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A Quantitative Assessment of the Prion Risk Associated
with Wastewater from Carcase-Handling Facilities

Amie Adkin,1,∗ Neil Donaldson,1 and Louise Kelly1,2

Wastewater from facilities processing livestock that may harbor transmissible spongiform en-
cephalopathies (TSEs) infectivity is permitted under license for application to land where
susceptible livestock may have access. Several previous risk assessments have investigated
the risk of bovine spongiform encephalopathy (BSE) associated with wastewater effluents;
however, the risk of exposure to classical scrapie and atypical scrapie has not been assessed.
With the prevalence of certain TSEs (BSE in cattle and classical scrapie in sheep) steadily
in decline, and with considerable changes in the structure of carcase-processing industries in
Great Britain, a reappraisal of the TSE risk posed by wastewater is required. Our results indi-
cate that the predicted number of new TSE infections arising from the spreading of wastewa-
ter on pasture over one year would be low, with a mean of one infection every 1,000 years for
BSE in cattle (769, 555,556), and one infection every 30 years (16, 2,500), and 33 years (16,
3,333) for classical and atypical scrapie, respectively. It is assumed that the values and assump-
tions used in this risk assessment remain constant. For BSE in cattle the main contributors
are abattoir and rendering effluent, contributing 35% and 22% of the total number of new
BSE infections. For TSEs in sheep, effluent from small incinerators and rendering plants are
the major contributors (on average 32% and 31% of the total number of new classical scrapie
and atypical scrapie infections). This is a reflection of the volume of carcase material and
Category 1 material flow through such facilities.

KEY WORDS: Abattoir; bovine spongiform encephalopathy; QRA; scrapie; TSE

1. INTRODUCTION

In Great Britain, the occurrence of some prion
diseases in cattle and sheep (bovine spongiform en-
cephalopathy [BSE] and classical scrapie in sheep)
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has been greatly reduced. For BSE this has been
achieved by stringent, long-term control measures
and surveillance; indeed, the disease has almost dis-
appeared. A voluntary program of genetic selection
of breeding stock has reduced the prevalence of clas-
sical scrapie. However, until complete eradication,
safeguards are still required to ensure that prion
diseases are not recycled with animal by-product
or waste disposal processing. Wastewater derived
from premises handling and removing those parts of
cattle and sheep carcases defined as specified risk ma-
terial (SRM) can be applied to pasture land (land
grazed by farm animals or land cropped for forage)
in accordance with Annex II of Regulation (EC)

1 0272-4332/12/0100-0001$22.00/1 C© 2012 Society for Risk Analysis
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No. 1774/2002, herein referred to as the Animal By-
Products (ABP) Regulation.(1)

Facilities that handle SRM include 251 licensed
abattoirs (AB) where healthy livestock are slaugh-
tered.(2) There are 61 licensed intermediate plants
(INT) that collect fallen stock from farms and, where
a valid license is held, carry out testing for TSE. Col-
lection centers (CCN), numbering 190 licensed facil-
ities, do not test for TSEs, but are licensed to remove
flesh to feed dogs (kennels) and zoo animals from an-
imals that are certified not to contain any medication
residues. The SRM from each of these facilities may
be sent to rendering for disposal. Currently, there are
eight rendering (REN) facilities accepting ruminant
Category 1 and fallen stock in Great Britain (GB).
The rendering process employed at these facilities
produces Category 1 meat and bone meal (MBM)
and tallow. The tallow is currently used as a fuel
source, together with a significant proportion of the
MBM, with the remainder sent to large incinerators
(INC) or for energy production. There were 280 li-
censed incinerators in GB in 2010, the majority of
which are relatively small in scale (SIN), owned by
groups incinerating a range of waste materials. These
include crematoria that handle pets and waste from
INT plants and CCN and veterinary center inciner-
ators. From a survey conducted, only 10–12 large in-
cinerators were licensed to process Category 1 mate-
rials and fallen stock.

Within the ABP Regulations, there is a require-
ment for filtration of all wastewater from SRM han-
dling facilities through a 6-mm trap prior to any
treatment and direct spreading to land. These reg-
ulations aim to address the environmental impact of
spreading wastewater but do not specifically consider
the animal health impacts. Several previous risk as-
sessments have investigated the risk of BSE associ-
ated with abattoir effluents in Europe,(3,4) Japan,(5)

and Australia(6) and for renderer and incinerator
effluent in the United Kingdom.(7–9) However, the
prevalence of certain TSEs (BSE in cattle and clas-
sical scrapie in sheep) has been steadily declining
in recent years, and with considerable changes in
the structure of SRM-handling industries in GB, a
reappraisal of the TSE risk posed by wastewater is
required.

This article, informed by the outputs of an ac-
companying paper, presents an analysis that was un-
dertaken to assess the risk of livestock becoming in-
fected with a TSE disease from wastewater that has
been directly spread onto pasture land, both with and
without treatment by filtration in accordance with the

ABP Regulations. The results from this assessment
will be used to inform policy decisions in this area.

