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Robust Design of a Re-entry Unmanned Space

Vehicle by Multi-fidelity Evolution Control

OCoONOOORWN =

Edmondo Minisci' and Massimiliano Vasile?
10 University of Strathclyde, Glasgow, G1 1XJ, UK

14 This paper addresses the preliminary robust design of a small-medium scale re-entry
16 unmanned space vehicle. A hybrid optimization technique is proposed that couples an
18 evolutionary multi-objective algorithm with a direct transcription method for optimal
20 control problems. Uncertainties on the aerodynamic forces and vehicle mass are in-
22 tegrated in the design process and the hybrid algorithm searches for geometries that
24 a) minimize the mean value of the maximum heat flux, b) maximize the mean value
26 of the maximum achievable distance, and ¢) minimize the variance of the maximum
heat flux. The evolutionary part handles the system design parameters of the vehicle
and the uncertain functions, while the direct transcription method generates optimal
control profiles for the re-entry trajectory of each individual of the population. Dur-
ing the optimization process, artificial neural networks are used to approximate the
aerodynamic forces required by the direct transcription method. The artificial neu-
39 ral networks are trained and updated by means of a multi-fidelity, evolution control

41 approach.

47 Nomenclature

49 Cp = drag coefficient
51 Ck = sampling hypersurface

53 Cr = lift coefficient

1 Lecturer, Department of Mechanical & Aerospace Engineering, 75 Montrose Street
28 2 Reader, Department of Mechanical & Aerospace Engineering, 75 Montrose Street, ATAA Member
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d = design vector
dbody = thickness of the structure [m]
di = Euclidean distance between point in D Bi,q.n evaluated at current fidelity level of the models

and the points evaluated with lower level models

Amin,il = minimum Euclidean distance to accept points evaluated with lower level models into the
database
Amin, st = minimum Euclidean distance between the sampled trajectory point and the points of the

database evaluated with the same fidelity code, to accept the new point into the database
dsi = Euclidean distance between point in D By,4i»n and the trajectory points extracted by

current solutions

drps = thickness of the TPS skin covering the vehicle [m)]

D = drag [N]

DBirain = matrix of points in the database used to train the approximated model
D, = viscous drag [N]

D, = wave drag [N]

E,, Ep = mean values of the maximum heat flux and the orthodromic distance, respectively
Err = error function

g = gravity acceleration [m/s?]

h = altitude [m]

K. = constant term in the heat flux equation (1.742 10™%)

l = nominal length of the wave-rider [m]

L = lift [N]

Lc = fidelity level of the model

Laget = deterministic value of the lift [N]

Lrps = thickness of the TPS at the nose

Lyne = value of the lift affected by uncertainties [N]

m = total mass of the vehicle [kg]

Mnose = mass of the TPS at the nose [kg]

Meskin = mass of the TPS covering the vehicle [kg|

Mst, MmTps, Mp = structural mass, the mass of the TPS and the mass of the payload

(avionics and power system), respectively [kg]

Ma = Mach number
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= power law exponent for the shape of the waverider
= number of kernels
= defines the generation loop in the generation based evolution control approach

= number of generations of the global optimizer, for which the fidelity of the model is

increased the upper level

= number of generations for which the real model has to be used for the generation based

evolution control approach

= number of trajectory points to extract from each trajectory
= number of collocation points
= maximum number of trajectory point to extract for each generation

= number of individuals to evaluate by true model in the individual based evolution control

approach

= number of trajectory elements

= convective heat flux [IW/m?]

= upper bound of the constraints on the final radius [m)]
= lower bound of the constraints on the final radius [m]
= norm of the position vector with respect to the center of the planet [m)]
= Reynolds number

= mean radius of the Earth (const. 6.371 10° m)

= radius of curvature at the edges of the vehicle [m]

= matrix with data of the trajectory

= surface of the TPS nose cone [m?]

= TPS surface area except that of the nose [m?]

= time [s]

= thrust [N]

= magnitude of the velocity [m/s]

= volume of the nose [m?]

= free stream velocity module [m/s]

= nominal width of the waverider [m]

= longitudinal coordinate

Greek symbols
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a = angle of attack [deg]
B = oblique shockwave inclination angle of the waverider
Yo = bank angle [deg]
0 = center line wedge angle of the waverider
0, = flight path angle [deg]
A = longitude [deg]
Pbody = density of the vehicle structure [kg/m?]
pTPS = density of the TPS material
03 , 0% = variance of the maximum heat flux and orthodromic distance, respectively
TE = MOPED coefficient for the generation of new individuals
@ = latitude [deg]
I3 = heading angle (azimuth of the velocity) [deg]

I. Introduction

The increase in computer performance allows numerical simulation to replace a big portion of
experimental tests, and numerical optimization to handle complex multidisciplinary design problems.
However, generally only reduced or low-fidelity models are used during the optimization process
on sequential machines. Higher fidelity models are used for more detailed investigations of some
promising configurations. In order to reduce the duration and cost of the design process and get
better solutions from its early stage, it would be desirable to introduce high fidelity models already
in the preliminary design phase. Specific techniques are therefore required to efficiently handle
computationally expensive, high fidelity models.

Furthermore, in a wide range of problems the system to be designed needs to be optimally
controlled during its operational life. In these cases the optimal control component of the design
has an impact on the system design component and vice versa. For example, in the case of a re-entry
vehicle, the system, i.e. the re-entry vehicle, follows a descent trajectory that needs to be optimally
controlled. The outcome of the optimal control problem has an impact on the maximum heat flux
that the vehicle has to withstand and ultimately on its design (shape, material, structure, thermal

control system). Conversely the system design component has an impact on the solution of the
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optimal control component because the dynamics changes.

Lastly, given the preliminary nature of the computation, the inclusion of uncertainties would
be desirable in order to generate robust solutions and to highlight the sensitiveness of the design to
specific parameters. Hence, the idea is to have an approach capable of 1) integrating system design
and optimal control, 2) handle models with different levels of fidelity, and 3) efficiently incorporate
design uncertainties in the optimization process. Although many authors have addressed each one
of these aspects individually or partially combined, currently there are no examples of integration
of all of them together.

One decade ago, Tsuchiya and Mori[1, 2] used the integrated design approach, shape plus control
law, for the optimization of launch vehicles. Roshanian and Keshavarz[3] adopted an analogous
integrated approach for the multi-disciplinary design of a sounding rocket, with response surface
method used to approximate the propulsion model. Since the end of 90’s, researchers working on the
efficiency of optimization processes have been applying meta-modeling techniques to approximate
the response of expensive models, with or without the use of multiple different models, with different
fidelity levels and costs, during the optimization process[4-9].

