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Quadratic Hamiltonians on non-Euclidean spaces of arbitrary constant
curvature

James D. Biggs
james.biggs@strath.ac.uk

Abstract— This paper derives explicit solutions for Rieman-
nian and sub-Riemannian curves on non-Euclidean spaces of
arbitrary constant cross-sectional curvature. The problem is
formulated in the context of an optimal control problem on a
3-D Lie group and an application of Pontryagin’s maximum
principle of optimal control leads to the appropriate quadratic
Hamiltonian. It is shown that the regular extremals defining
the necessary conditions for Riemannian and sub-Riemannian
curves can each be expressed as the classical simple pendulum.
The regular extremal curves are solved analytically in terms
of Jacobi elliptic functions and their projection onto the
underlying base space of arbitrary curvature are explicitly
derived in terms of Jacobi elliptic functions and an elliptic
integral.

Keywords: Riemannian curves, sub-Riemannian curves,
non-Euclidean space, optimal control .

I. INTRODUCTION

Let G denote the 3-D isometry group of a simply con-
nected surface S of constant cross-sectional curvature ε , and
let A1,A2 and A3 denote a basis of left-invariant vector fields
in the Lie algebra g of G with the Lie bracket [X ,Y ] =
XY −Y X (with X ,Y ∈ g and where XY denotes matrix mul-
tiplication of X and Y ) defined by the commutative relations
[A1,A2] = εA3, [A2,A3] = A1 and [A1,A3] = −A2. Note that
when ε = 1,−1,0 we obtain the standard 3-D matrix Lie
algebras i.e. G is the Special Orthogonal Group SO(3) with
Lie algebra so(3) when ε = 1, G is the Hyperbolic Group
SO(1,2) with Lie algebra so(1,2) when ε =−1, and G is the
Special Euclidean Group SE(2) with Lie algebra se(2) when
ε = 0. In each of the standard cases the simply connected
surfaces S are the planar forms; the sphere S2, the hyperbola
H2 and the Euclidean plane R2 with each having constant
cross sectional curvature of ε = 1,−1 and 0 respectively. In
this paper we generalise to spaces of arbitrary constant cross
sectional curvature, with ε ∈ (−∞,0)∪(0,∞) ensuring that G
is a semi-simple Lie group while the degenerate Euclidean
case ε = 0 is considered as a limiting case. This paper
considers the problem of minimizing quadratic functions of
the form:

J =
1
2

∫ T

0

n

∑
i=1

civ2
i dt (1)

where i ≤ n ≤ 3 and ci > 0 are constant weights and vi
are functions on the interval [0,T ], satisfying the prescribed
boundary conditions g(0)= g0 and g(T )= gT where g(t)∈G
satisfies the differential constraint:

dg(t)
dt

= g(t)
n

∑
i=1

Aivi. (2)

This class of problem is associated with Riemannian geom-
etry when n = 3 where the metric (the integrand of equation
(1)) is a positive definite quadratic form defined on the entire
Lie algebra. If the metric is defined only partially on the Lie
algebra (n< 3) the problem is a sub-Riemannian one [1], [2],
[3], [4], [5]. The Riemannian problem equates to a statement
of the Principle of least action for a free rigid body if c1,c2,c3
are equal to the principal moments of inertia, vi the angular
velocities and ε = 1 (G ∈ SO(3)) [6], [7]. In this case the
Hamiltonian vector fields defining the necessary conditions
for optimality are the Euler equations. In this particular case
the Hamiltonian equations of the free rigid body can be
reduced to the classical simple pendulum equations under a
cylindrical coordinate change of variables [7]. In this paper
it is shown that the necessary conditions for optimality can
be reduced to the equations of the simple pendulum for a
larger class of optimal control problem.

In all other cases, other than the Riemannian problem,
this problem statement is associated with sub-Riemannian
geometry where the integrand of (1) defines only a partial
metric on the Lie algebra (n < 3). Sub-Riemannian curves
can also be defined equivalently by the Riemannian case but
with any single weight ci→ ∞. Note that no more than one
constant weight can tend to infinite as for these cases the
optimal control problem is not well posed. A particular class
of sub-Riemannian curves, called p-curves, were studied in
[1] where the partial metric is defined on the vertical vector
fields p of the Cartan decomposition. In [1] p-curves are
studied for the classic planar forms where their curvature
ε =−1,0,1. The p-curves, in [1], correspond to the limiting
case where c3→∞ or equivalently setting n = 2 in equations
(1) and (2). In this paper we generalise the analysis of p-
curves, in [1], to spaces of arbitrary constant curvature.