2. METHODS

2.1. Model Overview

The output of the quantitative risk assessment
is an estimate of the annual number of potential
new BSE infections in cattle and scrapie (classical
and atypical) infections in sheep originating from the
spread of wastewater derived from SRM-handling fa-
cilities. The model includes uncertain and variable
parameters, which were simulated using the software
package @Risk (C©Palisade) Version 5.0, an add-on
package within Microsoft Excel (C©Microsoft). Con-
vergence of all distributions was monitored, with the
model being run for 200,000 iterations; this value en-
sured full convergence. The results presented follow
the standard form of the arithmetic mean and the 5th
and 95th percentile values. A multivariate stepwise
regression analysis was used to calculate linear re-
gression or sensitivity values for each input param-
eter in the model, which was represented by a proba-
bility distribution. This method is preferred for large
numbers of input parameters, as all values that pro-
vide an insignificant contribution are removed from
the analysis. In addition to this sensitivity analysis,
the impact of uncertainty associated with specific key
parameters was investigated. Selected scenarios were
run to investigate the effect on the number of new
TSE infections as predicted by the risk assessment.
In these scenarios, parameters relating to (1) the ef-
fectiveness of trap, (2) the amount of wastewater pro-
duced, and (3) the proportion of wastewater spread
on pasture were modified.

The scope of the risk assessment is wastewater
derived from facilities that handle high-risk materi-
als denoted as Category 1 SRM. To estimate the risk,
we considered tissues designated as SRM, that have
been removed from slaughtered cattle and sheep, en-
tire bodies of dead animals containing SRM at the
time of disposal, and the material removed from the
drains from SRM handling facilities. SRM in cat-
tle and sheep are those tissue types listed as high-
risk tissues, which are required to be removed from
animals and disposed of appropriately.(10) Although
it was assumed that there are some unintentional
losses of SRM to the floor and wastewater at facil-
ities, intentional illegal behavior was not included.
Figure 1 gives an overview of the model and param-
eters, estimates for which are provided in Table I
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Fig. 1. Diagrammatic representation of the modules and parameters within the risk assessment, where subscripts denote animal group a ∈
{C, S, l}, infectious tissue type t ∈ {1 to 14}, disease i ∈ {bse, sc, at}, exit stream j ∈ {HS, FS}, facility type k ∈ {AB, INT, CCN, REN, SIN,
INC}. Shaded parameters indicate those described in the accompanying paper.
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Table I. Parameter Descriptions and Values Within the Risk Assessment

Parameter Symbol Value Unit Reference

Farm
Probability a cow slaughtered at

abattoir is infected with BSE and is
in the last 12 months of the
incubation period

P infectedC,bse,HS Betapert (3.9 × 10−7,
1.4 × 10−6, 2.2 ×
10−6)

% 11; Updated by
Arnold, personal
communication
2010

Probability a cow enters fallen stock
and is infected with BSE and is in
the last 12 months of the incubation
period

P infectedC,bse,FS Betapert (3.3 × 10−6,
4.4 × 10−6, 1.8 ×
10−5)

% 11; Updated by
Arnold, personal
communication
2010

Probability a sheep/lamb slaughtered
at abattoir is infected with classical
scrapie

P infecteda,sc,HS,
for a = S,l

Betapert (0, 9.0 × 10−4,
4.2 × 10−3)

% 13

Probability a sheep/lamb entering
fallen stock is infected with classical
scrapie

P infecteda,sc,FS,
for a = S,l

Beta(5, 10125)∗ P inf ectedS,sc,HS
Beta(6,10157) % 13

Probability a sheep/lamb slaughtered
at abattoir is infected with atypical
scrapie

P infecteda,at,HS,
for a = S,l

Betapert (3.7 × 10−4,
2.4 × 10−3, 6.6 ×
10−3)

% 13

Probability a sheep/lamb entering
fallen stock is infected with atypical
scrapie

P infecteda,at,FS,
for a = S,l

Beta(5, 10125)∗ P inf ectedS,sc,HS
Beta(6,10154) % 13

Number of cattle slaughtered N animalsC,HS 2,301,868 Cattle 12
Number of cattle entering fallen stock N animalsC,FS 416,941 Cattle 12
Number of sheep slaughtered N animalsS,HS 2,182,930 Sheep 15
Number of sheep entering fallen stock N animalsS,FS Uniform (149287,

447866)
Sheep 15, 16

Number of lambs slaughtered N animalsL,HS 13,357,036 Lamb 15
Number of lambs entering fallen

stock
N animalsL,FS Uniform (750046,

1734921)
Lamb 15, 16

SRM handling
Proportion of healthy slaughter flow

from abattoir to rendering
P flow 1a,HS,REN Betapert (50%, 80%,

90%)
% 12, 17, 18, 41

Proportion of healthy slaughter flow
from abattoir to incineration

P flow 1a,HS,INC 1- P flow 1a,HS,REN %

Proportion of fallen stock flow from
farm to collection center

P flow 1a,FS,CNN a = C: Betapert (10%,
20%, 30%)

%

a = S: Betapert (10%,
20%, 30%)

a = l: Betapert (5%,
15%, 20%)

Proportion of fallen stock flow from
farm to intermediate

P flow 1a,FS,INT a = C: Betapert (20%,
25%, 30%)

%

a = S: Betapert (10%,
15%, 20%)

a = l: Uniform (5%,
10%)

Proportion of fallen stock flow from
farm to rendering

P flow 1a,FS,REN Betapert (20%, 40%,
50%)

%

Proportion of fallen stock flow from
farm to incinerator

P flow 1a,FS,INC 1- (P flow 1a,FS,CNN +
P flow 1a,FS,INT +
P flow 1a,FS,REN)

%

Proportion of fallen stock flow from
intermediate to collection center

P flow 2a,FS,CCN a = C: Betapert (10%,
20%, 45%)

%

a = S: Betapert
(7%,15%,40%)

a = l: Betapert (5%,
15%, 40%)

(Continued)
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Table I (Continued)

Parameter Symbol Value Unit Reference

Proportion of fallen stock flow from
intermediate to rendering

P flow 2a,FS,REN Betapert (40%, 50%,
75%)

