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The requirements of a microscope differ greatly from field to field and with the sample being studied.

Organic thin films are highly sensitive to environmental conditions being rapidly photobleached in the

presence of oxygen. In this paper we introduce the design of a low cost near field optical microscope suit-

able for environmentally controlled studies. We demonstrate that reducing ambient pressure to ~10 mTorr

(1.3 Pa) of nitrogen (a pressure accessible with a mechanical pump) significantly reduces photo-bleaching

on a typical experimental timescale. In addition, we introduce a novel non-optical feedback control mech-

anism combining a piezoelectric diaphragm with a tuning fork. The morphology of thin films of MEH-

PPV spin cast from the polymer dissolved in chlorobenzene is investigated. These films are shown to be

featureless on a 100 nm length scale in terms of topology, PL intensity and PL spectrum both before and

during photo-bleaching. As far as we are aware these are the first reported thin films of MEH-PPV grown

in which ~100 nm sized domains are absent. We believe that the ability to control environment will not

only allow better optical characterization of thin films but also opens up the possibility of the production

of novel two dimensional organic photonic crystals through a combination of mechanical disruption,

photo-bleaching and photo-conjugation of polymers.

Keywords: Near field optical microscopy; MEH-PPV; Organic thin films; Luminescent conju-

gated polymer; Controlled environment; Shear-force feedback.

INTRODUCTION

The performance of luminescent conjugated polymer

light emitting devices (PLEDs) is largely determined by

sample preparation. Seemingly minor modifications in pro-

cessing have been observed to have a profound effect on

both the resulting films’ optical properties2 and charge

transport (i.e. hole mobility) characteristics.3 Paradoxi-

cally, charge carrier mobility has been reported to vary

greatly in films of MEH-PPV (a soluble derivative of poly

(phenylenevinyle) having identical (far-field) photolumi-

nescence (PL) spectra.4 This suggests that local morphol-

ogy, in terms of sub-micron domains, may play an impor-

tant role in charge transport and photo-physics.

Efforts have been made to correlate PL and topogra-

phy on the nanometer scale making use of near-field scan-

ning optical microscopy (NSOM) and shear force micros-

copy. In thin films of MEH-PPV, Nguyen and coworkers5

observed that topographic features (bumps) and local PL

spectra were generally correlated for thin films of MEH-

PPV which had been prepared from polymer dissolved in

chlorobenzene (CB) and tetrahydrofuran (THF). A similar

set of experiments performed by Huser and coworkers6

with toluene as the solvent did not find any correlation be-

tween topography and PL intensity variations. In both
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cases, the characteristic feature size was ~20 nm in height

and a few hundreds of nanometers in diameter.

A difficulty faced in such studies is that organic films

are very sensitive to atmospheric oxygen and light. Al-

though quite stable when kept in the dark or in a nitrogen

environment, rapid photo-oxidization or photo-bleaching

occurs on continuous excitation under atmospheric condi-

tions. Local spectroscopic experiments are thus are not re-

peatable (i.e. the measurement modifies the film). While

nitrogen purging offers some improvement, it is generally

not sufficient to allow for an extensive investigation of ob-

served features. In confocal microscopy photo-bleaching is

reduced by depositing a protective layer of aluminum on

top of the film being studied.7 This is clearly not possible

for NSOM as the tip must approach the film surface. Our

earlier measurements from time-of-flight (TOF) have shown

that the MEH-PPV is stable under dynamic vacuum4 sug-

gesting that operating a NSOM under a controlled environ-

ment may solve these problems.

The idea of operating a NSOM under non-atmo-

spheric conditions is not a new idea. For example, in 1999

Gray and Hsu reported on their development of a variable

cryogenic temperature near-field scanning optical micro-

scope.8 In 2005, the development of a reflection mode

NSOM capable of operation in an ultrahigh vacuum envi-

ronment was reported9 Clearly the application for which a

microscope is to be used will determine its design. While

the physical studies for which the above microscopes were

designed require that they operate under extreme condi-

tions (e.g. ultra-high vacuum, cryogenic temperatures),

less stringent requirements in terms of expense, apply to

studies of organic thin films. In particular, for thin film

studies one must be able to:

– control and vary the pressure in a range from mTorr

to atmosphere,

– control and vary the partial pressures of the sample

environment,

– excite a limited region of the sample (i.e. illumina-

tion not collection mode),

– collect photo-luminescence at a high signal to noise

ratio (i.e. high numerical aperture collection optics).

