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A parametric study on creep-fatigue strength of welded joints using the linear matching
method

Yevgen Gorash, Haofeng Chen∗

Department of Mechanical& Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, UK

Abstract

This paper presents a parametric study on creep-fatigue strength of the steel AISI type 316N(L) weldments of types 1 and 2
according to R5 Vol. 2/3 Procedure classification at 550◦C. The study is implemented using the Linear Matching Method(LMM)
and is based upon a latest developed creep-fatigue evaluation procedure considering time fraction rule for creep-damage assessment.
Parametric models of geometry and FE-meshes for both types of weldments are developed in this way, which allows variation of
parameters governing shape of the weld profile and loading conditions. Five configurations, characterised by individual sets of
parameters, and presenting different fabrication cases, are proposed. For each configuration, the total number of cycles to failure
N? in creep-fatigue conditions is assessed numerically for different loading cases including normalised bending momentM̃ and
dwell period∆t. The obtained set ofN? is extrapolated by the analytic function, which is dependent on M̃, ∆t and geometrical
parameters (α andβ). Proposed function forN? shows good agreement with numerical results obtained by theLMM. Thus, it is
used for the identification of Fatigue Strength Reduction Factors (FSRFs) intended for design purposes and dependent on∆t, α, β.
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1. Introduction

According to industrial experience, during the service life
of welded structures subjected to cyclic loading at high tem-
perature, welded joints are usually considered as the critical
locations of potential creep-fatigue failure. This is caused by
higher stress concentration, altered and non-uniform material
properties of weldments compared to the parent material of
the entire structure. Therefore, creep and fatigue characteris-
tics of welded joints are of a priority importance for long-term
integrity assessments and design of welded structures. There
were attempts to develop analytical tools [1] to estimate long-
term strength of welded joints under variable loading. How-
ever, residual life assessments are frequently complicated and
inaccurate because of complex material microstructure andtoo
many parameters affecting the strength of welded joints. They
include technological parameters of welding process and post-
weld heat treatment, accuracy of modelling of weldment ma-
terial microstructure, influence of residual stresses and distor-
tions, geometrical parameters of the shape of the weld pro-
file and non-welded root gaps, parameters of service conditions
such as temperature, mechanical loading and dwell period. In
view of the complexity of a unified model development for the
assessment of creep-fatigue strength, there are a limited number
of existing analytical approaches, but none of which are able to
account for all of weldment parameters mentioned above. Thus,
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long-term strength of weldments is a wide research area, which
requires some unified integral approach able to improve the life
prediction capability for welded joints. The most comprehen-
sive overviews of studies devoted to investigation of influence
of various parameters on fatigue life of welded joints are pre-
sented in [1, 2, 3]. However, the influence of creep on residual
life is not investigated in these works.

This paper presents further extension of a latest developed
approach [4], which includes a creep-fatigue evaluation proce-
dure considering time fraction rule for creep-damage assess-
ment and a recent revision of the Linear Matching Method
(LMM) to perform a cyclic creep assessment [5]. The appli-
cability of this approach to a creep-fatigue analysis was veri-
fied in [4] by the comparison of FEA/LMM predictions for an
AISI type 316N(L) steel cruciform weldment at 550◦C with ex-
periments by Bretherton et al. [6, 7, 8, 9] with the overall ob-
jective of identifying fatigue strength reduction factors(FSRF)
of austenitic weldments for further design applications. An
overview of previous modelling studies devoted to analysisand
simulation of these experiments [6, 7, 8, 9] is given in [4]. Gen-
erally they investigated an accuracy of residual life assessments
according to R5 creep-fatigue crack initiation procedure [10]
and its more recent revisions and potential improvements.