%

Proportion of fallen stock flow from
intermediate to incineration

P flow 2a,FS,INC 1- (P flow 2a,FS,CCN +
P flow 2a,FS,REN)

%

Proportion of fallen stock flow from
collection center to renderer

P flow 3a,FS,REN a = C: Uniform (70%,
95%)

%

a = S: Uniform (60%,
92%)

a = l: Uniform (60%,
92%)

Proportion of fallen stock flow from
collection center to incinerator

P flow 3a,FS,INC 1- P flow 3a,FS,REN %

Proportion of MBM from rendering
to incineration

P flow MBM 83% % 17, 18

Wastewater
Proportion of wastewater from

abattoirs, intermediate plants,
collection centers, and small
incinerators that is treated

P W treatedk, for
k = AB, INT,
CCN, SIN

Beta (7 +1,14–7 + 1) % 42

Proportion of wastewater from
rendering and large incineration
facilities that is treated

P W treatedk, for
k = REN, INC

80% % 17, 18

Percentage of infectivity removed
from wastewater due to treatment
at abattoirs, intermediate plants,
collection centers, and small
incinerators

P S Infk, for k =
AB, INT,
CCN, SIN

Uniform (30%, 99%) % 6, 19, 20

Percentage of infectivity removed
from wastewater due to treatment
at rendering and large incineration
facilities

P S Infk, for k =
REN, INC

Uniform (99%, 99.4%) % 20, 21

Proportion of untreated wastewater
to land from abattoirs, intermediate
plants, collection, and small
incinerators

P UW landk, for
k = AB, INT,
CCN, SIN

Beta (2 + 1,10−2 + 1) % 42

Proportion of untreated wastewater
to land from rendering and large
incineration facilities

P UW landk, for
k = REN, INC

3% % 17, 18

Proportion of treated wastewater to
land from abattoirs, intermediate
plants, collection, and small
incinerators

P W landk, for k
= AB, INT,
CCN, SIN

Beta (2 + 1,4−2 + 1) % 42

Proportion of treated wastewater to
land from rendering and large
incineration facilities

P W landk, for k
= REN, INC

25% % 17, 18

Proportion of wastewater sludge to
land from abattoirs, intermediate
plants, collection centers, and small
incinerators

P S landk, for k
= AB, INT,
CCN, SIN

Beta (6 + 1,6−6 + 1) % 42

Proportion of wastewater sludge to P S landk, for k 41% % 17, 18
land from rendering and large
incineration facilities

= REN, INC

Proportion of land that is grazed P pasture 40% % 22

(Continued)
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Table I (Continued)

Parameter Symbol Value Unit Reference

Application to land
Amount of wastewater produced per

year
Wastewater AB 3 × 107 Tons per year 15, 17, 18, 41

Wastewater INT 1 × 104

Wastewater CCN 2 × 104

Wastewater SIN 4 × 104

Wastewater REN 7 × 105

Wastewater INC 2 × 105

Mean values shown as
production
dependent on carcase
number, which varies
by N animala,j

Application rate Application 0.025 Tons/m2/year 23
Depth of application Depth Uniform (0,0.25) m Animal Health,

personal
communication
2010

Density of soil Density Betapert (0.88, 0.9,
0.92)

Tons/m3 24

Consumption
Amount of soil consumed per day per

animal
Soil C Uniform

(0.23,0.38)/1000
Tons 25, 26

Soil S Uniform
(0.14,2.45)/1000

Stocking density of animals per
hectare per year

Stocking C Uniform (0.36,2) Head per ha Scotland: 28;
England: 29;
UK: 30, 31, 32

Stocking S Betapert
(3.33333,5.028595,14.1)

Dose response
Number of exposures per year T Exp 365

of the supplementary materials. The model is split
into six modules that track the TSE agent from the
farm through to the wastewater being applied to land
and the subsequent ingestion and infection of ani-
mals. Elements of the SRM-handling module, shown
in gray in Fig. 1, are described in a separate paper.

2.1.1. Farm Module

The number of infected animals that die or are
slaughtered each year is dependent on the prevalence
of infection and the annual number of animals be-
ing processed via various exit streams. The term “exit
stream” encompasses a general definition of streams
of healthy slaughter animals (including emergency
slaughter) at abattoir and fallen stock. Clinically sus-
pect animals were not considered because the risk of
infectivity entering wastewater has been considered

negligible due to stringent disposal procedures. The
use of exit streams is required as livestock in the dif-
ferent categories will have different TSE prevalences
and will be diverted to different SRM-handling facil-
ities. The estimated annual numbers of infected ani-
mals (N infecteda,i,j) per animal group a ∈ {C, S, l},
disease i ∈ {bse, sc, at}, and exit stream j ∈ {HS, FS}
is given by Equation (1):

N infected a,i, j = P infected∗
a,i, j N animalsa, j ,

(1)

where HS denotes animals slaughtered at abattoir
and FS denotes fallen stock; bse refers to BSE, sc to
classical scrapie, and at to atypical scrapie; C refers to
cattle, S refers to sheep over one year of age, and l de-
notes lambs (sheep less than one year of age). Sheep
were divided into these two age groups because SRM
controls are different for the two groups. For each
animal group, disease, and exit stream combination,
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P infecteda,i,j denotes the probability that an individ-
ual animal is infected (i.e., prevalence of infection),
and N animalsa,j the annual number of animals.

