.

2. Unidirectional flow of a thin rivulet

Consider the steady unidirectional flow of a thin symmetric
rivulet with semi-width a and volume flux Q (> 0) down a planar
substrate inclined at an angle α (0 ≤ α ≤ π ) to the horizontal. We
assume that the fluid is Newtonian with constant viscosity µ, den-
sity ρ and coefficient of surface tension γ , and choose Cartesian
coordinates Oxyz with the x axis down the line of greatest slope,
the y axis horizontal, and the z axis normal to the substrate z = 0.
The velocity u = u(y, z)i and the pressure (relative to its ambi-
ent value) p = p(y, z) satisfy the familiar mass-conservation and
Navier–Stokes equations subject to the usual normal and tangen-
tial stress balances and the kinematic condition at the free surface
z = h(y), the no-slip condition at the substrate z = 0, and the con-
dition of zero thickness at the contact lines (i.e. h(±a) = 0). The
contact angle is denoted by β = ∓h′(±a) (≥ 0), where the dash
denotes differentiation with respect to argument, and the maxi-
mum thickness of the rivulet, which always occurs at y = 0, is
denoted by hm = h(0). We non-dimensionalise y and awith ℓ, z, h
and hm with δℓ, uwith U = δ2ρgℓ2/µ, Q with δℓ2U = δ3ρgℓ4/µ,
and p with δρgℓ, where g is the magnitude of gravitational
acceleration, ℓ = (γ /ρg)1/2 is the capillary length, and δ is the

transverse aspect ratio. There is some freedom regarding the defi-
nition of δ. When β > 0 we could define δ using the value of the
contact angle by choosing δ = β , corresponding to taking β = 1
without loss of generality. Alternatively, we could define δ using
the prescribed value of the flux, denoted by Q̄ (> 0), by choosing
δ = (µQ̄/ρgℓ4)1/3, corresponding to taking Q̄ = 1 without loss of
generality. However, for the moment we leave δ unspecified and
retain both β and Q̄ in order to keep the subsequent presentation
as general as possible.

In the general case of non-zero contact angle β > 0 Duffy
and Moffatt [20] showed that at leading order in the limit of small
transverse aspect ratio δ → 0 (i.e. for a thin rivulet) the governing
equations are readily solved to yield the velocity u = sinα(2h −

z)z/2, the pressure p = cosα(h − z) − h′′, the free surface shape

h(y) = β ×



coshma − coshmy
m sinhma

for 0 ≤ α <
π

2
,

a2 − y2

2a
for α =

π

2
,

cosmy − cosma
m sinma

for
π

2
< α ≤ π,

(1)
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Fig. 5. Plot of the scaled critical azimuthal angle αc/π as a function of the scaled
constant semi-width ā/π .

the maximum thickness of the rivulet

hm = β ×



1
m

tanh
ma

2


for 0 ≤ α <

π

2
,

a
2

for α =
π

2
,

1
m

tan
ma

2


for

π

2
< α ≤ π,

(2)

and the volume flux

Q =
β3 sinα

9m4
f (ma), (3)

where m = | cosα|
1/2. The function f = f (ma) appearing in (3) is

given by

f (ma) =

15ma coth3 ma − 15 coth2 ma − 9ma cothma + 4
for 0 ≤ α <

π

2
,

12
35

(ma)4 for α =
π

2
,

−15ma cot3 ma + 15 cot2 ma − 9ma cotma + 4
for

π

2
< α ≤ π,

(4)

and satisfies f ∼ 12(ma)4/35 → 0 as ma → 0, f ∼ 6ma − 11 →

∞ asma → ∞ for 0 ≤ α < π/2, and f ∼ 15π(π − ma)−3
→ ∞

asma → π for π/2 < α ≤ π .
In the special case of zero contact angle β = 0 we recover

the solution for a perfectly wetting fluid described by Duffy and
Wilson [21], namely that there is no solution for 0 ≤ α ≤ π/2, but

a =
π

m
, h =

hm

2
(1 + cosmy), Q =

5π sinαh3
m

24m

for
π

2
< α ≤ π. (5)

