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Abstract

In this work a local projection stabilization method is proposed to solve a fictitious domain problem. The
method adds a suitable fluctuation term to the formulation thus rendering the natural space for the Lagrange
multiplier stable. Stability and convergence are proved and these results are illustrated by a numerical
experiment.
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1. Introduction

The numerical solution of problems on smooth domains, but with complicated geometries, can be faced
using different approaches, e.g., isoparametric elements, approximating the curved boundary by a polygonal
one, etc. The problem becomes particularly complicated in the case the domain moves or changes shape, thus
forcing a constant remeshing if the shape is to be tackled in time. To avoid this, and other complications, a
fictitious domain method was proposed in [7] and analyzed in [6]. The ficticious domain approach replaces
the original problem by a mixed one on a larger (and simpler) domain that seeks for the original variable and
a Lagrange multiplier on the physical boundary. In the analysis given in [6] it is proved that the combination
of piecewise linear functions for the primal variable and piecewise constants for the multiplier are inf-sup
stable and convergent under the geometrical restriction that the mesh on the physical boundary is coarser
than the mesh induced by the triangulation of the larger domain. This is a limitation especially considering
that the aforementioned intersection is needed to assemble the matrix associated to the discrete problem.
Since then, some attempts have been made to overcome this restriction, such as cut elements (cf. [3, 4]), or
XFEM approaches (cf. [9, 8]).

In this work we propose a simple solution to this problem by means of a LPS-like stabilized finite element
method. The starting point is the observation that the mesh for the larger domain induces a partition of the
physical boundary. The Lagrange multiplier space built from this partition contains a subspace such that
the combination is inf-sup stable. Then, the present approach adds a fluctuation term to the formulation
penalizing the distance between this natural finite element space and the underlying stable pair. The analysis
of the new method follows then an approach related to the ones treating minimal stabilization frameworks,
such as [1] and [2].

The rest of the paper is organized as follows. Section 2 introduces the notations and the problem of
interest. Then, the method is presented and its stability is proved in Section 3. Section 4 contains the error
analysis which is illustrated by means of a numerical experiment in Section 5.

2. Notations

We consider ω ⊆ R2 an open bounded domain with a Lipschitz continuous boundary γ and outward
normal vector n. To avoid technical difficulties we will suppose that γ is polygonal and then it’s the union
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of N straight segments γ1, γ2, ..., γN . The analysis can nevertheless be extended with minor modifications
to the general case. For D ⊂ R2, the inner product on L2(D) (or L2(D)2) will be denoted by (·, ·)D. We

adopt the usual notations for Sobolev spaces. In particular, H
1
2 (γ) will be the space of traces of functions of

H1(ω) on γ, with dual H−
1
2 (γ). The duality product on H−

1
2 (γ)×H 1

2 (γ) will be denoted by 〈·, ·〉γ . Also,
for δ ∈ [0, 1

2 ] the following space will be useful in the sequel

ΠN
j=1H

δ(γj) := {ξ ∈ L2(γ) : ξ|γj ∈ Hδ(γj)} .

The problem of interest reads as follows:

−∆u = f̃ in ω , u = g on γ , (1)

where f̃ ∈ L2(ω) and g ∈ H 1
2 (γ). The fictitious domain approach relies on the introduction of a larger (and

simpler) domain Ω ⊃ ω, an extension f of f̃ to Ω, and the solution of the following mixed problem: Find

(u, λ) ∈ W := H1
0 (Ω)×H− 1

2 (γ) such that

(∇u,∇v)Ω − 〈λ, v〉γ + 〈µ, u〉γ = (f, v)Ω + 〈µ, g〉γ ∀(v, µ) ∈ W . (2)

Problems (1) and (2) are linked by the fact that if (u, λ) satisfies (2), then u|ω satisfies (1) and λ coincides
with the jump of the normal derivative of u on γ (see [7, 6] for details).

