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EFFECT OF SERVICEABILITY LIMITS ON OPTIMAL DESIGN OF STEEL PORTAL 

FRAMES 

 

Abstract 

The design of hot-rolled steel portal frames can be sensitive to serviceability deflection limits. In such cases, 

in order to reduce frame deflections, practitioners increase the size of the eaves haunch and / or the sizes of the steel 

sections used for the column and rafter members of the frame. This paper investigates the effect of such deflection 

limits using a real-coded niching genetic algorithm (RC-NGA) that optimizes frame weight, taking into account both 

ultimate as well as serviceability limit states. The results show the proposed GA is efficient and reliable. Two 

different sets of serviceability deflection limits are then considered: deflection limits recommended by the Steel 

Construction Institute (SCI), which is based on control of differential deflections, and other deflection limits based 

on suggestions by industry. Parametric studies are carried out on frames with spans ranging between 15 m to 50 m 

and column heights between 5m to 10 m. It is demonstrated that for a 50 m span frame, use of the SCI 

recommended deflection limits can lead to frame weights that are around twice as heavy as compared to designs 

without these limits.  

Keywords: optimization, hot-rolled steel, portal frames, niching, real-coded GA, serviceability limits. 

 

  



1   Introduction 

In the UK, it is estimated that 50% of the hot-rolled steel used in construction is fabricated 

into single-storey buildings, of which portal frames are the most popular form [1-2]. Practitioners 

generally design hot-rolled steel portal frames to the ultimate limit state using plastic design, in 

accordance with the British Standard BS 5950 [3]. However, whilst modern practice has shown 

that plastic design produces the most efficient designs in the majority of cases [1-2], elastic 

design is still used, particularly when serviceability limit state deflections will control frame 

design [4-5].  

In general, serviceability limit state deflections for portal frames are not specified in the 

British Standards (as well as other National Standards), and the decision as to the appropriate 

limit on serviceability deflections is left to the judgement of the engineer. A typical explanation 

for this specific exclusion of deflection limits is that deflections of portal frames have no direct 

significance on the serviceability of the frame itself. Although this explanation is technically 

correct, excessive deflections will affect, among other things, the serviceability of the cladding, 

water-tightness and the visual acceptability of the building in general [4].  

The Steel Construction Institute (SCI) has produced an Advisory Desk Note [6] in which 

deflection limits of steel portal frames are proposed [2, 4]. These limits are intended to avoid 

problems of tearing in cladding fixings due to differential deflections. These deflection limits are 

shown in Table 1. The parameters used for the frame are defined in Fig. 1. However, for frames 

with single skin profiled metal cladding and without use of gantry cranes, it is generally regarded 

by steel fabricators that the SCI recommendations for deflection limits can be too conservative. 

However, the SCI limits are widely adopted for a wide range of cladding systems, such as built-

up insulated roofs and composite panels (sandwich panels), where uncalculated stressed skin 

effects may lead to tearing of the fixings. The stressed skin action of various forms modern roof 

systems was presented by Davies and Lawson [7]. 

Discussions by the authors with local steel fabricators in Northern Ireland have indicated 

that less stringent deflection limits than those given by SCI are often used in practice for frames 

with single skin profiled metal cladding, and these deflection limits are also shown in Table 1. 

This paper investigates the effect of both sets of deflection limits using a genetic algorithm (GA) 

that optimizes the weight of the frame. 

The design optimization of steel portal frames has previously been considered [8-10]. Saka 

[8] used a binary-coded GA to minimize the weight of a portal frame, subject only to gravity 

load, for which the position of lateral and torsional restraints were fixed; the frame design was 

subsequently shown to be controlled by lateral-torsional buckling. Four distinct discrete 



variables were used, namely, the cross-section sizes of the columns and rafters, and both length 

and depth of the eaves haunch. The optimization procedure identified the most appropriate 

sections for the members from a list of standard universal beam sections; similarly, the most 

appropriate haunch size was selected from a list of discrete haunch dimensions.  

Issa and Mohammad [9] continued the work of Saka and used a binary-coded GA with a 

number of population groups implementing genetic operations in parallel, referred to as 

distributed GA, to optimize the same portal frame as Saka, again using the same fixed position of 

lateral and torsional restraints. A binary string length of five bits was applied that included both 

universal beam and universal column sections. A number of variable mutation schemes were 

proposed to improve the diversity of the population that were shown to increase the probability 

of achieving the optimum solution.  

 More recently, Kravanja et al. [11] used parametric mixed-integer non-linear programming 

approach to optimize the design of single-story industrial steel building structure. The minimal 

mass of structure, in accordance with the optimal frame spacing and the optimal standard cross-

sections were obtained through the optimization. The first-order elastic method was also applied 

to structural analysis and the building was designed according to Eurocode specifications. It was 

observed that the eaves haunches were not considered in this research. 

The effect of serviceability constraints on frame weight for fully laterally-restrained hot-

rolled steel portal frames has therefore not been considered explicitly in either of these previous 

researches. In addition, for the steel portal frame with haunch rafters, neither Saka nor Issa and 

Mohammad, as mentioned above, considered plastic design. In this paper, both issues are 

addressed and the effect of serviceability limits on the minimum weight of frames is 

investigated, relative to the minimum weight obtained from plastic design; frames of spans 

varying from 15 m to 50 m are considered.  