Effective and fast modelling of structural components with
complex microstructure and material behaviour such as weld-
ments under high-temperature and variable loading conditions
can be implemented by the application of FEA with direct anal-
ysis methods, which calculate the stabilised cyclic response of
structures with far less computational effort than full step-by-
step analysis. The most practical among these methods are Di-
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rect Cyclic Analysis [11, 12] and the LMM framework [13, 14].
The LMM is distinguished from the other simplified methods
by ensuring that both the equilibrium and compatibility aresat-
isfied at each stage [13, 14, 15, 16]. In addition to the shake-
down analysis method [15], the LMM has been extended be-
yond the range of most other direct methods by including the
evaluation of the ratchet limit [13, 14, 16] and steady-state
cyclic behaviour with creep-fatigue interaction [17, 18].The
LMM ABAQUS user subroutines [19] have been consolidated
by the R5 Procedure [10] research programme of EDF Energy
to the commercial standard, and are counted to be the method
most amenable to practical engineering applications involving
complicated thermo-mechanical load history [14, 16]. Follow-
ing this, the LMM was much improved both theoretically and
numerically [5] to include more accurate predictions of thesta-
bilised cyclic response of a structure under creep-fatiguecondi-
tions. This, in turn, allowed more accurate assessments of the
resulting cyclic and residual stresses, creep strain, plastic strain
range, ratchet strain and elastic follow-up factor. Finally, to aid
wider adoption of the LMM as an analysis tool for industry,
the development of an Abaqus/CAE plug-in with GUI has been
started [20]. For this purpose, the UMAT subroutine code has
been significantly updated [20] to allow use of multi-processors
for the FE-calculations of shakedown and ratchet limits.

The parametric study presented in this paper is based on the
research outcomes given in prior work [4] validated by match-
ing the basic experiments [6, 7, 8, 9]. These outcomes briefly
include: 1) more realistic modelling of a material behaviour
of the weld regions (including LCF and creep endurance) when
compared to previous studies; 2) a creep-fatigue evaluation pro-
cedure considering time fraction rule for creep-damage assess-
ment and a non-linear creep-fatigue interaction diagram; 3) ap-
plication of the recent revision of the LMM outlined in [5]. As
a result, the approach proposed in [4] provides the most accu-
rate numerical prediction of the experiments [6, 7, 8, 9] with
less conservatism when compared to previous works, particu-
larly to [18]. Thus, exactly the same assessment approach is
used in the current study and is applied to parametric studies
of the weldment geometry in order to assess the effect on the
predicted life.

Another outcome of the previous work [4] is the formulation
of an analytical function for the total number of cycles to fail-
ureN? in creep-fatigue conditions, which is dependent on nor-
malised bending moment̃M and dwell period∆t. This function
N?(M̃,∆t) matches the LMM predictions with reasonable ac-
curacy and is used for the investigation of∆t influence on the
FSRF. Therefore, the effect of creep on long-term strength of
type 2 dressed weldments (according to the classification inR5
Vol. 2/3 Procedure [10]) is taken in to account.

Apart from accounting for operational parameters (M̃ and
∆t), it is necessary to investigate the influence of a weld profile
geometry on creep-fatigue strength within a parametric study.
The introduction of geometrical parameters into the function
N?(M̃,∆t) allows the calculation of the FSRF as a continuous
function able to cover a variety of weld profile geometries in-
cluding type 1 and 2 in dressed, as-welded and intermediate
configurations.
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Figure 1: Designations of parameters fully describing weldprofile geometries
of types 1 and 2 weldments and applied bending moment, according to [6]

2. Parametric models of weldments

Referring to [1], generally creep-fatigue test results of weld-
ment specimens contain various levels of scatter, which is usu-
ally caused by geometric and processing variations such as part
fit-up, weld gap, variation in feed rates, travel rates, weldan-
gles, etc. This scatter complicates the interpretation of test re-
sults, and often makes it nearly impossible to differentiate the
effects of geometry, material non-uniformity, residual stress and
other factors. It has been indicated [1] that one of the most crit-
ical factors affecting the creep-fatigue life of a welded joint is
the consistency of the cross-sectional weld geometry. The sim-
plified weld profile is usually characterised by the following
geometric parameters [1]: plate thickness, effective weld throat
thickness, weld leg length, weld throat angle, and weld toe ra-
dius. In this case the weld profile is assumed to be circular for
type 1 and triangular for type 2 weldments with fillets on toes
connecting with parent plates. A vast quantity of research re-
viewed in [1, 2, 3] has been devoted to investigation of effects
produced by these parameters on residual life.