In this paper we discuss the development of a con-

trolled environment near-field scanning optical micro-

scope that meets these requirements. In addition, the design

is simple, relatively low-cost, and user-friendly (in terms of

facilitating relatively easy changing of the optical fiber).

The microscope is applied to a study of MEH-PPV thin

films produced using the solvent chlorobenzene. In con-

trast to previously reports regarding thin films of MEH-

PPV,5,6 these films are topologically featureless, exhibiting

identical PL intensity and PL spectrum across the surface.

The placing of the NSOM in a controlled environment is

shown to significantly reduce photo-bleaching on the ex-

perimental time scale. However, the soft organic films are

shown to be susceptible to mechanical damage. The latter

effect may be useful in patterning of the conjugated sub-

strate.

MICROSCOPE DESIGN

A picture of the microscope is shown in Fig. 1. The

design of the microscope is comprised of three sub-sys-

tems, namely, mechanical and vacuum system, optical sys-

tem, and a novel non-optical feedback control mechanism

to monitor tip-sample separation. These three systems will

be discussed separately.

1. Mechanical Hardware

A schematic of the mechanical system is shown in

Fig. 2. The environmental chamber (17 cm � 17 cm � 21 cm

high) was composed of an Al base (13 mm thick) and a re-

movable Perspex (Lucite) cover (20 mm thick). A single

O-Ring (3 mm in diameter) inserted into a groove ma-

chined in the Al base seals the junction between the base

and cover. The metal base had five vacuum sealed feed-
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Fig. 1. Picture of the environmentally controlled near

field optical microscope. (left) Front view

(right) Side view.



throughs and one glass window. Two feedthroughs (Souriau)

were used for electrical connections. Two feedthroughs –

one connected to a gas supply and the other to a low cost

mechanical vacuum pump – allow the environment and

pressure within the chamber to be controlled dynamically.

The transparent cover allowed the approach of the tip to be

monitored by a microscope placed outside the chamber.

Plastic tubes (instead of metal) were used in order to mini-

mize the transmission of vibration from the mechanical

pump to the chamber. In the case of the experiments being

described here, the gas supply port was connected to a dry

nitrogen cylinder. Before observations, the chamber was

evacuated to 10 mTorr and flushed repeatedly with the dry

nitrogen gas to remove any residual oxygen. Experiments

were then performed after keeping the vacuum running for

few hours. The remaining feedthrough was used for an op-

tical fiber to couple light into the system.

Position control was accomplished using a combina-

tion of manual and motor mechanisms mounted on the

metal base inside the chamber. A small actuator drive stage

with large horizontal displacement (New Focus Picomotor

Actuator-translation stage-9065) was used to position the

sample to allow various regions to be scanned. For vertical

movement, a translation stage with both manual and DC

motor capability (New Focus Picomotor Actuator-transla-

tion stage 9065) was used to approach the tip to the sample.

Before closing the system, the manual part was used to ap-

proach the tip to within few hundreds �m of the sample.

Once the environmental conditions at which the experi-

ment was to be conducted had been reached, the actuator is

used to bring the tip to within 50 �m of the sample. An ad-

ditional piezoelectric driven stage (Melles Griot, 50 �m

Piezo range) was used to bring the sample and tip into shear

force range. Actual three-dimensional scanning of the tip

over the sample was performed using a segmented piezo-

electric tube (Stavely Sensors, EBL piezoceramic tube,

length = 0.5”, outside diameter = 0.25”, width = 0.02”).10

A total of fifteen electronic ports (grouped into two

feedthroughs) were used to connect wires from inside to

outside the chamber. Five wires were used to control the

segmented piezoelectric tube (1 for each of the 4 segments

+ 1 ground). Two wires were used to vary the sample re-

gions to be scanned. Four wires were used to control the

DC motor (New Focus) and piezo-electric adjustable stage

(Melles Griot) used for the final approach of the tip to the

sample surface. The remaining four wires were used to im-

plement the tip-sample control system.