This paper presents a novel approach to the preliminary robust design of complex engineer-
ing systems, integrating system design and optimal control into a single optimization process. A
population of individuals evolves multiple system design solutions in parallel using an Estimation
of Distribution Algorithms (EDAs)[10] called MOPED (Multi-Objective Parzen based Estimation
of Distribution) algorithm[11, 12]. At every step of the evolution, an optimal control profile is as-
sociated to each individual of the population (each system design solution). The optimal control
profile is generated by solving an optimal control problem with a direct transcription method, which
transcribes continuous optimal control problems into equivalent non-linear programming problems
(NLP) by discretizing both states and controls (for more details on transcription methods for opti-
mal control the interested reader can refer to[13]). Uncertainties in the system design parameters
are propagated through the model to compute mean and variance of the relevant performance
indexes. Mean and variance are then used as objectives for MOPED. Finally, a meta-modeling

technique is used to introduce high fidelity information in the optimization loop while maintaining
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the computational cost at an acceptable level. The balanced mixture of high fidelity, low fidelity
and meta-modeling information is handled through an evolution control process[14].

The case study considered in this paper is the robust design of a medium scale Unmanned Space
Vehicle (USV). USVs are seen as a test-bed for enabling technologies and as a carrier to deliver and
return experiments to and from low-Earth orbit. They are a potentially interesting solution also
for the exploration of other planets or as long-range reconnaissance vehicles for Earth observation
[15-17].

In [18] the authors describe a similar approach applied to the design of a small scale USV,
taking into account the availability of last generation thermal protection systems (TPS) based on
ultra-high temperature ceramic materials (UHTC)[19, 20]. Here the integrated design technique
is applied to the design of a larger scale USV, and a different treatment of the optimal control
component is introduced: a dual trajectory optimization loop generates control law solutions that
minimize the maximum heat flux or maximizes the orthodromic distance, during the re-entry phase.
Minimization of maximum heat flux is directly linked to the complexity and costs of the vehicle,
because if the vehicle is able to follow a minimal heat flux descent corridor, then cheaper and lighter
protecting materials, and under-skin structures, could be used. On the other hand, long range
gliding is desirable, because it gives the possibility to robustly select the re-entry point. As in [18],
here the shape of the vehicle is derived from an ideal wave-rider configuration([21-23]), and its
geometry is modified in order to introduce more realistic rounded edges.

An Artificial Neural Network (ANN) approximated model is used as intermediate layer between
the dynamics and aerodynamics of the vehicle such that when the values of drag and lift coefficients
are required to compute the forces acting on the vehicle the ANN is interrogated instead of running
a full CFD simulation. During the optimization process, the aerodynamic database used to generate
the meta-model is updated by a multi-fidelity, evolution control approach: a simplified analytical
model and a computational fluid dynamic (CFD) one are scheduled during the optimization process
in order to efficiently update the database with solutions sampled where optimal solutions are more
likely expected[24—28|. In particular, the low-fidelity model (the analytical one in this case) is used

to generate samples globally over the range of the design parameters, while the high fidelity one will
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be used to locally refine the meta-model in later stages of the optimization.

The paper starts with a description of the proposed robust multidisciplinary design approach, to-
gether with the meta-modeling integration, the integration of system design and process control and
the treatment of model uncertainties, which are the most innovative aspects of the whole approach.
In the following section the integrated design approach is applied to a low dimensional rocket ascent
problem, then the USV test case is described, with details on the aerodynamic, thermal, mass, and
dynamic models of the vehicle, and some preliminary results are presented. A conclusion section

summarizes the key findings of this work and suggests some directions for future developments.

II. Robust Multidisciplinary Design Approach

This paper addresses the integrated design of system and process control under uncertainty. In
particular, the design process aims at the simultaneous optimization of the shape and trajectory
control profiles of an aerospace vehicle. The multidisciplinary design approach proposed in this
paper, integrates an evolutionary multi-objective algorithm with a direct transcription method for
optimal control problems. An outer multi-objective evolutionary optimization procedure manages
the parameters defining the shape of the vehicle and considers as objectives and constraints the
mean and variance of the values of the performance indexes coming from an inner optimization
processes handling the optimal control problem.

Once a shape is defined by the outer loop, the optimal control problem is solved multiple times,
each time optimizing a different performance index. The individual optimization of each performance
index responds to the need of optimally designing the vehicle for all extreme operational conditions
that could face during its operational lifetime, rather than for an intermediate one.

In fact, during the operational life, the shape is a fixed characteristic of the vehicle, and cannot
change during the flight (no morphing technology is considered here), while the control law can be
varied during the operational phase to optimize the operational performance. As a consequence,
if a given shape has to maximize different and possibly conflicting performance indexes, then it is
necessary to compute the best control law for each performance index, because a single optimization,

combining the performance indexes (e.g., a weighted sum of single objectives), would yield a shape
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that is suboptimal in extreme conditions. Mean and variance of the performance indexes are then
computed following the procedure described in Sec. II B.

The optimization of the optimal control profile makes use of a data-fitted surrogate model to
approximate the dynamic characteristics of the vehicle, such as the aerodynamic forces acting on
the vehicle, as functions of the shape of the vehicle and its operational conditions. The training
and updating of the approximated model(s) is optimally managed though a multi-fidelity evolution

control approach. The following sections describe the different aspects of the approach.

A. Multi-objective Algorithm

The outer Multi-Objective Optimization (MOOQO) problem is solved with the Multi-Objective
Parzen based Estimation of Distribution (MOPED) algorithm[11, 12]. MOPED belongs to the class
of Estimation of Distribution Algorithms (EDA)[10]. EDA automatically learn the structure of the
search landscape, by explicitly constructing and evolving a probabilistic model of the search space.
New candidate solutions are then generate by sampling the probabilistic model.

MOPED is a multi-objective optimization EDA for continuous problems that uses the Parzen
method[36] to build a probabilistic representation of Pareto solutions, with multivariate dependen-
cies among variables[11, 12]. MOPED implements the general ranking and selection strategies of the
Non-dominated Sorting Genetic Algorithm IT (NSGA-II)[35], while solutions are generated by sam-
pling from the Parzen model instead of using the genetic operators in NSGA-II. The Parzen method
is a non-parametric approach to kernel density estimation and provides an estimator that converges
everywhere to the true Probability Density Function (PDF) in the mean square sense. Should the
true PDF be uniformly continuous, the Parzen estimator can also be made uniformly consistent. In
short, the method allocates N;,q identical kernels (where N, 4 is the number of individuals of the
population of candidate solutions), each one centred on a different element of the sample. By means
of the Parzen method, a probabilistic model of the promising search space portion is thus built on
the basis of the information given by N, individuals of the current population, and 75 N;,q new
individuals (g > 1) can then be sampled . The variance associated with each kernel depends on (i)

the distribution of the individuals in the search space and (ii) the fitness value associated with the
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pertinent individual, so as to favor sampling in the neighborhood of the most promising solutions.

