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This paper presents an extension of the analytical solution for perturbed Keplerian motion of a spacecraft under 

the effect of a low-thrust action (Zuiani et al., Acta Astronautica, 2011). The new formulation will include the 
possibility for treating two different thrusting modes, i.e. with a fixed thrust direction either in a rotating or in an 
inertial frame. Moreover the contribution of the J2 effect is also included in the analytical formulae. It will be shown 
that this approach allows for the fast computation of long, many revolution spirals while maintaining adequate 
accuracy, and it is able to include the combined actions of different perturbations. 

The proposed approach will also be applied to the case of a spacecraft with a low-thrust engine, which is injected 
into a Geostationary Transfer Orbit and will subsequently use its on-board propulsion to transfer to a final circular 
orbit around the Earth. The completion of the whole transfer might require several spirals and this makes the use of a 
full numerical propagation prohibitive on a sequential machine. In the proposed method, the thrusting pattern, 
duration and start of each thrusting arc, is defined through a parameterised function. The spiral is then propagated 
with the above-mentioned analytical approximation.  A direct optimisation approach is then used to optimise these 
control parameters in order to minimise the propellant cost of the transfer, given a fixed transfer time and a set of 
boundary conditions. 

 
I. INTRODUCTION 

The design of low-thrust (LT) trajectories requires 
the definition of the thrust profile that satisfies a two-
point boundary value problem. The scope of this work is 
to provide a computationally efficient way to determine 
a good approximated solution to this problem with a 
representation of the control profile comparable to more 
accurate but computationally expensive approaches. 

In the literature, the problem has been tackled in a 
number of different ways1,2, generally classified in two 
families: indirect methods and direct methods. Indirect 
methods3,4,5 translate the design of a low-thrust 
trajectory into the solution of an optimal control 
problem and derive explicitly the associated first-order 
optimality conditions. The first-order optimality 
conditions are a system of mixed differential-algebraic 
equations (DAE). Shooting, multiple-shooting, 
collocation and approximated analytical approaches 
have been proposed to solve the DAE system and 
satisfy the boundary conditions.  

Direct methods6,7, instead, do not derive the 
optimality conditions but transcribe the differential 
dynamic equations of motion into a system of algebraic 
equations and then solve a nonlinear programming 
problem. Numerical integration and collocation 
techniques have been proposed to transcribe the 
differential dynamic equations. 

A number of direct methods8,9,10 have been 
successfully applied to interplanetary transfer design. 
However, most of them are ill-suited for LT many-
revolution transfers, like all typical orbit change 
manoeuvres around the Earth. Given the particular 
thrusting pattern and duration of this type of transfer, 
the associated number of control parameters can easily 
render them intractable or, for the purposes of a 
preliminary estimation, at least computationally very 
expensive. 

In past works, other authors have already proposed 
approaches to the design of low thrust, many-revolution 
transfers, based on analytical solutions to an optimal 
orbit raising problem under the assumption of small 
eccentricity11,12,13 or through averaging techniques14,15. 
However, few proposals16,17 exist for treating generic 
many-revolution transfer problems. Adding to this, they 
sometime require numerical integration of the perturbed 
motion and might therefore be expensive to evaluate. 

Recently, Bombardelli et al.18, proposed an 
analytical solution for the case of purely tangential 
thrust which promises a fast and accurate propagation 
constant thrust profiles over extended periods of time. 

Zuiani et al.19 presented a closed form analytical 
solution for keplerian motion perturbed by a constant 
thrust in the radial-transverse reference frame. The latter 
is at the basis of the Direct Finite Perturbative Elements 
in Time (DFPET) trajectory optimisation method. The 
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same analytical formulation has been used in a previous 
work20 to propagate the motion of an asteroid under the 
effect of an ablation-induced thrust. In another work21, it 
has been applied to the design of Low-Thrust, many 
revolution transfers. 

