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Abstract

In this paper, we discuss a link of Itô’s stochastic differential equa-
tions to nonlinear partial differential equations of Burgers type. Un-
der certain conditions, we derive a generalised Burgers equation from
a stochastic differential equation. We also give some economic inter-
pretation of our result as well as the relevant conditions.
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1 Introduction and the main result

The theory of stochastic differential equations (SDEs) has been very well de-
veloped since the seminal work of the great Japanese mathematician Kiyosi
Itô in the mid 1940s, cf. [12]. There are diverse applications arising from
physics, biology, climate studies, engineering, systematical science to eco-
nomics and finance (cf. e.g. [6, 13, 15, 16, 19] and references therein. Here
we would like to add two monographs [24, 7] which have a great influence
on the younger generation of Chinese scholars). On the other hand, stochas-
tic differential equations have profound impacts on differential geometry and
partial differential equations (cf. [5, 11, 14] and most recently [18]). The
object of the present paper is to derive another (yet a complete) link from
Itô’s stochastic differential equations to nonlinear partial differential equa-
tions (PDEs) of Burgers type. Such assertions also hold for multidimensional
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SDEs as well as for SDEs on connected complete manifolds. In a recent
joint work with Aubrey Truman and Feng-Yu Wang [20], we derive nonlinear
parabolic equations of Burgers-KPZ type from multidimensional SDEs and
from SDEs on connected complete manifolds, by utilising arguments different
from the method given in the present paper, in such a manner that the ob-
tained Burgers-KPZ equation characterizes the path-independance property
of the density process of Girsanov transformation for the stochastic differen-
tial equation.

Let us start with a general framework for stochastic differential equations
by following [11]. Let (Ω,F , P ) be a given complete probability space with
a usual filtration {Ft}t∈[0,∞). We use the notation A to denote the collection
of all B(R× [0,∞))/B(R)-measurable functions a : R× [0,∞)→ R.

Given a, b ∈ A, we consider the following stochastic differential equation
of the Markovian type for a continuous stochastic process X = (Xt)t∈[0,∞)

dXt = a(Xt, t)dt+ b(Xt, t)dWt, t ≥ 0 (1.1)

where Wt is a Brownian motion. It is well known, from e.g. [11] (cf. Theorem
IV.3.1), that under the usual conditions of linear growth and locally Lipschitz,
to be precise, the coefficients a : R × [0,∞) → R and b : R × [0,∞) → R
satisfy linear growth and locally Lipschitz condition, C2 with respect to the
first variable, and C1 with respect to the second variables, there exists a
unique solution to equation (1.1) with given initial data X0.

The celebrated Girsanov theorem provides a very powerful probabilistic
tool to solve equation (1.1) under the name of Girsanov transformation or
transformation of the drift (cf. e.g. [11]). Let γ ∈ A satisfy the following
condition

E
[
exp

(
1

2

∫ t

0

|γ(Xs, s)|2ds
)]

<∞, ∀t > 0.

Then, by Girsanov theorem (cf e.g. Theorem IV 4.1 of [11]),

exp

(∫ t

0

γ(Xs, s)dWs −
1

2

∫ t

0

|γ(Xs, s)|2ds
)
, t ∈ [0,∞)

is an {Ft}-martingale. Furthermore, define

Qt := exp

(∫ t

0

γ(Xs, s)dWs −
1

2

∫ t

0

|γ(Xs, s)|2ds
)
· P
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or equivalently in terms of the Radon-Nikodym derivative

dQt

dP
= exp

(∫ t

0

γ(Xs, s)dWs −
1

2

∫ t

0

|γ(Xs, s)|2ds
)
,

in other words, the above defined probability measure Qt is absolutely con-
tinuous with respect to the original probability measure P . Moreover, for
any T > 0,

W̃t := Wt −
∫ t

0

γ(Xs, s)ds, 0 ≤ t ≤ T

is an {Ft}-Brownian motion under the probability QT . Furthermore, Xt

satisfies

dXt = [a(Xt, t) + b(Xt, t)γ(Xt, t)]dt+ b(Xt, t)dW̃t, t ≥ 0.

One can then discuss comprehensively the existence and uniqueness as
well as the structure of solutions to the initial value problem for equation
(1.1) by appealing the above argument with suitable choice of γ. Here we
want to explore such transformation to another link to partial differential
equations.