Furthermore, for an optimization problem that has continuous variables, binary-coded GA 

has difficulty in accurately achieving the optimum solution, since more accurate results require a 

longer binary string to be used. On the other hand, real-coded genetic algorithms (RC-GA) have 

been successfully applied to optimization problems having continuous variables [12-14]. In 

addition, the flexibility of the RC-GA is such that the algorithm can effectively search for the 

optimum solution for problems containing both discrete and continuous variables. In addition to 

the above-mentioned investigation into the effects of the deflection limits, this paper therefore 

describes the formulation of a real-coded niching genetic algorithm (RC-NGA) used to optimize 

the column and rafter members as discrete decision variables, and the size of the haunch as 

continuous decision variables. 



2   Reference Frame 

The geometry of the portal frame shown in Fig. 1 is considered in this paper, in which Lf is 

the frame span; hf is the column height; sf is the rafter length; θf is the pitch. Details of the 

Reference Frame used for the benchmark is shown in Fig. 2; the geometry of the frame and 

section sizes for the column and rafter are taken from a worked example in an SCI guide on 

portal frame design [2]. As can be seen, the Reference Frame has a span of 30 m, height-to-eaves 

of 7 m, and pitch of 6°. The distance between adjacent frames is 6 m, which is considered to be 

typical for industrial buildings in the UK. It should be noted that second-order effects are not 

considered, since the geometry satisfies the requirements for in-plane stability of the sway check 

method, described in BS 5950 [3]. Based on the geometry of the Reference Frame, the two sets 

of deflection limits of the Reference Frame are shown in Table 2. 

The column and rafter sections are 533x210x101UB and 457x191x67UB, respectively, 

both in S275 steel and Table 3 summarises the properties of the sections. The length of the eaves 

haunch is 10% of the frame span, and such a length is considered to be typical for portal frames 

designed plastically. The eaves haunches are assumed to be fabricated from the same section size 

as that of the rafter.  

Fig. 3 shows the parameters used to define the eaves haunch size in this paper. As can be 

seen, the haunch length, Lh, is measured from the centre-line of column to the end of the haunch; 

the haunch depth (or cutting depth), Dh, is measured from the underside of rafter to the bottom of 

the eaves haunch. 

The dead load (DL) and live load (LL) acting on the Reference Frame, as described in the 

SCI worked example [2], are as follows: 

  DL: 0.66 kN/m2  

  LL: 0.60 kN/m2 

3   Load Combinations 

Under vertical load, in accordance with BS 5950 [3], the frame should be checked at 

ultimate and serviceability limit states: 

 ULS   = 1.4DL + 1.6LL  

 SLS1  = 1.0DL + 1.0LL      (for absolute deflection) 

 SLS2  = 1.0LL          (for differential deflection relative to adjacent frame) 

where 

  ULS  is ultimate limit state 

  SLS  is serviceability limit state  

Table 4 summarises the deflections determined for the Reference Frame under the 



serviceability limit state. As can be seen, the Reference Frame does not satisfy the SCI 

recommendations for deflection limits at the apex, but satisfies the less stringent deflection 

limits. 

4   Ultimate Limit State Design 

4.1   Frame analysis 

4.1.1   Rigid-plastic analysis 

Fig. 4 shows the rigid-plastic collapse mechanism of a portal frame under a uniformly 

distributed vertical load (w). As can be seen, the frame collapses with the first plastic hinge 

forming at the underside of the haunch of the column, and the second plastic hinge forming 

along the rafter near to the apex; the sections between the hinges are assumed to remain rigid [1-

2]. 

The horizontal position of the second hinge (x), measured relative to the centreline of the 

left hand side column, can be determined from the following virtual work expression: 

θ−+
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where: 

  Mpc is the reduced moment capacity of the column section 

  Mpr is the reduced moment capacity of the rafter section 

The collapse load, wc, is the minimum value of w related to the variation with x. The ratio 

wc/wdesign is known as the collapse load factor, λP; the ratio 1/ λP should be equal to or less than 

unity. 

4.1.2   Elastic analysis 

The general purpose finite element program ANSYS was used for the purpose of the 

elastic analysis. BEAM3 elements were used for the columns and rafters, while BEAM54 

elements were used for the haunches, as BEAM54 elements possess offset properties [15].  

The second moment of area of the cross-section at the haunch (see Fig. 5) is calculated, 

based on the assumption that the thickness of the flange and web of the haunch are the same as 

those of the rafter. In accordance with Saka [8], the second moment of area of the haunch is 

given by: 

      )yy(AI]yDD5.0[AII           2
hxxhh
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where:  

  Ix is the moment of inertia of haunch section 

  Iu is the moment of inertia of rafter section 

  Au is the cross-sectional area of rafter section 



  Ah is the cross-sectional area of cutting haunch  

Du is the depth of rafter section 

Dh is the depth of cutting haunch 

yx is the distance to centroid of overall haunch cross section. 