Another potentially interesting case is where A1 and A3
in (2) are controlled and A2 is not. In other words v2 = 0
in equations (1) and (2) which corresponds to the limiting
Riemannian case as c2 → ∞. In this case the differential
constraint (2) can be viewed analogously to the kinematics
of a wheeled robot with a nonholonomic (sliding) constraint
where v1 is the velocity in the forward direction and v3 the
angular (steering) velocity. It follows that the optimal control
problem defines paths of a wheeled robot that minimises
a weighted cost function of the forward velocity and the
amount of required steering.

This paper solves the extremals for these Riemannian
and sub-Riemannian curves in terms of Jacobi elliptic func-
tions and shows that the equations can be reduced to the



classical pendulum through a simple coordinate change. An
integration method is then presented which generalises the
procedure used to project the extremals onto g(t) ∈ SO(3)
presented in [8] to spaces of arbitrary cross-sectional cur-
vature. This integration method is then applied to project
the extremals related to Riemannian and sub-Riemannian
curves onto the simply connected surface S. This reveals that
Riemannian and sub-Riemannian curves are described by
Jacobi elliptic functions and an incomplete Elliptic integral
of the third kind.

II. NECESSARY CONDITIONS FOR (SUB-) RIEMANNIAN
CURVES

An application of Pontryagin’s maximum principle of op-
timal control (where the functions v1,v2,v3 are the assumed
control functions) brings us to the associated (left-invariant)
Hamiltonian formalism. There is a wealth of literature on
the co-ordinate free Maximum principle and in line with the
geometric interpretations of this paper the interested reader
should refer to [8], [5], [9], [3] for details. Each left-invariant
Hamiltonian can be expressed independently of co-ordinates
on G as a function f of the extremal curves H = f (h1,h2,h3)
where h1,h2,h3 ∈ g are the extremal curves and hi = p(Ai)
with p(·) a scalar function which maps an element of the Lie
algebra to its dual defined through the non-degenerate trace
form (for ε ∈ (−∞,0)∪ (0,∞)). Explicitly, minimising the
cost function (1) subject to the constraint on the Lie algebra
from (2) gives the Hamiltonian:

H =
n

∑
i=1

hivi−ρ0
1
2

n

∑
i=1

civ2
i (3)

where ρ0 = 0 for abnormal extremals and ρ0 = 1 for regular
extremals. Proceeding in this paper with an analysis of the
regular extremals and noting that H is a concave function
with respect to vi then the optimal controls are:

v∗i =
hi

ci
(4)

and substituting (4) into (3) gives the optimal Hamiltonian:

H =
1
2

(
h2

1
c1

+
h2

2
c2

+
h2

3
c3

)
(5)

where the Hamiltonian corresponds to the Riemannian prob-
lem for arbitrary non-zero constant values of ci and to sub-
Riemannian problems whenever any single constant weight
ci→∞. The Hamiltonian vector fields are then given by the
equation XH [·] = {·,H} where the Poisson bracket on the
dual of the Lie algebra is defined in terms of the Lie bracket
as {hi,h j}=−p([Ai,A j]). Then the Hamiltonian vector fields
defining the necessary conditions for optimality are given by:

ḣ1 = {H,h1}= εh2h3
c2
− h2h3

c3

ḣ2 = {H,h2}= h1h3
c3
− εh1h3

c1

ḣ3 = {H,h3}= h1h2
c2
− h1h2

c1

(6)

It is easily verified that the limiting cases of the Hamiltonian
vector fields as any single ci→∞, correspond to the limiting
cases of the Hamiltonian function, that is, the equations are

well behaved. For example, as c3→ ∞ the Hamiltonian (5)
yields the Hamiltonian of general p-curves and (6) to the
corresponding vector fields defining the necessary conditions
for the existence of p-curves. In addition, it is easily shown
that the function:

M = h2
1 +h2

2 + εh2
3 (7)

is a Casimir function for (6) i.e. {H,M} = 0. Furthermore,
the intersection of these functions (that implicitly define
surfaces) (7) and (5) geometrically define the extremal curves
[8]. In particular they are the intersection of an Ellip-
soid (Riemannian Case) or elliptic cylinder (sub-Riemannian
case) with an ellipsoid for ε > 0 or a hyperbola for ε < 0.
It is also well known that the smooth intersection of any
two quadric hypersurfaces in projective three space define
an elliptic curve [10] which can be parameterised by elliptic
functions. This gives us an indication to the form the analytic
solution the extremal solutions will take.