3. A rivulet with constant contact angle

3.1. The general case of non-zero contact angle β = β̄ > 0

Duffy and Moffatt [20] used the solution (1)–(4) to describe
the locally unidirectional flow with prescribed flux Q = Q̄ down

a slowly varying substrate, specifically the flow in the azimuthal
direction from the top α = 0 to the bottom α = π of a large
horizontal cylinder, of a rivulet with constant non-zero contact
angle β = β̄ > 0 but slowly varying semi-width a. Note that
here and henceforth ‘‘slowly varying’’ means that the longitudinal
aspect ratio ϵ = ℓ/R, where R is the radius of the cylinder, satisfies
ϵ ≪ δ so that ϵ/δ → 0 in the limit ϵ → 0. Imposing the conditions
of prescribed flux, Q = Q̄ with Q given by (3), and of constant
non-zero contact angle, β = β̄ > 0, yields a non-linear algebraic
equation for the semi-width a which can, in general, be solved
only numerically or asymptotically. Fig. 1(a) shows a sketch of the
scaled semi-width a/π as a function of the scaled azimuthal angle
α/π when β = β̄ > 0. For all values of Q̄ there is a slowly varying
rivulet that runs all the way from α = 0 [where a = O(α−1) → ∞

and hm → 1+ as α → 0+] to α = π [where a → π− and
hm = O(π − α)−1/3

→ ∞ as α → π−]. The rivulet does
not have top-to-bottom symmetry; its semi-width a has a single
minimum, denoted by a = amin (< π) and occurring at α = αmin,
on the lower half of the cylinder (i.e. for π/2 < α ≤ π ), and
its maximum thickness hm either increases monotonically or has
a single maximum and a single minimum on the upper half of the
cylinder (i.e. for 0 ≤ α < π/2). Furthermore, in the limit of small
flux, Q̄ → 0+, the rivulet satisfies a = O(Q̄ 1/4) and hm = O(Q̄ 1/4)
while in the limit of large flux, Q̄ → ∞, it satisfies a = O(Q̄ ) and
hm = O(1) on the upper half of the cylinder, a = O(Q̄ 1/4) and
hm = O(Q̄ 1/4) at α = π/2, and a = O(1) and hm = O(Q̄ 1/3)
on the lower half of the cylinder. Since the location and value of
the minimum semi-width are important in what follows, Fig. 2
shows plots of αmin/π and amin/π as functions of the constant
contact angle β̄ , and shows that both aremonotonically decreasing
functions of β̄ satisfying

αmin ∼ π −


40β̄3

81π2Q̄

 1
5

→ π− and

amin ∼ π −
5π
4


40β̄3

81π2Q̄

 2
5

→ π− (6)

as β̄ → 0+, and

αmin ∼
π

2
+

2
9


105Q̄
4β̄3

 1
2

→
π

2

+

and

amin ∼


105Q̄
4β̄3

 1
4

→ 0+ (7)

as β̄ → ∞.

3.2. The special case of zero contact angle β = β̄ = 0

Duffy and Wilson [21] used the solution (5) to describe the
corresponding flow of a rivulet with zero contact angle β = β̄ = 0
(i.e. a perfectly wetting fluid). Specifically, imposing the condition
of prescribed flux, Q = Q̄ with Q given by (5), yields an explicit
solution for the maximum thickness hm = hm0, where

hm0 =


24Q̄m
5π sinα

 1
3

=


24Q̄ | cosα|

1/2

5π sinα

 1
3

. (8)

Fig. 1(b) shows a sketch of the scaled semi-width a/π as a function
of the scaled azimuthal angle α/π when β = β̄ = 0. For all
values of Q̄ there is a slowly varying rivulet on the lower half of
the cylinder with monotonically decreasing semi-width a = π/m
and monotonically increasing maximum thickness hm = hm0 that
runs from α = π/2+ [where a = O(α − π/2)−1/2

→ ∞ and
hm = O(α − π/2)1/6 → 0+ as α → π/2+] to α = π [where
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c

Fig. 6. Plots of (a) the contact angle β , (b) the scaled semi-width a/π , and (c) the maximum thickness hm as functions of the scaled angle α/π for ā/π =

0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 5, 10 when Q̄ = 1 for a rivulet whose contact lines de-pin at zero contact angle β = β̄ = 0. The corresponding solutions for a rivulet
with zero contact angle β = 0 given by (5) and (8) are shown with dashed lines (visible only in part (c)). De-pinning occurs at α = αc for ā/π > 1, and the points at which
this happens are denoted by dots.

a → π+ and hm = O(π − α)−1/3
→ ∞ as α → π−]. Note

that, unlike in the general case of non-zero contact angle β̄ > 0,
in which there is an infinite mass of fluid on the cylinder, in the
special case of zero contact angle β = β̄ = 0 the mass of fluid on
the cylinder, denoted by M and non-dimensionalised with δρℓ2R,
is given by

M =

 π

π
2


+a

−a
h dy dα =

 π

π
2

πhm

m
dα =


6π2Q̄

5

 1
3

C, (9)

where the constant C is given by

C =

 π

0

dα

(sinα)
1
3

=

√
π Γ

 1
3


Γ

 5
6

 ≃ 4.2065. (10)

4. A rivulet with constant width

The solutions (1)–(5) can also be used to describe the locally
unidirectional flowwith prescribed fluxQ = Q̄ from the topα = 0

to the bottom α = π of a large horizontal cylinder of a rivulet
with constant semi-width a = ā (> 0) (i.e. pinned contact lines) but
slowly varying contact angle β (≥ 0). Imposing the conditions of
prescribed flux, Q = Q̄ with Q given by (3), and of constant semi-
width, a = ā, yields an explicit solution for the contact angle β ,
namely

