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Infering and Calibrating Triadic Closure in a
Dynamic Network

Alexander V. Mantzaris and Desmond J. Higham

Abstract In the social sciences, the hypothesis of triadic closure contends that new
links in a social contact network arise preferentially between those who currently
share neighbours. Here, in a proof-of-principle study, we show how to calibrate
a recently proposed evolving network model to time-dependent connectivity data.
The probabilistic edge birth rate in the model contains a triadic closure term, so
we are also able to assess statistically the evidence for this effect. The approach is
shown to work on data generated synthetically from the model. We then apply this
methodology to some real, large-scale data that records the build up of connections
in a business-related social networking site, and find evidence for triadic closure.

1 Motivation

Many modern application areas give rise to patterns of connectivity that change
over time [9]. Examples include mobile telecommunication, on-line trading, smart-
metering, massive multiplayer online gaming and online social networking. Infor-
mation such as ‘who called who’, ‘who tweeted who’, ‘who FaceTimed who’, and
‘people who bought his book also bought . . . ’ is naturally evolving over time and
cannot be fully exploited through a static representation as a single time-average
or snapshot. These emerging, data-rich disciplines generate large, highly-resolved
network sequences that demand new models and computational tools.

This work focuses on the use of a mathematical model to describe the microscale,
transient dynamics. The model, from [5], is mechanistic, incorporating the triadic
closure effect that many social scientists believe to be a key driving force behind
social interactions. We show how a likelihood approach can be used to calibrate the
model, thereby allowing the triadic closure hypothesis to be tested statistically on
real data.
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The manuscript is organised as follows. In Section 2 we introduce the triadic
closure concept and discuss some relevant work in the area. In Section 3 we de-
scribe the model from [5] and illustrate its use. Section 4 then explains how the
likelihood—the probability of observing the microscale, edge by edge, data given
a set of model parameters—can be computed and used to perform statistical infer-
ence. To illustrate the idea, we generate synthetic data from the model and reverse
engineer the model parameters. In Section 5 we then apply these ideas to a set of
online social interaction data. Section 6 gives a summary and points to future work.

2 Background

The concept of triadic closure can be traced back to the work of the sociologist
Georg Simmel in the early 1900s, and was popularized by the influential article [4].
It is a key motivation for the use of clustering coefficients [3, 15] to summarize
network properties. The basic principle can be summarized as [2, 16]

Triadic Closure, part 1: If two unconnected people in a social network have a friend in
common, then there is an increased likelihood that they will become friends themselves at
some point in the future.

As discussed in [2, Chapter 3], there are at least three convincing reasons why
triadic closure might feature in the evolution of a social interaction network. If B
and C are not currently friends, but share a common friend, A, then a new link from
B to C is more likely to arise than a link between an arbitrary pair, through

Opportunity: B and C both socialize with A and hence have more chance of meet-
ing,

Trust: A can simultaneously vouch for both B and C,
Incentive: A may view the triadic friendship as less stressful or time-consuming

to maintain than the separate pair of dyads, and hence encourage the B-C link.

Based on these points, we may also argue that each extra common friend shared
by B and C will increase the chance of a future B-C link. Hence, we may slightly
extend the triadic closure principle above:

Triadic Closure, part 2: The likelihood that two unconnected people in a social network
will become friends themselves at some point in the future increases with the number of
friends they share in common.

The digital age has given rise to large scale human interaction data sets, making
it feasible to test the hypothesis that changes in connectivity are driven by triadic
closure. For example, Leskovec et al. [12] studied four large online social network
datasets and found that “most new edges span very short distances, typically closing
triangles.” Mislove et al. [14] monitored the growth of the Flickr network and found
that 80% of new links “connected users that were only two hops apart, meaning that
the destination user was a friend-of-a-friend of the source user before the new link
was created”. Szell et al. [17] measured transition rates between dyadic and triadic
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structures for positive and negative social interactions in a massive multiplayer on-
line game and found “overrepresentation (underrepresentation) of complete triads
in networks of positive ties, and vice versa for networks of negative ties.”

Networks in neuroscience have also been observed to have an overabundance of
triangles, with respect to both anatomical and functional connectivity [1, 7, 13].

In this work we aim to go beyond the realm of simply recording the incidence of
network triangles by combining ideas from applied mathematics and applied statis-
tics. Given network data, we wish to calibrate an appropriate mechanistic model of
network evolution and simultaneously quantify the statistical evidence in favour of
triadic closure.

