-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by University of Strathclyde Institutional Repository

I._‘.
Unlversltyﬂ@

Strathclyde
Glasgow

Strathprints Institutional Repository

Vasile, Massimiliano and Minisci, Edmondo and Locatelli, Marco (2008) Testing approaches
for global optimization of space trajectories. In: 3rd International Conference on Bioinspired
Optimization Methods and their ApplicationsBIOMA 2008, 2008-10-13 - 2008-10-14, Ljubljiana.

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright © and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/


https://core.ac.uk/display/9844065?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

ON TESTING GLOBAL OPTIMIZATION
ALGORITHMS FOR SPACE
TRAJECTORY DESIGN

Massimiliano Vasile and Edmondo Minisci
Department of Aerospace Engineering
University of Glasgow

mvasile,eminisci@eng.gla.ac.uk

Marco Locatelli
Dipartimento di Informatica
Universita di Torino

locatelli@di.unito.it

Abstract In this paper, the procedures to test global search algorithms applied to
space trajectory design problems are discussed. Furthermore, a number
of performance indexes that can be used to evaluate the effectiveness of
the tested algorithms are presented. The performance indexes are then
compared and the actual significance of each one of them is highlighted.
Three global optimization algorithms are tested on three typical space
trajectory design problems.
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1. Introduction

In the last decade, many authors have used global optimization tech-
niques to find optimal solutions to space trajectory design problems.
Many different methods have been proposed and tested on a variety of
cases. From pure Genetic Algorithms (GAs) [6, 4, 8, 1] to Evolutionary
Strategies (ESs) (such as Differential Evolution, DE)[11] to hybrid meth-
ods [12], the general intent is to improve over the pure grid or enumera-
tive search. Sometimes, the actual advantage of using a global method
is difficult to appreciate, in particular when stochastic based techniques
are used. In fact, if, on one hand, a stochastic search provides a non-
zero probability to find an optimal solution even with a small number of
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function evaluations, on the other hand, the repeatability of the result
and therefore the reliability of the method can be questionable. The first
actual assessment of the suitability of global optimization method to the
solution of space trajectory design problems can be found in two studies
by the University of Reading [5] and by the University of Glasgow [10].
One of the interesting outcomes of both studies was that DE performed
particularly well on most of the problems, compared to other methods.
In both studies, the indexes of performance for stochastic methods were:
the average value of the best solution found for each run over a number
of independent runs, the corresponding variance and the best value from
all the runs. For deterministic methods, the index of performance was
the best value for a given number of function evaluations. In this paper,
we propose a testing methodology for global optimization methods ad-
dressing specifically black-box problems in space trajectory design. In
particular, we focus our attention on stochastic based approaches. The
paper discusses the actual significance of a number of performance in-
dexes and proposes an approach to test a global optimization algorithm.

2. Testing Procedure

In this section we describe a testing procedure that can be used to
derive the performance indexes described in the next section.

If we call A a generic solution algorithm and p a generic problem we
can define a convergence test as in Algorithm 1.

Algorithm 1 Convergence Test

set the max number of function evaluations for A equal to NV
apply A to p for n times

for all i € [1,...,n] do ¢(N,i) = min f(A(N),p,1)

end for

compute: Gpin(N) = min ¢(N,i), Gmax(N) = max ¢(N, 1)

i€[L,..,n] i€[l,....n]

Now if the algorithm A is convergent, when the number of function
evaluations [N goes to infinity the two functions ¢, and ¢, converge
to the same value, the global minimizer. Note that not all the algorithms
have this property and depending on the complexity of the problem the
value of NV can be finite or not. The value of N therefore gives a measure
of the complexity of the problem or equivalently the effort required to a
given algorithm to solve the problem under investigation. If Algorithm
1 is applied to a generic problem with a generic algorithm we can have
three cases:

1 AN € N such that ¢min = dmaz
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2 ﬂN € N such that ¢mm = ¢max = fglobal

3 IN € N such that ¢pmin = Omaz = foiobal

If case 3 is true then we can have an exact measure of the complexity
of the problem and of the ability of an algorithm A to solve problem p.
However, the procedure in Algorithm 1 can be unpractical since, though
finite, the number N could be very large. Moreover, it could be the
case that we are not interested in finding the global minimum all the
times we run A on p. In fact the value of N for which case 3 is true
implies that by applying A to p we find always the global minimum.
Therefore, we can look at the performance of an algorithm A applied to
p for a given N. Now, let us define the quantity oy = || fgiopar — f(x)||
where foiopat = f(Xgiobar) and ||.|| is the Euclidean norm. If the global
minimum is not known a priori, we can compute d by means of Xpcs and
frest = f(Xpest) which refer to the best known result 65 = || fpest — f(%)]|

We can now define the procedure, summarized in Algorithm 2.