To solve this weak problem, we introduce Th, a regular triangulation of Ω built using triangles K with
diameter hK , and h := maxK∈Th hK . Let γh be the partition of γ induced by Th, this is, the collection of
edges e such that their end points are the intersections of γ with the edges of the triangulation Th, plus
the angular points of γ. Let also γh̃ be a partition of γ, whose vertices are also vertices of γh, with edges ẽ
satisfying the following (cf. [6]): there exists C > 0 such that 3h ≤ |ẽ| ≤ Ch, for all ẽ ∈ γh̃. Using the mesh
regularity of Th it is easy to see that for all ẽ ∈ γh̃, card{e ∈ γh : e ⊂ ẽ} ≤ C, where C > 0 is independent
of ẽ and h.

Over these partitions we define the following finite element spaces:

Vh := {vh ∈ C0(Ω) ∩H1
0 (Ω) : vh|K ∈ P1(K) , ∀K ∈ Th} ,

Λh := {qh ∈ L2(γ) : qh|e ∈ P0(e) , ∀e ∈ γh} ,
Λh̃ := {qh̃ ∈ L

2(γ) : qh̃|ẽ ∈ P0(ẽ) , ∀ẽ ∈ γh̃} ,

and Wh := Vh × Λh. The pair Vh × Λh is not inf-sup stable, while, thanks to the hypothesis on Th and γh̃,
the pair Vh × Λh̃ satisfies a discrete inf-sup condition (cf. [6]).

3. The stabilized formulation and its stability

To avoid the need to use the space Λh̃, in this work we propose the following alternative discrete problem:
Find (uh, λh) ∈ Wh such that:

B[(uh, λh), (vh, µh)] = (f, vh)Ω + 〈g, µh〉γ ∀ (vh, µh) ∈ Wh , (3)

where

B[(uh, λh), (vh, µh)] = (∇uh,∇vh)Ω − 〈λh, vh〉γ + 〈µh, uh〉γ +
∑
ẽ∈γh̃

Cs|ẽ|(λh − P̃ λh, µh − P̃ µh)ẽ , (4)

Cs > 0, and P̃ : L2(ẽ)→ P0(ẽ) stands for the orthogonal projection in L2(ẽ), i.e., P̃ ξ|ẽ := |ẽ|−1(ξ, 1)ẽ.
Before heading to stability, we state the following preliminary result.

Lemma 1. There exists β > 0 such that, for all µh ∈ Λh

β‖µh‖− 1
2 ,γ
≤ sup
vh∈Vh

−〈µh, vh〉γ
|vh|1,Ω

+

∑
ẽ∈γh̃

Cs|ẽ|‖µh − P̃ µh‖20,ẽ


1
2

. (5)
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Proof. Let µh ∈ Λh. Then

‖µh‖− 1
2 ,γ
≤ ‖µh − P̃ µh‖− 1

2 ,γ
+ ‖P̃ µh‖− 1

2 ,γ
. (6)

Using the definition of the norm on H−
1
2 (γ), the fact that P̃ is the orthogonal projection, Cauchy-Schwarz’s

inequality and the approximation properties of P̃ (cf. [5]) it follows that

‖µh − P̃ µh‖− 1
2 ,γ

= sup
ξ∈H

1
2 (γ)

〈µh − P̃ µh, ξ〉γ
‖ξ‖ 1

2 ,γ

= sup
ξ∈H

1
2 (γ)

∑
ẽ∈γh̃

(µh − P̃ µh, ξ)ẽ
‖ξ‖ 1

2 ,γ

= sup
ξ∈H

1
2 (γ)

∑
ẽ∈γh̃

(µh − P̃ µh, ξ − P̃ ξ)ẽ
‖ξ‖ 1

2 ,γ

≤ sup
ξ∈H

1
2 (γ)

∑
ẽ∈γh̃

‖µh − P̃ µh‖0,ẽ‖ξ − P̃ ξ‖0,ẽ
‖ξ‖ 1

2 ,γ

≤ sup
ξ∈H

1
2 (γ)

{∑
ẽ∈γh̃

|ẽ|‖µh − P̃ µh‖20,ẽ
} 1

2
{∑N

j=1

∑
ẽ⊂γj |ẽ|

−1‖ξ − P̃ ξ‖20,ẽ
} 1

2

‖ξ‖ 1
2 ,γ

≤ C sup
ξ∈H

1
2 (γ)