In this paper, an extension of the analytical 
formulation is presented which now includes also the 
contribution of a constant inertial thrust and the J2 
effect. Adding to this, the approach to the solution of the 
time equation has been revised and improved compared 
to the previous work. It will be shown that the resulting 
analytical approximate solution is suitable for the fast 
and accurate propagation of long spiralling trajectories 
in which different perturbative actions are present. 
Moreover, if combined with averaging techniques, 
further gains in terms of computational time are 
possible. Finally, the analytical propagator will be 
combined with a simplified parameterisation for the 
thrusting pattern to provide a fast and flexible tool for 
the design of spiralling transfer, like for example a 
simple Geostationary Transfer Orbit (GTO) to 
Geostationary Earth Orbit (GEO) circularisation.  

 
 

II. PROBLEM DEFINITION 
 

II.I Equations of Motion 
Let the state of the spacecraft be expressed in terms 

of non-singular Equinoctial Elements22: 
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then, the perturbed Keplerian motion is governed by 
Gauss’ planetary equations: 
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with: 
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where ar, aθ, ah, are the components of the thrust 
acceleration in the radial-transverse-normal (r-θ-h) 
reference frame, which can also be expressed in terms 
of modulus-azimuth-elevation as: 
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As shown in19, if one assumes that the modulus of 
the thrust acceleration is small compared to the local 
gravitational acceleration, one can write: 
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  [5] 

Substituting [5] into [2] one obtains a system of 
equations in the longitude L: 
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Or, in vector form: 
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E
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By integrating [7] in L, keeping the remaining 
equinoctial elements as constants, one can write a first-
order expansion of E with respect to L as: 

       
0

0 0

0 1

, ,, ,
L

L

L L F L L dL  



  

 

E E E

E E

  [8] 

As it will be shown in the next sections, the integral 
term in [8] can be expressed analytically for some 
special acceleration patterns. 

The time equation can be similarly expressed as: 

 00 1( )t L t t    [9] 

Note that the zero-order term t00 is not just the time 
corresponding to L0, but includes also the time variation 
given by unperturbed Keplerian motion, which is 
omitted here but can be easily derived. The first-order 
term t1 can be derived from [5] and integrated in L: 

 
1

0

1

L

L

d dt
t dL

d dL
   
    [10] 

Considering that: 

 

1

1

2

2

dPd dt da d dt d dt

d dL d da dL d dP dL

dP d dt

d dP dL

  



            
     

   
 

  [11] 

and, from [8]: 
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after some manipulations, one can write: 
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Note that the presence of the terms a1, P11, P21 
essentially implies a double integration between L0 and 
L. 

 
II.II Constant Trust in the r-θ-h frame 

If one assumes a constant thrust modulus and 
direction in the r-θ-h frame, then the system of 
equations in [8] can be integrated analytically, leading 
to: 
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where the terms expressed as Ixx are integrals in L in 
the form: 
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where Φ0 is the term in [3] evaluated with P10 and 
P20. The analytical form for these integrals is omitted 
here for the sake of conciseness. 

Regarding the first-order term of the time equation 
[13], as already noted in the previous section, some of 
the integrals in [15] are multiplied by a function of L 
and again integrated between L0 and L. For the term 
depending from a1, it has been possible to find an 
analytical expression, leading to: 
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II.III Constant inertial thrust 

A constant acceleration in the inertial reference 
frame can be expressed, in the r-θ-h frame, as a function 
of the longitude L: 
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where γ0 derives from the acceleration azimuth α0 at 
L0, i.e.: 

 0 0 0L     [19] 

Substituting [18] into [6], and after some 
manipulations, one can obtain an expression analogous 
to [14]: 
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where the integral terms are given by: 
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Similarly, the first-order perturbative term in the 
time equation translates into: 
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II.III J2 perturbation 

The components of the J2 perturbation in the r-θ-h 
frame are expressed as23: 



63rd International Astronautical Congress, Naples, Italy. Copyright ©2012 by the Authors. Published by the IAF, with permission and released to 
the IAF to publish in all forms. 