β =


9Q̄m4

f (mā) sinα

 1
3

=


9Q̄ cos2 α

f (| cosα|1/2ā) sinα

 1
3

. (11)

The solution (11) reveals that, unlike in the case of constant contact
angle described in Section 3 (in which the dependence of a on Q̄
is not straightforward), in this case β is simply proportional to
Q̄ 1/3 for all values of α and ā. Moreover, as in the case of constant
contact angle, the rivulet does not have top-to-bottom symmetry.
Inspection of the solution (11) also reveals that, unlike in the case of
constant contact angle (in which the behaviour is qualitatively the
same for all values of the contact angle), the behaviour of the rivulet
is qualitatively different for a ‘‘narrow’’ rivulet with a = ā < π ,
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a b

Fig. 7. Cross-sectional profiles h(y) when Q̄ = 1 in the cases (a) ā = 2 (< π) for α = π/8, π/4, 3π/8, π/2, 5π/8, 3π/4, 7π/8 and (b) ā = 5 (> π) for α = π/8, π/4,
3π/8, π/2, αc ≃ 1.9766, 3π/4, 7π/8. For clarity, the two parts of this figure use the same vertical but different horizontal ranges.

ba

Fig. 8. Sketches of a slowly varying rivulet with prescribed flux Q̄ with (when not de-pinned with zero contact angle β = 0 and slowly varying semi-width a) constant
semi-width a = ā and slowly varying contact angle β that runs from the top α = 0 to the bottom α = π of a large horizontal cylinder, in the cases (a) ā < π , in which the
rivulet is never de-pinned, and (b) ā > π , in which the rivulet is de-pinned and has zero contact angle in the interval αc < α ≤ π .

in the marginal case a = ā = π , and for a ‘‘wide’’ rivulet with
a = ā > π . We shall therefore describe the behaviour of the
rivulet in each of these three cases separately in the next three
subsections.

4.1. A narrow rivulet with a = ā < π

Fig. 3(a) shows a sketch of the contact angle β as a function of
the scaled azimuthal angle α/π for a narrow rivulet with constant
semi-width a = ā < π . When ā < π for all values of Q̄ there
is a slowly varying rivulet that runs all the way from α = 0 to
α = π , and its contact angle β has a single minimum, denoted
by β = βmin and occurring at α = αmin, on the lower half of the
cylinder (i.e. for π/2 < α < π ),2 and its maximum thickness hm

2 Note that αmin is independent of Q̄ .

has a single minimum on the upper half of the cylinder (i.e. for
0 < α < π/2). Since the location and value of the minimum
contact angle are important in what follows, Fig. 4 shows plots of
αmin/π and βmin as functions of the scaled constant semi-width
ā/π , and shows that αmin is a monotonically increasing function of
ā and βmin is a monotonically decreasing function of ā satisfying

αmin ∼
π

2
+

2ā2

9
→

π

2

+

and βmin ∼


105Q̄
4ā4

 1
3

→ ∞ (12)

as ā → 0+, and

αmin ∼ π −


4(π − ā)

5π

 1
2

→ π− and

βmin ∼
6
5


9Q̄ 2

20π

 1
6

(π − ā)
5
6 → 0+ (13)



Author's personal copy

100 C. Paterson et al. / European Journal of Mechanics B/Fluids 41 (2013) 94–108

a b

c

Fig. 9. Plots of (a) the semi-width a, (b) the contact angle β , and (c) the maximum thickness hm as functions of the scaled angle α/π for β̄ = 0, 0.25, 0.5, 0.75,
β̄c ≃ 1.0249, 1.25, 1.5, 1.75, 2 when Q̄ = 1 for a rivulet whose contact lines pin at a = ā = 2 (< π). The corresponding solutions for a rivulet with constant semi-
width ā = 2 are shown with dashed lines. Pinning and de-pinning occur for β̄ > β̄c ≃ 1.0249, and the points at which this happens are denoted by dots.

as ā → π−. The rivulet becomes deep near the top and the bottom
of the cylinder according to

β ∼


9Q̄

f (ā)α

 1
3

→ ∞ and

hm ∼


9Q̄

f (ā)α

 1
3

tanh

ā
2


→ ∞ (14)

as α → 0+, and

β ∼


9Q̄

f (ā)(π − α)

 1
3

→ ∞ and

hm ∼


9Q̄

f (ā)(π − α)

 1
3

tan

ā
2


→ ∞ (15)

as α → π− (so that the thin-film approximation ultimately fails in
these limits); also β and hm take the O(1) values