B. Robust Design Optimization Under Uncertainty

The objectives and constraints of the outer loop are the statistical moments of the performance
indexes obtained by solving the inner optimal control problems. In the inner loop, the optimal
control problems are solved considering deterministic models. Thus the solution of the optimal
control problems provides the deterministic nominal values of the performance indexes.

Once a deterministic solution is available, uncertainties on key dynamic characteristics, such as
the aerodynamic forces or the mass, are introduced by perturbing the nominal value of a generic
uncertain quantity Xg.;. When uncertainties are related to operational conditions, uncertain values

Xune can be obtained as:

Xunc == Xdet + Err CE Xdet (1)

where Err is an error function, which depends on the operational conditions, and, Cg is a sampling
hyper-surface mapping the set of operational conditions into the interval [—1, 1]. In the general case,
the shape Cr depends on a set of shaping parameters. Later on in this paper Cr will be defined
as an interpolating surface whose shape depends on the value of each interpolating node. For each
nominal solution of the inner loop, N, different C'r surfaces are generated by randomly choosing,
with uniform distribution in the interval [—1, 1], Ny sets of values for the shaping parameters and
then N, new trajectories are propagated using the perturbed values X, obtained from Eq. (1). For
each point along one of the N; trajectories, the product Err Cg returns a deterministic value in the
interval [—Err, +Err]. For each of the N, perturbed trajectories a new value of the performance
2

index is computed and used to calculate the mean F; and the variance o%. The two statistical

moments for each performance index are then returned to the outer loop.

C. Multi-fidelity Evolution Control
The inner loop needs to evaluate the dynamic models several times both during the solution of
the optimal control problem and during the computation of the statistical moments.

In order to make the process computationally affordable, the inner loop interrogates a data-fitted
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surrogate model instead of the true system model. The data-fitted approximated model is trained
and updated during the design process by means of a multi-fidelity evolution control technique.

The basic idea underneath evolution control (EC) is to manage, throughout the optimization
process, the evaluation of both the true and the surrogated model in a way that reduces the total
computational time but preserving the correctness of the final solution. Due to the necessity to
limit the number of training samples, it is very difficult to construct an initial approximated model
that is globally correct. Most likely, the approximation will bring the optimization algorithm to
false optima, i.e. solutions that are optimal for the approximated model but are suboptimal for
the true model. Model management or evolution control techniques address this problem and avoid
converging to false optima.

Jin et al.[14] in their paper propose two different approaches for the evolution control of the
model: a) individual-based control and b) generation-based control. In the first approach, n, indi-
viduals in the current population are chosen and evaluated with the true model at each generation.
In the latter, the whole population is evaluated with the real model, every ny.,. generations, for ng,
generations, where ng, < nycyc. The individuals evaluated with the true model are then introduced
into a data-set that is used to locally improve the surrogated model.

The method adopted for this work is a mix of both evolution control strategies. Fig. 1 summa-
rizes the whole optimization process. The MOO algorithm MOPED (on the left of Fig. 1, blocks 0a
to 4) is integrated with an external procedure that monitors the status of the approximated models
(box 6 in Fig. 1). At the end of each iteration (generation), the external procedure checks if an
updated version of the approximated model is ready and available. If the approximated model is
updated, then all the individuals in the current population are re-evaluated and re-classified with
the updated model, before the Parzen distribution is updated and sampled. If the approximated
model is not updated, because, for example, a CFD computation is still running, and the difference
between the generation of the previous update and the current generation is n4cy., then MOPED
pauses and waits for the new update.

The external procedure also manages, in an asynchronous way, the training and updating of the

approximated models. Block 5 in Fig. 1 is detailed in Algorithm 1.

10
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Fig. 1 MOPED with evolution control modification and independent approximated model

handler.

The procedure is supplied with a list of system models ordered by increasing level of fidelity
and a scheduling report detailing how and when the different models should be used. Every
ng generations of the global solver, the fidelity level of the model, L, is increased, till the
maximum level, Lcuqe, is reached. Then it extracts for each optimal trajectory the matrix
Sopt = [Shape parameters, Operational parameters], containing the geometrical parameters and
the operative points along the trajectory. Each row in S,,; is then compared to the values in
DBy4in, which is the matrix of points in the database used to train the data-fitted surrogate. The
approximated models are initially trained by using the lower fidelity models (fidelity level Lo = 0),
then during the evolutionary process new promising points are inserted in the database DBy, 4;, and
used to improve the training. Following a predefined schedule, the level of fidelity is progressively
increased from one stage of the evolution to another; therefore the training database will contain

a mix of values coming from models at different levels of fidelity. The solutions evaluated with the

11
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highest fidelity level are inserted in the database if their distance from all the points of the database
evaluated with the same fidelity level, d;, is greater than a predefined value. Once the higher fidelity
solutions are in the database, all lower fidelity solutions falling at a distance dj; < dyin,u from the
higher fidelity solutions are discarded. The surrogate structure is then updated with the new data.
The data obtained by the higher fidelity models progressively become the main source of updates
for the surrogate model till, near the end of the optimization process, the data obtained by the lower
fidelity models have no influence in the optimal regions of the search space.

Note that on small scale problems with smooth and differentiable functions a grid search, coupled
with a gradient method, could potentially replace the evolutionary optimization process. The grid
search, however, would scale exponentially with the number of dimensions and the gradient method
would experience difficulties with noisy and discontinuous functions. The proposed robust MDO
approach, on the other hand, is composed of strategies and algorithms that scale polynomially
with the number of dimensions. In particular, the coupled EC and evolutionary multi-objective
optimization algorithm provides an optimal sampling of the true models, and an update of the
surrogates, only in the region of interest, thus avoiding the exponential increase of the number of
samples required for a global update. Furthermore, the use of a bi-level approach is deemed to be
more efficient than the use of a single level approach. In a single level approach the evolutionary
process should handle a large number of parameters and constraints and the gradient should search
a plethora of inhomogeneous parameters. In the proposed bi-level approach, instead, each technique

is applied to the solution of the problem they can handle best.