{∑
ẽ∈γh̃

Cs|ẽ|‖µh − P̃ µh‖20,ẽ
} 1

2
{∑N

j=1 ‖ξ‖21
2 ,γj

} 1
2

‖ξ‖ 1
2 ,γ

≤ C

∑
ẽ∈γh̃

Cs|ẽ|‖µh − P̃ µh‖20,ẽ


1
2

. (7)

To bound the second term in (6) we start noting that using the continuous inf-sup condition (cf. [6]) there
exists β̃ > 0 such that

β̃‖P̃ µh‖− 1
2 ,γ
≤ sup
v∈H1

0 (Ω)

−〈P̃ µh, v〉γ
|v|1,Ω

. (8)

Next, since the pair Vh × Λh̃ satisfies a discrete inf-sup condition (cf. [6]) there exists a Fortin operator
πh : H1

0 (Ω)→ Vh, i.e., a continuous linear operator such that 〈µh̃, v〉γ = 〈µh̃, πh(v)〉γ for all µh̃ ∈ Λh̃. Then,

using (8), the properties of πh, Cauchy-Schwarz’s inequality, the approximation properties of P̃ and the
trace theorem it follows that

β̃‖P̃ µh‖− 1
2 ,γ
≤ sup
v∈H1

0 (Ω)

−〈P̃ µh, πh(v)〉γ
C|πh(v)|1,Ω

≤ sup
v∈H1

0 (Ω)

〈µh − P̃ µh, πh(v)〉γ
C|πh(v)|1,Ω

+ sup
v∈H1

0 (Ω)

−〈µh, πh(v)〉γ
C|πh(v)|1,Ω

≤ sup
v∈H1

0 (Ω)

∑
ẽ∈γh̃

(µh − P̃ µh, πh(v)− P̃ πh(v))ẽ

C|πh(v)|1,Ω
+ sup
v∈H1

0 (Ω)

−〈µh, πh(v)〉γ
C|πh(v)|1,Ω

≤ C sup
v∈H1

0 (Ω)

{∑
ẽ∈γh̃

Cs|ẽ|‖µh − P̃ µh‖20,ẽ
} 1

2
{∑N

j=1 ‖πh(v)‖21
2 ,γj

} 1
2

|πh(v)|1,Ω
+ C sup

vh∈Vh

−〈µh, vh〉γ
|vh|1,Ω

,

and the result follows. �
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We next state the main stability result for (3). For this, we introduce the following mesh-dependent
norm on Wh:

‖(vh, µh)‖2Wh
:= |vh|21,Ω + β2‖µh‖2− 1

2 ,γ
+
∑
ẽ∈γh̃

Cs|ẽ|‖µh − P̃ µh‖20,ẽ . (9)

Theorem 2. The bilinear form B satisfies

sup
(vh,µh)∈Wh

B[(uh, λh), (vh, µh)]

‖(vh, µh)‖Wh

≥ 1

6
‖(uh, λh)‖Wh

, (10)

for all (uh, λh) ∈ Wh. Hence, problem (3) is well-posed.

Proof. Let (uh, λh) ∈ Wh. From the definition of B it easily follows that

B[(uh, λh), (uh, λh)] = |uh|21,Ω +
∑
ẽ∈γh̃

Cs|ẽ|‖λh − P̃ λh‖20,ẽ . (11)

Next, from Lemma 1 there exists wh ∈ Vh such that |wh|1,Ω = β‖λh‖− 1
2 ,γ

and

β2‖λh‖2− 1
2 ,γ
− β‖λh‖− 1

2 ,γ

∑
ẽ∈γh̃

Cs|ẽ|‖λh − P̃ λh‖20,ẽ


1
2

≤ −〈λh, wh〉γ .