β =


105Q̄
4ā4

 1
3

and hm =


105Q̄
32ā

 1
3

(16)

at α = π/2. In the limit of a narrow rivulet, ā → 0+, the rivulet
becomes narrow and deep everywhere according to

β ∼


105Q̄

4ā4 sinα

 1
3

→ ∞ and

hm ∼


105Q̄

32ā sinα

 1
3

→ ∞. (17)

4.2. The marginal case a = ā = π

In themarginal case a = ā = π (not shown in Fig. 3 for brevity)
the rivulet behaves qualitatively the same as in the case of a narrow
rivulet with a = ā < π described in Section 4.1, except that, since
in this case β = 0 at α = π , instead of satisfying (15) the rivulet
becomes deep with zero contact angle and finite semi-width π
near the bottom of the cylinder according to

β ∼


3π2Q̄ (π − α)5

320

 1
3

→ 0+ and
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Fig. 10. Plots of (a) the semi-width a, (b) the contact angle β , and (c) the maximum thickness hm as functions of the scaled angle α/π for β̄ = 0, 0.25, . . . , 1.5 when Q̄ = 1
for a rivulet whose contact lines pin at a = ā = 5 (> π). The corresponding solutions for a rivulet with constant semi-width ā = 5 are shownwith dashed lines. Pinning and
de-pinning occur for all β̄ > 0, and the points at which this happens are denoted by dots. The vertical dashed lines show the scaled critical azimuthal angle αc/π ≃ 0.6292
at which de-pinning occurs for all β̄ > 0.

hm ∼


24Q̄

5π(π − α)

 1
3

→ ∞ (18)

as α → π−.

4.3. A wide rivulet with a = ā > π

Fig. 3(b) shows a sketch of the contact angle β as a function of
the scaled azimuthal angle α/π for a wide rivulet with constant
semi-width a = ā > π . Unlike when ā ≤ π , when ā > π for all
values of Q̄ there is a slowly varying rivulet that runs from α = 0
only as far as a critical azimuthal angle α = αc on the lower half
of the cylinder (i.e. for π/2 < α < π ), 3 and its contact angle β is
a monotonically decreasing function of α, attaining its minimum

3 Note that αc is independent of Q̄ .

physically realisable value of zero at α = αc, where the critical
azimuthal angle αc is given by solvingmā = π to obtain

αc = cos−1


−
π2

ā2


for ā > π (19)

and is a monotonically decreasing function of ā satisfying αc =

π + O(ā − π)1/2 → π− as ā → π+ and αc = π/2 + O(ā−2) →

π/2+ as ā → ∞. Fig. 5 shows the scaled critical azimuthal angle
αc/π plotted as a function of the scaled constant semi-width ā/π .
The rivulet again becomes deep near the top of the cylinder
according to (14) and again β and hm take the O(1) values given
by (16) at α = π/2. At α = αc the rivulet has zero contact angle
β = 0, semi-width a = ā, and maximum thickness hm = hmc,
where

hmc =


24Q̄

5ā sinαc

 1
3

=


24āQ̄

5
√
ā4 − π4

 1
3

. (20)
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Fig. 11. Cross-sectional profiles h(y) when Q̄ = 1 in the cases (a) ā = 2 (< π) and β̄ = 0.5 (< β̄c ≃ 1.0249) for α = π/8, π/4, 3π/8, π/2, 5π/8, 3π/4, 7π/8,
(b) ā = 2 (< π) and β̄ = 1.5 (> β̄c) for α = π/8, αpin ≃ 0.9028, 3π/8, π/2, 5π/8, 3π/4, 7π/8, and (c) ā = 5 (> π) and β̄ = 1 for α = π/16, αpin ≃ 0.4345, π/4, 3π/8,
π/2, αc ≃ 1.9766, 3π/4, 7π/8. For clarity, in part (b) no profiles are shown in the interval αdepin ≃ 2.9923 ≤ α ≤ π , and the three parts of this figure use the same vertical
but different horizontal ranges.

In particular, as α → α−
c we find that β → 0+ according to

β =


3(ā4 − π4)Q̄

40ā2

 1
3

(αc − α) + O(αc − α)2, (21)

a ≡ ā, and hm → h−
mc according to

hm = hmc +
(ā4 + π4)hmc

6π2
√
ā4 − π4

(α − αc) + O(α − αc)
2. (22)

