
Strathprints Institutional Repository

Gonzalez-Longo, Cristina and Theodossopoulos, D (2008) Hybrid masonry shell technology in the
work of Idelfonso Sánchez del Río. In: Proceedings of the 8th International Seminar on Structural
Masonry. Istanbul Technical University. ISBN 978-975-561-342-0

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9843949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


 

 
1 School of Arts Culture and Environment, University of Edinburgh, 20 Chambers Street, Edinburgh EH1 1JZ, UK 

d.theodossopoulos@ed.ac.uk  
2 Architect, Architecture + Design Scotland, Edinburgh UK  c.gonzalezlongo@btinternet.com  
 

 
 
 
 

Hybrid masonry shell technology in the work of Idelfonso 
Sánchez del Río 

 
 
 

Dimitris THEODOSSOPOULOS 1 and Cristina GONZÁLEZ-LONGO 2  
 
 
 
ABSTRACT  
 
Idelfonso Sánchez del Río is a less known pioneer of reinforced concrete shells in Spain who through his career 
designed and patented ribbed construction systems for large spanning slabs and vaults and in particular shell 
enclosures using a hybrid system of concrete and masonry infills. The module called “dovela-onda” or wave-
voussoir was made of large ceramic blocks forming a short barrel with flanges at the edges. This paper aims to 
discuss the technical innovations of this system and assess its structural efficiency. The design and construction 
process will be studied through literature published by Sánchez del Rio and surveys of two case studies in 
Oviedo (Spain), the Sports Hall (1977) and a warehouse in Granda. In order to assess their structural efficiency, 
his own calculation process will be verified by thrust line analysis and Finite Element spatial elastic modelling. 
The FE model allows the failure mode and the distribution of the loads to be assessed, and gives further insight 
to the behaviour of the scheme and the design and construction process. 
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1 INTRODUCTION 
 
Idelfonso Sánchez del Río y Pisón (1898-1980) is a less known pioneer of reinforced concrete shells in Spain 
who through his career designed ribbed construction systems for large spanning slabs and vaults. After holding 
public posts as engineer in Oviedo and Madrid until 1946, when he carried out his early advanced designs, he set 
up his own consultancy specialising in shell enclosures using a hybrid system of concrete and masonry infills. 
The system used a module called dovela-onda or wave-voussoir, assembled from hollow ceramic blocks in the 
form of short barrels with flanges at the edge. The units were reinforced and would be then bonded to form series 
of arches of deeply undulated section connected along their edge, to form a corrugated uninterrupted enclosure. 
 
This paper aims to discuss the technical innovations of this range of buildings and assess their structural 
efficiency. Most of these roofs were built above warehouses, while the largest of them formed the enclosure of 
the Municipal Sports Hall in Oviedo, his last major work, completed in 1977. The origins of the system and the 
form-finding process will be initially examined as a result from Sánchez del Rio’s earlier work on concrete 
shells, like water reservoirs (Oviedo) and market halls (Pola de Siero). The study discusses the transition from 
the earlier use of ceramic units for lightweight floor decks to the off-site production of the undulated modules. 
 
The design and construction process will be studied through literature published by Sánchez del Rio and surveys 
of case studies in Asturias, in particular the Oviedo Sports Hall and a warehouse in Granda, outside the city. In 
order to assess their structural efficiency, the calculation process he followed will be verified by thrust-line 
analysis and Finite Element spatial elastic modelling. The deformation and load distribution in the structures will 
also be assessed, aiming to improve knowledge of their structural behaviour and the design process behind them. 
 
 



2. SÁNCHEZ DEL RIO’S EARLIER REINFORCED CONCRETE SHELLS 
 
Sánchez del Río’s most creative period was during his post as a municipal engineer for the City Council of 
Oviedo in Asturias, Spain (1924- 1940). Due to the wide range of duties and the extent of jurisdiction of his post, 
he designed and constructed structures as diverse as water reservoirs (Oviedo, Villapendi, Trubia), market halls 
(Pola de Siero) and industrial buildings (gas works in Oviedo). Even more expressive have been the self-standing 
roofs such as the Grandstand of the old Tartiere stadium in Oviedo (now demolished) or the characteristic 
paraguas (umbrellas) in market squares (Oviedo, Cerdeño, Pola de Siero). The two most known and influential 
shell structures from that period are the 4th Water Reservoir (Cuarto Depósito de Aguas) in Oviedo (1926-28) 
and the City Market (Mercado de Abastos) in Pola de Siero (1930) (Fig. 1). The shell roofs cover quite different 
and non-conventional plans in each building (a central plan and a triangular site respectively) and this was made 
possible by using conical shells roofs that explored the possibilities of reinforced concrete strengthened by ribs. 