Then, applying Cauchy-Schwarz’s and Young’s inequalities we obtain

B[(uh, λh), (uh +
1

2
wh, λh)] = |uh|21,Ω +

∑
ẽ∈γh̃

Cs|ẽ|‖λh − P̃ λh‖20,ẽ +
1

2

[
(∇uh,∇wh)Ω − 〈λh, wh〉γ

]
≥ 1

2
|uh|21,Ω +

∑
ẽ∈γh̃

Cs|ẽ|‖λh − P̃ λh‖20,ẽ −
1

8
β2‖λh‖2− 1

2 ,γ
+

3β2

8
‖λh‖2− 1

2 ,γ
− 1

2

∑
ẽ∈γh̃

Cs|ẽ|‖λh − P̃ λh‖20,ẽ

=
1

2
|uh|21,Ω +

β2

4
‖λh‖2− 1

2 ,γ
+

1

2

∑
ẽ∈γh̃

Cs|ẽ|‖λh − P̃ λh‖20,ẽ ,

and the proof is finished noting that ‖(uh + 1
2wh, λh)‖Wh

≤ 3
2‖(uh, λh)‖Wh

. �

4. Error analysis

Supposing that λ ∈ L2(γ) we split the error into interpolation and discrete errors as follows (eu, eλ) :=
(u − uh, λ − λh) = (u − Ihu, λ − Jhλ) + (Ihu − uh,Jhλ − λh) =: (ηu, ηλ) − (ehu, e

h
λ), where Ih stands for

the Lagrange interpolation operator, and Jhλ ∈ Λh is defined by Jhλ|e := |e|−1(λ, 1)e. As most of LPS-like
methods, (3) introduces a consistency error. Using (2), (3) and the definition of B, the following result is
readily established.

Lemma 3. Let us suppose that λ ∈ L2(γ). Then, for all (vh, µh) ∈ Wh

B[(eu, eλ), (vh, µh)] =
∑
ẽ∈γh̃

Cs|ẽ|(λ− P̃ λ, µh − P̃ µh)ẽ.

Note that, though solution of (1) can be supposed in H2(ω), we can not expect the same regularity for
the solution u of (2), which only belongs to Hs(Ω), with 3

2 − ε ≤ s ≤ 2 for any ε > 0 (see [6]). For the

Lagrange multiplier λ, it belongs to L2(γ) in the worst case and to ΠN
j=1H

1
2 (γj) in the best case. The main

result of this section, namely the convergence of method (3), is stated next.
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Theorem 4. Let us suppose that u ∈ Hs(Ω) ( 3
2 − ε ≤ s ≤ 2) and that λ ∈ ΠN

j=1H
δ(γj) (0 ≤ δ ≤ 1

2). Then
there exists a constant C > 0, independent of h, such that:

‖(eu, eλ)‖Wh
≤ C

hs−1|u|s,Ω + h
1
2 +δ

 N∑
j=1

‖λ‖2δ,γj

 1
2

 . (12)

Proof. The first step is to bound the discrete error. For this, let (wh, th) ∈ Wh such that ‖(wh, th)‖Wh
= 1

and the maximum on Theorem 2 is attained. Then, using Lemma 3 and Cauchy-Schwarz’s inequality we
arrive at

1

6
‖(ehu, ehλ)‖Wh

≤ B[(ehu, e
h
λ), (wh, th)]

= −B[(eu, eλ), (wh, th)] + B[(ηu, ηλ), (wh, th)]

= −
∑
ẽ∈γh̃

Cs|ẽ|(λ− P̃ λ, th − P̃ th)ẽ + (∇ηu,∇wh)Ω − 〈ηλ, wh〉γ

+ 〈th, ηu〉γ +
∑
ẽ∈γh̃

Cs|ẽ|(ηλ − P̃ ηλ, th − P̃ th)ẽ

≤ |ηu|1,Ω|wh|1,Ω + ‖ηλ‖− 1
2 ,γ
‖wh‖ 1

2 ,γ
+ ‖th‖− 1

2 ,γ
‖ηu‖ 1

2 ,γ

+
√

2

∑
ẽ∈γh̃

Cs|ẽ|
[
‖λ− P̃ λ‖20,ẽ + ‖ηλ − P̃ ηλ‖20,ẽ

] 1
2
∑
ẽ∈γh̃

Cs|ẽ|‖th − P̃ th‖20,ẽ

 1
2

.