However, beyond α = αc the solution for β given by (11) is no
longer physically realisable because it always predicts that h < 0
somewhere in the interval y = −ā to y = +ā, and so an alternative
description of the behaviour beyond α = αc is required. Physically
it is possible that the rivulet simply falls off the cylinder at α = αc
or that the flow becomes unsteady beyond α = αc. However,
an alternative (and possibly more likely) scenario in which steady
rivulet flow still occurs is that the hitherto pinned contact lines

of the rivulet de-pin at α = αc, and that the rivulet runs from
α = αc to the bottom of the cylinder α = π with zero contact
angle according to the solution in the case β = 0 given by (5)
and (8), with monotonically decreasing semi-width a = π/m
(π ≤ a ≤ ā) and monotonically increasing maximum thickness
hm = hm0 (≥ hmc). In particular, as α → α+

c we find that β ≡ 0,
a → ā− according to

a = ā −
ā
√
ā4 − π4

2π2
(α − αc) + O(α − αc)

2, (23)

and hm → h+
mc according to (22), so that the solutions in α < αc

and α > αc join continuously (but not smoothly) at α = αc. The
latter scenario is a special case of the behaviour which will be dis-
cussed in Section 6, in which we consider the de-pinning and re-
pinning of a rivulet with constant width at a prescribed (and, in
general, non-zero) value of the contact angle β = β̄ (≥ 0). In par-
ticular, when the rivulet de-pins at zero contact angle β = β̄ = 0
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Fig. 12. Sketches of a slowly varying rivulet with prescribed flux Q̄ with (when not pinned with constant semi-width a = ā and slowly varying contact angle β) constant
non-zero contact angle β = β̄ > 0 and slowly varying semi-width a that runs from the top α = 0 to the bottom α = π of a large horizontal cylinder, in the cases (a) ā < π

and 0 < β̄ < β̄c , in which the rivulet is never pinned, (b) ā < π and β̄ > β̄c , in which the rivulet is pinned in the interval αpin < α < αdepin , and (c) ā > π , in which the
rivulet is pinned in the interval αpin < α < αc and has zero contact angle in the interval αc ≤ α ≤ π .

it becomes deep with zero contact angle and finite semi-width π
near the bottom of the cylinder according to

a = π +
π

4
(π − α)2 + O(π − α)4 → π+ and

hm ∼


24Q̄

5π(π − α)

 1
3

→ ∞ (24)

as α → π−, and in the limit of a wide rivulet on the upper half of
the cylinder, ā → ∞, (in which αc → π/2+) the rivulet becomes
wide and flat on the upper half of the cylinder according to

β ∼


3Q̄m3

2ā sinα

 1
3

→ 0+ and hm ∼


3Q̄

2ā sinα

 1
3

→ 0+ (25)

and is given by the solution in the case β = 0 given by (5) and (8)
on the lower half of the cylinder.

4.4. Rivulet profiles

The behaviour for both ā ≤ π and ā > π is illustrated in Fig. 6,
which shows plots of the contact angle β , the scaled semi-width
a/π , and the maximum thickness hm as functions of the scaled
angle α/π for a range of values of ā/π when Q̄ = 1. In particular,
Fig. 6 shows that de-pinning occurs at α = αc for ā/π > 1. Fig. 7
shows typical cross-sectional profiles of the rivulet in the cases (a)
ā = 2 (< π) and (b) ā = 5 (> π), and Fig. 8 shows sketches of
the rivulet in the same two cases, namely (a) ā < π , in which the

rivulet is never de-pinned, and (b) ā > π , in which the rivulet is
de-pinned and has zero contact angle in the interval αc < α ≤ π .

5. Pinning and de-pinning of a rivulet with constant contact
angle β = β̄ at a = ā

As we described in Section 3, the semi-width a of a slowly
varying rivulet with constant non-zero contact angle β = β̄ > 0
is unbounded at α = 0 (i.e. the rivulet is infinitely wide at the top
of the cylinder), has a single minimum value of a = amin (< π)
at α = αmin on the lower half of the cylinder and takes the value
a = π atα = π , while in the special case of zero contact angle β =

β̄ = 0 the semi-width is unbounded at α = π/2 and decreases to
the value a = π at α = π . In practice, however, there could be a
minimum physically realisable value of the semi-width, denoted
by a = ā, at which the contact lines become pinned. Evidently
the behaviour of the rivulet in this situation will be qualitatively
different for ā ≤ π and ā > π .

5.1. ā ≤ π

When ā ≤ amin (< π) the semi-width is always greater than
or equal to ā and hence pinning and de-pinning do not occur, and
so the rivulet behaves exactly as described in Section 3. However,
when amin < ā < π the rivulet runs from α = 0 with constant
non-zero contact angle β = β̄ > 0 but decreasing semi-width
a as described in Section 3 until it reaches the value a = ā at
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Fig. 13. Plots of (a) the contact angle β , (b) the scaled semi-width ā/π , and (c) the maximum thickness hm as functions of the scaled angle α/π for ā/π =

0.2, 0.4, 0.6, āc/π ≃ 0.6446, 0.8, 1, 1.2, 1.4 when Q̄ = 1 for a rivulet whose contact lines de-pin at non-zero contact angle β = β̄ = 1. The corresponding solutions
for a rivulet with constant contact angle β = β̄ = 1 are shownwith dashed lines. De-pinning and re-pinning occur for ā/π > āc/π ≃ 0.6446, de-pinning but no re-pinning
occurs for ā/π > 1, and the points at which this happens are denoted by dots.