Lemma 1: The real extremal curves associated with Rie-
mannian and sub-Riemannian curves on 2-D simply con-
nected surfaces of constant cross sectional curvature are
described by the equation of the mathematical pendulum of
arbitrary length.
Proof:
define the constants

λ1 =
(

εc3−c2
c2c3

)2
,λ2 =

(
c1−εc3

c1c3

)2
,λ3 =

(
c1−c2
c1c2

)2
, (8)

then (6) can be expressed as:(
ḣ1
)2

= λ1h2
2h2

3,
(
ḣ2
)2

= λ2h2
1h2

3,
(
ḣ3
)2

= λ3h2
1h2

2,
(9)

using equations (5) and (7) we can write:

h2
2 =

c2
εc3−c2

(
2c3Hε +h2

1−
(c1−εc3)h2

1
c1

−M
)
,

h2
3 =

c3
c2−εc3

(
2c2H +h2

1−
c2h2

1
c1
−M

)
,

h2
1 =

c1
εc3−c1

(
2c3Hε +h2

2−
εc3h2

2
c2
−M

)
,

h2
3 =

c3
c1−εc3

(
2c1H +h2

2−
c1h2

2
c2
−M

)
,

h2
1 =

c1
c2−c1

(
2c2H− c2h2

3
c3
−M+ εh2

3

)
,

h2
2 =

c2
c1−c2

(
2c1H− c1h2

3
c3
−M+ εh2

3

)
,

(10)

and again the expressions for the sub-Riemannian case are
the limits of these equations as any single ci → ∞. For
example as c3→ ∞ equation (10) become:

h2
2 = 2c2H− c2

h2
1

c1
,

h2
3 =

M−2Hc2
ε

+
(

c2−c1
εc1

)
h2

1

h2
1 = 2c1H− c1

h2
2

c2
,

h2
3 =

M−2Hc1
ε

+
(

c1−c2
εc2

)
h2

2

h2
1 =

1
c2−c1

(2Hc1c2−Mc1 + εc1h2
3)

h2
2 =

1
c1−c2

(2Hc1c2−Mc2 + εc2h2
3),

(11)

then substituting in either (10) or (11) into (9) the
Riemannian and sub-Riemannian curves can be expressed



in the quadratic form:(
ḣi
)2

= λi(αih2
i −βi)(kih2

i −di), (12)

where i= 1,2,3 and λi are defined in (8) and for Riemannian
curves

α1 =
c2(c1−c3ε)
c1(c3ε−c2)

, β1 = − c2(2c3Hε−M)
εc3−c2

k1 =
c3(c1−c2)

c1(c2−εc3)
, d1 = c3(2c2H−M)

εc3−c2

α2 =
c1(c2−εc3)
c2(εc3−c1)

, β2 = − c1(2c3Hε−M)
εc3−c1

k2 =
c3(c2−c1)

c2(c1−εc3)
, d2 = c3(2c1H−M)

εc3−c1

α3 =
c1(εc3−c2)
c3(c2−c1)

, β3 =
c1(2c2H−M)

c1−c2

k3 =
c2(εc3−c1)
c3(c1−c2)

, d3 = c2(2c1H−M)
c2−c1

(13)

and for example sub-Riemannian curves when c3→ ∞ are:

αi =−
c j
ci
, βi = −2c jH, ki =

c j−ci
εci

, di =
2c jH−M

ε

α3 =
εc1

c2−c1
,β3 =

c1(2Hc2−M)
c1−c2

, k3 =
εc2

c1−c2
,d3 = c2(2Hc1−M)

c2−c1
(14)

where i = 1 when j = 2 and i = 2 when j = 1. Then using
the change of coordinates hi =

√
bi
ai

sin θ

2 in (12) yields the
equation of the mathematical pendulum:

θ̇ =±
√

A+Bcosθ (15)

where the constants A = (4aidi−2kibi),B = 2kibi where
ai = λiαi and bi = λiβi. �. The recognition of the extremal
curves qualitative behaviour as being determined by the
mathematical pendulum enables the description of all
possible qualitative behaviours of the (sub-) Riemannian
curves. Setting I = aidi

biki
we define the qualitative behaviours

as:
Case A: I = 0 corresponds to the stationary position
analogous to the downward position of the mathematical
pendulum.
Case B: 0 < I < 1 corresponds to oscillatory motion
analogous to a pendulum swinging back and forth.
Case C: I = 1 corresponds to the equation of the separatrix
connecting the two saddle points of the upward equilibrium
position.
Case D: I > 1 corresponds to circulating orbits where the
pendulums energy is high enough to carry the pendulum
over the top.