Throughout the paper, we assume the diffusion coefficient b satisfies that
b(x, t) 6= 0 for any (x, t) ∈ R × [0,∞). Moreover, we specify the above
function γ by

γ(x, t) := −a(x, t)

b(x, t)

hence we further require a and b satisfy

E
[
exp

(
1

2

∫ t

0

|a(Xs, s)

b(Xs, s)
|2ds

)]
<∞, ∀t > 0

so that the associated probability measure Qt is determined by

dQt

dP
= exp

(
−
∫ t

0

a(Xs, s)

b(Xs, s)
dWs −

1

2

∫ t

0

∣∣a(Xs, s)

b(Xs, s)

∣∣2ds) .

From the abvoe expression, we can see that generally the Radon-Nikodym
derivative dQt

dP
depends on the “history” of the path up to t, i.e., {Xs : 0 ≤

s ≤ t}. While in economics and mathematical finance studies, in particular
in study of the optimal problem for the utility functions in an equilibrium
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market, it is a necessary requirement that dQt

dP
depends only on the “current”

state Xt, not on the whole “history” {Xs : 0 ≤ s ≤ t}. So mathematically,
one requires that the Radon-Nikodym derivative is in the form of

Z(Xt, t) =
dQt

dP
, t ∈ [0,∞)

for certain function Z : R × [0,∞) → R. We call this the path-independent
property of the density of the Girsanov transformation. In this paper, we
would like to present a characterisation of this property. Our main result of
this paper is formulated as follows

Theorem 1.1 Let F : R× [0,∞)→ R be C2 with respect to the first variable
and C1 with respect to the second variable. Then

F (Xt, t) = F (X0, 0) exp

(
−
∫ t

0

a(Xs, s)

b(Xs, s)
dWs −

1

2

∫ t

0

∣∣a(Xs, s)

b(Xs, s)

∣∣2ds) (1.2)

if and only if the function

u(x, t) :=
∂

∂x
ln |F (x, t)| = a(x, t)

b2(x, t)
= −γ(x, t)

b(x, t)
, (x, t) ∈ R× [0,∞), (1.3)

satisfies the following nonlinear PDE

∂

∂t
u = −b

2

2

∂2

∂x2
u− b

(
∂

∂x
b+ bu

)
∂

∂x
u− bu2 ∂

∂x
b . (1.4)

Furthermore, if there exists a C1-function Φ : R→ R such that

a(x, t) = Φ(u(x, t)), (x, t) ∈ R× [0,∞)

then (1.2) hold if and only if the function u(x, t) satisfies the following (time-
reversed) generalized Burgers equation

∂

∂t
u(x, t) = −1

2

∂2

∂x2
Ψ1(u(x, t))− 1

2

∂

∂x
Ψ2(u(x, t)) (1.5)

where

Ψ1(r) :=

∫
Φ(r)

r
dr, Ψ2(r) := rΦ(r), r ∈ R .
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Remark 1.2 The function u defined in equality (1.3) has the following ex-
planation. Actually, from Itô formula, one may see that the square of Brow-
nian motion has certain contribution to the drift of the stochastic differential
equation. So the composition u(Xt, t) of the function u with the process Xt

may characterize the proportion of the drift part with respect to the diffusion
part in equation (1.1). Surprisingly, this function u satisfies the nonlinear
PDE of Burgers type (1.5).

We would like to point out that there already exist some researches to
study the behavior of the ratio between the drift and diffusion coefficients of
SDEs. In the literature of mathematical finance, Hodges and Carverhill in
[8] consider the stock price follows a mean-reversion type SDE

dSt
St

= (r + α(St, t)σ)dt+ σdWt

where the risk free interest rate r and volatility σ are constants, α : R ×
[0,∞) → R is a C2,1-function. Under the assumption that the economy is
chatacterised by a single representative agent maximising expected utility
for wealth at terminal date H, they demonstrate, by using binormial tree
argument in the discrete time setting and Taylor expansion, that a necessary
condition for economic equilibria is that the ratio α follows the following
Burgers equation

∂

∂t
α(x, t) = −1

2
σ2 ∂

2

∂x2
α(x, t)− σα(x, t)

∂

∂x
α(x, t).