α = αpin(0 < αpin < αmin) at which the contact lines pin. The
rivulet then runs from α = αpin with constant semi-width a = ā
but varying contact angleβ as described in Section4until it reaches
α = αdepin(αmin < αdepin < π) at which the contact lines de-pin.
The rivulet then runs from α = αdepin to α = π with constant
contact angle β = β̄ > 0 but increasing semi-width a as described
in Section 3. Here α = αpin and α = αdepin are the appropriate
solutions of the equation Q = Q̄ with Q given by (3), a = ā and
β = β̄ . In the marginal case ā = π we have αdepin = π and so de-
pinning does not occur. Expressed in another way, in the general
case of constant non-zero contact angle β̄ > 0 pinning and de-
pinning occur when β̄ > β̄c, where the value of β̄c corresponds
to amin = ā. In the special case of pinning at zero contact angle
β = β̄ = 0 we have a = π/m ≥ π ≥ ā, and so pinning and de-
pinning do not occur. In the limit β̄ → ∞ we have αpin → 0+ and
αdepin → π− and so recover the solution for a rivuletwith constant
semi-width a = ā ≤ π described in Section 4.

The behaviour when ā ≤ π is illustrated in Fig. 9, which shows
plots of the semi-width a, the contact angle β , and the maximum

thickness hm as functions of the scaled angle α/π for a range of
values of β̄ when Q̄ = 1 and ā = 2 (< π). In particular, Fig. 9
shows that in this case pinning and de-pinning occur for β̄ > β̄c ≃

1.0249.

5.2. ā > π

When ā > π , as in the case amin < ā ≤ π , the rivulet runs
from α = 0 with constant non-zero contact angle β = β̄ > 0 but
decreasing semi-width a as described in Section 3 until it reaches
the value a = ā at α = αpin (0 < αpin < αc) at which the
contact lines pin. The rivulet then runs fromα = αpin with constant
semi-width a = ā but decreasing contact angle β as described in
Section 4 until, unlike in the case amin < ā ≤ π , it reaches the
critical azimuthal angle α = αc (π/2 < αc < π ) at which the
contact angle β reaches the value zero and the contact lines de-
pin. The rivulet then runs from α = αc to α = π with zero contact
angle β = 0, decreasing semi-width a = π/m and increasing
maximum thickness hm = hm0 as described in Section 3. In the
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Fig. 14. Cross-sectional profiles h(y) when Q̄ = 1 in the cases (a) β̄ = 1 and ā = 2 (< āc ≃ 2.0252) for α = π/8, π/4, 3π/8, π/2, 5π/8, 3π/4, 7π/8, (b) β̄ = 1 and
ā = 2.5 (āc < ā < π) for α = π/8, π/4, αdepin ≃ 1.2834, 3π/8, π/2, 5π/8, 3π/4, 7π/8, and (c) β̄ = 1 and ā = 5 (> π) for α = π/16, αdepin ≃ 0.4345, π/4, 3π/8, π/2,
5π/8, 3π/4, 7π/8. For clarity, in part (b) no profiles are shown in the interval αrepin ≃ 3.0814 ≤ α ≤ π , and the three parts of this figure use the same vertical but different
horizontal ranges.

special case of pinning at zero contact angle β = β̄ = 0 pinning
and de-pinning do not occur. In the limit β̄ → ∞ we have αpin →

0+ and so recover the solution for a rivulet with constant semi-
width a = ā > π described in Section 4.

The behaviourwhen ā > π is illustrated in Fig. 10, which shows
plots of the semi-width a, the contact angle β , and the maximum
thickness hm as functions of the scaled angle α/π for a range of
values of β̄ when Q̄ = 1 and ā = 5 (> π). In particular, Fig. 10
shows that pinning and de-pinning occur for all β̄ > 0, and that in
this case de-pinning occurs at the scaled critical azimuthal angle
αc/π ≃ 0.6292 for all β̄ > 0.

5.3. Rivulet profiles

Fig. 11 shows typical cross-sectional profiles of the rivulet in
the cases (a) ā = 2 (< π) and β̄ = 0.5 (< β̄c ≃ 1.0249), (b)
ā = 2 (< π) and β̄ = 1.5 (> β̄c), and (c) ā = 5 (> π) and
β̄ = 1, and, in order to clarify what might appear to be a rather
complicated situation, Fig. 12 shows sketches of the rivulet in the

same three cases, namely (a) ā < π and 0 < β̄ < β̄c, in which the
rivulet is never pinned, (b) ā < π and β̄ > β̄c, in which the rivulet
is pinned in the interval αpin < α < αdepin, and (c) ā > π , in which
the rivulet is pinned in the interval αpin < α < αc and has zero
contact angle in the interval αc ≤ α ≤ π .

