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Abstract; Parameter estimation is a challenging problem for biological systems modelling since the
model is normally of high dimension, the measurement data are sparse and noisy, and the cost of
experiments is high. Accurate recovery of parameters depends on the quantity and quality of
measurement data. It is therefore important to know which measurements to be taken, when and
how through optimal experimental design (OED). In this paper a method was proposed to
determine the most informative measurement set for parameter estimation of dynamic systems, in
particular biochemical reaction systems, such that the unknown parameters can be inferred with
the best possible statistical quality using the data collected from the designed experiments.
System analysis using matrix theory was used to examine the number of necessary measurement
variables. The priority of each measurement variable was determined by optimal experimental
design based on Fisher information matrix (FIM). The applicability and advantages of the
proposed method were shown through an example of a signal pathway model.
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0 Introduction

Model-based analysis of complex biological
networks is a major topic of current systems
biology. Most mechanistic mathematical models
developed for biological and other systems contain
adjustable or unknown parameters., the values of
which can be estimated from observations. The
dynamics of the model often is sensitive to
parameters especially for the oscillation system,
whether the model parameters are estimated
optimally or mnot will directly affect the
performance of the model. As a result, parameter
estimation is challenging for bioprocesses
modelling™: @ lack of quantitative measurements
of dynamic response data and the measurement
data is often corrupted with noise; @ the complex

with  high-

nonlinear and poorly understood

nature of  biological systems
dimensional,
dynamics. In general, performing experiments to
obtain rich data are expensive and time-consuming
for such systems. The problem of designing
experiments to generate efficient measurement data
is thus of particular importance. Optimal
experimental design (OED) is a subject area of
growing interests particularly in systems biology
since huge experimental efforts are required in
model development. Various methodologies have
been developed and successfully applied to a broad

L Interested readers can find

range of systems
comprehensive reviews on experimental design and
applications for general systems in Refs. [5-6 ] and
biological and biochemical systems in Refs. [7-8].
In order to produce and collect information-

rich data, experimental design can be considered

from two aspects. One is the design of input
perturbations (type, level and duration of input
signals), the other is to determine when and what

should be taken. The

identifiability of a parameter estimation problem

kind of observations

can be improved  through  well-designed
experiments in general. In this paper, OED was
performed on choosing the most suitable set of
observation variables for parameter estimation,
also called measurement set selection in earlier

B-19]  Tn measurement set selection, we

publications
need to consider not only the issue of identifiability
in theory, but also the experimental restrictions in
biology. For example, in a wet-lab environment,
normally only a small number of protein
concentrations can be simultaneously measured in a
timely fashion. It is therefore important to
determine which observable would provide more
information for parameter estimation. Given a set
of unknown parameters to be estimated, we
attempt to investigate: O the best (minimum)
number of measurement variables to be used; and
@ the set of measurement variables to be chosen.
The rest of the paper is organized as follows.
the preliminaries on parameter

and model-based OED is briefly

In Section 2, firstly the general

In Section 1,
estimation
introduced.
dynamic model is reformulated to improve the
computational efficiency and facilitate further
analysis, then the method to determine the
minimum measurement set is discussed using the
matrix theory, and the priorities of state variables
are calculated by model-based OED. Using a
simplified IkB a-NF-kB signal pathway model as an

example, the applicability of the design method to
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biological systems modelling is illustrated in
Section 3. Finally the conclusions and discussions

are given in Section 4.

1 Parameter estimation and experimental
design preliminaries

Consider a general ordinary differential

equation model to describe the dynamics of

biological systems
X(0 = f(X(D,p . X(1,) =X, (1)
Y() = h(X(0),p) + & (2)
X€& R" is the state vector with initial condition X,
Each

component of X is denoted as x;» which normally

and n the number of state wvariables.
stands for molecule concentrations in biochemical
system models. p € R™ is the parameter vector

with  m the number of parameters. The
components of p mostly refer to kinetic reaction
rates. f( ¢ ) is a column nonlinear function for
states transition, which is often derived from the
underlying biochemical mechanisms. The vector ®
is introduced to represent the experimental design
parameters. Y € R’ is the measurement output
r(r<<n)

variables, and

number of
h( *) the

measurement function reflecting the choice of

vector with being the

measurement
observables. The signal & is assumed to be
independently and identically distributed, additive,
zero-mean Gaussian noise. Parameter estimation
for system (1)~ (2) can be obtained by the least-

square algorithm
N

p =arg min >, (Y(t) —Y(p, t))7Q " -
PEO

(Y(t) —Y(ps 1) (3)

where Y and Y are measurement output and model
Q is the

matrix, the

prediction output, respectively.

measurement error covariance
subscript [ indicates sampling time, N is the total
number of sampling points in the dimension of
time.