The closest previous work to ours is perhaps [12], where stochastic models incor-
porating triadic closure were proposed and tested in a microscale/likelihood setting.
To understand the class of models from [12], consider the node u in Figure 1 (which
is based on Figure 6 from [12]). The triangulation stage adds a link to a node, w,
that is two hops away from u. This is done by first choosing one of u’s neighbours,
v, according to one of the five following rules

random: uniformly at random,
degree: proportional to some power of the degree of node v,
common friends: proportional to the number of common friends shared by nodes

u and v,
last time: proportional to some power of the time that has elapsed since v last

created an edge,
comlast: proportional to the product of (a) the number of common friends shared

by nodes u and v, and (b) the time that has elapsed since v last created an edge,
raised to some power.

Similarly, any of these five rules can be used to chose a neighbour, w, of v. The new
link is then inserted between u and w in order to create a triad. This gives a total
25 different models, which were tested in [12] on real data in a likelihood setting.
The authors concluded that the random-random model (choose v uniformly from
the neighbours of u and then choose w uniformly from the neighbours of v) gives a
good compromise between accuracy and simplicity.

In this work, we consider a recent stochastic triadic closure model from [5], based
on the general methodology of [6]. A key difference from the versions discussed
above is that this model triangulates by directly choosing nodes w that are two hops
from u, with a bias that is proportional to the number of common neighbours—
directly reflecting part 2 of the triadic closure principle. Advantages of this mod-
elling approach are that:

• A single parameter, ε , is used to quantify the strength of the triadic closure effect.
The case ε = 0 corresponds to no preference for triadic closure (edges appear
uniformly at some basal rate). Hence, we have a nested pair of models and can
test whether there is statistically significant evidence for triadic closure in the
data.

• The modeling framework is sufficiently simple to allow a mean-field approxima-
tion for the evolution of the edge density. The mean-field approximation involves
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Fig. 1: Depiction of the triangulation process, based on Figure 6 from [12]. A new
edge is produced, as shown by the dashed line. This dashed edge creates a triad
closure between nodes U, V, and W.

the same model parameters, and hence this macroscopic summary data can be
used when a full likelihood computation at the microscale is not feasible. We
exploit this feature in section 5.

3 The Triadic Closure Model

We suppose that a fixed set of N nodes have a connectivity structure that may change
at discrete, uniformly spaced, time points t0 < t1 < .. . < tK . We let Ak denote the
adjacency matrix for the network at time tk and assume that the networks are un-
weighted and undirected without self-loops, so each Ak ∈ RN×N has ai j = a ji = 1
if there is an edge from node i to node j at time tk and has ai j = a ji = 0 otherwise,
with all aii = 0.

The triadic closure model in [5] involves two matrix-valued functions of the cur-
rent state, ω(Ak), and α(Ak), giving the edge death and edge birth probabilities,
respectively. The death probability takes the simple form

(ω(Ak))i j ≡ ω̃, for some ω̃ ∈ (0,1). (1)

The birth probability is defined as

(α(Ak))i j = δ + ε(A2
k)i j, (2)
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for some constants δ and ε . We impose 0 < ε(N−2)< 1−δ to ensure that the birth
probability lies between 0 and 1.

Given the time tk network, Ak, if there is currently no edge from i to j, then
the birth probability specifies the chance that the edge will emerge at time tk+1.
Similarly, if i and j are connected in Ak, the death probability specifies the chance
that the edge will disappear at at time tk+1. Conditioned on Ak, all such edge events
are taken to be independent. More precisely, the model takes the form of a discrete
time Markov chain over the state space of all binary, symmetric networks with N
nodes, and given A0 we may simulate a path of the chain as follows

for k = 0,1, 2, ...., K−1
Compute α(Ak)
for all disjoint pairs i 6= j

if (Ak)i j = 0 then set
(Ak+1)i j = 1 with prob. α(Ak)i j (birth)
(Ak+1)i j = 0 with prob. 1−α(Ak)i j (no change)

else we have (Ak)i j = 1, so set
(Ak+1)i j = 0 with prob. ω̃ (death)
(Ak+1)i j = 1 with prob. 1− ω̃ (no change)

end if
end for all pairs

end for k

To understand the form of the birth probability (2), we note that the factor (A2
k)i j

counts the number of neighbours shared by nodes i and j at time tk. Hence the
overall birth probability is given by combining

• a basal level, δ , and
• a triadic closure term that is proportional to the number of new triangles the edge

would create. Here ε controls the strength of the triadic closure effect.