6. De-pinning and re-pinning of a rivulet with constant width
a = ā at β = β̄

In Section 5 we described the pinning and de-pinning of a
rivulet with constant contact angle β = β̄ at a = ā. In this
section we describe the corresponding situation involving the de-
pinning and re-pinning of a rivulet with constant width a = ā at
β = β̄ > 0. As we described in Section 4, for a narrow rivulet
with ā < π the contact angle β of a slowly varying rivulet with
constant semi-width a = ā is unbounded at α = 0 and α = π ,
and has a single minimum value of β = βmin at α = αmin on the
lower half of the cylinder, while for a wide rivulet with ā > π the
contact angle is unbounded at α = 0 and decreases to the value
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Fig. 15. Sketches of a slowly varying rivulet with prescribed flux Q̄ with (when not de-pinned with non-zero constant contact angle β = β̄ > 0 and slowly varying semi-
width a) constant semi-width a = ā and slowly varying contact angle β that runs from the top α = 0 to the bottom α = π of a large horizontal cylinder, in the cases (a)
ā < āc < π , in which the rivulet is never de-pinned, (b) āc < ā < π , in which the rivulet is de-pinned in the interval αdepin < α < αrepin , and (c) ā > π , in which the rivulet
is de-pinned in the interval αdepin < α ≤ π .

zero at α = αc. In Section 4 we showed how there can be steady
flow of a wide rivulet all the way from α = 0 to α = π when the
contact lines de-pin when the contact angle reaches its minimum
physically realisable value of zero, i.e. at α = αc. More generally,
however, the contact lines could de-pin at a non-zero value of the
contact angle, denoted by β = β̄ > 0. Evidently, as in Section 5,
the behaviour of the rivulet in this situation will be qualitatively
different for ā ≤ π and ā > π .

6.1. ā ≤ π

When ā < π and β̄ < βmin the contact angle is always greater
than or equal to β̄ and hence de-pinning and re-pinning do not
occur, and so the rivulet behaves exactly as described in Section 4.
However, when ā < π and β̄ ≥ βmin the rivulet runs from α = 0
with constant semi-width a = ā but decreasing contact angle β as
described in Section 4 until it reaches the valueβ = β̄ atα = αdepin
(0 < αdepin < αmin) at which the contact lines de-pin. The rivulet
then runs from α = αdepin with constant contact angle β = β̄
but varying semi-width a as described in Section 3 until it reaches

α = αrepin (αmin < αrepin < π ) at which the contact lines re-pin.
The rivulet then runs from α = αrepin to α = π with constant
semi-width a = ā but increasing contact angle β as described in
Section 4. Here α = αdepin and α = αrepin are the appropriate
solutions of the equation Q = Q̄ with Q given by (3), a = ā and
β = β̄ . In the marginal case ā = π we have αrepin = π and so re-
pinning does not occur. Expressed in another way, de-pinning and
re-pinning occur when ā > āc, where the value of āc corresponds
to βmin = β̄ . In the limit ā → ∞ we have αdepin → 0+ and
αrepin → π− and so recover the solution for a rivulet with constant
non-zero contact angle β = β̄ > 0 described in Section 3.

6.2. ā > π

When ā > π , as in the case ā ≤ π , the rivulet runs from α = 0
with constant semi-width a = ā but decreasing contact angle β
as described in Section 4 until it reaches the value β = β̄ > 0 at
α = αdepin (0 < αdepin < αc) at which the contact lines de-pin. The
rivulet then runs from α = αdepin with contact angle β = β̄ > 0
but varying semi-width a as described in Section 3 until, unlike in
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Fig. 16. The mass of fluid on the cylinder M for a rivulet whose contact lines de-
pin at contact angle β = β̄ plotted as a function of the logarithm of the scaled
semi-width log(ā/π) for β̄ = 0, 1/2, 1, 2 when Q̄ = 1, together with its leading
order asymptotic behaviour in the limits ā → 0+ given by (27) and ā → ∞ when
β̄ = 0 given by (28), shown with dotted lines. The triangles indicate the slopes
3Q̄/β̄2

= 12, 3, 3/4, confirming the leading order asymptotic behaviour in the
limit ā → ∞ when β̄ > 0 given by (29). De-pinning and re-pinning occur for
ā/π > āc/π , de-pinning but no re-pinning occurs for ā/π > 1, and the points at
which de-pinning first occurs are denoted by dots.

the case ā ≤ π , it reaches α = π . In the limit ā → ∞ we have
αdepin → 0+ and so again recover the solution for a rivulet with
constant non-zero contact angle β = β̄ > 0 described in Section 3.