In relation to prevalence, for BSE in cattle it
was assumed that only cattle in the last 12 months
of the incubation period will harbor significant levels
of infectivity. This is a very pessimistic assump-
tion as infectivity increases significantly over this
period from very low to high in the central nervous
system. The prevalence of infected cattle in the last
12 months of the incubation period has been pre-
viously investigated(11) and was updated using BSE
surveillance data up to 2009 (Arnold, personal com-
munication 2010). The uncertainty associated with
the mean prevalence estimates was described using
a Betapert distribution for each exit stream (see
Table I). The numbers of cattle slaughtered/dead in
2008 in the healthy slaughter (including emergency
slaughter) and fallen stock streams were derived
from data held by the British Cattle Movement
Service (BCMS).(12)

The mean infection prevalence and 5th and
95th percentiles for classical scrapie in the healthy
slaughter stream has been estimated previously,(13)

with values represented in the risk assessment by a
Betapert distribution. In the absence of infection
prevalence estimates for the fallen stock stream, case
data were used (with a Beta distribution to describe
the prevalence of cases) multiplied by the ratio of
estimated healthy slaughter infection prevalence
divided by healthy slaughter prevalence of cases
(refer to Table I).

There are few data for atypical scrapie cases. In
the absence of further information, the Abattoir Sur-
vey was used to estimate the prevalence of atypi-
cal scrapie. A number of key assumptions were ap-
plied when using these data: (1) the incubation pe-
riod of atypical scrapie is the same as that estimated
for classical scrapie (atypical scrapie is known to have
a longer incubation period); (2) the survivability of
sheep infected with atypical scrapie is the same as
for classical scrapie; and (3) the sensitivity of the
test for atypical scrapie is the same as for classical
scrapie. As with classical scrapie, a ratio between
prevalence of infection and prevalence of cases was
calculated and used to modify the prevalence esti-
mate for fallen stock animals. It has been suggested
that classical and atypical scrapie can coexist within
the same host.(14) Therefore, it was assumed that
all lambs and sheep entering the healthy slaughter
and fallen stock streams could potentially be infected
with both types of scrapie.

The total number of lambs and sheep entering
the healthy slaughter stream is recorded by Defra
statistics (standing population). There is no central-
ized recording of those sheep entering the fallen
stock stream. Previously, estimates of the number of
sheep dying on farm per year have been made by
multiplying the percentage mortalities of sheep by
the standing population.(16) The number of lambs dy-
ing on farm has been estimated by multiplying the
number of adult sheep by the lambing rate and an es-
timate of the percentage mortality of lambs.(15) From
discussions with stakeholders, not all fallen sheep
and lambs are recorded as fallen stock and some
burial of livestock still occurs. It was difficult to as-
certain the exact proportion and it was assumed that
50–75% of fallen sheep enter the fallen stock stream.
Using these data, a uniform distribution was used be-
tween 149,289 and 447,866 adult sheep to describe
the uncertainty associated with the number of dead
sheep entering fallen stock, and between 750,046 and
1,734,921 for the number of lambs entering fallen
stock.

2.1.2. SRM-Handling Module

SRM facilities, denoted by k, are defined as abat-
toirs (AB), intermediate plants (INT), collection cen-
ters (CCN), rendering (REN) facilities, small incin-
eration plants (SIN), and large incineration plants
(INC). Thus, k ∈ {AB, INT, CCN, REN, SIN, INC}.
The proportion of healthy slaughter and fallen stock
each year that are processed by each facility type
was estimated and denoted by P flow Na,j,k, where
N is the tier of the flow as shown in Figs. 2 and 3.
For healthy slaughter N = 1 since there is only a
single tier. However, for fallen stock, N = 1, 2, 3
as there are three tiers. These proportions are dif-
ficult to estimate directly as data are not collected
centrally. Various data sources were used to estimate
the proportion of the GB livestock handled by each
facility type: (1) the national database of ABP fa-
cility licenses, (2) the number of livestock tests in
total and by facility type (between 01/06/2008 and
31/05/2009), (3) expert opinion (animal health [AH],
UK Rendering Association [UKRA], European Fat
Processors and Rendering Association [EFPRA],
Licensed Animal Slaughterers’ & Salvage Associ-
ation [LASSA], Association of Independent Meat
Suppliers [AIMS], and the British Meat Processors
Association [BMPA]), and (4) surveys of all eight
renderers(17) and incinerators.(18) The estimated most
likely, minimum, and maximum values for each
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Healthy Slaughter

Cattle
Sheep and Lambs

Abattoir

100%

Cat 2
Gut contents (derogation)

Cat 1
SRM

Sludge from screen
Blood tank

Renderer
Large

Incinerator

Cat 1 MBM

83%

1 - P_flow_1a,HS,REN

P_flow_1a,HS,REN

80% (50%,90%)

Cat 1 tallow

Boiler

17%

100%

Fig. 2. Flow diagram of the process of SRM flow for healthy slaughter cattle, sheep, and lambs with estimated most likely rates of material
flow (minimum and maximum).

animal population are shown in the flowcharts in
Figs. 2 and 3 and in Table I. The uncertainty as-
sociated with the estimated flow of materials was
represented by a uniform distribution in cases for
which minimum and maximum values were avail-
able and a Betapert distribution in cases for which
an estimate for the most likely value was also
available.