A mean-field approximation for the evolution of a macroscopic quantity, the edge
density

p̂k :=
1

N(N−1)/2∑∑i> j(Ak)i j, (3)

was proposed in [5] and found to match well with real simulations. This mean-field
approximation takes the form

pk+1 = (1− ω̃)pk +(1− pk)
(
δ + ε(N−2)p2

k
)
. (4)

An interesting feature of the iteration (4) is that there are generically three steady
states; that is, values p? such that pk+1 = pk = p? solves (4), with only the outer
two being stable. Simulations showed that both stable states could be observed in
practice, and in particular for initial networks A0 close to the intermediate, unstable
steady state, the density along a path evolves to one of the two stable values in an
unpredictable manner that depends on the precise micro-level detail.
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To illustrate the model, and also to provide some data for the inference compu-
tations in the next section, we now show some network sequences generated by the
model. In each case we used 100 nodes and 100 time points, and the initial network,
A0, was a sample of a classical Erdös-Rényi random graph with expected edge den-
sity of p; we denote this by A0 = ER(p).

Data Set A: δ = 0.0004, ω̃ = 0.01, ε = 0, A0 = ER(0.5).
In this case there is no triadic closure–edges appear and disappear uniformly at
random. The mean-field equation (4) collapses to a linear iteration with a single,
stable steady state at p? = 0.0385. Figure 2 shows the adjacency matrix at selected
time points, along with the edge density as a function of time. The images of the
adjacency matrix put a black square where the value is zero and a white square
where the value is one. To show the relevance of the mean-field approximation,
Figure 3 illustrates what happens when the path is followed for a longer period;
we used 1000 time points. The mean-field approximation from (4) is superimposed
over the edge density plots. Here the observed edge density at the final time point is
0.0356.

Data Set B: δ = 0.0004, ω̃ = 0.01, ε = 0.0005, A0 = ER(0.5).
Here, the mean-field iteration has steady states 0.7215 (stable), 0.2291 (unstable)
and 0.0494 (stable). Using A0 = ER(0.5) starts the paths closest to the denser of
the two stable macro-states. Figure 4 shows some network snapshots along with
the edge density. A longer time interval is used in Figure 5 in order to confirm the
relevance of the p? = 0.7215 steady state.

Data Set C: δ = 0.0004, ω̃ = 0.01, ε = 0.0005, A0 = ER(0.1).
Here, we use the same model parameters as in Data Set B, but start with a less dense
initial network. Figure 6 shows network snapshots and edge density, and Figure 7
runs over a longer time period. In this case, the edge density is attracted to the other
stable steady state at p? = 0.0494.

4 Likelihood and Inference

The probabilistic nature of the model produces a natural likelihood function to feed
into a calibration and inference framework. This section explains the details and
tests out the idea on the data sets from Section 3.

Given network data A0,A1, . . . ,Ak, that is, up to time tk, because the model sat-
isfies the Markov property the likelikood of observing a network Ak+1 at time tk+1
depends only on Ak and is given by

L (Ak+1|Ak)= ∏
Remain alive

(1−ω̃)× ∏
Become alive

α(Ak)i j× ∏
Remain dead

(1−α)(Ak)i j× ∏
Become dead

ω̃i j.

Here the products are over appropriate ordered edge pairs; that is, (i, j) with i< j; so
for example, “Remain alive” denotes (i, j) for which both (Ak)i j = 1 and (Ak+1)i j =
1.
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Fig. 2: Data set A. Upper: the adjacency matrix at selected time points. Lower: edge
density as a function of time.
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Fig. 3: Extended version of Data set A. Upper: the adjacency matrix at selected
times points up to time 1000. Lower: edge density up to time 100 and time 1000.
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Fig. 4: Data set B. Upper: the adjacency matrix at selected time points. Lower: edge
density as a function of time.
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Fig. 5: Extended version of Data set B. Upper: the adjacency matrix at selected
times points up to time 1000. Lower: edge density up to time 100 and time 1000.
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Fig. 6: Data set C. Upper: the adjacency matrix at selected time points. Lower: edge
density as a function of time.