IAC-12-C1.4.6         Page 5 of 14 

 

 

  

 

   

 

   

2

2

2

2
22

1 28 4 2

4

2
2

8 2 4

4
1 2

2
2

2 1

1 2

1 28 2 4

2 2 4

3 12
cos sin

2

1

12
cos sin

cos sin

cos sin

1

6

J

h

r

J

J

R
a Q L Q L

B a G

L

R
a Q L Q L

J

J

J

B G a

Q L Q L L

R
a Q L Q L

B G a

Q Q L









  
 

  

  

  

   

  [23] 

where J2 is the well-known spherical Harmonic 
coefficient, R is the planetary radius and G is: 
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Substituting [23] into [6] and with the procedure 
previously described one can write the first-order 
variation of the Equinoctial Elements due to the J2 
perturbation. In a compact form, this can be expressed 
as: 
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where the coefficients Ci,j and CL are polynomial 
functions of P10, P20, Q10, Q20. Note that there is no 
linear component in L in the expansion of a, confirming 
the known result that J2 is not inducing any net variation 
of the semi-major axis and thus the energy. There is, on 
the other hand, a short-term periodic variation of a over 
one orbital revolution. The remaining equinoctial 
elements, present both a short-term periodic variation 
and a secular one, which is linear with respect to L. 

 
 
 
 

III. NUMERICAL ANALYSIS 
 

III.I Accuracy 
In order to determine the accuracy of the analytical 

first-order expansions described in the previous section, 
a simple test case will be proposed. For each of the three 
expansion formulae, an initial orbit around the Earth 
will be propagated analytically with a perturbative 
acceleration and for an arbitrary number of orbits. The 
propagated states will be then compared with the results 
of a full numerical integration of Gauss’ variational 
equations. Both propagations are performed with 
MatLab and the numerical integration is performed with 
ode113, implementing an Adams-Bashfort predictor-
corrector method.  

In the first case, an initial orbit around the Earth is 
considered, with the orbital parameters as in Table I. 

 
a e i Ω ω θ 

7000 km 0.1 6° 0° 10° 0° 
Table I: Initial orbit parameters 

The perturbative acceleration in the r-θ-h frame is 
10-4 m/s2, with α=π/2 and β=π/6. The orbital motion is 
propagated for 20 orbits. 

 
Fig. I: Constant r-θ-h acceleration: Semi-major axis. 

Fig. I shows the behaviour of semi-major axis for 
the analytical and numerical propagation. One can see 
that the error is quite negligible even after 20 orbits and 
in effect it reaches only 0.1 km, as shown in Fig. II.  
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Fig. II: Constant r-θ-h acceleration: error on semi-major axis. 

Fig. III and Fig. IV similarly show the behaviour of 
P1 and Q1 and reveal a very good matching of the first-
order expansion with the ode113-integrated time 
behaviour. P2 and Q2 show similar behaviours.  

 

 
Fig. III: Constant r-θ-h acceleration: P1. 

 
Fig. IV: Constant r-θ-h acceleration: Q1. 

 
Fig. V: Constant r-θ-h acceleration: Time. 

Fig. V shows the time as computed from [13] and 
from the exact integration of the time equation. On can 
note that the correction term from a1 is already adequate 
to accurately compute the time flown and the error 
compared to the numerical integration, as shown in Fig. 
VI, is indeed very low, less than 5 sec after 20 orbits. 
Moreover, along the first orbit it is by all means 
negligible. This approximation lowers the error by at 
least one order of magnitude over the previous 
formulation, found in19, which neglected the second 
integration over L. Note also that a good computation of 
the time is essential, in particular when one has to use 
this datum to compute the ΔV corresponding to the 
propagated thrusting arc. It also very important to note 
that the analytical propagation has a considerable edge 
in terms of computational time because it required 10-3 
sec compared to 0.9 sec of ode113, corresponding to 
almost 1000 times speed up. 

 
Fig. VI: Constant r-θ-h acceleration: error on time. 
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acceleration in the inertial reference frame. Fig. VII 
shows that the analytic approximation easily matches 
the periodic behaviour of the semi-major axis.  

 
Fig. VII: Constant inertial acceleration: Semi-major axis. 

 
Fig. VIII: Constant inertial acceleration: P1. 

 
Fig. IX: Constant inertial acceleration: Q1. 