6.3. Rivulet profiles

The behaviour for β̄ > 0 for both ā ≤ π and ā > π is illustrated
in Fig. 13, which shows plots of the contact angle β , the scaled
semi-width a/π , and the maximum thickness hm as functions of
the scaled angle α/π for a range of values of ā/π when Q̄ = 1
and β̄ = 1. In particular, Fig. 13 shows that in this case de-pinning
and re-pinning occur for ā/π > āc/π ≃ 0.6446 and de-pinning
but no re-pinning occurs for ā/π > 1. Fig. 14 shows typical cross-
sectional profiles of the rivulet in the cases (a) β̄ = 1 and ā = 2 (<
āc ≃ 2.0252) (b) β̄ = 1 and ā = 2.5 (āc < ā < π), and (c) β̄ = 1
and ā = 5 (> π), and, in order to clarify what might again appear
to be a rather complicated situation, Fig. 15 shows sketches of the
rivulet in the same three cases, namely (a) ā < āc < π , in which
the rivulet is never de-pinned, (b) āc < ā < π , in which the rivulet
is de-pinned in the interval αdepin < α < αrepin, and (c) ā > π , in
which the rivulet is de-pinned in the interval αdepin < α ≤ π .

6.4. Mass of fluid on the cylinder

The mass of fluid on the cylinderM is given by

M =

 π

0


+a

−a
h dy dα =

 π
2

0

2β(ma cothma − 1)
m2

dα

+

 π

π
2

2β(1 − ma cotma)
m2

dα. (26)

Fig. 16 showsM plotted as a function of the logarithm of the scaled
semi-width log(ā/π) for a range of values of β̄ , and shows that M

is a monotonically increasing function of ā. Fig. 16 also shows that
in the limit of a narrow rivulet, ā → 0+, M → 0+ according to

M ∼


70ā2Q̄

9

 1
3

C → 0+, (27)

while in the limit of awide rivulet on the upper half of the cylinder,
ā → ∞, M → ∞ according to

M ∼


3ā2Q̄
2

 1
3

C → ∞ (28)

when β̄ = 0 and

M ∼
3Q̄
β̄2

log ā → ∞ (29)

when β̄ > 0, where the constant C is again given by (10).

7. Conclusions

In the present work we showed how the solutions for the
unidirectional flow of a thin rivulet with prescribed volume
flux down an inclined planar substrate can be used to describe
the locally unidirectional flow of a rivulet with constant width
(i.e. pinned contact lines) but slowly varying contact angle as well
as the possible pinning and subsequent de-pinning of a rivuletwith
constant contact angle and thepossible de-pinning and subsequent
re-pinning of a rivulet with constant width as they flow in the
azimuthal direction from the top α = 0 to the bottom α = π of
a large horizontal cylinder. We found that, despite being the same
locally, the global behaviour of a rivulet with constant width can
be very different from that of a rivulet with constant contact angle
described by Duffy and Moffatt [20] and Duffy and Wilson [21].
Specifically, while a rivulet with constant non-zero contact angle
β = β̄ > 0 can always run from the top to the bottom of the
cylinder, the behaviour of a rivulet with constant width ā depends
on the value of ā. In particular, while a narrow rivuletwith constant
semi-width a = ā ≤ π can run all the way from the top to the
bottom of the cylinder, a wide rivulet with constant semi-width
a = ā > π can run from the top of the cylinder only to a critical
azimuthal angleα = αc given by (19). In Section 4wediscussed the
scenario in which the hitherto pinned contact lines of the rivulet
de-pin at α = αc and the rivulet runs from α = αc to the bottom
of the cylinder with zero contact angle but slowly varying semi-
width a = π/m, as sketched in Fig. 8.

In Section 5 we described the pinning and de-pinning of a
rivulet with constant contact angle β = β̄ at a = ā. In particular,
we showed that when ā ≤ π the rivulet is pinned in the interval
αpin < α < αdepin for β̄ > β̄c, but that when ā > π the rivulet is
pinned in the interval αpin < α < αc and has zero contact angle
in the interval αc ≤ α ≤ π for all β̄ > 0, as sketched in Fig. 12. In
Section 6 we described the corresponding situation involving the
de-pinning and re-pinning of a rivulet with constant semi-width
a = ā at a non-zero contact angle β = β̄ > 0 which generalises
the de-pinning at zero contact angle discussed in Section 4. In
particular, we showed that when ā ≤ π the rivulet is de-pinned
in the interval αdepin < α < αrepin for ā > āc, but that when
ā > π the rivulet is de-pinned in the interval αdepin < α ≤ π ,
as sketched in Fig. 15. In the latter situation, the mass of fluid on
the cylinder was found to be a monotonically increasing function
of the constant semi-width ā.
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