Given the estimated proportion of livestock and
associated Category 1 materials that entered each fa-
cility type per year, the SRM-handling module in-
vestigates the sequence of events for this infectivity

to ultimately enter the drains, I draina,i,k, or be col-
lected as Category 1 material for disposal, I Cat1a,i,k,
as shown in Fig. 1. The amount of infectivity released
from carcases to the floor of facilities is dependent
on the TSE disease predilection for certain tissues
within livestock, the particular animal host, and the
type of activities conducted at each facility that re-
lease infectivity to the floor. Finally, the effect of the
minimum 6-mm traps needs to be considered. Sev-
eral of the parameters used in this module have a
number of dependencies (facility type by animal pop-
ulation, TSE agent, and tissue type) and therefore
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Fallen stock

Cattle, Sheep, and 
Lambs

Intermediates

untested carcase

40% (20%, 50%)

P_flow_1
1 – (P_flow_1a,FS,INT + P_flow_1 +

P_flow_1 )C = 20% (10%, 30%)
S = 20% (10%, 30%)
l = 15% (5%, 20%)

P_flow_1

C = 25% (20%, 30%)
S = 15% (10%, 20%)

l = 5% 10%

P_flow_1

Small
Incinerator

Renderer

Cat 1 MBM 83%

Boiler

Cat 1 Tallow
100%

17%

C = 70% 95%
S = 60% 92%
l = 60% 92%

1 - P_flow_3

P_flow_3

Small
Incinerator

1 -  (P_flow_2 +
P_flow_2 )

Small
Incinerator

Collection center

50% (40%, 75%)

P_flow_2C = 20% (10%, 45%)
S = 15% (7%, 40%)
l = 15% (5%, 40%)

P_flow_2

Renderer

Cat 1 MBM 83%

Boiler

Cat 1 Tallow
100%

17%

Renderer

Cat 1 MBM 83%

Boiler

Cat 1 Tallow
100%

17%

Large
Incinerator

Large
Incinerator

Large
Incinerator

Tier 1

Tier  2

Tier  3

Fig. 3. Flow diagram of the process of SRM handling for fallen stock with estimated most likely rates of material flow (minimum and
maximum), where a ∈ {C, S, l}.

these parameters have been estimated and pre-
sented separately in the accompanying paper, which
presents results on a per infected carcase basis. Fig. 1
indicates those parameters that are described in the
accompanying paper in shaded boxes.

2.1.3. Wastewater Module

The amount of infectivity to pasture from
each facility type depends on the estimated num-
ber of infected animals/carcases processed through
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that facility type (N inf ected∗
a,i, j P f lowa, j,k), the

amount of infectivity that enters the drain per an-
imal/carcase (I draina,i,k), and facility-dependent
probabilities of wastewater treatment and dis-
posal routes. Wastewater may be treated, with
infectivity separated into the treated wastewater
fraction (P W treated∗

k(1 − P S Infk)) or into the
sludge fraction (P W treated∗

k(1 − P S Infk)), or
untreated (1 − P W treated). The disposal route of
interest is the proportion to land (P landk) that is
pasture (P pasture). For each facility, the amount
of infectivity spread on pasture (ID50 per year),
I pasturei,k, was estimated by adding together the
amount of infectivity from each wastewater type
(untreated wastewater, wastewater that has been
treated, and the sludge arising from such treatment)
as shown in Equation (2):

I pasturei,k =
∑

a

(I Uwastewater

+ I wastewater + I sludge)a,i,k, (2)

where for untreated wastewater,

I Uwastewatera,i,k

=
∑N infecteda,i, j

∗ P flowa, j,k
∗ I draina,i,k

∗(1−P W treatedk)

∗ P UW landk
∗ P pasture

j

and for treated wastewater,

I wastewatera,i,k

=
∑N infecteda,i, j

∗ P flowa, j,k
∗ I draina,i,k

∗ P W treatedk

∗(1−P S Inf k)∗ P W landk
∗ P pasture

j

and for sludge arising from treated wastewater,

I sludgea,i,k

=
∑N infecteda,i, j

∗ P flowa, j,k
∗ I draina,i,k

∗1−P W treatedk

∗ P S Inf k
∗ P S landk

∗ P pasture
j

.

A number of different data sources were used
to estimate the facility-dependent probabilities of
wastewater treatment and disposal routes, provided
in Table I, including published literature and two sur-
veys.(17,18) However, data were absent for INT, CCN,
and small incinerators. These facilities were assumed
to treat and disposal of wastewater in a similar man-
ner to AB.

P S Infk denotes the proportion of infectivity
that partitions into the sludge fraction when wastew-
ater is further processed. The use of biological
treatments, dissolved-air-flotation (DAF) units, and

screening differ in their ability to remove suspended
solids from wastewater, and therefore any TSE
agents that may associate with the sediment.(6) How-
ever, the proportions of these treatments employed
are not known for the different facility types, except
for renderers, where a specific survey was performed.
For small facility types, it was assumed that between
30% and 99% of infectivity will partition into the
sludge phase when wastewater is further processed
due to the range of treatments that are currently
in use (assumption based on Refs. 6, 19, and 20)
described using a uniform distribution. For render-
ers where treatment was undertaken, both biological
treatment and DAF was applied, and it was assumed
that large incinerators also employ such treatments.
It was estimated that between 99% and 99.4%
of infectivity partitions into the activated sludge
solids during processing.(20,21) It was assumed that
there is no loss of infectivity during any consequent
treatments of the sludge, for example, anaerobic
digestion.(4,20)

With no further information on the type of land
to which the wastewater is applied, the proportion as-
sumed to be grazed, P pasture, was set equal to the
national proportion of grassland fertilized from the
total area of grassland and crops fertilized, estimated
to be 40%.(22)

2.1.4. Application to Land Module

The concentration of infectivity in soil where
wastewater has been applied (ID50 per ton soil),
Inf soil i,k, is dependent on the estimated con-
centration of infectivity in wastewater (I pasturei,k