Similarly, Fig. VIII and Fig. IX show that the 
approximated values for P1 and Q1 match quite closely 

the numerical ones. Q1 shows a more apparent deviation 
but nevertheless the error is still in the range of 10-6. 
Analogous considerations apply to P2, Q2 and t, the 
graphs of which are not reported for c1onciseness. 

In the third case, the initial orbit is propagated under 
J2 perturbation only. As in the previous two cases, the 
behaviour of the Equinoctial elements shows a good 
matching with the results of numerical integration. 
However, a critical point is represented by parameters 
Q1 and Q2. From Fig. X and Fig. XI one can see that the 
matching on Q1 is good and at the same time the error 
on Q2 is not considerable. If these values are converted 
to inclination and right ascension of the ascending node 
Ω, one can see that the accuracy for the latter is still 
very good, but for the former there is a long term 
deviation. This negates the known result that J2 
perturbation has no secular variation of inclination. 
While this deviation is almost negligible along a single 
orbit, it might be problematic when a long time horizon 
is considered, and should be taken into account. 

 
Fig. X: J2 perturbation: Q1. 

 
Fig. XI: J2 perturbation: Q2. 
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Fig. XII: J2 perturbation: inclination. 

 
Fig. XIII: J2 perturbation: Ω. 

Given the limited entity of element variations with 
the perturbation considered it is also possible to 
combine the three first-order expansion seen before into 
a single approximate solution for Keplerian motion 
perturbed by constant r-θ-h and inertial acceleration plus 
J2 perturbation. This involves in a simple application of 
the Superposition Principle and consists in simply 
adding up together the first-order terms which appear in 
equations [14], [20] and [25]. Fig. XIV to Fig. XVII 
show the error of propagation performed with the same 
perturbations as in the previous three cases combined 
together. The mismatch with numerical integration is 
not considerably worse than the cases in which the 
perturbations are considered separately, confirming the 
possibility of a linear superposition of the perturbative 
effects. 

 
Fig. XIV: Combined perturbations: error on semi-major axis. 

 
Fig. XV: Combined perturbations: error on P1. 

 
Fig. XVI: Combined perturbations: error on Q1. 
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Fig. XVII: Combined perturbations: error on time. 

II.II Accuracy over a single revolution 
It is also interesting to analyse the behaviour of the 

error for a propagation of a complete orbital revolution. 
The main idea is that of using the analytical formulae to 
propagate long multi-revolution transfers by computing 
the first-order variation of Equinoctial Elements over a 
single orbit and then updating each time the reference 
initial conditions E0 for the following orbit. In this 
sense, the aim of this analysis is to estimate the error 
accumulated over one orbit as a function of the 
magnitude of the perturbative acceleration ε and of the 
semi-major axis a0 of the initial orbit. The latter, in 
particular, is important because it determines the size of 
the orbit and thus the magnitude of the gravitational 
acceleration and at the same time the orbital period, i.e. 
the time length of the propagation. Therefore, a number 
of initial Earth-centred orbits with eccentricity 0.1 and 
variable a0 are propagated with different ε, constant in 
the r-θ-h frame, with α=π/2 and β=0. Fig. XVIII shows 
the maximum error on the semi-major axis as a function 
of a0 and ε. As is intuitively known, one can see that the 
error increases with these two parameters. In particular, 
for large semi-major axis values and ε=10-3 m/s2 the 
deviation easily attains more than 104 km, clearly not 
acceptable under any circumstances. However one 
should consider that 10-3 m/s2 is a performance level 
hardly attainable with the current electric propulsion 
technology. If the acceleration is instead in the typical 
range of 10-4-10-6 m/s2 the resulting propagation error is 
acceptable even for relatively large orbits. Note also that 
all orbits in the LEO to GEO class are integrated very 
accurately, with errors which are of a few kilometres at 
worst. Moreover if the error is evaluated in relative 
terms even an error of 101 km can be acceptable for an 
initial orbit of 105 km in the case of a fast preliminary 
analysis. 

 
Fig. XVIII: Maximum error on a over a revolution w.r.t. a0 

and ε. 