D. Surrogate Model

General principles of evolution control do not depend on any specific approximation technique
but, of course, the approximation approach strongly affects the outcome of any EC strategy. For
the particular application presented in this paper, the approximated model should be able to filter
the noise coming from the CFD models and correctly generalize the dynamic response for a broad
range of shapes and operational conditions. Response surfaces and artificial neural networks were

considered[5, 6], but ANNs have been preferred, because they can be used with minimal knowledge

12
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1
2 Algorithm 1 Evolution control algorithm
3 1: if mod(ig,ng)=0 & Lo < Lomas then
4
5 2 Lec = Le+1
6 3: end if
7
8 4: Extract n, operative points from each individual of the current population ; Put extracted operative
9
10 points and shapes into Sop:
11
12 5: Initialize DBcomp=9 ; Find maximum fidelity level of data in the database DB¢rain, LcDBmaz
13
14 6: if Lc = LopBmaz then
12 7 Put elements of DB¢,.qin with level = L¢ into database DB and elements of DByyqin with level
17 < Lc¢ into database DB,
18
19 8: end if
20
21 9: if Lc > LcpBmar then
gg 10: Initialize DB, = @ ; Put all elements of DByyqin into DB,
24 11: end if
25
2673 12: Initialize ic = 05 ipop = 0; DBL., = DBy,
28 13: while i. < n¢ & ipop < size(Sopt,1) do
29
30 14: ipop=ipop+1 ; compute d,; [min distance of Sopt(ipop,:) from DBy, |
g; 15: if dsl,i > dmin,sl then
gz 16: Put Sopt (ipop, :) into DB, ; Put Sopt(ipop, :) into DBL,,,,, ; tc =i+ 1
35 17: end if
36
37 18: end while
38 .
39 19: if Lo > 0 then
2? 20: for i=1:size(DB,,1) do
42 21: compute dj;; [min distance of DBy, (,:) from DBch]
43
44 22: if dii,i > dpmin,u then
45
46 23: Put DBy, (i,:) into DB
47 X
48 24: end if
49
25: end for
50
o1 26: end if
52
53 27: Compute function values for operative points and shapes in DBr.,,,, and insert obtained values in
54
55 DBt'rain
56
57
58 about the structure of the function, which should be approximated.
59
60

13
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When dealing with ANNs, usually radial basis ANNs are preferred due to the modest compu-
tational effort required to train them [5, 6], but here the generic Multi Layer Perceptron (MLP)
ANN with one hidden layer was used, due to the expected better generalization in regions far for
the training data.

The training process is based on a Bayesian regularization back-propagation[38], which limits
any overfitting problem, and the idea is that the computational costs of initial training and online

update are negligible if compared to the calls to the high-fidelity model.

III. Rocket Ascent Case Study
The robust multi-disciplinary design approach, presented in the previous sections, was initially
tested on a simple low-dimensional problem with easily verifiable solutions: the design of a vertically
ascending single-stage rocket vehicle. The objective of this problem is to find the shape parameters
that maximize the expected value of the final altitude and minimize the effect of uncertainties on
the aerodynamic forces, given a fixed amount of propellant. The vehicle is considered to be a point

mass, whose motion is governed by the following set of dynamic equations ([39], Sec. 8.3):

h=wv
T—-D
b= -9 2)
m
_ T
gOIsp

where h is the altitude, v is the velocity, m is the mass of the vehicle, T is the thrust, D the
atmospheric drag, go and g the gravity accelerations at sea level and for h > 0, respectively, and
I, is the specific impulse. The drag D is given by the classic expression D = 1/2pCpSv?, where p
is the atmospheric density, Cp is a shape drag coefficient, and S is a characteristic surface (usually
the cross section). The simplifying hypothesis adopted here is that the product CpS is a known,
non-linear function of two shape parameters, d = [d1,d2]. The product CpS is assumed to be

uncertain, therefore using Eq. (1), the value of CpS are perturbed as follows:

(CpSVunc = (CpS)aet + Err Cr (CpS)der ®3)

where Err is a function of speed and altitude and modeled here as a linear 2D surface, with values

varying from 0.1, when speed and altitude are both = 0, to 0.8, when the speed is = 2000 m/s and

14

Submitted to AIAA Journal. Confidential - Do not distribute.

Page 14 of 38



Page 15 of 38

OCoONOOORWN =

AlAA

the altitude is 2105 m:
Err = 0.000175v+ 1.75 10~ + 0.1 4)

while Cg is a multidimensional polynomial spline, interpolating a regular grid of nodes. If Spy (h, sn)

and Sp,(v,sy) are the splines for altitude and velocity, respectively, then Cg is defined as:

Cr = Spi(hsn) Spu(v,sy) (5)

where si, and s, are the values of the splines at the interpolating nodes. Ng 5 and Ng , equispaced
interpolating nodes are taken respectively along the h and v axis. Then Ny values of sy, and s, are
randomly sampled in the interval [—1, +1] leading to N, different shapes of Cg. For each shape a
varied trajectory is propagated.

Thus, given a nominal trajectory with an optimal control profile T, N, perturbed trajectories
are propagated, and the mean Ej, and variance o} of max; h are computed. The mean and variance
are then returned as performance indexes to the external loop, which optimizes the shape. The

external optimization problem is formulated as follows:

(lzlneig[_Eha 0.}21] (6)

The design space for this problem is defined by following bounds on the design parameters: d; €
[0,2 7], and da € [0, 20].
For the trajectory optimization problem, the control variable is the thrust 7', and the control

law is computed as the result of the optimal control problem:

mj@x h (7)

subject to dynamic Egs. (2) and terminal conditions:

h(t =0) = ho
v(t =0) =g (8)
m(t =0) =myg
m(t = tf) = Mmin (9)
15
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The solution of this optimal control problem is easily verifiable and can be found in (|39], Sec. 8.3).
Here, the problem is transcribed with a Gauss pseudo-spectral method[37] to be consistent with
the proposed MDO approach. The trajectory is decomposed in NN elements, each of which has n,
collocation points. After transcription, the optimal control problem defined by Eq. (7), Egs. (2)

and Eqgs. (8, 9) becomes the following nonlinear programming problem:

max h (10)

s

subject to the nonlinear algebraic constraints:

C(hs,vs, ms,ts) =0 (11)

with terminal constraints in Eqgs. (8, 9), where hg, vs, ms, T, ts are the discrete values of states,
control, and time values at the nodes of the transcription scheme.

Trajectories are discretized with 7 elements, and 7 nodes for each element. The bounds on
the variables of the trajectory optimization are: total time T,; € [0,1000] [s], thrust T € [0,9 10%]
[N], altitude h € [0,2.0 10°][m], velocity v € [0, 2000] [m/s], mass m € [150,700] [kg]. The initial
conditions (8) are xg = [ho, vo, mo]T = [0, 0, 700], while the constraints on the final conditions (9)
are my = 150kg. The initial guess for the control law of every individual is a constant thrust profile
with 7' = 1kN. The specific impulse is I;, = 100s, while the deterministic values of C'pS are given

by the function:

(d2 — 3d1) S’Ln(dg) + (dl — 2)2 + 11
60

CpS = < +0.5> 0.15 (12)

Fig. 2(a) shows a three dimensional view of the CpS as a function of the design parameters, while

Fig. 2(b) shows the level curves with the maximum and minimum values for CpS.