The column is divided into two elements, with the first element defined from the column 

base to the underside of eaves haunch; the second element is defined from the underside of eaves 

haunch to the intersection of the centrelines of the column and rafter. The eaves haunch is 

divided into four elements, which is sufficient to check the local capacity. The rafter is divided 

into 40 elements to determine the critical section for the local capacity check of the rafter near 

the apex. The internal forces, namely, axial forces, shear forces, and bending moments at these 

sections are used to carry out the member checks. 

4.2   Ultimate limit state design requirements 

In this paper, in order to determine the minimum weight solution for the frame, full lateral 

restraint is assumed; member buckling checks will therefore not be undertaken. As described in 

Section 2, the geometry of the Reference Frame satisfies the requirements for in-plane stability 

of the sway check method, described in BS 5950 [3], and so second-order effects can be ignored 

for this particular frame [16]. It should be noted that second-order effects are not considered as 

part of the parametric study described Section 8, as a rigid-plastic model is adopted. However, if 

these results are required to include second-order effects, the amplified moment method could be 

adopted and applied to the vertical loads [2, 17].  

Members having full lateral restraint should be designed to satisfy the requirements for 

local capacity. Specifically, the members are checked for local capacity under shear, axial, or 

moment capacity, and combined moment and axial force [3]. 

4.2.1   Shear capacity  

The shear force, Fv, should not be greater than the shear capacity, Pv, given by: 

Fv  ≤ Pv                                                           (3) 

       The shear capacity is given by: 

Pv = 0.6pyAv                                                          

where:  

  py   is the yield stress of steel 

  Av  is the shear area  

 The shear area for an I section is given by: 

  Av = twD 

where: 



  tw  is the thickness of web section 

  D  is the overall depth of section 

4.2.2   Axial capacity  

The axial capacity should be checked to ensure that the axial force Fc does not exceed the 

axial capacity of the member. 

Fc ≤ pyAg                                                                 (4) 

where:  

  Ag  is the gross area of section 

4.2.3   Moment capacity  

The moment should not be larger than the moment capacity of the cross section, Mcx.  

Mx ≤ Mcx                                                                  (5) 

where:  

  Mx   is the moment applied to the critical section 

 Mcx  is the moment capacity of the section 

The moment capacity depends on the shear strength. BS 5950 [3] defines two methods of 

determining the moment capacity of section, namely, low shear, defined as Fv ≤ 0.6Pv, and high 

shear, defined as Fv > 0.6Pv conditions. 

4.2.4   Reduced moment capacity 

When members are subject to both compression and bending, the moment capacity, Mcx, 

should be reduced, depending upon the axial force and cross-section geometry of the member. 

In plastic design, the reduced plastic moment capacity of the section is calculated as 

follows: 

 Mrx = pySrx                                                         (6) 

where:  

  Mrx  is the reduced moment capacity of section 

  Srx is the reduced plastic modulus 

4.2.5   Combined moment and axial force  

 In elastic design, the local capacity check is as follows:  
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5   Optimization Model 

The most appropriate steel sections for the columns and rafters are selected from a list of 

72 standard sections of S275 steel grade given in the SCI Blue Book [17]. The number of UB 

sections from the list having the same depth is shown in Fig. 6. As can be seen, the sections with 



the depth in the middle of the list account for the vast majority of sections, as compared to those 

sections at the two ends of the list. The size of the eaves haunch is also considered, for three 

types of eaves haunch. 

• Haunch A:  Haunch length fixed as 10% of the span; the haunch uses the same section as the 

rafter section (i.e., Dh0 is equal to Du as shown in Fig. 3 and 7). Thus, the decision variables 

are the discrete column and rafter sections. 

• Haunch B:  Identical to Haunch A except that the haunch length is varied in the range of 

[5%, 25%] of the frame span. The decision variables are the column and rafter sections 

(discrete) and the length of the haunch (continuous).  

• Haunch C: Identical to Haunch B except that, in addition to varying the haunch length, the 

haunch depth is varied in the range of [0.05Dh0, 4Dh0]. The decision variables are the column 

and rafter sections (discrete) and the length and depth of the haunch (continuous). 

The objective of the overall design optimization is to determine the portal frame having the 

minimum steel material weight, whilst satisfying the design requirements. The weight of the 

frame depends on the cross-section sizes of members that are discrete design variables and sizes 

of the haunch, i.e., haunch length and haunch depth, as continuous variables. The objective 

function can be expressed in terms of the weight of the primary members per square metre of the 

floor area as follows: 

Minimize W = 




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where:  

W  is the weight of main frame per square metre of floor area 

wi  are the weight per unit length of members  

li  are the lengths of hot-rolled steel structural members 

m  is the number of members.  

wh  are the weight of a single haunch 

n  is a number of eaves haunch 

 

 

For plastic design the constraints are as follows: 
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where λp = collapse load factor; δe and δa = deflections at eaves and apex, respectively, and the 

superscript u indicates the maximum permissible deflection. 