The above mechanical system allowed for the envi-

ronmental control and both high and low pressure opera-

tion. In addition, all electrical components can be shut off

as the chamber is filled and flushed with nitrogen. This is

important since a short circuit may develop between the

high-voltage applied to the segmented piezoelectric tube

and the tuning fork. (At atmospheric pressure gases are in-

sulators. The few existing free charges collide with neutral

molecules before gaining sufficient energy from the elec-

tric field to ionize them. However, as the pressure is low-

ered, the mean free path of free charges (inversely propor-

tional to the number density of gas molecules) increases

and the free charges acquire sufficient energy from the

electric field to ionize other molecules resulting in electri-

cal breakdown. As pressure is furthered lowered (below

100 mTorr, 10 Pa), the mean free path exceeds the electrode

separation (i.e. between the segmented piezoelectric tube

and the tuning fork) and the free charges rarely collide with

gas molecules. Electrical breakdown thus does not occur

and the high voltage components can be turned on again.)

We note that operation in a sealed environment also

allows for the elimination of air currents resulting in in-

creased topographic resolution as has been previously ob-

served.11

2. Optical System

Three kinds of light pass freely through the chamber:

Controlled Environment Near-Field Optical Microscope J. Chin. Chem. Soc., Vol. 57, No. 3B, 2010 471

Fig. 2. Schematic diagram of the controlled environ-

ment shear force/near field scanning optical mi-

croscope.



the visible light that allows the sample and tip to be seen us-

ing a conventional microscope, the laser light used to excite

the sample, and the photoluminescence emitted by the sam-

ple. The use of a Perspex cover allowed the sample to be

clearly seen with visible light. Fig. 3 illustrates the optical

paths of the excitation light and the emitted photolumines-

cence both inside and outside of the chamber. Laser light

was first coupled into a commercial fiber and a commercial

fiber optic vacuum pressure feed-through (OZ Optics) was

used to couple the fiber into the vacuum chamber. A fiber

coupler (Thorlabs) transferred light into a short section of

chemically etched and aluminum coated fiber used for the

tip. This allows mounted fiber tips to be easily replaced.

Light passing through or emitted from the sample (sub-

strate + holder thickness = 3 mm), after passing through a

window (2 mm thick, Fig. 2), was collected from the bot-

tom of the vacuum chamber using a long working distance

(LWD) objective lens (M-40X, Nikon, N.A. 0.5, working

distance 10.1 mm). The 10.1 mm long working distance is

sufficient to allow focusing on the fiber tip. We note that

while it is possible to place an objective lens inside the en-

vironment chamber, experience has shown that repeated

cycling from high to low pressure greatly reduces the life-

time of the objective. A beam splitter directs some of the

light into a CCD for alignment while the remaining light

was directed into either a PMT (Hamamatsu R1104P) or

monochromator/CCD (Santa Barbara Instrument Group

ST-7Ei) for PL emission analysis. In the work described

here, an air-cooled Ar-ion laser (Ion laser technology, � =

488 nm) was coupled into the fiber. For PL detection, a 488

nm notch filter and a band pass filter were placed before the

PMT. After taking a topographical and optical image, a few

points on the sample surface were selected to record the lo-

cal PL spectra. Tips were prepared by chemical etching fol-

lowed by Al-coating rather than the conventional pulling

technique as the chemical etching technique allows for a

larger apex angle at the tip. (A larger apex angle allows for

better feedback stability and greater optical throughput.12)