T —
s Xy 7P_[p17P27"‘7

pu]’s the local sensitivity matrix is described as

Denote X=1[ a1, 235"

SZ(')X/(')p:(\U), S,]:(’)Il/f’)p] (4:)
The Fisher ( FIM ) is

represented as a function of local sensitivity

information matrix

matrix:
N
FIM(p,w) = >, 8" (i, p.@ Q' S(t; pr o). (5)
=1
Under the assumption of additive zero— mean
Gaussian noise in measurement, an OED problem
can be written as a general optimization problem to
read

o = arg meag@(FIM(p, o). (6)

Q is the design space for the experimental design
vector @, @ ( ) indicates the widely used
alphabetical experimental design criteria that are
normally scalar functions of FIM, such as A-
maximizing trace ( FIM );

optimal, D-optimal,

E-optimal, minimizing
A (FIM™1), ete. Here trace( » ) and det( + ) are

trace and determinant of a matrix, Auw( * ) is the

maximising det ( FIM );

maximum eigenvalue of a matrix. These criteria
are related to the size and shape of the confidence
hyper-ellipsoid for estimated parameters, and will
give slightly different experimental design results
when choosing different criteria. The design using
any of the three criteria turns out to be a convex
optimization problem when the FIM is an
appropriate function of the experimental design

U Problem (6) is in general an NP-

parameters
hard problem, and the computational cost of the
optimization problem depends on the complexity of

the model structure/dynamics.

2 Measurement set selection

2.1 Dynamic model with unknown parameters
For a system containing known and unknown
parameters, the can be

parameter vector p

separated into two sets: ® € R' for known
parameters, and 0 € R? for unknown parameters
with [+ q=m. Here it is reasonable to assume that
the model is linear in parameters, as widely applied
to biochemical systems taking kinetic rate
coefficients as parameters to describe the individual

reactions in a model. Under this assumption,
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together with the separation of the known and
unknown terms in p, model (1) can be further

written as follows (for simplicity, @ is omitted)

X(D = g(X(D)n+ ¢(X(1)0 )
where g( * )ER"™" and ¢( + ) € R are nonlinear
functions associated with known and unknown
parameters. For a biochemical system, the
nonlinear function g( » ) often contains both linear
and nonlinear terms with respect to species
concentrations (state variables). When a system
has a large number of reactions, leading to a high
dimension in model parameters, the separation of
the linear (states) terms from the nonlinear
(states) terms will decompose the model into
subgroups with a reduced size in each group. This
will largely improve the efficiency of numerical
calculations that often involve integration operation
of matrix functions. Following this idea, model

(7) 1s further reformulated to be

X(D) = AX(D + g(X(D)n + o(X()0 (&)
where A € R™" is a parameter matrix, g ( * )
groups the nonlinear (states) functions in g( * ),
m € RY (4, < D) is the known parameter vector
associated with g( + ). Note that using this new
formulation to isolate the unknown parameters
from the whole parameter set, the term p of the
FIM function in Eq. (6) should be replaced by 0
in OED.

2.2 Minimum state number to be measured

A general assumption is made that
measurement output Y are linear function of the
states. This is how measurement data is processed
with most current measurement techniques applied
to biological or biochemical systems. The
measurement output in system (2) can then be
written as (ignoring the noise term for simplicity)

Y(») = CX(D (9
where CE€ R™" is the measurement matrix. From

model (8) and (9), the output reads

Y(1) = Ce*X, + C(er“’*ﬂ g(X(0)do m+

([ X g(X(0)do) 0 (10)

Eq. (10)

measurement observables on unknown parameters

shows the linear dependency of

0. According to the linear matrix theory, the rank

of the linear term multiplied to 0, i.e.

rank(CfleA(r ? o( X(7))d7) should be maximised in

order to realise the minimum number of
measurement variables for the estimation of 8. The
design problem can then be formulated as an
optimisation problem of choosing a matrix C,
consisting of elements 1 or 0, so as to maximise

the following objective function
J(O) = max rank(€| ¥ ? o(X(2)dD) (11)
0

The solution to (11) is discussed in the following.