Indeed, Stein and Stein obtain in [17] the similar result for their stochasti-
cally varying volatility which is driven by an arithmetic Ornstein-Uhlenbeck
process. Moreover, Hodeges and Liao in [9] consider a more general case
where both the risk free interest rate r and the volatility σ are (determinis-
tic) functions of the variables x ∈ R and t ∈ [0,∞), i.e., r, σ : R×[0,∞)→ R.
From the following SDE

dSt
St

= (r(St, t) + α(St, t)σ(St, t))dt+ σ(St, t)dWt , (1.6)

they derive that the ratio (called the risk premium)

v(x, t) :=
α(x, t)

σ(x, t)
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satisfies the following partial differential equation

∂

∂t
v(x, t) =− 1

2
x2σ2(x, t)

∂2

∂x2
v(x, t)− xσ2(x, t)v(x, t)

∂

∂x
v(x, t)

−
(
xr(x, t) + x2σ(x, t)

∂

∂x
σ(x, t)

) ∂
∂x
v(x, t)

− xσ(x, t)
∂

∂x
σ(x, t)v2(x, t)

−
(
x
∂

∂x
r(x, t)− xσ(x, t)

∂

∂x
σ(x, t)

)
v(x, t) + x

∂

∂x
r(x, t) .

(1.7)

More recently, in [21, 22, 23] we examine mathematically the link of SDEs
of mean-reversion type arising from modeling collateralized debt obligations
(CDOs) and credit risk to Burgers equation in the spirit of [8, 9] and we ex-
plore certain computational advantages for the associated Burgers equation.

Remark 1.3 The SDE (1.6) considered in [9] is a special case of our SDE
(1.1) with

a(x, t) = x[r(x, t) + α(x, t)σ(x, t)] and b(x, t) = xσ(x, t) .

In addition, the ratio v(x, t) = α(x,t)
σ(x,t)

considered there is different from our

ratio u defined in (1.3) in the sense that v is a partial proportion of the two
coefficients of the corresponding SDE. Thus, the derived PDE (1.7) is linked
to our PDE (1.5).

Our PDE (1.5) covers much more classes of specific nonlinear PDEs.
Now let us give several examples to explicate this point. We assume that all
conditions posed on the coefficients a and b above are in force.

Example 1.4 Let a(x, t) = σ2u(x, t) and b(x, t) ≡ σ, where σ is a nonzero
constant, our SDE (1.1) then becomes

dXt = σ2u(Xt, t)dt+ σdWt.

The C1-function Φ is simply given by Φ(r) = σ2r and the corresponding PDE
(1.5) is a classical Burgers equation

∂

∂t
u(x, t) = −σ

2

2

∂2

∂x2
u(x, t)− σ2u(x, t)

∂

∂x
u(x, t).

This example recovers the main result obtained in Hodges and Carverhill [8].
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The next example shows that our PDE (1.5) can be a Porous media type
partial differential equation.

Example 1.5 Let a(x, t) = m[u(x, t)]m and b(x, t) =
√
m[u(x, t)]

m−1
2 , where

m ∈ N, our SDE (1.1) then becomes

dXt = m[u(Xt, t)]
mdt+

√
m[u(Xt, t)]

m−1
2 dWt.

The C1-function Φ is then given by Φ(r) = mrm and the corresponding PDE
(1.5) is a Porous media type nonlinear PDE

∂

∂t
u(x, t) = −1

2

∂2

∂x2
um(x, t)−m ∂

∂x
um+1(x, t).

Our third example is to show that in the time-homogeneous case in the
sense that a and b are functions of the variable x ∈ R only, the corresponding
PDE (1.5) then determines a harmonic function.

Example 1.6 Let a(x, t) = a(x) and b(x, t) = b(x), our SDE (1.1) then
reads as follows

dXt = a(Xt)dt+ b(Xt)dWt

and the corresponding PDE (1.5) is a second order elliptic equation for har-
monic functions

∂2

∂x2
Ψ1(u(x)) +

∂

∂x
Ψ2(u(x)) = 0

where

Ψ1(r) =

∫
Φ(r)

r
dr, Ψ2(r) = rΦ(r), r ∈ R.

Let us finally turn to the assumptions in Theorem 1.1. We have assumed
that there exists a function F : R× [0,∞)→ R which is C2 with respect to
the first variable and C1 with respect to the second variable such that

F (Xt, t) = F (X0, 0) exp

(
−
∫ t

0

a(Xs, s)

b(Xs, s)
dWs −

1

2

∫ t

0

∣∣a(Xs, s)

b(Xs, s)

∣∣2ds) .