Now suppose that the model parameters and initial network A0 are fixed. Any
observed network sequence A1,A2, . . . ,AK then has likelihood

L (A1|A0)×L (A2|A1)×·· ·×L (AK |AK−1) . (5)

The parameters which maximise the likelihood of a model may then be calcu-
lated. In this work we use straightforward grid searches over appropriate parameter
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Fig. 7: Extended version of Data set C. Upper: the adjacency matrix at selected
times points up to time 1000. Lower: edge density up to time 100 and time 1000.
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ranges. We focus here on the constrained model, where ε is fixed at zero, so no triad
closure effect is present, and the unconstrained model, where ε is a model parameter.
The constrained model is therefore nested within the unconstrained model, which
makes the application of the likelihood ratio test [18] suitable for model comparison.
The likelihood ratio test value, D, is then used to compute a p-value for rejecting the
null model, which is the constrained model. The value D and the difference in de-
grees of freedom in the unconstrained and constrained model are used as parameters
for the chi-squared distribution. This allows us to compute a p-value for rejecting
the null hypothesis. We take a threshold of 0.01.

The Akaike information criterion (AIC), [8], is also used here for model selec-
tion. AIC is founded in information theory. The application of AIC reinforces the
results of the likelihood ratio test.

Inference for Data Set A:
Here we performed a grid search of the likelihood over δ = 0.0001 : 0.0001 : 0.0006
and ω̃ = 0.0005 : 0.005 : 0.025 for the constrained model. For the unconstrained
model we also used ε = 0.0000 : 0.0001 : 0.001.

The search for the constrained model gave αmax = 0.0004 and ωmax = 0.0105
with a log likelihood of −10182.0284. For the unconstrained model, we obtained
αmax = 0.0004, ωmax = 0.0105 and εmax = 0, with a log likelihood of−10182.0284.
Hence, the extra freedom offered by ε was clearly not relevant for this data set. The
log likelihood ratio test therefore gives D = 0, favouring the constrained model. The
marginal for ε is shown in Figure 8. We can see the decay away from the true value
of zero. AIC also prefers the model without triadic closure.
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Fig. 8: Marginal for ε in Dataset A.
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Inference for Data Set B:
Here we searched over α = 0.0001 : 0.0001 : 0.0006 and ω = 0.0005 : 0.005 : 0.025
in the constrained model and also ε = 0.0000 : 0.0001 : 0.001 in the unconstrained
model. The likelihood for the constrained model is maximized at αmax = 0.0006 and
ωmax = 0.0105 with log likelihood of −38633.7891. For the unconstrained model,
αmax = 0.0001, ωmax = 0.0105 and εmax = 0.0005 with log likelihood−31477.9615.
We note that the constrained model has a higher birth rate to compensate for the lack
of triangulation. The log likelihood ratio test value is D = 14311.6553, so the test
result is 1, favouring the triad closure model. AIC chooses the model that has triad
closure as well. The marginal of ε , shown in Figure 9, has a clear peak around the
value of 0.0005 that was used to generate the data.
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Fig. 9: Marginal for ε in Dataset B.

Inference for Data Set C:
For the constrained model the grid search took place over α = 0.0001 : 0.0001 :
0.0006 and ω = 0.0005 : 0.005 : 0.025 and for the unconstrained model we also
used ε = 0.0000 : 0.0001 : 0.001. The constrained model produced αmax = 0.0006
and ωmax = 0.0105 with log likelihood of−5136.5503. For the unconstrained model
we have αmax = 0.0004, ωmax = 0.0105 and εmax = 0.0005 with log likelihood of
−5089.8203. As for Data set B, the constrained model has a higher birth rate to
balance the lack of triangulation. The log likelihood ratio test value is D = 93.4599,
with a test result of 1, favouring the triad closure model. As well, AIC chooses the
model with triad closure. The marginal of ε is shown in Figure 10, and, as in Data
set B, we see a peak around the value of 0.0005.

Based on these results, we conclude that the likelihood-based inference approach
can produce meaningful results on this type of data.
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Fig. 10: Marginal for epsilon for Data set C.

5 On-Line Social Network Data

We now apply this methodology to online social network data from [10] that relates
to the Wealink (http://www.wealink.com/) social networking site for pro-
fessionals in China. In this data set, new users (nodes) join the network over time,
and a new link can be established between any pair of current users. The raw data
consists of triples of the form (i, j, t), indicating that a link has been created between
nodes i and j at time stamp t. There are 26,817,840 time stamps, measured in sec-
onds, and they range from t = 1 second to 72,711,888 seconds, which is just over
841 days. The largest node id is 223,482. For the purpose of calibration and model
selection, we assume that all 223,482 nodes are present (i.e. available to form links)
from the initial time point, and that all links are undirected. Hence we have sym-
metric adjacency matrices of dimension N = 223,482. Edges do not disappear in
this data set. Figure 11 shows how the edge density increases with time. The overall
average rate of increase in Figure 11 is 0.0038 edges per second.