A. Rocket Ascent Results
MOPED process was run for 50 generations with a population of 30 individuals. For this
simple test case, only one fidelity level has been considered and the characteristic parameters of the

evolution control process were set as follows: n; = 10, n, = 1 (the approximated coeflicient does not

16
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(a) 3D representation of the C'p.S function (b) Level curve representation of the

Cp S function

Fig. 2 Deterministic values of CpS shape coefficient as function of design variables d; and d»

depend on the operational conditions, but only on the shape), ng = Inf (with only 1 fidelity level);
Ngeye = 33 dmin,st = 0.1 (all the inputs are normalized to [—1, 1]); dymin,u = 0.2. Since the coefficient
CpS is considered only function of the shape, the generic row j of the matrix database used to
train the ANN is DByygin,; = [d1, d2]. The initial approximated model of CpS was built with
30 samples, selected with a randomized Latin Hypercube. For such a small database, the learning
procedure for the initialization of the approximating ANN was not able to properly converge to a
good representation of the CpS function. The evolution control added other 29 solutions (for a
total of 59 model computations) and brought the approximated model to converge to the correct
values of the CpS function in the regions of interest, enabling the optimizer to converge to the
expected optimal solutions. Fig. 3(a) shows the level curves of the approximated model at the last
iteration of the EC together with the final population. Fig. 3(b) shows the final approximation to
the Pareto front. The structure of the approximated Cp.S function in Fig. 3(a) is almost identical to
the true one in Fig. 2(b) and the maximum and minimum values are correctly identified. Individual
Best o7 is not perfectly located at the position of the maximum of the function, but the achieved
approximation is sufficient to make a correct decision on the design solution with best performance
and with highest robustness. The relative error between the ANN approximated model and the true
CpS function at the locations of the individuals of the final population is shown in Fig. 4: if the

initial ANN is considered, the relative error has an average value of more than 10%, on the other

17

Submitted to AIAA Journal. Confidential - Do not distribute.



OCoONOOORWN =

AlAA

hand, when the final ANN is used, the error is almost always smaller than 3%, which is the required
convergence level for the ANN learning process. The higher error displayed by individual 11 means
that the value corresponds to a newly founded solution and that the ANN had not time to properly

learn the related portion of the search space.

6x 10
* Pareto front * >
5r *
BestE
D h P
. C o 4 O Best GE . *
=} *
5
. = ’ .
51 Individual 11— B P
— I S 2r ***
> s
G L L
0 1 2 3 d 4 5 6 7 l 5 2 2.5 3.5 4
1 E, [m] x 10"
(a) Final population on level curve representation (b) Pareto front approximation

for CpS approximated by ANN

Fig. 3 Results for the robust design optimization of rocket ascent case
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15
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Fig. 4 Relative error between true CpS function and ANN approximation for individual of

final population

Although the deterministic control laws for the extreme best solutions (i.e. the one maximizing
the expected values of the altitude Ej;, and the other minimizing the relative variance o7) appear

similar as shown in Fig. 5(a), the differences in thrust profile and drag (Fig. 5(b)) allow them to

follow different paths in the state space. Note that the obtained control laws well approximate the

18
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48 Fig. 5 Results for the robust design optimization of rocket ascent case: best solutions

analytical solution that can be found in [39]. The solution with smaller CpS coefficient can climb
higher and faster (see Figs. 5(c) and 5(d)). Due to a higher level of thrust during first few seconds
of the climb, the solution with smaller C'p S also has a faster consumption of mass, making it lighter

57 for most of the trajectory (Fig. 5(e)). Since the uncertainty associated to the CpS increases with

19
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altitude and velocity (see Eq. (4)), then the best performing individual is also the least robust one.
Vice versa, the least performing solution is less affected by uncertainties on the values of the shape

parameters and thus is the most robust one.

IV. Unmanned Space Re-entry Vehicle Case Study
The goal of this case study is to design an Unmanned Space Vehicle (USV), for re-entry op-
erations, that minimizes the maximum heat flux along the descent trajectory and maximizes the
orthodromic distance measured on the Earth spherical surface. In the following, the system models
for the design of the USV will be introduced before presenting the application of the proposed robust

MDO process to this design case.

A. Geometry and Shape Model

The vehicle is a modified version of a waverider with rounded edges. The waverider baseline
geometry is defined by three two-dimensional power-law equations[23]. The planform and the upper
surfaces of the vehicle is parameterized by the length [, the width, w, a power law exponent n,
the vehicle center line wedge angle, 6, and 3, which is the oblique shockwave inclination angle[23].
An example can be found in Fig. 6, where the original waverider sharp-edge shape is modified
to introduce a rounded edge with radius of curvature, R, > 0. For the example in Fig. 6 the
parameters defining the shape are: | = 1.0m,w = 0.8m,n = 0.3, = 10deg, 5 = 12deg, R,, = 0.02m,

and more details can be found in the cited reference.

B. Aerodynamic Models

Two different models are used to predict the aerodynamic characteristics of the vehicle. The
former one is a simplified analytical model, which is here applied to the actual rounded-edge vehicle,
although it was originally developed to predict the aerodynamics of the original sharp-edge shape
of the waverider configuration[23]. It gives a very first approximation of the performance at the
early stage of the design process. The latter one is a full high-fidelity CFD model based on a finite

volume integration of Reynolds Averaged Navier-Stokes equations (RANS).

20
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Fig. 6 Example of Vehicle Geometry: | = 1.0m,w = 0.8m,n = 0.3,0 = 10deg, 8 = 12deg, R,, = 0.02m

1. Analytic Hypersonic Model
The analytic model gives the lift L and wave drag D,, as functions of the pressure on the upper,

lower and base surfaces, P,, P, and Py, respectively:

L = Sy(Py — B)sina + Sp(Py, — Py)cosa

(13)
Dy, = Sp(P, — Py)cosa+ Sp(P, — P,)sina
where S, and S, are the planform area and the area of the base, computed as:
wl
Sp =

Sy = Sptan(0)
The pressure on the surfaces can be calculated analytically with the oblique shock theory or

Prandtl-Meyer expansion theory.[29] The viscous drag D, is given in analytical form by using the

21
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Table 2 Viscous drag constants for wedge-derived waverider

Constants Laminar flow Turbulent flow

G1 0.664+/p2v3u*C* /p* 0.037v23(p*) 8 (u*)°2
G2 0.5 0.8

Fo 0.99845 0.99758

Fy -0.57529 -0.80941

Fy 0.36737 0.54989

F3 -0.11939 -0.18247

reference temperature method[30] as:

Do surs = GrwF(n) (#) - (15)

c080syrf

with F(n) = Fy + Fin + Fon? + F3n?, and 05, ¢ is the inclination angle for the considered surface
(upper or lower surface). The adopted constants, which depends on the flow conditions, are given
in Table 2.