A similar behaviour is also found in Fig. XIX for P1 
and in Fig. XX for the time t. The former is closely 
related to the orbit eccentricity and therefore it is 
desirable to keep the error per orbit below 10-5-10-6 
which, as shown in the graph, can be attained in most 
cases except for high a0, large ε combinations. 
Analogous considerations apply to the error on time, in 
the sense that an error of 103 sec is not acceptable for a 
LEO or GEO but might still be tolerated for a very large 
orbit of 105 km of semi-major axis, which means that its 
orbital period is 3.14·105 sec. 

 
Fig. XIX: Maximum error on P1 over a revolution w.r.t. a0 and 

ε. 
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Fig. XX: Maximum error on t over a revolution w.r.t. a0 and ε. 

 
III. TEST CASES 

 
III.I GTO Orbit escape propagation 

In this first test case, the aim is to assess the 
suitability of the proposed analytical approach for the 
long term propagation of a long, spiralling trajectory. 
Starting from an initial GTO orbit, with parameters as in 
Table II, an acceleration of 10-4 m/s2 is applied along the 
θ direction until escape conditions are reached (i.e. e=1). 

 
a e i Ω ω θ 

24478 km 0.73 6° 0° 10° 0° 
Table II: GTO orbital parameters. 

In order to contain the increase of the propagation 
error, the reference conditions (as for example in [8]) 
are updated twice per orbit. This means that the 
analytical formulae are also evaluated twice per orbit. 
Note also that, the pure transverse control profile is sub-
optimal but nevertheless provides a good approximation 
of an optimal escape spiralling trajectory. The same 
acceleration is integrated numerically with ode113 until 
escape conditions are reached. 

Fig. XXI and Fig. XXII show the variation of the 
semi-major axis and eccentricity and reveal the typical 
pattern of an escape trajectory from a very elliptical 
orbit15 where first, one has a reduction of the 
eccentricity to almost zero, followed by a sudden 
increase up to one during the last few orbits. 
Simultaneously, there is also a steep increase in the 
semi-major axis. The fitting between the analytical and 
numerically propagated spirals is very good up until the 
last few orbits when the escape conditions are 
approached. This is due to the fact that, for semi-major 
axis above 105, the element variation along a single 
orbit is considerable and the first-order perturbative 
expansion starts losing its validity. A simple mitigation 

action might be for example that of increasing the 
reference condition update frequency above a certain 
threshold on the semi-major axis. 

 
Fig. XXI: GTO escape: semi-major axis. 

 
Fig. XXII: GTO escape: eccentricity. 

 
Fig. XXIII: GTO escape: relative error on radius. 
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Fig. XXIII shows that in relative terms, the error in 
terms of radius also remains very low up until the 300th 
orbit when it quickly climbs much over 1%. 

 
III.II Orbit raising with Solar Radiation Pressure 

In the second test case, the long term propagation of 
an initial GEO under the combined effect of a thrust 
acceleration along the θ direction and solar radiation 
pressure (SRP) perturbation. Initial spacecraft mass is 
1000 kg, engine thrust is 10-2 N and specific impulse is 
3000 s. The cross sectional area used to compute SRP 
acceleration is 1200 m2, a value which will give a non-
negligible perturbative acceleration. At departure, the 
Sun lies at the Summer Solstice point. Propagation time 
is set at two years. This time, propagation is performed 
through averaging of the orbital elements variation 
computed analytically along an orbit. The SRP direction 
is considered to be constant along an orbit, therefore 
allowing the use of the formulas in Eq. [20]. However, 
the secular variation of the Sun-Earth direction is still 
accounted for in the integration of the averaged 
quantities. The averaged propagation is performed with 
MatLab®’s ode23 which implements a Runge-Kutta 
integration method. Again, the results are compared to a 
full numerical integration with ode113. CPU time 
required by the averaged analytic propagation was 0.077 
s while the full numerical integration required 3.76 s. 
Fig. XXIV shows the monotonic increase of the semi-
major axis due to engine thrust, revealing also the good 
match between the two propagation techniques.  

 
Fig. XXIV: GEO raising with SRP: semi-major axis. 

