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A new approach to the solution of free rigid body motion for attitude
maneuvers®

Daniele Pagnozzi!, Craig Maclean? and James D. Biggs3

Abstract— A Hamiiltonian formulation of free rigid body
motion defined on the Special Unitary Group SU(2) is used
to integrate the system to obtain a convenient quaternion rep-
resentation for attitude engineering applications. Novel content
of this paper concerns applying a modern approach, based on
geometric control theory to obtain the kinematic solution in an
elegant and compact form. Moreover, this integration leads to
an attitude representation which is not Euler-angle-like, thus
enhancing its applicability (e.g. to attitude motion design).

I. INTRODUCTION

This paper derives an analytic solution for the natural
motions of an asymmetric rigid body using a Lax pair
integration on the Special Unitary Group SU(2). This en-
ables the solution to be expressed in a useful compact
quaternion form. The motivation for this is to exploit the
derived analytic solution, in future work, by making use
of it to rapidly generate reference tracks for space attitude
maneuvers or as initial guesses in numerical optimisation
software. In particular, exploiting natural motions for attitude
control has been undertaken for the symmetric case [1]
in order to minimise torque requirement. In the literature
the solution for the asymmetric case is well known and
classically solved using Euler angles in terms of Jacobi
elliptic functions and theta functions [2], [3], [4], [5], [6].
However, using the Hamiltonian formulation and SU(2) as
the configuration space it is shown that the solution can be
solved independently of theta functions. In this work the
solution is expressed in terms of an elliptic integral and
Jacobian elliptic functions which can be evaluated using theta
functions as well as many other alternative methods [7], [8].
In this respect when implementing the analytic solutions
in software the user has the flexibility to choose the most
appropriate method to evaluate the elliptic integral whether it
be via theta functions or otherwise. An additional advantage
is that the solution is in a quaternion form without being
Euler-angle-like, as the quaternions are not constructed using
inverse trigonometric functions of the Euler angles. More-
over, although the analytic solution to the Euler equations is
expressed in terms of Jacobi elliptic functions similarly to
the existing literature [9], it is the corresponding quaternion
solution that is expressed in a form different to the classically
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stated solutions [4] [5] [6] or from the indirect application
of the Euler angles solution, [2]. In this paper we derive
the equations using the general Lax Pair integration for
Hamiltonian systems on the Lie group SO(3) [10] adapted
to SU(2) and specialised to the equations of the Hamiltonian
of the asymmetric rigid body. Implementation issues are
remarked throughout the paper to make this work accessible
to practical application and which can be used as a quick
reference to a compact quaternion description.

II. MATHEMATICAL REPRESENTATIONS OF
FREE RIGID BODY MOTIONS

To obtain a global description of spacecraft kinematics a
rotation matrix R(t) can be used which is an element of
the Special Orthogonal Group SO(3) [11], [12]. Often the
rotation is described locally by parameterizing the rotation
matrix using Euler angles [12], [13]. However, in this paper
we use a rotation matrix R(t) which is an element of the
Special Unitary Group SU(2) where R(t) € SU(2) is of

the form:
R(t)z( . ) M

—Z2 Z1

with 21,20 € C and Zz;, Z their complex conjugates such
that |z|° + |22|> = 1. It seems that it was Klein [14]
who discovered that for the symmetric Lagrange and toy
top (a symmetric rigid body in a constant gravitaional field)
simpler solutions can be obtained when SU(2) is used
as configuration space rather than SO(3). Furthermore, a
modern integration of the toy top which uses the setting of
Lagrangian mechanics on the Lie group SU(2) was used
to find the solution in terms of hyperelliptic functions, [15].
The reason for using SU (2) as the configuration space in this
paper is two-fold. Firstly using a matrix representation it is
possible to express the equations of motion in a convenient
Lax pair form, and secondly that SU(2) is isomorphic to
the unit quaternions [9]. Furthermore, the mapping F' from
SU(2) to the unit quaternions Q is a simple one: F :
SU(2) + Q:

F: ( _z;z 2 ) < 21+ 22) = goe+ q1i+g2j+ g3k (2)
defining the coordinate change and where the complex
numbers z; = qo+1%q1, 22 = g2 + ¢ q3 are regarded in their
quaternion form z; = goe + ¢1i, 22 = gae + ¢si subject
to the usual quaternionic multiplication. For more details of
this isomorphism see [10]. The kinematic equations can then



be expressed as [16]:

dR(t)

dt
where 1,9, 3 are the angular velocities in body fixed
coordinates and Ap, As, Az describe the infinitesimal mo-
tion of the spacecraft in the roll, pitch and yaw directions

respectively. Mathematically speaking they form a basis for
the Lie algebra su(2) of the Lie group SU(2):

174 0 1 0 1

170 4
A3 =3 ( i 0 ) '

with its commutator defined by [X,Y] = XY — Y X called
the Lie bracket such that [A;, As] = As, [As, A3] = Ay and
[A1, As] = —A,. Note the 3 in the basis is introduced so
that the commutative relation of the Lie bracket corresponds
to the cross product in R3.