For elastic design, the constraint g5 is excluded and the design constraint g4P is replaced by 

the constraint g4E below: 
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The constraints for ultimate limit state design are g1 to g5 while the serviceability limit 

state design constraints are g6 and g7.  Constraint g1 is for shear capacity; g2 is for axial capacity; 

g3 is for bending capacity; g4P is for reduced moment capacity for plastic design; g4E is for 

combined axial force and bending moment for elastic design; g5 is the constraint for plastic load 

factor; g6 and g7 are for horizontal and vertical deflection limits, respectively (see Table 2). To 

solve the optimization problem, the procedure used here is to transform the constrained problem 

to an unconstrained one using a penalty method. The fitness function adopted has the form: 

)C1(WF
n
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where: 

F  is the fitness function 

  Ci is the constraint violation penalty 

  n is the number of design constraints 

In this paper, penalty values are imposed empirically, in proportion to the severity of 

constraint violation. Through a numbers of trials, it was observed that two levels of constraint 



violation as shown in Eq. (11), are suitable to eliminate the infeasible solutions through the 

evolutionary process. 
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The proposed optimization procedure aims to minimize the value of the fitness function F 

in Eq. (10). This is achieved using a GA by minimizing the weight W and reducing the penalty 

values Ci to zero.  

6   Real-coded niching genetic algorithm 

The design optimization considered in this paper contains mixed discrete and continuous 

decision variables. As demonstrated by Deb [12], RC-GA is appropriate for optimization 

problem having continuous decision variables. The benefit of RC-GA is that genetic operators 

are directly applied to the design variables without coding and decoding as with binary string 

GAs. 

6.1  Genetic operators   

RC-GA sometimes prematurely converges to a local optimum solution due to the 

domination of superior solutions in current population [12, 13]. Also, using the RC-GA, Phan et. 

al. [18-19] observed that a large population size needs to be used in order to obtain the optimum 

solution consistently. Therefore, in this paper, a niching technique is applied to maintain the 

diversity of the population throughout the evolutionary process, thereby enhancing the 

convergence to the optimum solution. The niching strategy is conducted by selecting at random 

two individuals from the current population, namely x
(i) and x

(j). The normalized Euclidean 

distance [20] between the two solutions is: 
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where: 

dij      is a normalized Euclidean distance between x(i) and x(j) 

n    is the number of decision variables 

xk
(i) and xk

(j)
     are the kth decision variable values in the two vectors x(i) and x(j). 

xk
u and xk

l   are the upper and lower bounds respectively of the k
th decision 

variable. 

If this Euclidean distance is smaller than an empirical user-defined critical distance known 

as niching radius, these solutions then compete against each other for selection for subsequent 



crossover. The solution with a smaller value of the fitness function F is selected (Eq. 10).  

Otherwise, they are not compared and another solution x
(j) is selected at random from the 

population. If after a certain number of trials, no solution x
(j) is found to satisfy the critical 

distance, x(i) is accepted.  In this way, only solutions in same region (or niche) compete against 

each other for selection and crossover. Based on Eq. (12), the normalized Euclidean distance has 

a range from 0 to 1.  

The crossover operator for RC-GA applies the simulated binary crossover (SBX) formula 

directly to real variables [21]. Deb observed that with the crossover operator applied uniformly 

to the whole population, some search effort is wasted in the recombination of solutions from 

different region. A mating restriction scheme is therefore applied with RC-GA to prevent 

individuals in different niches from mating with each other. Only two individuals that are located 

within a normalized Euclidean distance smaller than a pre-defined distance, or in the same niche, 

should be allowed to become mating partners. For two solutions satisfying the mating restriction, 

the SBX operator is as follows: 
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where: 

β    is the probability distribution function for crossover 

xk
(1,t) and xk

(2,t)   are the values of the k
th decision variable for the parent 

solutions 

xk
(1,t+1) and xk

(2,t+1)  are the values of the k
th decision variable for the children 

created for the next generation. 

To ensure the new values of the decision variable remain within the range [xk
l
, xk

u], where 

xk
l  and  

xk
u are the lower and upper bounds, respectively, the probability distribution for the 

crossover operator has the form: 
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where: 

   u  is a random number between 0 and 1 

ηc  is the distribution index for crossover; ηc = 1 as recommended in [12]. 

It is worthwhile noting that the RC-GA with niching strategy applied in selection and 



cross-over operators is generally known as the real-coded niching genetic algorithm (RC-NGA). 

It should be noted that RC-NGA reduces to RC-GA if dij = 1.0. 

The other genetic operator applied in RC-NGA is the mutation such that one solution 

selected at random in the population is transformed using the polynomial mutation formula [13, 

22] as follows: 
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where  

yk
(1,t+1)  is a new value obtained from the mutation operator and it replaces xk

(1,t+1) 

To ensure that no solution would be created outside the range of xk
u and xk

l the parameter 

)( mηδ  has the form [11]: 

[ ]
[ ]





≤<−−+−−

≤−−−+
=

++

++

15.0)1)(5.0(2)1(21

,5.01)1)(21(2
)1/(11

)1/(11

uifuu

uifuu
m

m

m
m

ηη

ηη

δ

δ
δ          (16) 

with:  

[ ] )/()(),(min )1,1()1,1( l

k

u

k

tu

k

l

k

t
xxxxxx −−−= ++δ   

where:  

u is a random number between 0 and 1 

ηm  is the distribution index for mutation; ηm = 1 as recommended in [12]. 

The best individuals in the population, depending on the adopted percentage of population, 

are retained and carried forward unchanged to the next generation. In this paper, 5% of best 

individuals are empirically kept as elite preservation for next generation. The rest of the new 

population is created by the three genetic operators of selection, crossover and mutation applied 

to the entire current population including elite individuals. 