In the present study, the geometry of the weld profile for type
2 weldment is more completely specified in order to investigate
its as-welded, dressed and intermediate configurations. The ba-
sis of the parametric models shown in Fig. 1 are the sketches
of the weldment specimens produced by the Manual Metal Arc
(MMA) welding and reported in [6]. The type 1 weldment spec-
imen contains a double-sided V-butt weld, and the type 2 weld-
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ment specimen contains 2 symmetric double-sided T-butt cruci-
form fillet welds. The parent material for the manufacturingof
all specimens are continuous plates of widthw = 200 mm and
thicknessthk = 26 mm made of the steel type AISI 316N(L).
The typical division of the weld into three regions is adopted
here analogically to [4] including: parent material, weld metal
and heat-affected zone (HAZ). It should be noted that the HAZ
thickness is assumed to be 3mm based on the geometry given
in [6]. These 3 regions have different mechanical properties de-
scribed by the following material behaviour models and corre-
sponding constants at 550◦C in [4] for the FEA with the LMM:

• Elastic-perfectly-plastic (EPP) model for the design limits
as a result of shakedown analysis;

• Ramberg-Osgood (R-O) model for the plastic and total
strains under saturated cyclic conditions;

• S–N diagrams for the number of cycles to failure caused
by pure low-cycle fatigue (LCF);

• Power-law model in “time hardening” form for creep
strains during primary creep stage;

• Reverse power-law relation for the time to creep rupture
caused by creep relaxation during dwells;

• Non-linear diagrams for creep-fatigue damage interaction
for the estimation of total damage.

The profile geometry of type 2 weldment is comprehensively
characterised by one of two pairs of parameters: (1) indepen-
dent parameters (α andβ), which are not dependent on a plate
thicknessthk, and (2) technologically controlled parameters (R2

andD), which change their values with a change of plate thick-
nessthk. The advantage of the 1st couple is that it is not sensi-
tive to simple scale transformation of the weldment geometry.
The advantage of the 2nd couple is that it could be easily mea-
sured and controlled according to technological requirements.
Therefore, in parametric relations for strength of type 2 weld-
ments the independent parameters (α and β) should be used
with a capability of transformation into controlled parameters
(R2 andD). As illustrated in Fig. 1, angleα represents a local
geometrical non-uniformity caused by a deviation from the tan-
gent condition between parent plate and weld. Angleβ repre-
sents a global geometrical non-uniformity caused by deposition
of weld metal connecting the orthogonal part.

The relations between the two parameter pairs (α, β andR2,
D) for a type 2 weldment are formulated using basic trigono-
metric calculus in conjunction with the thickness of a plate
cross-sectionthk and the corresponding associated parameters
(h2 andd2) as illustrated in Fig. 1:
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Relations between independent parameterα and controlled
parameterδ for type 1 weldment are formulated using basic
trigonometric calculus in conjunction with the thickness of a
plate cross-sectionthkand the corresponding associated param-
eters (h1 andd1) as illustrated in Fig. 1:

h1 =
thk
13

and d1 =
thk− h1

2
tan 40◦. (4)

The direct transition is formulated as follows

δ = R1 (1− cosα) with R1 = d1/ sinα. (5)

The reverse transition is formulated as follows

α = arccos

(

R1 − δ
R1

)

with R1 =
δ

2
+

d2
1

2δ
. (6)

Since the proposed parameters for both types of weld profile
are fully convertible, they can be used to characterise different
scales of technological dressing of weldments by grinding such
as dressed, as-welded and intermediate. Thus, in order to re-
duce the computational costs, only five configurations of weld
profile, listed in Table 1, were chosen for parametric study from
among the possible parameter combinations. It should be noted
that configuration no. 2 of the type 2 weldment titled “typically
dressed” (characterised in Fig. 1 byh2 = 3 mm,R2 = 25 mm,
D = 59 mm,α = 7.745◦ andβ = 38.382◦) has been an object of
research in prior work [4]. Configuration no. 1 is characterised
by a tangent condition between parent plate and weld profile
contours. Configuration no. 5 presents the extreme variant of a
roughly manufactured welded joint without any dressing. Thus,
configurations no. 2, 3 and 4 correspond to some intermediate
variants of weldment fabrication between the scales “perfectly
dressed” and “coarsely as-welded”.

The FE-meshes for the 2D symmetric models of type 1 and
2 weldments are shown in Fig. 2 assuming plane strain condi-
tions. Each of the FE-meshes includes 5 separate areas with dif-
ferent material properties: 1) parent material, 2) HAZ, 3) weld
metal, 4) material without creep, 5) totally elastic material. In-
troduction of 2 additional material types (material without creep
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Table 1: Geometrical configurations of weld profiles for type1 and 2 weldments defined by the dimensions from Fig. 1