We would like to give some economic aspects regarding to this assumption.
A conventional kind of equilibrium market can be characterized by the utility
function of a representative agent (see e.g., [10, 2, 3, 4]). Given the proba-
bility measure P as an objective probability in the market model, one can
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interpret our Xt as the wealth of the representative agent in a single stock
market. If the class of utility functions is one of differentiable, increasing,
and strictly concave time-separable von Neumann-Morgenstern utility func-
tions, then the representative agent maximizes his expected utility U . Cox
and Leland in [1] show that the path independence is necessary for expected
utility maximization. By path independence, they mean that the value of a
portfolio will depend only on the asset prices at that time, not on the path
followed by the asset in reaching that price. Namely, the utility function U
depends on the state price Xt and time t, for t ≥ 0, that is, the function U
is of the form U(Xt, t).

In addition, Dybvig and Ross in [4] show that, in an equilibrium market,
the marginal utility in each state is proportional to a consistent state-price
density function. On the other hand, in an equilibrium market, there must
exist a risk neutral probability measure Q which is absolutely continuous
with respect to P . The Radon-Nikodym derivative dQ

dP
gives the state-price

density [8]. Combining the above U(Xt, t), therefore, the Radon-Nikodym
derivative is also in the form of

F (Xt, t) = F (X0, 0)
dQ

dP
(Xt, t).

The mathematical assumption that the Radon-Nikodym derivative F :
R× [0,∞)→ R is C2 with respect to the first variable and C1 with respect
to the second variable can be justified by appealing Malliavin calculus and
by viewing F as certain conditional expectation. This is addressed in [20]
with the object of multi-dimensional SDEs.

The remainder of the paper is devoted to the proof of Theorem 1.1.

2 Proof of Theorem 1.1

Let us start with the SDE (1.1)

dXt = a(Xt, t)dt+ b(Xt, t)dWt.

Clearly by taking γ(x, t) = −a(x,t)
b(x,t)

, from Girsanov theorem, we know that
the change of measure is characterized by the Radon-Nikodym derivative

dQt

dP
= exp

[
−1

2

∫ t

0

a2(Xs, s)

b2(Xs, s)
ds−

∫ t

0

a(Xs, s)

b(Xs, s)
dWs

]
, t ≥ 0.
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and for any T > 0, Xt, 0 ≤ t ≤ T , is a martingale under the probability QT .
From our equation (1.1), we have

dWt =
1

b(Xt, t)
dXt −

a(Xt, t)

b(Xt, t)
dt

thus

dQt

dP
= exp

[
−1

2

∫ t

0

a2(Xs, s)

b2(Xs, s)
ds−

∫ t

0

a(Xs, s)

b2(Xs, s)
dXs

]
, t ≥ 0.

In order to prove the necessity, we assume that there exists a function
F : R × [0,∞) → R which is C2 with respect to the first variable and C1

with respect to the second variable such that

F (Xt, t) = F (X0, 0) exp

[
−1

2

∫ t

0

a2(Xs, s)

b2(Xs, s)
ds−

∫ t

0

a(Xs, s)

b2(Xs, s)
dXs

]
.

Then, Z(x, t) := ln |F (x, t)| is C2 with respect to the first variable and C1

with respect to the second variable, and

Z(Xt, t) = −1

2

∫ t

0

a2(Xs, s)

b2(Xs, s)
ds−

∫ t

0

a(Xs, s)

b2(Xs, s)
dXs. (2.1)

The stochastic differential form of equality (2.1) is

dZ(Xt, t) = −1

2

a2(Xt, t)

b2(Xt, t)
dt− a(Xt, t)

b2(Xt, t)
dXt. (2.2)

Now by viewing Z(Xt, t) as the composition of the deterministic C2,1-
function Z : R× [0,∞)→ R with the continuous semimartingale Xt, we can
apply Itô Formula to Z(Xt, t), which implies

dZ(Xt, t) =
∂

∂t
Z(Xt, t)dt+

∂

∂x
Z(Xt, t)dXt +

1

2

∂2

∂x2
Z(Xt, t)b

2(Xt, t)dt. (2.3)

By comparing (2.2) and (2.3), the coefficients of dt and dXt must equal
respectively, thus we get

∂

∂x
Z(Xt, t) = − a(Xt, t)

b2(Xt, t)
(2.4)
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and
∂

∂t
Z(Xt, t) +

b2(Xt, t)

2

∂2

∂x2
Z(Xt, t) =

1

2

a2(Xt, t)

b2(Xt, t)
. (2.5)

Recall the function u is defined by (1.3), we have

u(Xt, t) =
a(Xt, t)

b2(Xt, t)
.