For discrete design variables, a technique that rounds off the real numbers obtained from 

the simulated binary crossover (SBX) and polynomial mutation to the nearest integer number is 

applied [23]. 

6.2  Comparison of results of RC-NGA against Issa and Mohammad   

The benchmark frame adopted by Issa and Mohammad [9], as presented by Saka [8], is 

optimized using RC-NGA. Fig. 8 shows the geometry of the frame; the frame is of span of 20 m, 

height to eaves of 5 m and pitch of 8.53o. The load acting on the frame is 4 kN/m. It should be 

noted that the geometry of this frame satisfies the requirements for in-plane stability of the sway 

check method, described in BS 5950 [3], and so second-order effects can also be ignored.  

Issa and Mohammad [9] adopted deflection limits of hf/300 and Lf/360 for the eaves and 

apex, respectively, which are more stringent than both the SCI deflection limits and the 



deflection limits suggested by industry. It should be noted that the deflection limits by Issa and 

Mohammad [9] were checked at the same loads as the member checks, i.e. no distinction was 

made for the loads between ultimate limit state design and serviceability state for deflection 

checks. It should also be noted that although the optimisation conducted by Issa and Mohammad 

included member buckling effects, they reported in their paper that deflections limits governed 

this particular benchmark design; the frame is therefore suitable for use as a benchmark for 

comparison with RC-NGA.  

The flowchart of the RC-NGA is shown in Fig. 9. As described in Section 5, in the RC-

NGA the cross-section sizes of members are treated as discrete variables, whilst the haunch sizes 

are processed as continuous variables. The population size in this design is 40 and the algorithm 

is terminated after 240 generations. Constant probabilities are assigned to both crossover and 

mutation operators. Based on a number of trials, a crossover probability Pc of 0.9 is used 

throughout in this study. It was observed also that a mutation probability of 0.1 generated the 

best results. This finding agrees with the value of mutation probability used in [13]. The effect of 

niching radius dij was also considered by varying from 0.1 to 1 with interval of 0.1. It was found 

that dij of 0.3 is suitable for tournament selection and crossover operators. It is worth noting 

herein that with the normalized niching radius near to unity, the diversity of whole population 

declines remarkably; this means that the superior candidates having better fitness values 

dominated the population. For the niching radius less than 0.45, the diversity of population is 

still maintained. 

 Five random runs of the GA were carried out and the same minimum-weight solution was 

found each time. This demonstrates the reliability and robustness in converging to the optimum 

solution of the RC-NGA. Table 5 shows the frame details obtained from the design optimization. 

As can be seen, the optimum cross-section of the column is the same as that of Issa and 

Mohammad, as mentioned above, whilst the rafter section is smaller/lighter. This is because the 

larger size of the haunch, obtained by RC-NGA, has allowed a lighter section to be used for the 

rafter. Consistent with the findings of Issa and Mohammad, it was found that the vertical 

deflection check at the apex controls the design (i.e., g7 = 0). 

As can be seen from Table 5, the total weight of the frame found by RC-NGA is 

approximately 15% lighter than that of Issa and Mohammad [9]. This saving can be attributed to 

the fact that continuous variables are used for the haunch size, as opposed to discrete sizes, 

allowing a lighter rafter section to be selected. A further optimization of the same frame was 

conducted using elastic and plastic design, ignoring any serviceability checks; the results are also 



shown in Table 5. As can be seen, a 28% and 43% saving in weight was achieved for elastic and 

plastic design, respectively.  

7   Optimization of Reference Frame 

In this Section, the optimization model described in Section 5 is applied to the Reference 

Frame using RC-NGA (Section 6) on a laptop computer (2 GHz CPU, 2GB RAM). The same 

RC-NGA parameters from the validation runs in Section 6.2 were used: population = 40; Pc = 

0.9; Pm =0.1; dij = 0.3; termination criterion = 240 generations. 

 7.1 Optimal plastic design  

The Reference Frame is optimized using plastic design under the ultimate limit state. As 

described in Section 2, the geometry of the Reference Frame satisfies the requirements for in-

plane stability of the sway check method, described in BS 5950 [3], and so second-order effects 

can be ignored for this particular frame. The collapse mechanism is as described in Section 3. 

The deflections, obtained at the eaves and apex are determined using the structural package 

ANSYS under serviceability load combinations (SLC).  

The two sets of deflection limits are applied to examine the serviceability requirements. 

These procedures are embedded in the RC-NGA to evaluate each candidate solution in the 

population.  

To verify further the capacity of RC-NGA, the frame having Haunch A was designed five 

times with different random seeds. It is worth noting that five runs are sufficient to generate an 

optimal design. It was observed that all five optimization runs generated the same solution with a 

weight of 20.21 kg/m2 (see Table 6). This solution is the same as from the SCI design example 

[2]. The progress of the optimization process is shown in Fig. 10. The same problem was solved 

using RC-GA that lacks niching by setting the niching radius dij to 1.0. With a population of 40 

the minimum weight that RC-GA obtained was 22.8 kg/m2. Increasing the population threefold 

to 120 enabled RC-GA to reach the optimum weight of 20.21 kg/m2 found by RC-NGA with a 

population of 40. 