No. Configuration
Independent parameters Controlled parameters
α β α + β D R δ

1 Perfectly dressed 0 43.387 43.387 54.578 25 0
2 Typically dressed 7.745 38.382 46.127 59 25 0.682
3 Precisely as-welded 17.685 32.079 49.764 64 25 1.566
4 Typically as-welded 32.371 18.415 50.786 68 40 2.923
5 Coarsely as-welded 45.177 9.6541 54.831 72 60 4.189
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X
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parent material
heat-affected zoneweld metal

material without creep
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b
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550◦C

Figure 2: FE-meshes for type 1 (a) and type 2 (b) weldments with designation
of different materials, boundary conditions and mechanical loading

and totally elastic material) representing reduced sets ofparent
material properties in the location of bending moment appli-
cation avoids excessive stress concentrations in ratcheting and
creep analysis. Both FE-models use ABAQUS element type
CPE8R: 8-node biquadratic plane strain quadrilaterals with re-
duced integration. The FE-meshes for type 1 and type 2 welds
consist of 723 and 977 elements respectively.

Referring to the technical details [6, 7, 8, 9] the testing was
performed at 550±3◦C under fully-reversed 4-point bending
with total strain ranges∆εtot of 0.25, 0.3, 0.4, 0.6 or 1.0% in
the parent plate and hold periods∆t of 0, 1 or 5 hours using a
strain rate of 0.03%/s. For the purpose of shakedown and creep
analysis using LMM, the conversion from strain-controlledtest
conditions to force-controlled loading in the simulationsusing
bending momentM has been carried out and explained in [4].

Another effective analysis technique, successfully employed
in [4], was to apply the bending momentM through the linear
distribution of normal pressureP over the section of the plate
as illustrated in Fig. 2 with the area moment of inertia in regard
to horizontal axisX:

IX = w thk3/ 12, (7)

where the width of platew= 200 mm and the thickness of plate
thk = 26 mm. Therefore, the normal pressure is expressed in
terms of applied bending momentM and vertical coordinate
y of plate section assuming the coordinate origin in the mid-
surface:

P(y) = M y/ IX. (8)

3. Plastic bending of plates

3.1. Solution with Ramberg-Osgood model
The cyclic stress-strain properties of the steel AISI type

316N(L) parent material and associated weld and HAZ met-
als are presented in terms of the conventional Ramberg-Osgood
equation and implemented in the LMM code for the creep-
fatigue analysis [4]. The R-O model has the advantage that
it can be used to accurately represent the stress-strain curves of
metals that harden with plastic deformation, showing a smooth
elastic-plastic transition at high temperatures:

∆εtot

2
=
∆σ

2 Ē
+

(

∆σ

2 B

)1/β

, (9)

where∆εtot is the total strain range;∆σ is the equivalent stress
range in MPa;B andβ are plastic material constants;̄E is the
effective elastic modulus in MPa defined as

Ē =
3 E

2 (1+ ν)
, (10)

where the Young’s modulusE in MPa and the Poisson’s ratioν
are the uni-axial elastic material properties.

Although this relationship (9) is not explicitly solvable for
stress range∆σ, an approximate solution for∆σ can be found
using following recursive formulation:
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−
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2Ē
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with n ≥ 3, (11)

where the initial iteration is defined as
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)β

. (12)

For the case of plastic bending of a plate with a rectangu-
lar cross-section, i.e. as was used in the experimental studies
implemented by Bretherton et al. [6, 7, 8, 9], it is possible to
formulate an analytic relation using the R-O material modelfor
the applied bending momentM as proposed in [21]:
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where the maximum normal stress over a cross-section oredge-
of-plate stressσeop is defined based upon the plane strain as-
sumption using equivalent stressσ

σeop= 2σ/
√

3 = ∆σ/
√

3 (14)
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Table 2: The values of bending momentM obtained by Eqs (11-15) correspond-
ing to the values of total strain range∆εtot from experiments [6, 7, 8, 9]

∆εtot, % 1.0 0.6 0.4 0.3 0.25
M, kN ·m 10.068 7.924 6.368 5.347 4.739

and the ratio between plastic and elastic strains is formulated as

ε̃ =
εpl

εel
=

(

∆σ

2 B

)1/β 2 Ē
∆σ
. (15)

Other parameters of relation (13) include the material con-
stants of the R-O model (β, B, Ē) and the geometric parameters
of a plate (thk andw). For the case of reverse bending tests of
cruciform weldments at 550◦C implemented by Bretherton et
al. [6, 7, 8, 9], the total strain range∆εtot in outer fibre of parent
material plate remote from weld was controlled to correspond
to one of the required values. Knowledge of the stabilised cy-
cle parent material properties of the steel AISI type 316N(L)
described by the R-O model (9) reported in Table 1 of [4] and
geometric parameters of specimen (thk = 26 mm andw = 200
mm) allows the calculation of the values of bending moments
applied in experiments [6, 7, 8, 9] during the period of saturated
cyclic response, as reported in Table 2.