Fig. XXV shows the long term variation of orbital 
eccentricity, with a period of one year, due to the SRP 
effect. The curve of the numerical integration appears to 
be wider because the short term variations along a 
single orbit are computed and plotted too, which is not 
the case for the averaged one. SRP also produces a 
small long term deviation of the inclination due to the 

relative angle between the Ecliptic plane and the 
Equatorial plane, in which lies the initial GEO. 

 
Fig. XXV: GEO raising with SRP: eccentricity. 

 
 

 
Fig. XXVI: GEO raising with SRP: inclination. 
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number of optimisation parameters in LT, multi-
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ideally to alter apocenter altitude by thrusting in either 
way along the θ direction. Similarly, the second alters 
the pericenter altitude by thrusting along θ around the 
apoapsis for an arc of amplitude ΔLa. The variation of 
the orbital elements along the thrusting arcs is computed 
with the analytical formulae. If a plane change is also 
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required, an out-of-plane component described by 
elevation βp and βa, can also be introduced. The 
amplitude of the arcs ΔLp and ΔLa, and the angles βp and 
βa, are the quantities to be optimised. These are 
specified as a linear piecewise interpolation with respect 
to time, of which the n-nodal values are the optimisation 
parameters. In order to speed up the calculation, instead 
of propagating each orbit, an orbital averaging 
technique is again used. 

 
Fig. XXVII: Orbit rising thrust pattern. 

Initial orbit parameters are the same as in Table II 
except that ω is zero this time. The target orbit is a GEO 
with zero inclination, therefore a plane change of 6 
degrees is also required. The time specified for the 
transfer is one year. Engine thrust is 0.1 N, with a 
specific impulse of 2500 s. Initial mass of the spacecraft 
is 1000 kg and mass consumption is also taken into 
consideration during the transfer. 4 nodes each are used 
for ΔLp, ΔLa, βp and βa, leading to a total of 16 
optimisation parameters. Total ΔV is minimised while 
matching the final semi-major axis, eccentricity and 
inclination, obtained through the analytical propagator, 
with those of the target orbit. This is basically a single-
shooting, direct collocation method. Numerical solution 
of the problem is performed with MatLab®’s fmincon-
sqp algorithm. The optimisation is performed in 40 
iterations and the optimised solution has a ΔV cost of 
1.704 km/s.  

 
Fig. XXVIII: GTO-GEO transfer: semi-major axis. 

Fig. XXVIII, Fig. XXIX and Fig. XXX show the 
variation of semi-major axis, eccentricity and 
inclination respectively. It can be clearly seen that all 
quantities change monotonically from their initial values 
to the target ones. 

 
Fig. XXIX: GTO-GEO transfer: eccentricity. 

 
Fig. XXX: GTO-GEO transfer: inclination. 
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can only be –π/2 and π/2 and thus, in line with what 
already observed, one sees that the thrust is accelerating 
at apogee and decelerating at perigee. The plane change 
effort is mainly concentrated at the apogee thrusting 
arcs, with an out-of plane component, gradually 
decreasing from 13 to 5.5 degrees. 

 
Fig. XXXI: GTO-GEO transfer: perigee and apogee. 

 
Fig. XXXII: GTO-GEO transfer: thrusting arc length. 

 
Fig. XXXIII: GTO-GEO transfer: thrust azimuth and 

elevation. 

IV CONCLUSIONS 
This paper has shown the feasibility and the 

advantages of a perturbative approach for the analytical 
propagation of long Low-Thrust trajectories. The 
proposed approach is suitable for treating both constant 
acceleration in the r-θ-h reference frame and constant 
inertial acceleration. J2 perturbation can be included as 
well. The accuracy of the analytical first-order 
expansion has been shown to be adequate for 
propagating relatively long trajectory arcs around the 
Earth, with most acceleration levels allowed by current 
technology. Moreover, the analytical formulae can be 
easily combined with averaging techniques for fast and 
accurate of long spiralling trajectories. Finally, by 
introducing a simplified parameterisation for the 
thrusting pattern, the proposed approach can be also 
used for optimising boundary constrained, many 
revolution transfers. 

As a future step, thanks to its efficiency, the 
optimisation approach might be integrated into a global 
multi-objective optimisation instance in which multiple 
figures of merit are concurrently optimised. 
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