It was observed that the first plastic hinge formed at the underside of eaves haunch, and the 

second plastic hinge formed near to apex as shown in Fig. 5, with a collapse load factor λP, of 

1.04 (or g5 = -0.04). In addition, the unity factor for strength constraint at the shallow end of the 

eaves haunch is less than 0.87 (g4E = -0.13), which shows that the haunch part is elastic. This 

condition prevents a plastic hinge being formed at the shallow end of the eaves haunch, and so 

the assumption of a collapse mechanism shown in Fig. 5 is still valid. 

It is interesting to observe that the frame failed under elastic design with a unity factor of 



1.3 (or g4E = 0.3) for the local capacity check of combined bending and compression, at the 

underside of the eaves haunch on the column. Also, the unity factor for vertical deflection at the 

apex exceeded the upper bound (g7 = 0.65) for SCI deflection limits (Table 2).  

Using Haunch B, five random runs of the GA were executed all of which gave the same 

solution of weight is 20.13 kg/m2, with the same cross-section sizes as Haunch A (see Table 6). 

On average, 8800 function evaluations (FEs) were required. The collapse mechanism as shown 

in Fig. 5 was observed; g5 = -0.02.  

Table 6 also shows that the optimum solution for Haunch C has a smaller cross-section size 

for the rafter. The minimum weight of 19.21 kg/m2 is 4.95% lighter than Haunch A; g5 = 0. 

Haunch C clearly shows that fixing the haunch length (design using Haunch A) and/or depth 

(design using Haunch B) a priori leads to suboptimal solutions. Five random runs of the GA 

were also carried out for optimizing the frame having Haunch C; it was observed 9600 FEs were 

required on average. It is worth noting that the industry serviceability constraints were slack for 

all three haunch designs. The time for RC-NGA to generate the optimal solution for Haunch A, 

B and C is 12hrs, 12.45hrs and 13.0hrs, respectively. 

7.2  Optimal elastic design  

Five RC-NGA runs using different random seeds were performed for each haunch design. 

The results are summarised in Table 7. For Haunch A, the same solution of weight 22.43 kg/m2 

was obtained in 5 runs out of 5. The local capacity check for the ultimate limit state is active, i.e. 

g4E = -0.02, for the combined bending and compression at the underside of the eaves haunch of 

the column. The solution obtained for Haunch B (5 runs out of 5) has a weight of 22.30 kg/m2. 

The ultimate limit state constraints govern the design; g4E = -0.02 at the underside of the eaves 

haunch on the column. For Haunch C the minimum weight of 21.12 kg/m2 is 5.84% less than 

Haunch A. It was observed that 5 out of 5 runs generated the same solution as shown. The local 

capacity check at the shallow end of the haunch governs the design under combined moment and 

compression, g4E = -0.01. As in the preceding plastic design approach, Haunch C shows that pre-

specifying the length and/or depth of the haunch leads to designs that are local optima (Haunch 

A and B). 

7.3  Optimal design with SCI serviceability deflection limits 

The frames optimized above using plastic and elastic design approaches respectively were 

checked with reference to the SCI serviceability deflection limits. The vertical apex deflection 



constraint exceeded the upper bound for all three haunch types. This means that SCI 

serviceability limit state (Table 2) controls the design of the Reference Frame.  

The Reference Frame was therefore optimized again, with the SCI deflection limits 

incorporated this time. All the parameters for RC-NGA were kept the same. For each haunch 

design A-C, the same solution was obtained 5 times out of 5. The results are summarised in 

Table 8. The vertical deflection at the apex (constraint g7) is binding in all three haunch designs 

A-C. The cheapest solution is Haunch C (in which the haunch length and depth are allowed to 

vary) and has a weight 24.3 kg/m2. This is 15% and 27% heavier than the optimal elastic and 

plastic designs (Haunch C), respectively. As compared with industry serviceability limits, the 

unity factor for the vertical deflection at the apex is much smaller than the upper bound, which 

the maximum unity factor is 0.38 (i.e., g7 = -0.62) for the frame having Haunch A. 

8  Parametric study 

In the previous Section, it was shown that the SCI serviceability limits result in a design for 

the Reference Frame which is heavier than that obtained using serviceability limits based on less 

stringent industry limits This Section investigates the effect of serviceability limit states on the 

optimum weight of portal frames. It should be noted that second-order effects are not considered 

as part of the parametric study, in order to allow a comparison to be made between rigid-plastic 

and elastic design. Second-order effects could potentially increase the frame weights, and if the 

reader wished these to be considered for a particular frame, reference is made to the amplified 

moments method which could be applied to the vertical loads, as described in BS 5950 [3].  

Spans considered in this study are varied from 15 m to 50 m and height to eaves from 5 m 

to 10 m; the pitch and frame spacing for all frames are the same as before of 6o and 6 m, 

respectively. The frames are subject to a design vertical dead load of 0.26 kN/m2 and a design 

vertical live load of 0.6 kN/m2 [2]. 