3. Tip-sample separation control

A vital part of the NSOM system is the control of

sample-tip separation. In most experiments, a NSOM is op-

erated in constant separation mode using the so called

“shear force” to provide information on the tip-sample sep-

aration. This has the additional advantage of allowing a

topographical image to be obtained simultaneously with

the optical image. Generally this is accomplished by vibrat-

ing the fiber (using a piezo-electric material) and monitor-

ing the resonance frequency of the fiber as it approaches

the surface. A number of techniques have been proposed to

monitor this change in resonance frequency. The first method

applied in NSOM involves direct optical monitoring of the

tip.13,14 While possible, collection of the diffracted light is

somewhat troublesome when the NSOM is placed inside a

chamber.11 Non-optical methods are much more conve-

nient in this situation. The most common non-optical method

involves exciting a tuning fork at its resonance frequency

using a peizoelectric tube and then monitoring the vibra-

tion of the fiber tip.15,16 Unfortunately, replacing the fiber

tip assembly is not a simple procedure. An alternative

method, involving a single piezo-electric diaphragm17 or

bimorph18 for both excitation and detection, has been pro-

posed for shear force sensing. In this work, we employ a

hybrid of the two technologies in which a piezoelectric tun-

ing fork is attached to a piezoelectric diaphragm for signifi-

cantly greater ease of mounting. As shown in Fig. 4(a), the

optical fiber is glued onto a tuning fork which is in turn af-

fixed vertically onto the piezoelectric diaphragm. As shown

in Fig. 4(b), two wires are used for driving the piezoelectric

diaphragm which in turn drives the piezoelectric tuning

fork at its resonance frequency. The two wires attached to

the tuning fork detect changes in the piezotension-induced
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Fig. 3. Schematic diagram of the optical path inside

and outside the controlled environment cham-

ber. A long working distance (LWD) objective

lens is placed outside the chamber to collect

light from the sample. A notch filter and a band

pass filter (BP) prevent excitation light from

reaching the photomultiplier (PMT).



voltage as the tip approaches the surface. The signal was

fed into the lock-in amplifier along with the original excit-

ing sinusoid. The lock-in amplifier output was then fed into

a computer which controlled the vertical position of the fi-

ber (Fig. 2). Two screws allow the whole assembly to be

firmly mounted on, and easily demounted from, the end of

the piezoelectric tube. The Q of the whole assembly (with

tip) was 200-400.

MICROSCOPE CHARACTERIZATION

1. Sample Preparation

Poly(2-methoxy-5-(2�-ethylhexyloxy)-1,4-phenyl-

enevinylene) (MEH-PPV) was synthesized via the Gilch

method following in general the procedure reported by

Wudl and coworkers.19,20 The resulting polymer (Mw ~ 250

kD, poly-dispersity � = 6.5 as obtained from Gel perme-

ation chromatography (GPC) measurements) had a tetrahe-

dral defect density of ~ 2% as obtained from NMR mea-

surements. MEH-PPV was dissolved for several weeks in

chlorobenzene. During this process, the solution was kept

in a dark, inert nitrogen atmosphere. The polymer solution

was taken out of the nitrogen box and spin-cast onto pre-

cleaned glass slides to form a 60 nm thick MEH-PPV thin

film (as measured by a Dektak 3030 Surface Profiler). The

spin-coated film was then placed in an inert atmosphere for

six hours. The remaining solvent, along with any adsorbed

oxygen, was removed by storing in high vacuum for 12

hours. Throughout processing, neither the solution nor film

temperature was raised above room temperature.

2. Photo-bleaching

The key purpose for designing this microscope is to

allow experiments to be performed, i.e. spectra taken, re-

producibly without worrying about photobleaching. Fig. 5

compares the PL intensity as a function of time for an

MEH-PPV film in air and under low pressure dynamic vac-

uum (~10 mTorr nitrogen). The measurements are taken a

low power in the far field to eliminate any effect due to

probe-sample interaction. As seen in the figure, the PL in-

tensity drops rapidly for the exposed film dropping to 80%

within the first 50 s. In contrast, under dynamic vacuum,

the intensity remains above 97% for over two minutes, only

dropping to the 80% level after 5 minutes of continuous ex-

citation. Assuming five seconds are required to take a spec-

trum with a moderate quality spectrometer, it is clear that

the problem of photo-bleaching has been overcome on an

experimental time scale.

3. Probe effects

Fig. 6 highlights the decay in the integrated PL inten-
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Fig. 4. Schematic of the combination piezoelectric

tuning fork and piezoelectric diaphragm used

for reliable control of the sample-probe separa-

tion. (a) Side view (oscillation direction is in

the plane of the page) (b) Front view showing

the electrical connections.

Fig. 5. Comparison of the time evolution of PL inten-

sity under atmospheric conditions (lower trace)

with that under low pressure (~10 mTorr nitro-

gen, upper trace) conditions. Data is taken in

the far field at a single point in the film under

constant optical excitation at 488 nm.



sity over time with the probe in contact (shear force range)

and slightly out of contact with the sample surface. With

the probe withdrawn, the total PL intensity remains over

97% for over two minutes, similar to that seen in the far

field. However, with shear-force feedback turned on, the

situation is quite different with a 25% drop in intensity dur-

ing the first 120 seconds. This drop is much more than

would be expected from far field (Fig. 5) measurements.