Algorithm 2 Convergence to the global optimum
1: set the max number of function evaluations for A equal to N
2: apply A to p for n times
3:set 7 =0
4: for allie[l,..,n] do
5. ¢(N,i) = min f(A(N),p,i)
6
7
8
9

: compute
if (05 <toly) then j=j+1
end if

: end for

A key point is properly setting the value of n, because a value of n too
small would correspond to an insufficient number of samples to have a
proper statistics. The value of the tolerance parameter tol; depends on
the size of the basin of attraction of the minima, but they have not to be
necessarily set a priori and are less crucial for the analysis. Note that, in
the case of multiple minima with equal f also the distance ||z — % giopai |
would be relevant, however in the following we are only interested in the
value of the merit function.

2.1 Performance Indexes

Now that the testing procedure is defined we can define the perfor-
mance indexes. For a stochastic based algorithm different performance
indexes can be defined. In the following we will discuss about the sig-
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nificance of some of them keeping in mind the practical use of a global
optimization, or global search, algorithm in space trajectory design.

The current practice is mainly focused on the evaluation of best value,
mean and variance values of the best solutions found on n runs. An al-
gorithm is considered as better performing as the obtained mean value
is closer to the global optimum and a small variance is considered as a
suggestion of robustness. This approach, however, does not consider at
least two main issues: a) very rarely the distribution of best values can
be approximated with a gaussian distribution and b) from a practical
standpoint, usually, when we use an algorithm to solve a global opti-
mization problem, we are not interested in mean values, which could be
faraway from the optimum.

An alternative index that can be used to assess the effectiveness of a
stochastic algorithm is the success rate, which is related to the j value in
algorithm 2, being Sp = j/n. Considering the success as the referring in-
dex for a comparative assessment implies two main advantages. First, it
gives an immediate and unique indication of the algorithm effectiveness
and, second, the success rate can be represented with a binomial proba-
bility density function (PDF), independently of the number of function
evaluations, the problem and the type of optimization algorithm. This
means that we can derive the minimum number of runs, n, that are
required to have a given level of confidence in the correctness of the
estimated success rate. For a binomial distribution, it is common use
to assume both the normal approximation for the sample proportion
p of successes, i.e. p ~ N{0,0(1 — 60)/n}, and the requirement that
Pr{lp — 60| < d|6] should be at least 1 — « [2]. This leads to expression
in eq. 1 and to the conservative rule in eq. 2, obtained if # = 0.5

n > 0(1—0)x)) o/d’ (1)

n > 0.25x7)) ,/d* (2)

For our tests we considered n = 200, which should guarantee an error
< 0.05 with a 95% confidence.

3. Problem Description

Three different test-cases, with different difficulty levels, are consid-
ered. In all of these cases the objective will be to minimize the variation
of the velocity of the spacecraft due to a propelled maneuver, Av. Min-
imizing the Av means minimizing the propellant mass required to per-
form the maneuver, since propellant mass increases exponentially with

Av.
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A simple, but already significant, application is to find the best launch
date and time of flight to transfer a spacecraft from Earth to the aster-
oid Apophis. The transfer is computed as the solution of a Lambert’s
problem [3], therefore the design variables are the departure date from
the first celestial body, tyo and the flight time 77 from the first to the
second body. The launch date from the Earth has been taken in the
interval [3653, 10958] (number of elapsed days since January 1st 2000,
MJD2000), while the time of flight has been taken in the interval [50,
900] days. The known best solution is fpes:=4.3745658 km /s.

The second test-case consists of a transfer from Earth to Mars with
the aid of a gravity assist manoeuvre at Venus to alter the path and the
speed of the spacecraft. The mission is implemented as a Lambert’s arc
from the Earth to Venus, a Venus-Mars arc with a midcourse deep-space
manoeuvre and a gravity assist maneuver at Venus. The problem has
dimension 6, to [d, MJD2000] [3650, 3650+365.25*15], T3 [d] [50, 400],
v [rad] [—m, 7], 71 [1, 5], ag [0.01, 0.9], T5 [d] [50, 700], where ~,
rp.1 and ag are related to the gravity assist maneuver and are the angle
of the hyperbola plane, the radius of the pericentre of the hyperbola
normalized with the radius of the planet and the fraction of time of
flight before the deep space manoeuvre, respectively. The best known
solution is fpest=2.9811 km/s.

The third test is a multi gravity assist trajectory from the Earth to
Saturn following the sequence Earth-Venus-Venus-Earth-Jupiter-Saturn
(EVVEJS). Gravity assist maneuvers have been modeled through a
linked-conic approximation with powered maneuvers, i.e., the mismatch
in the outgoing velocity is compensated through a Av maneuver at the
GA planet. No deep-space maneuvers are possible and each planet-to-
planet transfer is computed as the solution of a Lambert’s problem. The
objective function is given in [9] and also in this case the dimensionality
of the problem is 6, ¢y [d, MJD2000] [-1000, 0], 77 [d] [30, 400], T5 [d]
[100, 470], T3 [d] [30, 400], Ty [d] [400, 2000], T5 [d] [1000, 6000]. The
best known solution is fpes;=4.9307 km/s.