 

 
 

Figure 1. The deep rib reinforcing the intersection of the main conoid vaults, City Market, Pola de Siero (1930) 
 

3. HYBRID MASONRY SHELLS 
 
Following this experience, the role of the rib in generating and strengthening the intersections became apparent. 
At the same time, Sánchez del Rio [1942] experimented with composite lightweight systems in order to form 
long-spanning floor decks (Campoamor and Filarmónica theatres, Oviedo). The wide-spread jack-arches or 
similar decking systems of the time used the ribbed ceramic unit only as a mould for the concrete, which would 
then perform the load-bearing function. He developed ceramic blocks that incorporated the ribs of the unit in the 
load-bearing function and optimise the use of concrete. 
 

 
 

Figure 2. Diagram of the dovela onda (wave-voussoir) element [Sánchez del Rio 1962b] 
 

In this study, the focus on his work will be on the systems he created for shell roofs. His experience with rib 
construction led him to the module of dovela-onda that can be translated as wave-voussoir. The unit shown in 
Fig. 2 functions as the voussoir of large spanning arches and was devised to combine increased depth in the 
section (to improve resistance in bending and axial compression) and standardisation in construction. The hollow 
blocks resulted not only in lower loads but also in higher thermal and acoustic insulation. When these arches are 
built next to each other they can form undulated roofs capable of roofing large spaces, while if their height is 
varied they can then let natural light through the gap formed between adjacent arches. Spans up to 100 m became 
possible, supported in two main arrangements: either upon the lateral walls of the enclosed space and braced 
with ties, as in the case of industrial sheds; or upon a series of slender concrete buttresses that could hold the 
weight and counteract their thrusts, as in the case of the Oviedo Sports Hall. 



The voussoir (Fig. 2) is made of large and hollow ceramic units bonded with grout and with a layer of steel 
reinforcement between them, further strengthened with two stiffener ribs running through the entire unit. The 
arch is then assembled by hoisting the units from hooks on the stiffeners upon a dense temporary falsework and 
then bonding them together with a concrete mix. Concrete would also be poured on the extrados of the vault in 
order to bond the units and the reinforcement, completing therefore the co-action of the three materials (brick, 
concrete and steel bars). An entire arch could be built and set within 7 days [Sánchez del Rio 1962a]. 
 
In all these cases, the cost of the falsework is a major factor. To reduce such expenditures, it was important to 
simplify the layout of the works by standardising the units to be supported. Also, the form had to be such that 
temperature or workmanship quality variations would have a minimum effect on the temporary stability of the 
unset concrete. The solution was a catenary profile (which would minimise bending moments) in the form of a 
two-hinge arch (which would function as an isostatic structure that is not dependant on material properties).  
 
The system has similarities to a process developed later for the construction of the CNIT centre in Paris as also 
the system of inverted-T units used at the Duxford Air Museum. In retrospect, Sánchez del Rio questioned even 
how the design of the Siero Market could have been more structurally and thermally efficient had he developed 
such systems earlier [1962a]. The success of such an approach will be assessed in the two case studies. 
 
4. PALACIO DE DEPORTES (MUNICIPAL SPORTS HALL), OVIEDO, SPAIN (1977) 
 
4.1 Design of the centre 
 
Sánchez del Rio discussed comprehensively his design for the forthcoming Sports Hall in [1962b] and this 
publication will be used in this study as the basis for the verification of the structural performance of the building 
based on other theoretical methods like thrust line and Finite Element (FE) analysis. The Sports Hall was finally 
built in 1977 as a series of eight 96 m span deep arches over the track (span L = 96 m, rise F = 19.2 m), flanked 
by two pairs of lower, 88m-span arches at the ends (Fig. 3). The height difference between the two types and the 
self-standing capacity of each arch allows for clerestory light arrangement (between the arches) and major 
openings at the ends. The aspect ratio is L/F = 5 (for both) and the directrix was formed using the equation: 
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Figure 3. Exterior and interior of the Oviedo Sports Hall 
 

 
 

Figure 4. The reinforced concrete buttresses supporting the roof, fitted with a pin connection at their lower end. 