The optimal designs for the frames considered in this Section are obtained using RC-NGA 

with genetic parameters as described previously. Four alternative Design Options (DO) are 

considered: 

DO1: ULS plastic only 
DO2: SLS based on suggestions by industry + ULS plastic 
DO3: SLS based on suggestions by industry + ULS elastic  
DO4: SLS based on SCI recommendations + ULS elastic 

For each case, the minimum frame weight was obtained (in terms of kg/m2) from 5 runs. It 

was observed that the optimum solution for each frame was obtained 5 times out of 5. On 

average, it took 12.30 hours and 9400 FEs per optimization run. Fig. 11 shows the contour of 



minimum weight of frames under DO1 for the case of Haunch C. As can be seen, there is a 

monotonic trend of increase in the frame weight when both frame span and column height 

increase. 

Fig. 12 shows the ratio of the results of DO2/DO1, again for the case of Haunch C. As can 

be seen, for frame spans greater than 25 m and with a height to eaves greater than 6.5 m, only a 

4% increase in frame weight is required to satisfy serviceability limit state based on suggestions 

by industry. For other frame geometries, a larger increase in frame weight is required. For 

example, a frame span of 20 m and a height to eaves of 10 m will require a 14% increase in 

frame weight from DO1 in order to satisfy DO2. 

To investigate the effect of frame weights using elastic design, Fig. 13 shows the ratio of 

the results of DO3/DO1, again for the case of Haunch C. It is interesting to observe that for 

frames having span between 30 m and 40 m, and column heights between 7 m and 8 m, the 

difference between elastic and plastic design is small, approximately 2%.  

Fig. 14 shows the ratio of results of DO4/DO1 for the case of Haunch C. It can be seen that 

for frame spans of 50 m, the SCI deflection limits results in an increase in frame weights by 

more than a factor of two. However, for shorter frame spans, the increase in frame weight is only 

12%.  

In the designs considered in the parametric study, it was noted that the optimum haunch 

length varied only from 9% to 16% of the frame span. In order to investigate the effect of 

allowing the haunch length to vary, Fig. 15 shows the ratio of results for Haunch C / Haunch A 

for the case of DO3. As can be seen, there is a potential saving in frame weight of 10% that can 

be achieved by allowing the haunch size to vary. However, when the same study was repeated 

for the case of DO2, the potential saving in frame weight was negligible.   

9   Conclusions 

A real-coded niching enhanced GA was developed for the optimization of hot-rolled steel 

portal frames with eaves haunches. The frames were considered to be fully laterally-restrained, 

and so member buckling checks were ignored. Furthermore, second-order effects were ignored. 

Both plastic and elastic design approaches were considered. 

The optimization model considered the local capacity constraints for ultimate limit state as 

specified in BS 5950 [3] and two sets of deflection limits, one based on SCI recommendations 

and a second based on less stringent limits for single skin roofs. Results for a Reference Frame, 

taken from an SCI example [2], are included for illustration purposes. The results show that 

adoption of the niching technique in selection process and crossover was highly effective in 

maintaining diversity in the population and thus preventing premature convergence due to over 



representation of the best individuals in the mating pool. With the niching strategy, it was 

possible to use a much smaller population in the GA optimization.  For example, for Haunch A 

for the Reference Frame used here, niching enabled reduction of the size of the population by a 

factor of 3. This led to a reduction in the CPU time by 66.7%. Overall, the results show that the 

GA developed is highly robust, efficient and stable. For the range of problems considered, 

several runs with random initial seeds were enough to find the same best solution consistently.  

 As expected, it was shown that plastic design produces a more economical design than 

elastic design when the column height of the frame is less than 7.5 m; for instance, the saving up 

to 12% lighter in weight is observed for frame span of 30 m and column height of 6 m. When 

SCI deflection limits are considered, the optimum frame obtained from the SCI deflection limits 

is observed to be up to twice as heavy as plastic design for a frame span 50 m. However, the 

effect of serviceability limits based on the less stringent limits has a much smaller effect on 

frame design. The increase in frame weight is only up to 4%, for the majority of frames 

considered. Varying haunch sizes, both length and depth, shows the potential for savings as 

compared to the eaves haunch length fixed with 10% of frame span and haunch depth for elastic 

design, although not for plastic design. Whilst considerations of fabrication costs, particularly of 

connections, may be more important to fabricators, the results of the parametric study undertaken 

can be used to inform fabricators of the sensitivity of a given frame to serviceability deflection 

limits.  
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FIGURES  

 
 

 
Fig. 1 Parameters used to define portal frames (based on centerline dimensions) 

 

 

 
 
Fig. 2 Details of Reference Frame [3] 

 

 

  
 

Fig. 3 Parameters used to define eaves haunch [3]
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Fig. 4 Plastic collapse mechanism under symmetrical gravity load [1] 

 

 
 
Fig. 5 Cross-section of eaves haunch after Saka [5] 

 

 
Fig. 6 Distribution of universal beam sections relative to section depth 

 



 

 
 
 
 

 
Fig. 7 Details of eaves haunch cut from rafter section 

 
 

 
 
Fig. 8 Geometry of portal frame after Issa and Mohammad [6] 

 
 

 
 
Fig. 9 Flowchart of  RC-NGA 
 

 



 

 

Fig. 10 Convergence history of RC-NGA for Reference Frame having Haunch A 

 