Due to format requirements, it is not possible to exaustively describe
the problems, but they are freely available on request as black-box exe-
cutables.

4. Used Algorithms

We tested three global search algorithms belonging to the class of
stochastic algorithms. More precisely, one belongs to the class of ESs,
one to the class of GAs and one to the class of agent-based algorithms.



We considered 6 different settings for the DE, resulting from combin-
ing 3 sets of populations, [5d,10d,20d], where d is the dimensionality
of the problem, 2 strategies, 6 (DE, best, 1, bin)and 7 (DE, rand, 1, bin)
[7], and single values of stepzsize and crossover probability, F' = 0.75
and CR = 0.8 respectively, on the basis of common use.

For the Particle Swarm Optimization (PSO) algorithm, 9 different
settings were considered, resulting from the combination of 3 sets of pop-
ulation, again [5d, 10d,20d], 3 values for the maximum velocity bound,
Vinaz € [0.5,0.7,0.9], and single values for weights, C; = 1 and Cy = 2.

Regarding the GA application, only the influence of the population
size was considered ([100, 200, 400] for the bi-impulse test case and [200,
400, 600] for the other two cases), with single values for crossover and
mutation probability, Cr = 1 and Mp = 1/d.

The algorithms operated on normalized ([0,1]) search spaces.

5. Comparison Among Performance Indexes

The results of the tests are summarized in table 1 and 2, where suc-
cess probability and besta value, mean and variance of best results are
given for each of 18 (set)solvers. For both EA and EVM cases, success
probability allows a fair classification and gives a clear indication of the
best performing algorithms. Algorithms 5 and 6, DE with strategy 7
and 10d and 20 d, respectivelly, perform undoubtedly much better than
the others and GAs (algorithms 16, 17 and 18) appear to be the worst
performing ones. The algorithm 4 wins a bronze medal, but if we can be
confident on its third position for the EVM problem, we cannot have the
same level of confidence regarding the third position for EA, because of
the proximity of other algorithms. Actually, due to the binomial nature
of the success and the adopted sample size, it is not possible to fairly
dicriminate between algorithms, for which the success distance is smaller
than the expected error. Therefore, algorithm 4 has to be considered at
the same level of 11, 13 (PSO, [10d, Vi4,=0.7] and [10d/2, V;542=0.9],
respectively) and other PSO settings. For the same reasons, we can say
that, among the PSO settings, 11 and 13 performe better than 8 ([10d,
Vinaz=0.5]), but the remaining algorithms work at the same level.

An analogous vagueness condition shows for most of the algorithms
when applied to EVM and almost all of them when applied to EVVEJS,
for which, in particular, all of algorithms appear practically unsuccessful,
because, even if the success probability cannot be considered really 0,
due to the error margin, it is < 0.12, according to the expected error.

For cases when the success probability cannot give practically useful
information to classify the algorithms, the user could be tempted to use
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Table 1. Success for the 18 algorithms on the three test-cases.
success, following tol; values were used: 0.001 for EA, 3 — fiest for EVM and 5 — fies:

7

To compute the

for EVVEJS

1 4 5 6 7 8 9
EA 0.140 0.300 0.355 0.450 0.770 0.855 0.355 0.345 0.410
EVM 0.050 0.050 0.050 0.150 0.250 0.370 0.040 0.035 0.080
EVVEJS | 0.020 0.005 0.015 0.000 0.000 0.000 0.000 0.005 0.000

10 11 13 14 15 16 17 18
EA 0.395 0.425 0.410 0.435 0.385 0.420 0.160 0.240 0.105
EVM 0.045 0.060 0.055 0.035 0.070 0.075 0.005 0.010 0.035
EVVEJS | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005

Table 2. Indices: Best value, Mean Best, Variance Best.