/N wastewaterk ), the application rate (tons/m2), den-
sity (tons/m3), and depth of application (m) as shown
by Equation (3):

Inf soili,k =(
I pasturei,k

∗Application

N wastewaterk
∗ 10, 000 ∗ Depth ∗ Density

)
,

(3)

where N wastewaterk denotes the total amount of
wastewater produced per year that is destined for
pasture, as shown in Equation (4):

N wastewaterk =
(Wastewaterk

∗ P pasture) ∗(
(P W treatedk

∗ P W pasture) +
((1 − P W treatedk) ∗ P W pasture)

)
. (4)
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Estimates for total wastewater production are
shown in Table I. Estimates for AB, WastewaterAB,
are based on the numbers of carcases processed, with
1,000 L per carcase used by large facilities process-
ing >150 carcases per day, and 2,000 L per carcase
used by AB below this threshold (adapted from abat-
toir throughput data and discussions with AB). INT,
CCN, and small incinerators are estimated to use less
washing down water, with approximately 10–100 L
per carcase (LASSA, personal communication 2009).
Renderers were asked directly for water consump-
tion data and it was assumed that large incinera-
tors use similar amounts of water based on input
weights as renderers.(17,18) From a review of the liter-
ature, the application rate of wastewater to pasture,
Application, is extremely variable and is dependent
on the amount of nitrogen in the soil and waste-
water as well as potential contaminants that may be
present in the effluent. The maximum rate of ap-
plication was estimated to be 0.025 tons/m3/year.(23)

The depth of application, Depth, will vary, with some
wastewater surface spread and sludge fractions in-
jected to depths of 22–25 cm. Therefore, the depth
of application was estimated to be between 0 m and
0.25 m, described in the model using a uniform distri-
bution. The density of soil, Density, was estimated as
between 0.88 tons/m3 and 0.92 tons/m3, with a most
likely value of 0.9 tons/m3.(24)

2.1.5. Consumption by Livestock Module

To estimate the number of infected livestock per
year, the number of livestock exposed to the fertil-
ized pasture and amount of infectivity consumed per
day was estimated using Equation (5):

N consumeda,i,k = Soila
∗ Inf soili,k,

N exposeda,k = N wastewaterk

Application∗Stockinga
, (5)

where Soila is the amount of soil consumed per day
by livestock species and has been estimated based
on the percentage of consumed dry matter as soil
and average dry matter intake.(25,26) It was assumed
that lambs consume the same amount of soil as adult
sheep, which is acknowledged as overestimating risk.
The assumption was made that any grazing cattle and
sheep will have access to pasture all year round and
that the full soil depth of fertilizer, that is, to a maxi-
mum of 25 cm. This was considered a worst-case pre-

caution as it is acknowledged to be unrealistic but has
been used inherently in previous risk assessments.(27)

Descriptions of stocking density for livestock,
Stockinga, vary in the literature. Ranges of 0.36–2.0
adult cattle per hectare (Scotland: Ref. 28; England:
Ref. 29), and a maximum of 14.1 sheep per hectare
were found (UK: Ref. 30). In a postal survey of sheep
farmers in GB in November 2002 the midpoint stock-
ing density of sheep >1 year old was found to be 5.02
adult sheep per hectare.(31) The lower European live-
stock density index for sheep to keep grassland in
good condition equates to 3.3 sheep per hectare.(32)

These data are used in the risk assessment as shown
in Table I. It was assumed that the stocking den-
sity for lambs is the same as the stocking density for
sheep.

2.2. Dose Response and Risk Estimate

A dose-response model was used to determine
the probability of infection occurring as a result of
exposure to a given dose of a pathogen. Research
conducted with scrapie-adapted strains seems to in-
dicate that, as yet, there is no clear consensus as to
whether TSE doses act independently, cumulatively,
or interact in succession.(33–35) Further, in regards to
hamster and mouse experiments,(33,35) it is uncertain
whether these results would apply to all TSE agents
given the differences in species and agents. It is as-
sumed that the proportion of a population that be-
comes infected from a single dose, P Infdaya,k, can
be estimated using the following exponential dose-
response equation:(36)

P Inf daya,k = 1 − e(−r∗ N consumeda,i,k), (6)

where r is the pathogen infectivity constant. This
model assumes that each infectious particle’s action
is independent, that is, the probability of infection
by each single agent is independent of the size of
the dose. When P Infdaya,k = 0.5, that is, 50% of
an exposed population becomes infected (ID50), and
N consumeda,i,k = 1, then −r = Ln(0.5). Substituting
into Equation (6):

P Inf daya,k = 1 − e(Ln(0.5)∗ N consumeda,i,k.). (7)

For both cattle and sheep the period of ex-
posure is not limited to a single dose as succes-
sive doses are likely to be consumed over time as
animals graze the land. An annual risk of infec-
tion from T exp exposures per year, assumed to
be 365 days, to a pathogen dose was estimated by
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Equation (8):

P Infyeara,k = 1 − [1 − e(In(0.5)∗ P inf daya,k)]T exp. (8)

Combining with Equation (7):

P Infyeara,k = 1 − [1 − e(In(0.5)∗ P inf daya,k)]T exp, (9)

where T˙exp is the number of exposures per year, as-
sumed to be 365 days. Finally, the mean number of
livestock infected per year is estimated using Equa-
tion (10):

N newinf ecteda,k = N exposeda,k
∗ P inf yeara,k.