Denote

B=| e 7 o(X(0)dr (12)

where BE R™? represents the convolution of ¢

and ¢(X(1)). For a given model, the matrix term
A and function ¢( ) are known, therefore B can
be taken as a known term at time t. Assume that
rank (B) =m, from matrix theory it is known that
rank (CB)<{min{rank(C) ,rank(B)}, which means
J(C) won’t be larger than m in any case. The
conclusion is therefore made with max]J (C) = m
when rank(C) = m.

It should be noted that the minimum number
of observables determined by this way is a
theoretical result that guarantees the structural
identifiability and the best estimation accuracy.
Parameter estimation in practice is not restricted to
the minimum number of measurement variables
and the estimation result is only an approximate
solution.
2.3 Priority of measurement variables

As denoted in the general nonlinear model of
the dynamic systems (1)~ (2), there are n state
variables and each of them can be taken as the
observables via the measurement matrix C. To
prioritise each variable x; in terms of their
contributions to the specified parameter estimation
problem, the weighting factor w; is introduced to x;

to form the design problem.
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X9 Xz st s Xy -
1) Ew;z 17 w,}O(lB)

i=1

§:

Wy s Uy s*** s Wy

Taking the design parameter vector as ®@=/[ w s w; »
<+ 5, w, |', computationally the FIM can be

written as

n

N
FIM(0, @ = > D> wS! (1,.08,(1,,0) (14)
! 1

i

where S; is the ith row of the sensitivity matrix S.
The idea of the E — optimal design is to
minimise the largest confidence interval of the
estimated parameters. Taking this criterion, the
OED problem on measurement set selection is

formulated as follows
©' = arg min A [(FIM(8. @)™ ] (15)

s. t. 2&)le9&),‘>0

i=1
This problem can be recast into a semi-definite

program (SDP) [1o.12],

®" = arg maxv (16)

D ST (1, 08.(1,,0) =,

i=1

2”(1)1‘:1,(1),>O

i=1

wn
—

I, is the ¢X q identity matrix. The optimisation can
then be solved efficiently by many SDP solvers
such as SeDuMi, a high quality package with
MATLAB interface.

3  Simulation study on IxB-NF-xB
signalling pathway model

3.1 Model simulation and E-optimal design result

To examine the applicability of this method in
parameter estimation of biological models, a
simplified IkB-NF-kB signal transduction pathway
network model was chosen for simulation study.
The reaction species and state variable definition is
given in Tab.1, in which the subscript “— t”
represents the mRNA corresponding to the former

“

protein and “ n” indicates the proteins inside
nucleus. The values of model parameters are listed
in Tab. 2 with units of pM for concentration and
minute for time. The constant term Source is taken

to be 1 pM in ODEs.

Tab. 1 IkB-NF-kB model states

states species states species
a1 1xBa 5 IKK
X2 NF-«B X7 NF-«B,
x3 IkBa-NF-«kB a3 IkBa,
x4 IKKIkBa Ty IkBa,~-NF-«kB,
x5 IKKIkBa-NF-«kB T10 IkBa

Tab. 2 IkB-NF-kB model parameter values

parameter  value  parameter  value  parameter  value

O 30 3 30 thr 0.006 78
3 6e—5 1o 6e—5 s 0.018
03 30 O 9.24e—5 bhy 0.012
0y 6e—5 bh2 0.99 Bho 11.1
05 1.221 Ohs 0.016 8 O 0.075
05 6e—5 Oy 1. 35 02 0.828
07 5.4 bhs 0.075 On 0.007 2
03 0.0048 Ors 0.244 8 04 0.244 2

A set of ordinary differential equations are
used to describe the system dynamics.