In Table 2, the Chapman-Rubensin parameter C* = (7 /Te)_é, p*, and p* are determined by
Eckert’s empirical relation and Sutherland viscosity law, while p., T. and v, are the density, the
temperature and the flow velocity at edge of boundary layer in post-shock conditions.

The total drag D is = Dy, + D, , + Dy, where D, ,, and D, ; are the viscous drag of the upper
and lower surface, respectively.

As previously anticipated, this simplified model still considers the sharped shape of the wave rider,

and does not take into account the modified one, with the introduction of the rounded edges.

2. CFD Model

On the other hand, a commercial code (N umeca®), solving the Reynolds Averaged Navier-
Stokes (RANS) equations, is used to obtain what are considered high fidelity solutions in the entire
flight envelope and also to compute initial solutions when the analytical model could not be applied
(for supersonic flight regimes).

The computational domain is discretized by a multi-block structured mesh made by 13 blocks

22
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with near 2.4 10% total nodes. For each configuration, the mesh is changed and adapted to the
current geometry by internal scripting on the basis of design parameters. Since no out of plane
flight conditions are considered, only half of the actual domain is discretized and mirror plane
conditions are imposed into the longitudinal plane.

Two different settings are implemented and used during the process: a) Laminar for Reynolds
number, Re, < 0.95 10°; and b) Fully turbulent (no transition model is considered) for Re >
1.05 10°.

For hypersonic conditions the radiative equilibrium temperature at the nose is imposed on
the solid boundaries. Real gases database is enhanced on the basis of reported air data for high
temperatures[31].

No solutions are computed for 0.95 10° < Re < 1.05 10°, in order to have an aerodynamic database
as smooth as possible: since there is no transition model between laminar and turbulent flow, then
computations into the transition region could be misleading. The data base will be approximated
by a smooth ANN system, and then the ANN itself will provide smooth approximations for the

transition region.

C. TPS and Thermal Model

The thermal protection system (TPS) is assumed to be made of Zirconium Diboride (ZrB5)
UHTC, which has following properties: density = 6000kg/m3, specific heat = 628JKg 1K 1,
conductivity = 66Wm 1K', and emissivity = 0.8.

We bound the angle of attack to a maximum value of 20 deg, hence the highest heat flux is
expected to be at the USV nose cap. Thus, the whole nose cone is made of UHTC with length
Lrpg. The rest of the vehicle is covered with a thin shell with a constant thickness of 0.003 m.[32]

For the design process, the convective heat flux is computed in the simplest way, with the

analytical formula[33]:

Poys (16)

. _ K
qconv e Rn

where K, = 1.742 10=* (for the heat flux ¢eon, in W/m?). As previously stated, the minimization

of maximum heat flux means that less protecting material could be used, with consequent reduction

23
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of building costs.

D. Mass Model
The total mass of the vehicle is made of the structural mass mg;, the mass of the TPS mrpg,

and the mass of the payload (avionics and power system) m.

m=mrps + Mg + My (17)

The mass of the payload is here assumed to be 40% of the structural mass, therefore m,; =
0.4ms. The mass of the TPS is made of the mass of the nose myose = prrsV, plus the mass of
the thin skin covering the rest of the vehicle my;n, where V,,, is the volume of the nose and prpg
the density of the TPS material. The mass of the TPS skin covering the vehicle, except the nose,

is:

Mskin = PTPS STPS dTPS (18)

where drpg is the thickness of the TPS , and Stpg is surface area except that of the nose, which
can be approximated by Srps = 25,5 + Spr — S, (Spr and Syg are the total planform surface and
the area of the rear part of the rounded edge waverider, respectively, and S,, is the surface of the
TPS nose).

The structure of the vehicle is supposed to be made of titanium, with a density of 4400 kg/m3.

The structural mass mg;, can be obtained from:

Mst = Phody(29pE + SoE)dbody (19)

where, in this case, dpoqy= 0.005 m is the thickness of the structure of the vehicle, seen as a shell.

24
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1
) E. Dynamic Equations
3
4 The vehicle is considered to be a point mass, whose motion is governed by the following set of
5
6 dynamic equations[34]:
7
g 7 = vsind,
10 . wvcost,cos§
11  rcos¢
12 . wcostysing
13 p=—

r (20)
14 . D(a) .
15 v:—T—gsznGP

0, = w— (52— — 6
1; p = - CcosY (v T)cos b
: L

;g = mv(cC;)SG SINYy — % cos 0, cos € tan ¢
21 where r is the norm of the position vector with respect to the center of the planet, X is the longitude,
22
23 ¢ the latitude, v the magnitude of the velocity, 6, is the flight path angle, ¢ is the heading angle
24
25 (azimuth of the velocity). No out of plane maneuvers are considered, thus the bank angle -, is kept
26
27 equal to zero during the whole trajectory.
28
29
30
31 F. TUSV Optimization Set-Up
32
33 As for the previous test case, the outer multi-objective evolutionary procedure manages the
34
35 parameters defining the shape of the vehicle and considers as objectives and constraints the mean
36
37 and variance of the values of performance indexes of inner optimal control processes. On the
38
39 other hand, now the optimal control problem is solved twice, first to minimize the maximum heat
40
41 flux, max; ¢, and then to maximize the orthodromic distance, Dist. Mean and variance of these two
42
43 performance indexes are then computed following the procedure described in Sec. IIB. The optimal
44
45 control sub-problem, considering deterministic models, gives deterministic values of the performance
46
47 indexes, max; ¢ and Dist, as a function of the optimal « profile. However, a number of elements can
48
gg be considered uncertain, such as the aerodynamic forces and the mass. Therefore, one can associate
g; to the nominal value of lift Lg.; and drag Dgye:, the uncertain quantities:
53
54 Lunc = Ldet + ETT(OQ v, h)CE (Oé, v, h)Ldet
55 (21)
56 Dyne = Dget + ET’T‘(OL, v, h)CE (Oé, v, h)Ddet
57
58 where the error function Err depends on the angle of attack, the speed and the altitude &, and the
59
60
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sampling function C'r maps a triplet of values of angles of attack, speed and altitude into the interval
[-1,1]. As it was done in Sec. III, the uncertainties in the aerodynamic model are assumed to be
increasing with angle of attack, speed, and altitude, thus Err is modeled as a linear 3D surface,
with values that vary from 0.2, when angle of attack, speed and altitude are = 0, to 0.8, when the

incidence is = 20 deg, the speed is = 8000 m /s and the altitude is 10° m:
Err=001la+2510°%v+210"%h +0.2 (22)