The attitude dynamics of a free rigid spacecraft can be

described by the Euler equations in coordinate form:
O (t) = 619()2s(1)
Qg(t) = 6201 (¢)Q3(t (5)
Q3(t) = 0301 (¢)Qa(t

= R(t)(QlAl + Q9 A5 + QgAg) 3)

where §; = £2=% (§y = S=4 = §3 = 9=22 where
Cl . . C2 . . 03 . .
c1,C2,cs are the principal moments of inertia. It is easily

shown that the following quantities are conserved:

H = 5 (13 (1) + 203 (t) + c3Q3(1)) ©)
K? = dO3(1) + 305 (t) + 23(1)

H and K are, respectively, the kinetic energy of the system
and the magnitude of the total angular momentum.

In order to integrate the equations of motion it is conve-
nient to express Euler’s equations in Lax Pair form on SU(2)

([171, [18]) :

S = [M(0),9] = [M(t), VH] ™
where
M(t) = Clgl(t)Al + CQQQ (t)AQ + 6393 (t)Ag (8)
Q = O(O)A; + Qa(t)As + Qs(t) A3
v = 2 _g
= aMZ =

where the basis is defined by (4). This form is convenient as
the general solution is well known to be of the form ([10]):

M(t) = R()"' M(0)R(1) )
I1I. FREE RIGID BODY ANGULAR VELOCITIES

It is well known that the Euler equations describing free
rigid-body can be solved analytically in terms of Jacobi
elliptic functions [9] Chapter 15, [19]. They are included
here expressed in a compact form:

Lemma 1: The free rigid body angular velocities €2; can
be expressed in the analytic form:

Q1) = \/;isn (j:,/asjt + C;, Sl) (10)
Ci S5
when
ﬁ ‘S 1
54
or
() = Y (i\ﬁasiw yEX j) (an
i 7 %
otherwise!.

sn(-,-) is a Jacobi elliptic function and the constants C;
are defined® by

Cy = st ((@SHO) 5 (12)
Vi S
with
_p+ /Pl —p- /i
S; = S5 = (13)
2¢ 2
and
o = _ leize)(ei—ck)
Cjck
er He2¢: (cidc ci K% —(cj+ep)K?
ﬂ _ AcjerH—2 i(cjter) HH2ci K= —(cj+en) K (14)

CiCjCk
(QCjH—K2)(2ckH—K2)
cZejey

X=—

where the indexes do not represent a sum; conversely i, j and
k follow a “circular notation”, which means they appear in
a consecutive recursion (e.g. i=1,j=2,k=3 or i=2,j=3,k=1 etc.
...) with the conserved quantities [/ and K defined in terms
of the initial angular velocities:

H= % (019%(0) + CQQ%(O) + 0393(0))
K? = c302(0) + 393(0) + ¢2Q3(0)
Proof. [11]

Remark 1: The sign & in (11) is dependent on the initial
conditions. For implementation the sign has to be chosen so
that the sign of the first derivative of the analytically defined
angular velocity at the initial time ¢ = 0:

0,(0) = i@@cn <C j) dn (Cl- j) (16)

G b J

15)

when  s; > s; or otherwise

2;(0) = +/as; ” cn ” C; - dn y C; ”

is matched to the sign of the original equations at ¢ = 0:

0:(0) = 6;2(0)Q2%(0) .with 1 # k # i (17)

!Using the relation:

Visn(Cp) = sn(yi Gt

Note that the domain of an inverse elliptic function is C2 as well.



IV. QUATERNION SOLUTION

The main result of this paper, that is, to express the quater-
nion solution of natural rigid body motion independently of
theta functions, is stated as a Theorem:

Theorem 1: The natural motions of a free rigid body in
quaternion form with ¢ = [qo, q1, ¢2, qg]Tis:

g = F (cos(“ol;t)) F3 — sin(“‘”ét)) Fi)

@ = Fi (sin( 248 Fy + cos(248) Fy)

(18)
@2 = F» (cos(24) Fy + sin(22) Fy)
g3 = Fs (sin(“m;t)) F3 — cos(“”ét)) Fy)
where
p1(t) = Lt + kIl(n; 9| m) + D,
Fi =8/
Fo = 821/ 71_5(07
_ i
F3 =383 /71+?{)(t)27
Fo=8—7L0
4 4 /1+y*(t)2 (19)