The extreme dependence of this effect on the probe-sample

separation, suggests that in addition to photobleaching, an-

other mechanism may be contributing to the decrease in PL

intensity — either heat induced (due to the high light inten-

sity near fiber tip)21-23 or mechanical resulting from the

shear force interaction between tip and sample.

Fig. 7 (taken after recording Fig. 6) provides an in-

sight into a possible mechanism. This figure shows that not

only has PL intensity been reduced at point were the local

PL spectra were taken (Fig. 7(b)) from ~60 to ~20 but also

that there has been topological damage to the film’s surface

at the same point (Fig. 7(a)). In contrast to the flatness of

the rest of the scan area, the region surrounding the point

where the spectrum was taken have been disturbed, with a

small depression forming where the tip interacted with the

surface and a small hill has appearing to one side of this de-

pression. This feature is much more consistent with the me-

chanical mechanism than with an optical or thermal mecha-

nism. This interpretation was checked by moving to a dif-

ferent point on the film, turning the laser off to eliminate

heating, while maintaining tip in shear force contact. Thirty

minutes later the topographic and optical images around

the point were recorded. As seen in Fig. 8(a) topographic

damage is severe with a similar depression and hill. Corre-

sponding contrast is seen in the PL image (Fig. 8(b)). The

intensity drops from ~35 to ~20 units at the depression. The

magnitude of the intensity drop is consistent with the view

that the observed drop in signal results from mechanical

displacement of the film rather than a heating mechanism.

While it is tempting to contribute this decrease in sig-

nal to the reduced film thickness (~25%) at the point in

question, it is more likely the result of a reduced coupling

efficiency of light as the probe passes over the depression.

It is well known that there may be considerable coupling of

topography with the optical signal in NSOM images.24

Consider, for example, collection mode NSOM: As the tip

scans across the surface, what one measures is not the abso-

lute value of PL emitted from the sample but rather the frac-

tion collected by the tip. The latter is a convolution of the

emitted light and a spatially dependent coupling efficiency.

Above small mechanical depressions, this coupling effi-

ciency may be reduced, resulting in a reduction in collected
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Fig. 6. Comparison of the time evolution of PL inten-

sity with probe in contact and probe withdrawn

slightly out of shear-force feedback range.

Data is taken under low pressure (~10 mTorr

nitrogen) conditions at a single point in the film

under constant optical excitation at 488 nm.

Fig. 7. Topographic (a) and optical (b) image after tak-

ing the PL at one point (A in Fig. 4(a)) for 15

minutes. The scale bar in the lower right corner

of the figures is 1 �m in length. Scan direction

is from left to right first and from bottom to top

second.

Fig. 8. Topographic (a) and optical image (b) recorded

after the tapered fiber probe was maintained at

the polymer surface under shear force feedback

for 30 minutes in the absence of optical excita-

tion. Scan direction is from left to right first and

from bottom to top second.



light. The reverse is true in illumination mode. Thus we be-

lieve that the reduction in collected PL (relative to the un-

perturbed surface) is primarily due to a reduction in cou-

pling efficiency as the probe passes over the depression

rather than the reduction in film thickness. In any case, this

suggests that mechanical displacement of the film associ-

ated with shear force feedback plays the dominate role in

the decreased intensity observed.

4. Resolution

The resolution of a NSOM system is primarily de-

pendent on the processing of the optical fibers rather than

instrumentation. While the image in Fig. 7 suggests that the

optical resolution of the system exceeds 100 nm, the

FWHM of the feature in Fig. 7b is not sufficient to deter-

mine the exact spatial resolution due to coupling between

the spatial and optical signal channels.25 Exact calibration

of spatial resolution requires topographic flatness coupled

with well defined optical contrast on the nanometer scale.

In related work, using similar fibers and NSOM system op-

erating under atmospheric conditions, we clearly achieved

100 nm resolution demonstrated using a machined 100 nm

width slit.26

In summary, a low pressure condition of ~ 10 mTorr

(obtainable with a simple mechanical pump), is thus suffi-

cient to eliminate photo-damage. Fluorescent optical im-

ages with high spatial and spectral resolution can thus be

recorded. We note that the effect of the tip on the surface

could be eliminated by reducing the spectrum acquisition

time using a low dark count detector (i.e. a liquid nitrogen

cooled CCD), or taking measurements in constant height

mode (shear-force feedback off).