a1 =— 07 + 0) 1 + 0 x5 + 05 1 +
Oro s + Og 0 — O a0y 2 — Oy 0 x5

2o =— 0,2+ (6, + 0,) x5 + (6, + ) x5 +
Osc; — 0,200 30 — O3 00 24

23 =— (0, 4+ 0 x5 + Oy 25 + Oy 15 +
0, 1 2 — Oy 25 5

a1 =— (O 0D + 0, x5+ 01 x5 — 05 1 x4

25 =— (0, + 0+ 0 x5 + 0y 30y + O 3 36

x5 = (b5 + ) 2 + (0 + 0) 5 —

oy x5 — Ora 1 x5 — Ooy 203 x5
3'57 - 6712 - GSJG TL 61019 — Uy X7 Iy
-7.58 = 018 Xy — 619 x5 + 910 Xy — 69 X7 Xy
fﬂ - (010 + 922 ) Ty -+ 99 X7 Xy
x1p = by Source — O3 210 + 02 25

From our previous work of global sensitivity

181 a set of five parameters

analysis of this model
are identified to be the most sensitive ones and they
are thus used as the unknown parameters vector

0= [ 0s Oz Ors Os Os ]T

study. To improve the calculation efficiency, we

in the simulation

first rewrote the model into the format of (8) and
have obtained ¢=5, (=19, =6, m=[0, 0 0,
0 0, Oy ]*. The objective of OED is to

select the most informative state variables from the
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10 states to provide the best estimation accuracy
for the 5 unknown parameters.

In the simulation, the nominal values of the
0.0168
0.018 ], the initial conditions of the

five parameters are ° =[1.221 0. 99
0.244 8
states were taken from the equilibrium with a; =
0.1 uM as an activation input (IKK). A Gaussian
noise was introduced into the simulation data with
zero—mean and a standard deviation of 1% of the
“clean” signal at each time point. The sampling
points are taken between 0 and 360 minutes with 5
minutes being the sampling interval. It is also
assumed that each protein concentration ( state
variable) can be measured independently in the
experiment. The E—optimal design was calculated
over an uncertainty region around the nominal

1, and the state variables in descending

valuest'’
order of priority are presented as follows

X" =

[ X5 Xy X7 X 1o X X3 Ty X2 T ] .
This OED result indicates that, for the 5 unknown
parameters to be estimated, among the 10 state
variables, x; is the most informative measurement
variable, xy is the second informative one and so
on. When selecting the measurement set for
parameter estimation, we should consider those
states with higher priorities so as to obtain a higher
estimation accuracy.
3.2 Discussions on measurement set selection
I«kB-NF-«B

equation

From the signalling pathway

differential model, we wrote the
parameter matrix A and function ¢( + ) following
(8). Accordingly, the rank of the matrix Bin (12)
was computed by the convolution integration and
this calculation brings rank(B) =5. Following the
discussions in Section 2.2, when rank (C) =
rank(B) =5, max] (C) = 5, which means the
minimum number of the measurement states is 5 to
guarantee the structure identifiability in estimating
6. This result is intuitive since there are 5
( independent ) unknown parameters to be
estimated and all the state variables are measured

independently. Taking into account the E-optimal

experiment design result in X* , we can select the
top five states [ a5 x5 a7 a1 ] to form the
most suitable measurement set.
To investigate how the measurement set
selection may affect the parameter estimation, the
following four experiments taking different state
variables are implemented for comparison.
@ 3 top observables in X", [ x a7 3
@ 5 top observables in X", [x5 x a5 x
1‘10] H

@ 7 top observablesin X", [x5 x5 a5 x
10 X1 Ta:l H

@ 5 bottom observables in X*, [&1 x5 T
T .

In the first 3 experiments, the number of
observables is different in each case but the
measurement states are always selected from the
top following the ranking given in X*. In the last
experiment, the number of observables is taken as
the minimum number but a different set of
measurement variables were selected. The least-
square algorithm was used for parameter
estimation, in which the parameter searching space
in all simulations were set to be [0.010", 100" ],
and the initial searching point was randomly chosen
within the parameter space. Multi-shooting
strategy was employed to avoid the local minimum
problem. The estimated parameter values are given
in Tab.3. All

recovery of the parameter values, among them the

and 7

estimations bring reasonable

results using 5 optimal measurement
variables have less estimation errors than those
using 3 optimal observables or 5 non-optimal
observables.