Lemma 2: The real extremal curves associated with
Riemannian and sub-Riemannian curves on 2-D simply
connected surfaces of arbitrary curvature for biki < aidi are
of the analytic form:

hi =
√

bi/ai sin(zi) (16)

where:
zi = am(±

√
aidit +βi,

biki

aidi
) (17)

where am(·, ·) is the Jacobi amplitude function [12] and the
constant βi = sin−1(am

(√
aihi(0)√

bi
, biki

aidi

)
) and for biki > aidi:

hi =
√

di/ki sin(zi) (18)

where:

zi = am(±
√

bikit + γi,
aidi

biki
) (19)

where am(·, ·) is the Jacobi amplitude function [12] and the
constant γi = sin−1(am

(√
kihi(0)√

di
, aidi

biki

)
).

Proof. It is easy to verify by substitution that this solves equa-
tion (12). Note that for biki > aidi the Jacobi transformation
is used [11]. �

Here we note that (16) corresponds to Case D of the
classical simple pendulum and (18) corresponds to Case A.
If biki = aidi then each solution degenerates to a hyperbolic
tan function defining the heteroclinic connection of Case C.

Theorem 1: Riemannian and sub-Riemannian curves on
a simply connected surface S of cross sectional curvature
ε ∈ (−∞,0)∪(0,∞) can be expressed in terms of the extremal
curves h1,h2,h3 as:

x =− h1√
K2−εh2

3
cosφ1−

√
εh2h3

K
√

K2−εh2
3

sinφ1

y =− h1√
K2−εh2

3
sinφ1 +

√
εh2h3

K
√

K2−εh2
3

cosφ1

z =−
√

εh2
K

(20)

where K2 = M in (7) and

φ̇1 =
K
√

ε

(
h2

1
c1
+

h2
2

c2

)
h2

1 +h2
2

(21)

Proof: Recall that as the Hamiltonian for sub-Riemannian
curves can be viewed as limits of the Riemannian case
(5) it suffices to integrate the system down to G using the
expression for the Hamiltonian (5). It is convenient to express
the equations describing the extremal curves (6) and their
relationship to g(t) ∈ G in Lax Pair form defined on the
basis of the Lie algebra:

A1 =

 0 0 1
0 0 0
−ε 0 0

 , A2 =

 0 0 0
0 0 1
0 −ε 0

 ,

, A3 =

 0 −1 0
1 0 0
0 0 0

 .

(22)
then the (sub-)Riemannian curves are defined by the equa-
tions:

dL(t)
dt = [dH,L(t)], dg(t)

dt = g(t)dH (23)

where L(t) =
3
∑

i=1
hiAi, dH =

3
∑

i=1

hi
ci

Ai. It is easy to show

by differentiation that

g(t)L(t)g(t)−1 = constant (24)

It follows that if we define the conserved quantity K2 =
h2

1 +h2
2 + εh2

3 then (24) can be conjugated such that

g(t)L(t)g(t)−1 =
√

εKA3 (25)

then defining g(t) ∈ G in the convenient form:

g(t) = exp(φ1A3)exp(φ2A2)exp(φ3A3) (26)



where φ1,φ2,φ3 are local coordinates then

L(t) =
√

εKg(t)−1A3g(t) (27)

comparing with L(t) gives: 0 −εh3 h1
εh3 0 h2
−εh1 −εh2 0

=
√

εK ( x̂| ŷ| ẑ) (28)

where x̂, ŷ, ẑ are the vectors

x̂ = [0 cos(
√

εφ2)
√

ε cosφ3 sin(
√

εφ2)]
T

ŷ = [−cos(
√

εφ2) 0 −
√

ε sinφ3 sin(
√

εφ2)]
T

ẑ = [− cosφ3 sin(
√

εφ2)√
ε

sinφ3 sin(
√

εφ2)√
ε

0]T
(29)

which yields

h1 =−K cosφ3 sin(
√

εφ2)
h2 = K sinφ3 sin(

√
εφ2)

h3 =
K√

ε
cos(
√

εφ2)
(30)