APPLICATION TO ORGANIC THIN FILM

CHARACTERIZATION

1. Topography

Fig. 9(a) presents the topographic image of the film as

observed using shear force microscopy taken at ~10 mTorr

under dynamic vacuum. The film is topographically smooth

and featureless over the 36 �m2 region with the maximum

height variation of 8 nm. In previous work, in films formed

from toluene, condensed MEH-PPV phases having a height

of 10-20 nm and diameters ranging from 20 to 1000 nm

were clearly visible.6 (Similar features have also been ob-

served for films formed from chlorobenzene and tetrahy-

drofuran.5) In the film investigated here there is no evi-

dence of any such domains. If such domains existed near

the surface, they should be clearly visible given the nano-

meter sensitivity of the shear force mechanism under low

pressure.11 It is possible that small domains (< 10 nm in

size) may lie below the surface of the 60 nm thin films and

thus not be visible.

2. Photoluminescence image

Fig. 9(b) presents the photoluminescence image of

same area of the MEH-PPV thin film whose topography

was shown in Fig. 9(a). The image is taken in at a pressure

of 10 mTorr of nitrogen. The film exhibits a uniform and

featureless optical PL image. There was no significant dif-

ference in optical images taken at the emission wave-

lengths of 590 nm and 630 nm. On a larger scale, similar re-

sults were obtained with a far-field confocal laser scanning

system (350 nm resolution). While contrast, in the form of

hot spots, has been seen in the PL images of thin films

formed from toluene,6 the absence of any such contrast in

the present work suggests that the present films are quite

uniform.

3. Local (near field) photoluminescence spectra

A final method of optically characterizing the films is

to look for local variations in PL spectra that would be av-

eraged out in the far field. Such local variations allow one

to identify areas of the film in which emission is dominated

by single chain components or interchain components.6

Fig. 10 presents the local spectra at four points (taken at
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Fig. 9. Topographic and optical images of drop-cast

films in a low pressure nitrogen environment.

(a) Topographic image (b) Optical image taken

at 590 nm. The scale bar in the lower right cor-

ner of the figures is 1 �m in length. Scan direc-

tion is from left to right first and from bottom to

top second (Optical Image from Ref. 28, Fig.

S3a).



points A, B, C, and D, as identified on Fig. 9(a)). Local PL

spectra taken at different locations on the sample were

identical not only with each other but also with conven-

tional spectral measurements taken in the far-field. This

suggests that a homogeneous distribution of optically active

morphological structures exists.

4. Effect of photobleaching on PL spectrum

The stability of the local PL spectrum of our films

was investigated using the same low pressure dynamic vac-

uum and film. Typical results are shown in Fig. 11. The lo-

cal PL spectrum, integrated over a 30 second interval, is

shown at 7 points in time (each separated by 2 minutes) for

a continuously optically excited sample. Two things are ob-

vious from the figure: there is a continuous decrease in in-

tegrated PL intensity over time, and there is no change in

the shape of the PL spectra – even after long exposure. Pre-

vious NSOM studies of MEH-PPV in air have shown that

photo-bleaching is accompanied by spectral change due to

either preferential quenching of single chain vs. aggregates

or longer segments vs. short segments.5,27 This is clearly

not the case in the films investigated here. Taken together,

the above measurements show that featureless films (in

terms of topology, PL intensity, PL spectrum on the scale of

50-100 nm) of MEH-PPV can be produced using chloro-

benzene as a solvent.

CONCLUSIONS

In summary, a low-cost controlled environment near-

field scanning optical microscope has been developed. Op-

eration in a nitrogen environment of a few mTorr is shown

to significantly reduce photo-bleaching in environmentally

sensitive organic films on the typical experimental time-

scale. In this paper, we have reported on the first featureless

films (in terms of topology, PL intensity and PL spectrum

on a ~50 nm length scale) of MEH-PPV to be produced. We

believe that this type of controlled environment micro-

scope should facilitate environment studies on response of

organic thin films to oxygen and vapor in the presence of

light.
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