The Cg functions is again built as a combination of splines with equidistant nodes. In this case

their shape is given by:
CE - Spa(a7 SOt) Sph(h7 Sh) SpU(U7 SV) (23)

where Sp, (@, sqa), Spr(h, sn) and Sp, (v, sy) are the splines for angle of attack, altitude and velocity,
respectively. The total mass is considered uncertain as well, and it is assumed that m can uniformly
vary in the range +0.1 of the reference value. Then, given a nominal trajectory with an optimal
control profile a*, N, varied trajectories are propagated, and the mean and the variance of max; ¢

and Dist are computed from the N, values of max; ¢ and Dist, one for each varied trajectory.

G. Shape Optimization
If one calls E,; and o, the mean value and variance of maximum heat flux, and Ep; and

0}, the mean value and variance of the orthodromic distance after the first control optimization

2

(considering the maximum heat flux as objective to minimize), and E,2, Ep.2, o

25 0%12 the
corresponding values after the second control optimization (considering the orthodromic distance

as objective to maximize), then the external process is set as:

. 2 2
ggB[Eq,lv —Epy2, 041+ 045 (24)

subject to the following constraints:

(25)
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while the design vector d is defined as d = [l,w,n, 0, R,,, A¢] (the meaning of Aq is explained in
the next section). Note that, as previously mentioned, the external optimizer needs to work on
objectives representing the best performance of the shape, for both different cases.

The design space for problem(24,25) is defined by the following bounds on the design parameters:
the nominal length [ € [2.9,4.2][m], the nominal width w € [1.0,2.0][m], the exponent n € [0.2,0.7],
the angle 0 € [7, 11][deg], the radius of the nose R,, € [0.01,0.04][m], the constraint on the maximum
heat flux for the second control law optimization Ag € [20, 70][W/cm?]. The angle 3, as defined in
Sec. TV A, is kept fixed to 12deg. Moreover, here L1 pg is not considered as a design parameter,
and its value is set as 10% of the effective length of the vehicle. The constraints on the external

process are: F5, = 180 and o2 = 1000.

H. Trajectory Optimization
For the trajectory optimization problem, the control variable is the angle of attack a. Two

control laws are computed as the result of the two optimal control subproblems:

min (mtax q') and max Dist (26)
both subject to dynamic equations (20) and terminal conditions:
rt=0)=mg
At=0)= X
o(t =0) = o
(27)
v(t =0) =wvg
Op(t = 0) = bo
£t=0)=4%&
rt=ts) <ry
Tt =1t5) > Tmin
(28)
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As for rocket ascent case, these problems are transcribed with a Gauss pseudo-spectral method,
and after transcription, the optimal control problems defined by Egs. (20) and (26, 27, 28) become

the following general nonlinear programming problem:

min (mtax q') and max Dist (29)

Qs (o2

subject to the nonlinear algebraic constraints:
C(TS))‘S)’USagsaesaasats) :0 (30)

and the terminal constraints (27, 28), where r4, As, ¢s, vs, &5, 05, s, ts are the discrete values
of the time, states and control values at the nodes of the transcription scheme. In order to obtain
feasible solutions that can be integrated, an inequality constraint on the variation of the control law
is also imposed: for each node the slope of the control law < Aa.

Note that the second optimization problem takes into account an additional constraint on the
maximum heat flux, which should be < (¢nqz,1 + Ad), where ¢mqz,1 is the deterministic value of the
maximum heat flux resulting from the previous control law optimization, and Aq is a variable of
the problem, managed by the external evolutionary process. The re-entry time is free and no other
terminal conditions are imposed as there is no specific requirement on the landing point.

The trajectories are discretized with 6 elements, and 12 nodes are considered for the first 3
elements (from starting point to half of the trajectory path), where maximum values of the heat flux
and major trajectory oscillations are expected, while 5 nodes are considered for the other 3 elements.
The bounds on the variables of the trajectory optimization are: total time T, € [500,6500] [s],
angle of attack a € [0, 20] [deg], radius r € [6.380 10°,6.480 10°][m], longitude X\ € [—180, 21] [deg],
latitude ¢ € [—90,68] [deg], speed v € [100, 10%] [m/s], flight path angle 6, € [-80,10] [deg],
heading angle £ € [—225, —90] [deg].

The initial conditions (27) are zo = [Rg + 10°, 21, 68, 7700, —0.3, —145]7, where Ry is the
mean radius of the Earth, while the constraints on the final conditions are 7y = Rg + 50000 m,
Tmin = REg + 15000 m, vy = 1100 m/s, vmin = 900 m/s, while the slope of the control law is Aa
= 1/10 deg/s. The initial guess of the control law for every individual had 18 deg incidence at time

t = 0, linearly decreasing, with decrements da: = 1/1000 deg/s, till the last point of the trajectory
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obtained by direct integration satisfies the constraints on the required final velocity and altitude.
Note that, when the optimal control process does not converge, the initial guess of the control law

is considered.

I. USYV Results

The MOO process was run for 60 generations with a population of 60 individuals. It should be
noted that number of generations and individuals was chosen as a compromise between the expected
amount of function evaluations to converge and the available computational time, and due to the
stochastic nature of the search there could be no proof on the convergence to the global Pareto
set. The initial approximated models were built with 1000 samples, selected with a randomized
Latin Hypercube, coming from 920 analytic model computations and additional 80 supersonic CFD
computations to have an extended range of validity, without the need to excessively extrapolate.
The computation of the first database required nearly 1200 hours of computational time, distributed
on a cluster of 20 linux64 processors (near 3 days of effective time). The computations of the CFD
solver were stopped when convergence was obtained on the aerodynamic forces.

The characteristic parameters of the evolution control process were set as follows: n; = n, = 20,
ng = 10, with only 1 switch; ngeye = 55 dmin,st = 0.3 (all the inputs are normalized to [—1,1]);
dmin,u = 0.8. Since in this case the aerodynamic characteristics of the vehicle are functions of
both shape and operational conditions, the generic row j of the database used to train the ANN is
DByygin,; = I, w, n, 0, Ry, v, h, al.

At level 0, which is considered up to generation 10, CFD computations were used to verify only
supersonic points, while at level 1, which is considered from generation 11, CFD computations were
used to verify the trajectory points for the whole trajectory.