Hence, (2.4) and (2.5) become respectively

∂

∂x
Z(Xt, t) = −u(Xt, t) (2.6)

and
∂

∂t
Z(Xt, t) +

1

2

a(Xt, t)

u(Xt, t)

∂2

∂x2
Z(Xt, t) =

1

2
a(Xt, t)u(Xt, t) . (2.7)

Since the SDE (1.1) is non-degenerate (as the diffusion coefficient b 6= 0),
the support of Xt, t ∈ [0,∞), is the whole space R. Hence the following two
equalities

∂

∂x
Z(x, t) = −u(x, t) (2.8)

and
∂

∂t
Z(x, t) +

1

2

a(x, t)

u(x, t)

∂2

∂x2
Z(x, t) =

1

2
a(x, t)u(x, t) (2.9)

hold on R × [0,∞). By differentiating (2.8) with respect to the variable x,
we get

∂2

∂x2
Z(x, t) = − ∂

∂x
u(x, t) (2.10)

then substituting (2.10) into (2.9), we have

∂

∂t
Z(x, t) =

1

2

a(x, t)

u(x, t)

∂

∂x
u(x, t) +

1

2
a(x, t)u(x, t) . (2.11)

Now, in order to eliminate Z(x, t), we can differentiate (2.11) with respect
to x and differentiate (2.8) with respect to t, respectively,

∂2

∂x∂t
Z(x, t) = − ∂

∂t
u(x, t) (2.12)

10



and

∂2

∂t∂x
Z(x, t) =

1

2

a(x, t)

u(x, t)

∂2

∂x2
u(x, t) +

1

2

∂

∂x
u(x, t)

1

u(x, t)

∂

∂x
a(x, t)

− 1

2

∂

∂x
u(x, t)

a(x, t)

u2(x, t)

∂

∂x
u(x, t)

+
1

2
a(x, t)

∂

∂x
u(x, t) +

1

2

∂

∂x
a(x, t)u(x, t) .

(2.13)

Equating (2.12) and (2.13), we get

∂

∂t
u(x, t) =− 1

2

a(x, t)

u(x, t)

∂2

∂x2
u(x, t) +

1

2

a(x, t)

u2(x, t)

(
∂

∂x
u(x, t)

)2

− 1

2

(
1

u(x, t)

∂

∂x
a(x, t) + a(x, t)

)
∂

∂x
u(x, t)

− 1

2

∂

∂x
a(x, t)u(x, t)

(2.14)

which shows that equation (1.4) holds. Furthermore, from our assumption
that there exists C1-function Φ : R→ R such that a(x, t) = Φ(u(x, t)) holds
for x ∈ R and t ≥ 0, the above equality (2.14) can be reduced to

∂

∂t
u(x, t) =− 1

2

Φ(u(x, t))

u(x, t)

∂2

∂x2
u(x, t)

− 1

2

[
Φ′(u(x, t))

u(x, t)
− Φ(u(x, t))

u2(x, t)

](
∂

∂x
u(x, t)

)2

− 1

2
[Φ(u(x, t)) + u(x, t)Φ′(u(x, t))]

∂

∂x
u(x, t).

(2.15)

Next, we define

Ψ1(r) :=

∫
Φ(r)

r
dr, r ∈ R ,

a primitive of the function Φ(r)
r

, and

Ψ2(r) := rΦ(r), r ∈ R.

Then, one can easily derive

∂2

∂x2
Ψ1(u(x, t)) =

Φ(u(x, t))

u(x, t)

∂2

∂x2
u(x, t)[

Φ′(u(x, t))

u(x, t)
− Φ(u(x, t))

u2(x, t)

](
∂

∂x
u(x, t)

)2

11



and

∂

∂x
Ψ(u(x, t)) = [Φ(u(x, t)) + u(x, t)Φ′(u(x, t))]

∂

∂x
u(x, t).

Finally, we obtain a generalized Burgers equation

∂

∂t
u(x, t) = −1

2

∂2

∂x2
Ψ1(u(x, t))− 1

2

∂

∂x
Ψ2(u(x, t)).

This ends the proof of the necessity.
Finally, let us turn to the proof of the sufficiency. We assume that there

exists a function u : R × [0,∞) → R which is C2 with respect to the first
variable and C1 with respect to the second variable which solves equation
(1.4) or equation (1.5) for certain suitably chosen Φ. We then specify the
coefficients a and b of SDE (1.1) by the following

a(x, t) = b2(x, t)u(x, t), (x, t) ∈ R× [0,∞).

Now combining the above equality and (1.4) with equality (2.3), we derive
(2.2) which clearly implies equality (1.3). We are done. Q.E.D.
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