EA (N=5000) EVM (N=100000) EVVEJS (N=400000)
1 | 43746  4.6962 0.0736 | 2.9811 3.6032 0.3240 | 4.9307 12.5129 15.0723
2 | 43746  4.5734  0.0312 | 2.9811 3.5118 0.0880 | 4.9307 11.3672 15.7534
3 | 43746 4.5198 0.0166 | 2.9811 3.4335 0.0823 | 4.9307  9.9694  15.9349
4 | 43746 45126 0.0236 | 2.9811 3.2936 0.0307 | 5.3034  8.1468  9.7486
5 | 43746 4.4197 0.0074 | 2.9811 3.2336 0.0277 | 5.3034  6.3851  5.0131
6 | 43746 4.3919 0.0026 | 2.9813 3.1699 0.0285 | 53034  5.5596  1.3999
7 | 43746 45120 0.0124 | 2.9811 3.8194 0.6794 | 5.0275 12.6827 16.4910
8 | 43746 4.5103 0.0119 | 2.9811 3.7812 0.6252 | 4.9558 11.9736 18.7031
9 | 43746 4.4990 0.0125 | 2.9811 3.6537 0.5233 | 5.3034 11.1931 17.9212
10 | 4.3746  4.5098 0.0142 | 2.9811 4.0427 1.0135 | 5.0125 11.7365 17.7327
11 | 4.3746  4.4919 0.0120 | 2.9811 3.9285 0.8346 | 5.0553 10.7274  17.2695
12 | 43746 4.5037 0.0136 | 2.9811 3.7329 0.5971 | 50177 10.4668 18.4276
13 | 4.3746  4.4959 0.0133 | 2.9811 4.2185 1.0569 | 5.2450 11.8344 21.7106
14 | 43746 4.5503 0.3720 | 2.9811 3.9747 0.8676 | 5.0223 10.5636 18.4262
15 | 4.3746  4.4983 0.0131 | 2.9811 3.8127 0.7466 | 5.0310 10.5256 15.1327
16 | 4.3746  4.5743 0.0260 | 2.9885 3.7821 0.2413 | 5.1595 10.6525 15.1862
17 | 43746 4.4959 0.0146 | 2.9926 3.5435 0.1400 | 5.0242 83140  9.9140
18 | 4.3746  4.4507 0.0084 | 2.9827 3.4452 0.0983 | 4.9821 6.9770  6.6833

mean and variance values, but this practice is strongly heedless. Since,
how anticipated in section 2.1 and confirmed by tests (see figure 1), the
PDF of the best values is not a gaussian and, moreover, changes during
the process, mean and variance values are not enough to understand the
algorithm behaviour and we cannot say anything about their exactness.

Even if we suppose mean and variance are correct (in some way), look-
ing at these two values can bring to incorrect conclusions. For instance,
if we consider the values for the algorithms 14 (PSO, [10d, V,4,=0.9])
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Figure 1.  Variation of the PDF for best solutions with N for the algorithm 6 applied
to EA test-case; discrete, incorrect gaussian approximation (dashed) and kernel based
approximation (continuous) are shown.

and 17 (GA, pop=400), applied to EVM, we could conclude that 17
performs better than 14, because of a smaller mean value and a smaller
variance (regarded as an index of robusteness). But, if we are interested
in global optimal solutions, 17 is noticeably better: it is able to find the
global solution, even if it is less robust and gets stuck many times in a
far basin (see figure 2).

In order to solve an uncertainty condition, for instance when the suc-
cess probability appears uniformly null, relaxing the tol; value could be
useful. Focusing on the EVVEJS case, there is no way to correctly dis-
criminate among the algorithms on the basis of data in table 1, but if
the success treshold is raised from 5 to 5.3, then a superior performance
of GAs is revealed. Likely, this behaviour is due to the mutation search
operator, which in this complex case helps the GAs to get near the global
solution, without allowing to find the proper one.

As previously stated, for all the tests, 200 runs were performed in
order to mantain the error on the success probability within a predefined
margin. The extreme importance of the sample size appears evident
when we look at figure 3, where the variation of the success probability
is shown as function of n. For n < 50, the success is extremely oscillating
and the confidence on the obtained value should be considered poor.
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Figure 2.  Examples of two PDF's, which could bring to incorrect conclusions; for
both cases, discrete, incorrect gaussian approximation (dashed) and kernel based
approximation (continuous) are shown.
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(a) Alg. 13 on EA case (b) Alg. 6 on EVM case

Figure 3. The influence of sample size. The success probability is shown as function
of the sample size for two different algorithm/test-case combinations.

6. Conclusions

The work focuses on the testing procedures for the application of
global optimization algorithms to space trajectory design and tries to set
the basis for a standard and consistent procedure. The current testing
practice and the currently used performance indeces are criticized and a
preliminary testing/analysis procedure is proposed and the probability
of success is indicated as the most useful index, when performance of
different algorithms are to be compared. Moreover, the binomial nature
of this index allows to link the number of performed runs to the expected
error on the success itself, while it is not possible to have the same statis-
tical consistency when mean and variance values are utilized, because of
the unknown nature of the PDF for the best values. In general, it should
be stressed that if the comparative tests have to be reliable, the number
of runs cannot be lower than a threshold depending on the nature of the
considered indeces.
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In the future, the testing procedure will be improved by considering

also the heuristics costs and the link between the performance of some
heuristics and the main structures of the test-cases
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