S; = £1, fori=1,2,3,4,

* _ y(t)
Yy (t) - 1+ /1+y7(t)2’

z(t) = 701%(”7

_eaQa(t)
v = Sasm-

where II(n; ¥|m) is the incomplete elliptic integral of the
third kind with

n=s/K?
f(t) =+,/s9a t+ Ci
m = s1/S2 (20)
0 = am(f(t),m)
k== (2Hcl - Kz) / (Kcl./SQQ)
when | s1/s2 |[< 1. When | s1/s2 |> 1 it is given:
n=sy/K?
f(t) = i,/sloz t+ Z*;CH
m= S3/81 2n

9= am(f(t),m)
K==+ (2Hcl — K2) / (Kcl\/slia)

am(-,m) is the Jacobi amplitude, D is a constant of
integration and (), Q2(t), Q3(¢) are defined in Lemma 1.
Note that in f(¢) and ~ the sign must be chosen in accordance
with the sign of /sza in the €2, expression.

Remark 2: The S; functions are sign functions, so they
can be either +1 or -1. To implement the equations it is
not necessary to take into account all their combinations.

Indeed, excluding all the equivalent rotations>, it is enough
to consider only two of them: S; or S and S3 or Sy
respectively. The sign functions can be set by comparison
with the known initial first derivative of the quaternions:

do = Qo(21(0), 22(0), 2(0) ) go
Note that the theorem is given for an arbitrary initial con-
dition without loss of generality as the quaternions can be
rotated to any initial condition.
Proof.
From equation (9):

R()M(t)R(t)~" = M(0) (22)

where M (0) is a matrix of constant entries and
R(t)M (t)R(t)~! describes the conjugacy class of M (¢) and
therefore an initial R(0) can be chosen such that M (0) =
K A;. Therefore, it suffices to integrate the particular solu-
tion:

ROM)R(t)™ = KA, (23)
where K is the constant defined in (6) therefore
M(t) = KR(t) ' A1 R(t) (24)

as exp(p1(t)A1) is a stabiliser of A; it is convenient to
introduce the coordinate form [10]:

R(t) = exp(p1(t) A1) exp(ip2(t) Az2) exp(i3(t) A1)
and substituting into (24) yields:

(25)

M(t) = iK cos o (t) e 13t sin @, (t)
T2\ e sinpy(t) — cos pa(t)
then equating (26) with M (¢) in (8) yields:
191 (t) = K cos pa(t) 27
which gives 2 (t) and
coQa(t) +iczQ3(t) = il e 31 sin o (t) (28)
—coQ(t) + ic3Qs(t) = iK €31 sin py(t)
which gives ¢3(t):
CQQQ (t)
t t) = 29
an p3(t) e (0) (29)

then let 2(¢) = cos ¢a(t) and y(t) = tan p3(t) to yield (19).
It remains to solve for 1 (¢). Using the coordinate repre-
sentation of R(t), (25) yields:

_ 1 dR(t)
)y ——= =
Rt~ —
$1(2) icos pa(t) ie~ 31 sin o (1)
2 ie'#3(1) sin (1) —icos pa(t)

Pa(t) 0 e~tealt) ¢3(t) (i 0
+ 9 <_ew3(t) 0 + 2 0 —3

then equating (30) to (3) yields:

3Depending of whether the orthonormal frame is positively or negatively
oriented.



Qa(t) +iQ3(1) = @1 (t)ie™ > sin pa (1) + ga(t)e "

—Qo(t) 4 iQ(t) = @1 (t)ie’?3® sin o (t) — @o(t)e'?s®
(30)
the two equations in (30) can be rearranged to give:
Qa(t) iQ3(t) RV .
i T omipa(n — PL(t)isinga(t) +2(t) an
Qa(t) | iQs(¢ PR .
_ew3 a;)ZWKQHmwﬂﬂ—Wﬂﬂ

then adding the two equations in (31) and using the expres-
sions in (28) and simplifying gives:
, Q3(t)ca + c3Q3(t
<P1(t)K< 2(); 33()2)
(c2022(1))? + (e323(1))

and using the conserved quantities (6) can be expressed as:

2H — 019% (t)
)= | K|—5—F—F+"-+5 ) dt
o= [ (e
Similarly as shown in [2], such expression can be taken
to a known form after algebraic manipulation and a proper

change of variable. Indeed, taking into account the general
expression of the angular velocity:

(32)

(33)

Qi1 (t) = Csn(&t +y, )
it yields:
2H — C1Qz(t) )
) e 34
(K (D) G
K, 2He — K2 1
1 Kei 1—(98)2sn2(&t+ 7, 1)

The integration of the first term is trivial, while to the
integration of the second term the following change of
variable is considered:

¥ = am(&t+,p) (35)
d9 = €/1—p2sn2 (&t +,p)dt
Such step, takes the integral to the form
K
pr(t) = [ —dt + (36)
1

1 1
0’/ D d
1—(52)2sn2(Et + v, 1 \/1 u2sn? (&t + v, 1)
with
- 2H61—K2
o Kle

whose solution is a linear term plus an indefinite elliptic in-
tegral of the third kind ([2], [7]) and an integration constant,
as stated in Theorem 1.