During the computation, until generation 50, solutions obtained with the CFD model increased
up to 250, all allocated in the promising region of the search space. On the other hand, analytical
solutions used to build the ANN approximated models decreased to nearly 500. From generation
50 to 60 no more new verified values are added to the ANN database.

The approximation of the Pareto front at the end of the optimization process is shown in Fig. 7.
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As expected, the front is sparse and irregular, due to the nature of the objective functions, which are
extremely noisy because they are the outcome of the Monte-Carlo simulation (Ns; = 300, then each
individual required 600 re-propagations). Moreover, the speed and accuracy of convergence of the
trajectory optimization loop is quite sensitive to shape parameters and initial conditions. A different
population size could improve the quality of the front although a trade-off between exhaustiveness

of the search and computational resources is required.

+ Pareto front
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Fig. 7 Approximation of the Pareto front at the end of the optimization process

In Fig. 8 individuals A, B, and C minimize the mean value of the maximum heat flux, maximize
the mean value of the distance, and minimize the sum of the variances, respectively. The design

parameters for solutions A, B and C are:

1. Solution A: [ = 2.93998; w = 1.19734;n = 0.6977; 6 = 9.9983; R,, = 0.03532; A¢ = 41.9184

2. Solution B: I = 2.98669; w = 1.28207;n = 0.6871; 6 = 10.4961; R,, = 0.03719; A¢ = 62.6298

3. Solution C: [ = 3.12287;w = 1.49396; n = 0.6999; 0 = 9.7599; R,, = 0.03913; A¢ = 33.8409

The optimization is mainly driven by the heat flux and its variance. In order to limit the heat
flux at the nose, the algorithm searches for solutions with a relatively large radius of the nose, and
small dimensions. Since the total mass is strictly related to the size, small vehicles are also light

weighted and can glide at higher altitude avoiding the very critical part of the flight envelope. A
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Fig. 8 Optimal solutions: individual A minimizes the mean value of the maximum heat flux,
individual B maximizes the mean value of the achievable distance, while individual C mini-

mizes the sum of the variances.

reduction in size, however, could reduce the lift and drag which are required to remain high to glide
and dissipate energy over an extended period of time. The result is that short vehicles, that do not
sacrifice wingspan to reduce weight, provide acceptable performance and good robustness against
uncertainties on the heat flux. All final solutions appear belonging to the same shape niche, but have
quite different masses, which are determined by geometrical characteristics. Likely the convergence
to the shape niche is due to the stronger influence of the vehicle mass on the optimization of the
trajectory.

Fig. 9 shows the nominal, deterministic trajectories of the three selected individuals, when
the control law is optimized taking into account the maximum heat flux as performance index.
The shapes of the individuals are very similar (meaning similar aerodynamic performance), but the
smaller size, meaning a smaller mass as well, allows individual A to follow a higher re-entry path in
the critical part of the trajectory, limiting the heat loads (Fig. 10) (the masses of individuals A, B,
and C are 191, 212, 248 kg, respectively).

Fig. 11, where the angle of attack is plotted against time, shows small differences in the profile
of the angle of attack (less than three degrees in the initial part of the descent). These differences

together with the differences in the system design produce a relevant effect on the trajectory and
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Fig. 9 Trajectories of the selected optimal solutions.
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Fig. 10 Convective heat flux of the selected optimal solutions.

on the heat flux.

In order to appreciate the difference between the outcome of the robust optimization process
and non-robust solution, a second bi-objective optimization, which only considers the deterministic
values of the maximum heat flux and the orthodromic distance as objectives, has been carried out.
The deterministic optimization has been carried out with the same bounds, and same MOPED

settings of the robust one. The approximated Pareto front is shown in Fig. 12, and compared to
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Fig. 11 Angle of attack control law.

a 2D projection of the robust one. As expected the process is able to find solutions with smaller
(better) values of the maximum heat flux (left part of the figure), which, in the robust case, are
not Pareto optimal because of the third objective function. It has to be noted, however, that this
particular run is not capturing the part of the front, which should be expected above individuals
A and B. This partial coverage is due to the stochastic nature of the evolutionary process and the
noise in the model, even if in the case of deterministic process, the noise is only associated to the
convergence of the control law optimization process, since MC simulation is not required. Again, due
to the stochastic nature of the optimization process, a rigorous comparison between deterministic
and robust solution would require multiple runs to capture the statistical variability of the result.

Such an analysis is extremely computationally expensive and out of the scope of this paper.

V. Conclusions
This paper described a novel evolutionary approach to integrate system design and optimal
control into a single optimization process. The procedure implements a combination of a global,
population-based solver with a direct transcription method for optimal control problems.
The proposed approach is applied to two different test cases: the robust design of a single-stage

vertically ascending rocket and the robust design of a small scale USV for re-entry operations. In
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Fig. 12 Comparison between robust and deterministic optimization processes.

both cases, the optimal control solver is interfaced with an ANN, approximating the aerodynamic
forces as a function of the geometric parameters and operational conditions. The paper showed that
the training and updating of the ANN, by the proposed form of evolution control, converges to a
correct representation of the true models in the regions of interest. In the rocket ascent case, the
surrogate model could be verified to correctly represent the true model with a final relative error
below 3%. On the same case, the MDO process was able to correctly identify the best performing
and most robust design solutions under uncertainty. The use of a surrogate allowed for an efficient
integration uncertainties on the dynamic models (in particular the aerodynamic forces). For the
USV test case, the evolution control procedure was extended to manage and integrates models at
different levels of fidelity. Even if the USV model presented in this paper is not fully comprehensive of
all the aspects defining the system and phenomena occurring during the re-entry phase, nonetheless
it has the main characteristics of a real, complex case, such as: the system and optimal control
components are integrated in a multilevel design optimization process, both system and optimal
control design processes are computationally expensive and very noisy.

In the future, the approach will be tested on more realistic re-entry problems and generalized
to solve analogous problems in other engineering fields, e.g. the design of chemical plants and the

design of high performance cars for predefined circuits, also with higher number of shape design
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variables, at the limits of the meta-modeling capabilities.

The current work is mainly focused on the improvement of the aero-thermodynamic model to

insert also unsteady computations into the process. These additional computations are likely to

be needed only for few points of the flight envelope to better assess the errors, and consequent

uncertainties, when lower fidelity models are adopted. The uncertainty modeling is currently one of

the most critical aspects of the system and needs to be improved including knowledge coming from

the expected error of the approximated model and convergence level of the CFD results.

Other important aspects to consider for future improvements are the techniques for model

approximation and the convergence of the internal optimal control solver, which are crucial for the

correct convergence of the evolutionary process towards optimal shapes.
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