Tab.3 Estimated parameters with different observables

0 O B O B
O] 1. 181 0. 955 0.0162 0.2361 0.017 4
@ 1. 209 0.978 0.0166 0.2419 0.017 8
©) 1. 209 0.978 0.0166 0.2428 0.017 8
@ 1.158 0.936 0.0159 0.2316 0.0170

Since the result of parameter estimation highly

relies on the efficiency of the optimisation

algorithm, it is perhaps not the best way to
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evaluate the effects of measurement set selection. 0.28

Confidence interval, instead, is a more reliable
assessment regarding each design and is worked
out from the FIM

In general, a

following  Cramer-Rao

inequality. smaller confidence
interval indicates an estimation with less errors and
vice versa. For the first 3 experiments, the
corresponding 95% confidence interval of several
parameter pairs are illustrated in Fig. 1 to Fig. 4,
in which “-+” stands for the nominal value of the
parameters. Two parameters are chosen in each

figure just to present the results in a 2D plane.

1.10 i| = = 3 observables

i| — 5 observables

-- T observables

1.05¢ |
« 1.00}
<+

0.95¢
0901

116 118 1.20 122 1.24 126 1.28
o

Fig. 1 Confidence interval of parameters (5 and 0;,

0.0176

— — 3 observables
—— 5 observables
| ----7 observables

0.0174+
0.0172+
0.0170+
< 0.0168
0.0166

0.0164 ¢
0.0162 +
0,0IG?

16 1.18 1.20 122 124 126 1.28

(3

Fig. 2 Confidence interval of parameters 05 and 0

It can be seen from Fig. 1 to Fig. 4 that, for
the case of three optimal observables, the 95%
confidence interval is much larger than that of the
five or seven optimal observables. Whereas, for
the experiments with five or more observables,
their 95% confidence intervals are very close to

each other, in fact, the ellipsoids are visually

— = 3 observables
—— 5 observables
0.27} SOUUURNS SO SO S ----7 observables

0.26}
< 025t

0.24¢

1.16 1.18 120 1.22 1.24 126 1.28
s

Fig. 3 Confidence interval of parameters ¢; and 0;;

0.0195

— = 3 observables
35 observables
| ==-- 7 observables

0.0190 ¢

0.0185}
< 0.0180}
0.0175¢

0.0170

0.0165 : . . . . :
1.16 1.18 120 122 124 126 1.28

[

Fig. 4 Confidence interval of parameters 0, and 05

indistinguishable in Fig.1 to Fig. 4. This result
suggests that when the number of measurement
variables used is less than the minimum number of
states to be measured, the estimation accuracy
could be poor even when the most informative state
variables are selected. Certain information about
the unknown parameters set 0 are missing when
using less than necessary measurements. On the
other hand, the estimation results won’t improve
much when more than necessary measurements are
taken into calculation. This is also validated by the
parameter estimation results in Tab. 3.

When selecting measurement set, it is also
important to take the more informative observables
rather than those containing less information. By
comparing the confidence interval ellipsoids in
Fig. 5, it can be clearly seen that the confidence
interval using the 5 optimal observables (top 5
states in X" ) is much smaller than the one using 5

non-optimal observables (bottom 5 states in X” ).
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—optimal observables
— —non-optimal observables

T T T T g e
H -

Fig.5 Comparison of confidence interval of parameters 0,

and 6, w. r.t. the optimal and non-optimal observables

The former has a smaller parameter estimation
error owing to the fact that the selected
measurement set contains more information about

the unknown parameters.

4 Conclusion

In this paper., the measurement set selection
problem was discussed where the number of
measurement variables and the priority of
observables can be determined through matrix

theory and model-based OED.

example, it was assumed that each state variable

In the studied

can be measured independently. Therefore, the
result on the minimum number of state variables to
be measured is quite intuitive. In some practical
problems, only the combination of states can be
measured rather than each individual state. In such
cases, the proposed method still applies since the
priority of any combined state measurements can
be extracted from the ranking or weights of each
Also,

number of states to be measured can still be

individual state variable. the minimum
calculated by the proposed method using matrix
theory. We are interested in exploring such
examples from biological or biochemical systems,
and further validate and develop the measurement
set selection strategy.
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