(10)

3. RESULTS

The results indicate the number of new TSE in-
fections arising per year due to the application of
wastewater to pasture would be low. The mean val-
ues are low for each TSE disease considered, with
0.001 (1.8 × 10−6, 0.0013) new infections of BSE in
cattle per year, 0.033 (0.0004, 0.064) new infections of
classical scrapie in sheep per year, and 0.030 (0.0003,
0.061) new infections of atypical scrapie per year.
Such results can be represented as the number of
years between one new infection if it is assumed that
there is no change over time and equal intervals be-
tween infections. Using this assumption, there is an
estimated mean of one infection every 1,000 years for
BSE in cattle (769, 555,556), and one infection ev-
ery 30 years (16, 2,500) and 33 years (16, 3,333) for
classical and atypical scrapie in sheep, assuming that
values and assumptions used in the risk assessment
remain constant.

The contribution to the total number of new TSE
infections arising by facility type is given in Fig. 4.
For BSE in cattle, the largest contributions are from
AB (35%) and REN facilities (22%). Intermediates,
CCN, and small incinerators contribute 13%, 11%,
and 15%, respectively, with large incinerators con-
tributing the least toward new BSE infections (4%).
The largest contributions for classical scrapie are
from rendering (31%), small incinerators (30%), and
AB (23%). Intermediates, CCN, and large incinera-
tors contribute only small amounts to the total infec-
tivity with between 3% and 8%. For atypical scrapie,
the largest contributions are from small incinerators
(34%), rendering (31%), and AB (20%). The small-
est contributions are from intermediates (3%), CCN
(4%), and large incinerators (9%).

The estimated numbers of BSE, classical scrapie,
and atypical scrapie infections were also parti-

tioned into each of the three wastewater types
(untreated/treated wastewater and wastewater
sludge). The mean percentage contribution of each
wastewater type to the total amount of infectivity is
shown in Fig. 5. It can be seen that the sludge frac-
tion arising during wastewater treatment contributes
the most amount of infectivity for BSE and scrapie
diseases, with between 47% and 62% contribution
to the total risk, respectively. Treated wastewater
contributes the least on average, with an estimated
14–17% respective contribution to the total risk.

As shown by the range in brackets where 90%
of the results are expected, the quantified uncer-
tainty and variability associated with these estimates
is large. From the sensitivity analysis the parameters
with the greatest impact on the results are associ-
ated with variability of the depth of application of
wastewater and with consumption of soil by livestock
(Depth, Soil S), and uncertainty associated with dis-
ease characteristics of tissue infectivity and ID50 con-
version units presented in the accompanying paper
(MaxCNS, BOunit, OOunit), which have been noted
in previous TSE risk assessments.(37) Finally, the pa-
rameter associated with the proportion of infectivity
falling to the floor at REN facilities, P floora,i,REN ,
described in the accompanying paper, was found to
be influential. This parameter could be further enu-
merated by experimentation. However, the identified
obstacles to such measurements identified in previ-
ous work(38) would need to be considered when pro-
ducing any experimental protocol.

3.1. Scenario Testing

Selected scenarios were run to investigate the ef-
fect on the estimated number of new TSE infections
arising.

(1) The effectiveness of drain trap: The effective-
ness of trap in the baseline scenario was repre-
sented in the model by P trap as between 80%
and 90% based on estimates from the litera-
ture (refer to accompanying paper for further
details). To investigate the impact of trap ef-
fectiveness on the number of new TSE infec-
tions, values of 0%, 25%, 50%, and 75% re-
tention of infectious material were simulated.
The relationship between trap effectiveness
and the mean number of new TSE infections
is approximately linear. At 0% trap effective-
ness, the estimated number of new TSE infec-
tions is shown in Table II.
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(2) The amount of wastewater produced: The
amount of wastewater produced at each fa-
cility was estimated using industry data and
expert opinion based on the number of car-
cases processed, with resulting values asso-
ciated with considerable uncertainty bounds.

To investigate the impact of dramatic changes
in wastewater production, the baseline fig-
ures were doubled and trebled. Neither sce-
nario produced a significant change in the
risk estimate in comparison with the baseline
model.
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Table II. Estimated Results from Scenario Testing

Scenario Risk
Scenario Values Estimate

1. Effectiveness
of trap

0 BSE 0.007 (1 × 10−5,
0.01)

Classical scrapie 0.136
(0.002, 0.27)

Atypical scrapie 0.121
(0.001, 0.24)

2. Amount of
wastewater
produced
per year

Baseline × 2 No significant change in
mean resultsBaseline × 3

3. Proportion
of
wastewater
to pasture

Baseline ×1.75 Mean results × 1.75
Baseline × 2.5 Mean results × 2.5

(3) The proportion of wastewater to pasture: In
the baseline model, 40% of all wastewater ap-
plied to land is assumed to be spread on pas-
ture. The calculation of this figure was based
on the proportion of fertilized land in GB that
is composed of grassland and is a point es-
timate in the model. To investigate the im-
pact of unquantified uncertainty associated
with this parameter, the baseline figure was
increased to 70% followed by 100% (all fertil-
ized land is grazed). The relationship between
the proportion of wastewater to pasture and
the mean number of new TSE infections is ap-
proximately linear.