Focusing on the shells, each arch is supported by slender concrete buttresses that function as props to contain the 
thrust and anchor the vault (Fig. 4). The two hinges that are necessary by the structural design in order to provide 
an isostatic behaviour, are fitted towards the base of the buttresses using stainless steel bars which are exposed 
and encased in a glass box. At the end of each arch, a self-supported cantilevering reinforced brickwork canopy 
was added, with the intention to act as an open abutment to the springing, which would provide stiffness without 
fixity. The exposed hinge was intended as a key educational feature towards the understanding of the unique 
structural scheme and unfortunately the Hinges Gallery planned to enclose the buttresses and celebrate this 
aspect was never materialised. While the outer cantilevers had their masonry exposed, the intrados of the main 
arches at the interior was coated with a concrete screed, probably for acoustic and fire protection. 
 
4.2 Construction process: the use of the wave-voussoir 
 
Figure 5 was taken during the erection of the vaults and highlights how critical is to economise on the falsework 
for the assembly of the arch. The voussoir shown is held by hooks fixed on the stiffeners and further reinforced 
(cf. Fig. 2). As the voussoir had to carry its own weight during this delicate phase and as the shell action was 
slowly being built up while the concrete was setting, it was important to ensure the unit could function as an arch 
in its own merits. A catenary section was therefore formed also for the section. The geometry and construction of 
the cross-section follows the layout in Fig. 2 and the thickness of the shell t = 0.18 m. 
 

 
 

Figure 5. Centering and assembly of the roof of the Oviedo Sports Hall [Colegio 2004] 
 
4.3 Stability of a typical arch 
 
In his paper [1962b], Sánchez del Rio discussed how he assessed the safety of the form, especially in elastic 
instability, the major type of failure expected to affect a catenary arch. Assuming elastic modulus for the 
masonry E= 20 kN/mm2 and ν = 0.15 (relating to the mechanical properties of the constituent materials retrieved 
from tests), he evaluated the critical load for the major arch spanning L=96 m using the Euler formula: 
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Because the structure is a two-hinged arch, k=1, therefore Pcr = 5330 kN. The maximum axial load 
corresponding to self weight of the structure was evaluated as P =1740 kN, and the resulting factor of safety γf = 
Pcr / P = 5330 / 1740 = 3.06. It is expected that the overall safety factor of the entire roof will be higher due to the 
continuity of the eight arches, in which case this calculation is a conservative estimate. A similar assessment was 
carried out for the shorter (and lower) lateral arches spanning L = 84 m, resulting in a safety factor γf = 4. 
 
The behaviour will be examined with a more rigorous theoretical procedure that was codified and used by Eladio 
Dieste, a major shell designer of the 20th century, as part of the design of Gaussian, double-curvature brickwork 
vaults [Dieste 1985]. This method was successfully applied to the design of his JHO Warehouse in Montevideo 
and was later verified using the FE method [Theodossopoulos and Pedreschi 2004]. This procedure establishes 
the thrust line of an arch in buckling and also caters for any possible cross-section by allowing even variations in 
the geometry and moments of inertia of the section between the supports (Isupport ) and the crown (Icrown ). 
Equation 3 describes the buckling centreline of a catenary arch and Fig. 6 illustrates the relevant quantities:  
 

[ ]222

2
22

2

2

)1(
)1(

u

yuy
du

yd

−+

⋅
−−+⋅⋅−=
γ

γγχ                     [3] 



 

H

N
ϕ 

y

ϕ 

 = S/2

C

A B

ϕ0

x

D

 
 

Figure 6. Buckling of a catenary arch under dead load – definitions after [Dieste 1985] 
 

Where 
vuADv == and ,  is the half length of the arch S, 
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ϕ

γ =  and I is the moment of inertia 

of the cross section at the support. As [ ]2,0∈u  , the quantity χ will be obtained from the boundary conditions in 
eq. (3): y = 0 at the locations u = 0 and u = 2 (bases) and at u = 1 (apex). The differential equation is integrated 
by a numerical/ graphic method: a value for γ is chosen and then for every χ  a value for y at the supports is 
calculated (yB), which in general should not be 0. The values of yB are then plotted and the roots of the equation 
yB(χ) are evaluated graphically. The solution is given by eq. 4 where χ can be evaluated in terms of the 
springing angle φo. (and γ ) and this relationship was organised in graphs in terms of the variable υ [eq. 5] that is 
used to define the change in the cross section (Fig. 7). The problem of elastic instability can be summarised as 
this: for a given arch (defined by  and γ) χ can be evaluated from eq. 4 and therefore the critical load qcr  :  
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Figure 7. Values of χ in terms of the profile of the arch (γ) and its cross section (υ) [Dieste 1985]  
 