               

                    

Fig. 11 Contour of frame weight (kg/m2) under DO1 using Haunch C 

 

 

 

Fig. 12 Contour of DO2/DO1 using Haunch C 

 

                  

 



 

               

Fig. 13 Contour of DO3/DO1 using Haunch C 

       

                   

Fig. 14 Contour of DO4/DO1 using Haunch C 

 

                    

Fig. 15 Contour of Haunch C/ Haunch A for DO3 
  



 

TABLES 

Table 1  Deflection limits for steel portal frames 

 SCI recommendations [4] Industry suggestions 

Absolute 
deflection 

Differential 
deflection 
relative to 

adjacent frame 

Absolute 
deflection 

Differential 
deflection 
relative to 

adjacent frame 

Lateral deflection 
at eaves 

 

100

hf≤  

 

200

bf≤  

 

100

hf≤  

 

150

h f≤  

Vertical deflection 
at apex 

 
 
- 100

bf≤  

and 

125sb 2
f

2
f +  

 

 

- 

 

200

L
≤  

 

Table 2  Deflection limits for Reference Frame 

 SCI recommendations [4] Industry suggestions 

Absolute 
deflection 

Differential 
deflection 
relative to 

adjacent frame 

Absolute 
deflection 

Differential 
deflection 
relative to 

adjacent frame 

Lateral deflection 
at eaves 

 
mm70≤  

 
mm30≤  

 
mm70≤  

 
mm47≤  

Vertical deflection 
at apex 

 
- 

mm60≤  
and 

mm130≤  

 
- 

 
mm150≤  

 

Table 3  Properties of steel sections used for Reference Frame 

 
Section 

fy 
(N/mm2) 

A 
(cm2) 

Ix 
(cm4) 

Zx 
(cm3) 

Sx 
(cm3) 

Mcx 

(kNm) 

510x229x101 UB 265 129 7.57x104 2290 2610 692 

457x191x67 UB 275 85.5 2.94x104 1300 1470 649 

 

 

Table 4  Deflections of Reference Frame compared to serviceability limits 

 SCI recommendations  Industry suggestions 

Absolute 
deflection 

Differential 
deflection 
relative to 
adjacent frame 

Absolute 
deflection 

Differential 
deflection 
relative to 

adjacent frame 

Lateral deflection 
at eaves 

 
29.2 mm 

 
9.3 mm 

 
29.2 mm 

 
9.3 mm 

Vertical deflection 
at apex 

- 99.0 mma - 99.0 mm 

      a Unsatisfactory. 



 

Table 5  Validation of RC-NGA 

 
Approach Column sections 

(UB) 

Rafter sections 

(UB) 

Depth of 
haunch (m) 

Length of 
haunch (m) 

Total weight 
(kg/m2) 

Issa and Mohammad (2010) 457x152x52  406x140x46  0.11 2.45 12.73 

RC-NGAa 457x152x52  356x127x33  0.49 3.60 10.80 

RC-NGAb (elastic) 406x140x46  305x102x25  0.30 1.25 7.80 

RC-NGAb (plastic) 305x102x25  254x102x22  0.30 1.40 6.10 
a Deflection limits of Issa and Mohammad adopted [6] 
b Ultimate limit state design only 
 

Table 6  Reference Frame sized using optimum plastic design 

Haunch Haunch sizes Column section 
(UB) 

Rafter 
section (UB) 

g5 Frame weight       
(kg/m2) 

FEsa 

Lh/L  Dh/Dh0 

A 0.10       1.0        510x229x101 457x191x67 -0.04 20.21 8600 

B 0.095     1.0       510x229x101 457x191x67  -0.02 20.13 9100 

C 0.13 0.96 610x229x101 457x152x60 0 19.21 9200 

a Mean value for five runs all of which converged. 

 

Table 7  Reference Frame sized using optimal elastic design 

Haunch Haunch sizes Column 
section (UB) 

Rafter section 
(UB) 

Active constrainta  Frame weight 
(kg/m2) 

FEsb 

 Lh/L  Dh/Dh0 

A 0.10 1.00 610x229x113 457x191x74 
 g4E = -0.02 
(on column) 22.43 8500 

B 0.12 1.00 610x229x125 457x191x67 
 g4E = -0.02 
(on column) 22.30 8800 

C 0.14 1.05 610x229x125 457x152x60 
 g4E = -0.01  

(at haunch end) 21.12 9200 

a Apparent slack is due to discrete decision variables. b Mean value for five runs all of which converged. 

 

Table 8  Reference Frame sized using optimal elastic SCI serviceability deflection limit design 

Haunch Haunch sizes Column 
section (UB) 

Rafter section 
(UB) 

Maximum constraint factors Frame weight 
(kg/m2) 

Lh/L  Dh/Dh0 ULS SLS 

A 0.10 1.00 686x254x125 533x210x82 
 g4E = -0.20 
(on column)  g7 = -0.04 24.84 

B 0.14 1.00 610x229x113 533x210x82 
 g4E = -0.03 
(on column)  g7 = -0.01 24.45 

C 0.17 1.32 686x254x125 457x191x74 
 g4E = -0.15 
(on column)  g7 = 0 24.34 



 

 