4. DISCUSSION

In this article, we have described the develop-
ment and parameterization of a quantitative risk
assessment to assess the risk of cattle and sheep be-
coming infected with a TSE disease from wastewa-
ter that has been directly spread onto pasture land.
The contribution to the number of new TSE infec-
tions by facility type differs by TSE disease and for
sheep and lambs. This is due to each disease having a
different predilection for different tissue types, which
vary in their probabilities of falling to floor in each
facility type, and the different processing that may be
applied to lambs as opposed to larger adult sheep.
For BSE in cattle the main contributors are abattoir
and rendering effluent, contributing 35% and 22% of
the total number of new BSE infections. For TSEs in
sheep, effluent from small incinerators and rendering

are the major contributors (on average 32% and 31%
of the total number of new classical scrapie and atyp-
ical scrapie infections). Such contributions are due to
the volume of material flow through such facilities. It
also needs to be remembered that an assumption was
made that all facilities use a 6-mm trap before collec-
tion of wastewater, whereas many facilities, particu-
larly the rendering industry, are known to use traps
of 4 mm down to 1 mm that may retain more mate-
rial. Therefore, this assumption is worst case.

Other pessimistic assumptions need to be high-
lighted. It is assumed that any grazing livestock will
have access to pasture all year round and have ac-
cess to the full soil depth of fertilizer, that is, to a
maximum of 25 cm. These assumptions are unreal-
istic as the majority of grazing livestock are likely to
be housed with feed for several months of the year,
and when grazing, a depth of 25 cm is unlikely to be
realized. It is assumed that intentional illegal activ-
ities that may bypass controls do not occur. Due to
the permanent structures in place, it is less likely that
large-scale industries, such as rendering and large in-
cinerators (which comprise a combined contribution
to risk of 26% for BSE and 39% for sheep TSEs),
can bypass built-in wastewater and drainage controls
when compared to smaller more ad hoc operations
such as INT, CCN, and small incinerators (which to-
gether contribute 39% for BSE and 40% for sheep
TSEs to the risk estimate). Such facility types, to-
gether with smaller abattoir operations, are locations
where illegal operations may occur and that con-
tribute significantly to risk. For example, an abattoir
operating illegally with no blood tank and no con-
trols on wastewater could be illegally spreading such
effluent direct to pasture. However, from discussions
with licensing authorities, such occurrences are likely
to be rare, although there are recorded incidents. Al-
though current SRM controls are in place the amount
of infectivity released by such rare events will still be
small.

By varying the effectiveness of the trap from 0%
to 75%, the relationship between the trap retaining
material and new infections was found to be approxi-
mately linear. When considering that the trap retains
no material, the expected number of new infections
increases approximately 6.5-fold for BSE and 4-fold
for classical and atypical scrapie. When considering
whether a 0% effective trap is the same as remov-
ing the trap, further investigation would be required.
Additional supporting information would need to be
collected to establish whether any operator behav-
ioral changes may accompany the removal of the
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trap, for example, unconsciously would more mate-
rial be allowed to fall to floor as there is no trap to
lift and unblock when full?

The form of Equations (4) and (5) indicate
that as more wastewater is produced, any infectivity
present becomes more diluted. However, that same
amount of infectivity is spread on more land, leading
to more animals being exposed. Given that the dose-
response model does not have a lower bound value
(that is infinitely divisible), changes in the amount of
wastewater produced and applied to pasture have no
effect on the number of new TSE infections.

The risk assessment is based on wastewater pro-
duction and application to land over one year. How-
ever, effluent is applied each year and in areas where
repeated applications are made there may be an ac-
cumulation of infectivity on those fields. TSE agents
are associated with long-term environmental persis-
tence. Seidel et al. found by western blotting a strong
decrease in the amount of extractable scrapie prion
protein after 29 months in sandy loam soil. However,
it is unclear whether this is due to molecular decay
of the protein or due to tight binding to soil parti-
cles.(39) For one farm in Iceland, epidemiological in-
vestigation into an outbreak of scrapie established,
with near certitude that the disease could not have
been externally introduced and concluded that the
agent may have persisted in an old sheep house for
at least 16 years.(40) Despite this, given the expected
low numbers of BSE infected cattle and the random
occurrence of disease among herds, it is unlikely, at
the current time, that infected animals will be pro-
cessed and any contaminated wastewater applied to
the same location in successive years. However, for
scrapie in sheep, accumulation is more likely if cer-
tain areas have repeated application of wastewater
in successive years. To investigate this phenomenon
in more detail a survey of the contractors that carry
out wastewater collection and spreading would need
to be completed, with details collected of the loca-
tions where wastewater is applied and frequency of
application.

The risk assessment focuses on an industry in
GB that is not well characterized in the literature
and is subject to constant changes due to market de-
mands. Therefore, the results are essentially a snap-
shot in time of a constantly evolving industry. During
the facility visits undertaken and surveys conducted,
the changing nature of the industry was highlighted.
There have been significant recent reductions in the
usage of small incinerators and the mothballing of
several large-scale incinerators due to high fuel costs,

and conversely a rise in the value of animal wastes
to be used as a cofuel to produce energy. Given the
limitations of published accounts, several areas of
the risk assessment are based on expert opinion and
assessors’ assumptions based on viewing processes
conducted. However, all significant parameters iden-
tified by the sensitivity analysis are based on data
that were available from the literature and surveys
conducted.

5. CONCLUSIONS

A quantitative risk assessment was developed to
assess the risk of cattle and sheep becoming infected
with a TSE disease from wastewater that has been
directly spread onto pasture land. The key results in-
dicate the number of new TSE infections arising from
this practice would be low, with a mean of one infec-
tion every 1,000 years for BSE in cattle, one infection
every 30 years for classical scrapie, and 33 years for
atypical scrapie, assuming no change in conditions.

For BSE in cattle the main contributors are abat-
toir and rendering effluent and for TSEs in sheep, ef-
fluent from small incinerators and rendering are the
major contributors. This is a reflection of the vol-
ume of carcase material and Category 1 material flow
through such facilities.
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