In the case of the Oviedo Sports Hall, the cross section is uniform section, so υ = 1. Using catenary arches tables 
calculated by E. Dieste [1983], some geometric quantities of the cross section (Fig. 2) and the directrix can be 



evaluated, as both curves fit the catenary profiles tabulated by Dieste. Regarding the cross section (aspect ratio 
Lv/Fv = (7-2·0.85)/(1.5+0.18/2)=3.3), the second moment was calculated as Ig = 0.3764·t·Fv =0.272 m4 . In the 
case of the directrix, = 47.67 m and from the tables, as the ratio L/F = 5, the springing angle φo = 40, and γ = 
1.19. From Fig. 7, χ = 7 and rearranging eq. 4, qcr = 351 kN/m or 42.75 kN/m2 if divided with the overall width 
(length of the cross section) 8.21m. The equivalent linear uniformly distributed pressure due to the self weight of 
the structure results from multiplying the unit weight of masonry 16 kN/m3 by the width (8.21m) and thickness 
(0.18m) of the shell and is equal to 23.64kN/m. As a result, the degree of safety γf = qcr /q = 14.9, a much wider 
margin of strength than the earlier conservative approach. 

    
 

Figure 8. First (16.5) and second (18.7) buckling modes of the Finite Element model 
 
The same problem was assessed by FE modelling using the program ABAQUS, considering the structure as a 
homogeneous shell. Curved, 4-node shell elements S4R5 were used, pin-support conditions were applied at the 
ends above the abutting points and linear elastic analysis was performed [Theodossopoulos and Pedreschi 2004]. 
The buttresses were not modelled in order to maintain a direct relevance to the theory. The first buckling modes 
were evaluated and the eigenvalues (safety factors) for the first three modes are 16.5, 18.7 and 22.4. The values 
are of similar magnitude to the one evaluated theoretically (14.9), so both methods demonstrate the relatively 
high reserves in strength of the form. Pinned supports were considered applied directly on the shell and in a next 
phase of this research the effect of the concrete piers needs to be considered. Among the first two modes (Fig. 8) 
the second one seems the most probable form [Dieste 1985], so the safety factor against buckling γf is 18.7 . 
 
4.4 Other aspects of the structural performance of the shell 
 
The FE model brings further insight to the behaviour of the shell, like the pattern of the distribution of the loads 
and the deformation [Fig. 9]. As expected, the higher deformation occurs at the apex of each arch but the deep 
section results in a reduction of the higher values along the ridge. The values overall are relatively high, with a 
maximum at the apex being 26 mm, but in terms of serviceability limit is 1/3700 of the span, well below any 
relevant limit applied for equivalent girders (although it may affect the glazing and services). Minor wrapping of 
the section around the apex is also observed (2 mm inwards), so the flanges of the adjacent cross sections should 
be bonded and reinforced similar to a vault valley in order to maintain the integrity of the roof. 

    
 

Figure 9. Hoop stresses at the extrados [kN/m2] and deflections [m] under self weight 
 
The upper portion of the shell is mainly in compression, with a max stress at the apex 1.8 N/mm2, i.e. below the 
strength of masonry. This action makes the evaluation of the critical load relevant. The maximum axial force 
(equal to the total thrust) is 1385 kN and is less than 1740 kN estimated by Sánchez del Rio [1962b]. It is 
interesting that the arched portion of the cross section receives most of this axial compression, with the flanges in 
very low stresses. Bending also develops around the haunches of the shell, an area critical in every arch, with a 
max tensile stress of 1 N/mm2 that is expected to be resisted by the reinforcement at the extrados of the units.  



The FE model was also used to assess the behaviour of the isolated shell at wind load. An asymmetric pattern 
following recommendations by the code of practice was applied, i.e. a positive pressure of 0.5 kN/m2 on half of 
the vault and a negative pressure of -0.6 kN/m2 at the other half. Figure 10 shows how the arch deforms in 
combination with its self weight. The max deflection at the apex increased to 27 mm but overall the behaviour 
was not affected much. This behaviour indicates a high degree of safety but a more careful application of the 
wind pattern as well as study of the relevant critical load is required. Consequently, other actions need also to be 
studied, like the response to thermal and moisture changes, which Sánchez del Rio [1962b] assures they have a 
minor effect. Such issues need to be verified in a more detailed programme of analysis. 