The isomorphism (2) is used to map R(t) onto the
quaternions ¢ in (18)

Remark 3: To obtain the initial state through the origin
Rint, the quaternions (18) have to be calculated by pulling
R(t) in (25) back to the identity via:

R(t) = Ry R(0) ' R(t) 37)

and again, to obtain the final expression, the isomorphism
(2) has to be used to map onto the quaternions.

V. CONCLUSIONS

A Hamiltonian formulation of free rigid body motion
defined on the Special Unitary Group SU(2) is used to
integrate the system to obtain a compact quaternion repre-
sentation. In contrast to the classical solution of the evolution
of the configuration space, this modern geometric approach
leads to a solution that involves neither theta functions
nor Euler angles defined by inverse trigonometric functions.
Moreover the solution is presented in a form of analytically
defined quaternions depending only on the angular velocities,
therefore, they are convenient for a variety of engineering
applications (e.g. space attitude motion planning and control)
as they constitute a non-singular set of variables describing
the attitude of a free rigid body. As an example, some of the
practical advantages are shown in Figures 1 and 2. Here the
same natural motion is described first using the solution in
Euler angle form, found in literature, [2] Eq. (B5) and (B10);
then using the quaternions of Theorem 1 of Section IV in
this paper. While the curves in Figure 2 are smooth, Figure 1
shows discontinuities which make them unfeasible for direct
application, e.g. two different Euler angle sets should be used
at the same time in order to switch from one to another to
avoid singularities. Future work will investigate the potential
use of these analytic solutions in spacecraft attitude dynamics
and control problems to rapidly generate reference tracks for
attitude control and as quick initial guesses for numerical
optimisation processes on-board. Figure 2 and 3 illustrate
one of the potential applications introduced above.

2 0.7
15 0.6
=+ 1 S 05 /_\
0.5 0.4
0
0 50 100 150 200 0 50 100 150 200
Time (s) Time (s)
2
1
S o
-1
-2
0 50 100 150 200
Time (s)

Fig. 1. Euler angles reference track generated with the classical solution



In Figure 2 the continuous and thick lines show the track
flown by a spacecraft guided by a PD controller following
the natural motion from a given initial condition gy to a
prescribed target configuration g74,get, dashed and thin line,
as a reference.
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Fig. 2. Quaternion reference track generated with the solution proposed in
this paper and then tracked, respectively dashed and continuous line. These
quaternions describe the position of the spacecraft’s Body Reference Frame
w.r.t. a Geocentric Equatorial Reference Frame assumed to be inertial and
fixed. Note that the dashed line differs from the continuous one because it
describes the natural motion. Indeed, the natural motion track is no longer
used as a reference once the target configuration is achieved.
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Fig. 3. This figure illustrates how a natural reference track may
be tracked in terms of the control torques applied by reaction

wheels. The spacecraft considered has the following principal inertias:
{0.0109,0.04,0.0506 }kgm? of a typical nano spacecraft. It is on a
nominal circular orbit at an altitude of 600km, with an inclination of 97.79
degrees. The following disturbances have been considered: air drag, gravity
gradient, SRP and residual magnetic dipole. The spacecraft is operating with
the following actuators: reaction wheels with max torque = 103 Nm,
and rate limit = 1072Nm/s.

The methodology proposed consists of performing a para-
metric optimisation of the equations of the analytic solution
of Theorem 1 in order to find the initial angular velocities
the spacecraft should have in order to reach its target con-
figuration. This may be flown actuating a pulse-like torque

at the beginning and at the end of the motion, initially to
reach the desired initial angular velocities, then to bring
the spacecraft to rest. In theory, this is a two-burst thrust
scheme, but in practice an ideal burst is not possible due to
the physical constraints on the actuators. However, when the
manoeuvre length is large enough relative to the time-scale of
the actuation, then the actual thrust scheme is close to a two-
burst thrust scheme. See Figure 3 where the torque applied
to track the motion are depicted against the maneuver time.
Note that the methodology suggested here is not optimal
but is meant to be low computational, as the references
can be obtained simply by a parametric optimisation of
the solution (18). However, because the track generated
exploits the free motion of the body, it can be presumed
reasonably “close” to the minimum-fuel one. Therefore, a
further potential application of the solution derived in this
work is that it may be the used as a good initial guess for
an optimisation process on-board. Future work will develop
specific applications of the equations presented in this paper,
providing a more detailed analysis, for example a comparison
with a quaternion feedback technique. Moreover, a further
issue to tackle for an efficient and feasible on-board use
of the closed form solution is the analysis of the methods
available to evaluate the elliptic functions and integrals, as,
for instance, theta functions or Fourier series.
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