Next, the fact that ‖(wh, th)‖Wh
= 1, the trace Theorem and Poincaré’s inequality lead to

‖(ehu, ehλ)‖Wh
≤ C

|ηu|1,Ω + ‖ηλ‖− 1
2 ,γ

+

∑
ẽ∈γh̃

Cs|ẽ|
[
‖λ− P̃ λ‖20,ẽ + ‖ηλ − P̃ ηλ‖20,ẽ

] 1
2

 . (13)

Using a standard interpolation result (cf. [5]), we have |ηu|1,Ω ≤ Chs−1|u|s,Ω. In addition, the approximation

properties of P̃ , its continuity and the approximation properties of Jh lead to∑
ẽ⊂γj

‖λ− P̃ λ‖20,ẽ ≤ Ch2δ‖λ‖2δ,γj and
∑
ẽ⊂γj

‖ηλ − P̃ ηλ‖20,ẽ ≤ Ch2δ‖λ‖2δ,γj . (14)

Finally, to bound the term ‖ηλ‖− 1
2 ,γ

, we follow steps analogous to (7) and use |ẽ| ≤ Ch to arrive at:

‖λ− Jhλ‖− 1
2 ,γ

= sup
ξ∈H

1
2 (γ)

∑N
j=1(λ− Jhλ, ξ − Jhξ)γj

‖ξ‖ 1
2 ,γ

≤ Ch 1
2 +δ

 N∑
j=1

‖λ‖2δ,γj

 1
2

. (15)

Hence, gathering (13), (15) and (14) we obtain

‖(ehu, ehλ)‖Wh
≤ C

hs−1|u|s,Ω + h
1
2 +δ

 N∑
j=1

‖λ‖2δ,γj

 1
2

 .
The interpolation error ‖(ηu, ηλ)‖Wh

is bounded in the same way and we get

|ηu|1,Ω + β‖ηλ‖− 1
2 ,γ

+

∑
ẽ∈γh̃

Cs|ẽ|‖ηλ − P̃ ηλ‖20,ẽ

 1
2

≤ C

hs−1|u|s,Ω + h
1
2 +δ

 N∑
j=1

‖λ‖2δ,γj

 1
2

 .

The error estimate then follows from the triangular inequality. �
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5. A numerical experiment
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Figure 1: Convergence of the method (3)-(4): errors |u− uh|1,Ω (left) and ‖λ− λh‖0,γ (right).

In order to illustrate the above theoretical results, a numerical test has been performed. Problem
(1) has been solved using method (3)-(4). We chose ω = [0; 1]2, Ω = [−a; 1 + a]2 (with a > 0), and
f(x, y) = 2((x+ a)(1 + a− x) + (y+ a)(1 + a− y)) so that problem (1) has an analytical solution ua(x, y) =
(x+a)(1+a−x)(y+a)(1+a−y). We set g = ua|γ and use a = 0.5. A structured mesh Th of Ω is built, from
which the boundary meshes γh and γh̃ were obtained automatically, with γh̃ satisfying 3h ≤ |ẽ| ≤ 6h. The
computations have been performed with MatlabTM/ Octave. The errors appear to be fearly independent
of the value of Cs in the range 0.1 ≤ Cs ≤ 1000, and then we have fixed Cs = 0.1 in our experiments.
Convergence results are displayed Figure 1. Note that for the errors |u−uh|1,Ω and ‖λ−λh‖0,γ the optimal
convergence order O(h) is recovered, with a faster convergence rate for the latter (in our case λ = 0, which
helps to explain the faster convergence). This confirms our theoretical result (12). Without stabilization
(Cs = 0), a singular matrix is obtained if the condition 3h ≤ |ẽ| is violated. This confirms the necessity
of the geometric condition 3h ≤ |ẽ| ≤ Ch of [6] without stabilization, and the interest of our stabilized
formulation.
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