 
 

Figure 10. Deformation [mm] of a typical arch under wind loads 
 
The discussion on the architectural effects of the solution can focus at the possibilities for openings and natural 
light, the internal quality of the enclosure as also the treatment of the areas where the shells come closer to and 
can be appreciated by the visitor (especially the supports). Regarding the openings, further investigation is 
required on the framing of the major opening at the end and whether it prevents the deflection of 27 mm from 
bringing the shell in contact with the glazing, as also the differential deformation of the two types of vaults and 
the extent it may affect the glazing in between them (Fig. 3). The ribs give certainly a rhythmic effect on the 
roof, especially at daylight, due to a succession of reflections and shadows. When viewed in relation to the 
buttresses, the effect is quite powerful and the interior of the Hall needs to be kept as free as possible in order to 
make this aspect an integral part of the visual experience. In addition, the idea of exhibiting the hinges at the 
buttresses is quite unique as it clearly conveys an appreciation of the huge forces within the fabric. 
 
5. WAREHOUSE BUILDINGS 
 
Most of the applications of the wave-voussoir system were in warehouses and factories, a striking resemblance 
to the work of Eladio Dieste who was part of the next generation of shell builders. Apart from the creation of an 
uninterrupted enclosed space, other considerations were the minimisation of thermal movement, acoustic and 
thermal insulation, natural daylight and of course economy in construction. Two of his most ambitious projects, 
the factory buildings for Río-Cerámica (span L=35 m) and FEFASA (L=30 m), highlight the average spans 
roofed. Thrusts in these buildings are either contained by a series of pier buttresses supporting the shells or 
braced by ties within each bay, the choice depending on the activity and the constraints outside the building. 
 
Due to ease of access, a warehouse in Granda, outside Oviedo, is studied briefly in order to appreciate the 
context of Sánchez del Rio’s systems. Information was not available and the geometry was established following 
a site survey, estimating dimensions that were out of reach. The shed is abandoned (Fig. 11) and the construction 
period or original use is unknown, although it probably dates after his 1962 papers and the remains inside 
suggest a kiln operated. The shell roofs a space 23.84 m x 40 m, made of 12 arches spanning L = 23.84 m and a 
rise F estimated as 4.7m. Each arch is made of 17 wave-voussoir units 4m wide (cf. Fig. 2) and about 0.7 m high. 
 
Using the thrust line method, the critical load and safety against buckling is assessed. From the catenary arches 
tables [Dieste 1983], the geometry of the cross section and the directrix are evaluated: the aspect ratio of the 
cross section is Lv/Fv = (4-2·0.85)/(0.7+0.18/2)=2.91, so the second moment around the centroid Ig = 
0.3479·t·Fv3 =0.031 m4 . Regarding the directrix, the aspect ratio L/F=23.84/4.7=5 and from the tables: = S/2 
= 1.09972 23.84/2= 13.109 m, the springing angle φo = 40, therefore γ = 1.19. From Fig. 7, χ = 7 and from eq. 4, 
qcr = 1918 kN/m. The equivalent linear distributed pressure due to self weight q = 16 0.18 4.67 = 13.46 kN/m. 
As a result, the degree of safety γf = qcr /q = 142, which indicates a quite large margin of strength. 
 



    
 

Figure 11. Exterior and interior of the warehouse in Granda, Oviedo 
 
A FE analysis could have assessed the safety factor more accurately, but a dimensional analysis shows that the 
magnitude is reasonable. A more careful study of the geometry and the major dimensions (L, F, width), reveals 
that the vaults in Granda are almost a quarter scale of the Sports Hall. If in calculating  γf a proportional factor 
λ=4 is applied to all dimensions except the thickness (which should remain the same) than the two factors are 
inverse proportionally, i.e. the safety factor in Granda should be 4 times that of the Sports Hall or 4 18.7 = 75.  
 
A more detailed analysis of the shell will yield more reliable results, but the comparison of the two case studies 
gives already some insight to the behaviour and design processes of Sánchez del Rio’s hybrid vaults. A scheme 
could have been established whose structural response and safety was well analysed. Then, the scheme could be 
proportionally adjusted to the site conditions but only a limited series of proportions could be applied as the units 
had to follow a modularised construction due to the use of standard ceramic blocks. It is a reasonable hypothesis, 
which could have allowed the designer to concentrate on the more important stages of manufacturing and 
construction, but it will have to be verified by further examination of case studies. 
 
6. DISCUSSION AND CONCLUSIONS 
 
The innovative system of the wave-voussoir devised by I. Sánchez del Rio was a successful solution to the 
roofing of large warehouses and factories, achieving efficiencies similar to the work of Eladio Dieste and other 
shell builders who developed vaulting methods from a careful examination of first principles. Although not as 
spatially flexible or expressive as the works of the latter, their degree of safety and construction modularity result 
from the same line of research as contemporary prefabricated or lightweight large shells such as the CNIT or the 
Duxford Air Force Museum. More research is therefore needed in order to understand what can be transferred 
from such ideas into modern practice, and this goes even for the earlier work of this important designer. 
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