it follows that

cos(
√

εφ2) =
√

εh3
K , sin(

√
εφ2) =

√
K2−εh2

3
K

(31)

and
cosφ3 =− h1√

K2−εh2
3
, sinφ3 =

h2√
K2−εh2

3
(32)

these solutions will be used in conjunction with the follow-
ing. First, we substitute equation (26) into g(t)−1 dg(t)

dt = dH
from (23) which yields:

h3
c3

= cos(
√

εφ2)φ̇1 + φ̇3
h2
c2

= sin(
√

εφ2)sinφ3φ̇1√
ε

+ cosφ3φ̇2
h1
c1

=− sin(
√

εφ2)cosφ3φ̇1√
ε

+ sinφ3φ̇2

(33)

which on substitution of (31) and (32) simplifies to
h3
c3

=
√

εh3
K φ̇1 + φ̇3

h2
c2

= h2φ̇1
K
√

ε
− h1√

K2−εh2
3
φ̇2

h1
c1

= h1φ̇1
K
√

ε
+ h2√

K2−εh2
3
φ̇2

(34)

it follows that:

φ̇1 =
K
√

ε

(
h2

1
c1
+

h2
2

c2

)
h2

1 +h2
2

(35)

noting that the projection of g(t) ∈ G (26) onto S given by
g(t)[1 0 0 0]T is:

x = cosφ3 cosφ1− cos
√

εφ2 sinφ3 sinφ1
y = cosφ3 sinφ1 + cos

√
εφ2 sinφ3 cosφ1

z =−
√

ε sin
√

εφ2 sinφ3

(36)

then substituting (31), (32) and (35) into (36) gives (20). �
Lemma 3: The solution to the integral

φ̇1 =
K
√

ε
(
(h2

1)/c1 +(h2
2)/c2

)
h2

1 +h2
2

(37)

with the extremal curves defined by (16) (b3k3 < a3d3) is

φ1 =
Γt
γ
+ (γα−ΓK2)√

a3d3γΓK2 Π[ γ

K2 ,am(±
√

a3d3t +β3,
b3k3
a3d3

), b3k3
a3d3

]

(38)

where Π[·, ·, ·] is the incomplete elliptic integral [12] and
am(·, ·) the Jacobi amplitude function with constants:

α = 2HK
√

ε, Γ = K
√

εb3
a3c3

, γ = εb3
c3

(39)

and with the extremal curves defined by (18) (b3k3 > a3d3)
is

φ1 =
Γt
γ
+

(γα−ΓK2)√
b3k3γΓK2 Π[ γ

K2 ,am(±
√

k3b3t + γ3,
d3a3
k3b3

), d3a3
k3b3

]
(40)

with constants:

α = 2HK
√

ε, Γ = K
√

εd3
k3c3

, γ = εd3
c3

(41)
Proof: rearranging the differential equation (37) as an integral
and using the Hamiltonian (5) and Casimir function (7), φ1
can be expressed in terms of h3 as:

φ1 =
∫ K
√

ε
(
2H−h2

3/c3
)

K2− εh2
3

dt (42)

then substituting h3 =
√

b3
a3

sn
(
±
√

a3d3t +β3,
b3k3
a3d3

)
from

(16) into (42) and integrating yields (38). Equation (40) is
obtained in an analagous manner. �.

Lemma 4: Riemannian and sub-Riemannian curves on
non-Euclidean spaces of constant curvature ε ∈ (−∞,0)∪
(0,∞) are of the analytic form:

x =−
√

b1 sinz1
√

a1

√
K2−ε

b3
a3

sinz3

cosφ1−
√

εb2b3
a2a3

sinz2 sinz3 sinφ1

y =−
√

b1 sinz1
√

a1

√
K2−ε

b3
a3

sinz3

sinφ1 +
√

εb2b3
a2a3

sinz2 sinz3 cosφ1

z =−
√

εb2
K
√

a2
sinz2

(43)
where zi is the Jacobi amplitude function (17) for biki < aidi
and (19) for biki > aidi and where φ1 is defined by (38) for
(b3k3 < a3d3) and (40) for (b3k3 > a3d3).

III. CONCLUSION

In this paper a closed form solution for Riemannian and
sub-Riemannian curves on non-Euclidean spaces of arbitrary
curvature are derived. The projection of the curves onto the
base space are expressed in terms of Jacobi elliptic functions
and trigonometric functions of the sum of a secular term and
an incomplete elliptic integral.
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