By construction, there is no edge death in this data set. Hence, we fix ω̃ = 0. This
leaves two parameters, the basal birth rate, δ , and the triadic closure strength, ε . Just
as we did in section 4 for the synthetic data, our aim is therefore to test whether there
is evidence for a positive triadic closure strength.
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Fig. 11: Density of the Wealink online social network as a function of time in
seconds.

Because of the large amount of data, we made a number of simplifications in
order to reduce computational complexity to a feasible level. First, it is clear from
Figure 11 that most activity takes place over a limited time period, and hence, for our
experiments, we start with the network at time 3× 107 seconds and continue until
time 4×107 seconds. Then, rather than treating each event separately, we divide this
period into 100 equally spaced time windows and construct an adjacency matrix for
each. So each adjacency matrix records an element 1 in positions (i, j) and ( j, i) if
nodes i and j were already linked, or formed a link in the relevant time window, and
it records a zero otherwise.

Due to the excessive cost of evaluating the likelihood, we first used the mean-
field approximation (4) to get a feel for an appropriate range of parameter values.
Figure 12 shows the edge density increasing over the 100 discrete time points. The
red circles show the corresponding mean-field solution when we fix ε = 0 and opti-
mize in a mean-square sense over the remaining parameter, δ ; that is, given p0, we
consider the iteration

pk+1 = pk +(1− pk)δ

and minimize the mean-square deviation between {pk}k>0 and the edge density
from the data. This produces a value of δ = 8.2059×10−8 for the basal birth rate.
The black crosses show the results when also allow the triadic closure strength to be
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nonzero; that is, we use

pk+1 = pk +(1− pk)
(
δ + ε(N−2)p2

k
)
.

Here, we found δ = 9.53×10−8 and ε = 7.32×10−16.
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Fig. 12: Blue solid line: Edge density over the 100 discrete tme points used for the
inference. Red circles: edge density from best mean-field fit with ε fixed at zero and
δ as a free parameter. Black crosses: edge density from best mean-field fit with both
ε and δ as free parameters.

Since our available computing power only permitted a full likelihood based cal-
ibration over one parameter, we then fixed δ = 9.95× 10−8 and infered the triadic
closure strength, ε , from the microscale data. Figure 13 shows the log likelihood as
a function of ε . The best ε value gives a log likelihood of −1.58×108, whereas the
ε = 0 model produces −1.97× 108. We find that D = 7.81× 107, and the triadic
closure model is therefore chosen by the log likelihood ratio test. AIC also chooses
the model with triadic closure.

6 Summary

Our aim in this work was to investigate calibration and inference issues for a
stochastic microscale evolving network model. Edge dynamics in the model involve
a term that quantifies a triadic closure effect—friends of friends tend to become
friends. We showed that the presence of triadic closure can be inferred from a rea-
sonable quantity of synthetic data, generated from the model. We then showed that
there is statistical evidence for triadic closure in real data from a business-related
social networking site.
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Fig. 13: Log likelihood of the triadic closure model as a function of triad closure
strength, ε . The basal edge birth is fixed at 9.95× 10−8. The x-axis shows the log
base 10 values used for ε in the search for the largest loglikelihood.

Although likelihood-based calibration and model comparison is conceptually
straightforward for stochastic, Markov chain based, models of the type used here,
the fundamental task is computationally challenging for large network sequences
over long time periods. In this work, we were able to exploit a mean-field theory
that describes the evolution of a macroscale quantity—the edge density—in terms
of the model parameters.

There are many directions in which this type of work could be taken:

• other concepts from the social sciences that may determine network dynamics,
such as homophily/heterophily, social distance and cultural drift [2, 11], could
be quantified through mathematical models and then tested for and compared in
real dynamic data sets,

• other types of interaction network, for example from telecommunication, online
human behaviour and e-business, could be calibrated, compared and categorized,

• more sophisticated, customized strategies for sampling the model parameter
space could be developed; for example via Markov chain Monte Carlo tech-
niques.
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