Referring to [21], Eq. (13) gives a smooth variation of mo-
ment with strain, which could be derived analytically employ-
ing recursive formulas (11) and (12) for∆σ dependent on∆εtot.
Applying the recursive approach, the dependence of total strain
range∆εtot on applied momentM could be obtained. Firstly,
Eq. (13) is inverted to recursive formula taking into account
Eq. (14) as follows:
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where the initial iteration is defined as
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M

2w
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(
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)2 3
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. (17)

Secondly, the conventional formulation of the R-O model (9)
is applied to evaluate the total strain range∆εtot correspond-
ing to the equivalent stress range obtained in Eqs (16) and (17).
Such a useful relation for∆εtot(M) allows the estimation of an
important control parameter of the LCF experiments, when the
geometry of specimen is known and plastic deformation of a
material is comprehensively described by the R-O model. Fig-
ure 3 illustrates the application of both approaches (direct by
Eqs (11-15) and inverted by Eqs (9, 16, 17)) to the parent ma-
terial plate used in the experiments [6, 7, 8, 9] with particular
dimensions of cross-section (thk = 26 mm andw = 200 mm)
and particular material properties described by the R-O model
(E = 160 GPa,ν = 0.3, B = 1741.96 MPa,β = 0.2996).
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Figure 3: Curve presentingM vs.∆εtot relationship for a parent plate with par-
ticular cross-section and described by particular R-O model material constants

3.2. Evaluation of limit load

It is desirable to convert the absolute values of bending mo-
mentM into values of normalised bending momentM̃, which
is suitable for the formulation of an analytic assessment model
for number of cycles to creep-fatigue failureN?, as proposed
in [4]. Referring to [4]M̃ is defined as the relation of variable
bending moment range∆M to shakedown limit∆Msh:

M̃ = ∆M/∆Msh, (18)

whereMsh is calledinitial yielding momentaccording to [21]
and corresponds to the structural conditions, when yielding is
just beginning at the edge of a beam.

The limit load and shakedown limit are evaluated with an
elastic-perfectly-plastic (EPP) model and a von Mises yield
condition using material properties corresponding to the satu-
rated cyclic plasticity response (E,σy andν) reported in Table 1
of [4] for the steel AISI type 316N(L) at 550◦C.

In the case of a rectangular cross-section plate in bending,as-
suming plane strain conditions (14),Msh is defined analytically
according to [21] as

Msh =
σeop yw thk2

6
with σeop y=

2
√

3
σy. (19)

The values of bending moment exceedingMsh with further
growth of plastic strain gradually approach the limit load value
or fully plastic moment, which is defined analytically [21] as

Mlim = σeop yw thk2/4. (20)

When M reaches the value ofMlim , it is assumed that the
plate cross-section is completely in plastic flow leading toa
plastic hingeand structural collapse. It should be noted that
the ratioMlim/Msh = 1.5 changes if the cross-sectional shape
is not rectangular or if a plate with rectangular cross-section
contains welds. Refer to [21] for other cases of a beam cross-
section. In particular case of type 1 or 2 weldments availabil-
ity, the value ofMlim remains the same, because theσy values
of weld associated materials are usually higher than theσy of
parent material. So plastic hinge usually happens in locations
remote from weld for uniformly distributed bending moment.
At least, this assumption is true for the steel AISI type 316N(L)
at 550◦C [4]. However, the valueMsh for welded plate usually
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Table 3: The values of maximum normalised bending momentM̃max obtained
numerically and corresponding to the configurations definedin Table 1

No. Configuration
M̃max

type 1 type 2
1 Perfectly dressed 1.50906 1.51593
2 Typically dressed 1.54644 1.55124
3 Precisely as-welded 1.74042 1.78075
4 Typically as-welded 2.02637 2.05556
5 Coarsely as-welded 2.32326 2.30184

decreases, since the yielding starts at lower values of applied
bending momentM comparing to whole plate, because of ma-
terial and geometry non-uniformity. In [4], this ratio was called
the maximum normalised bending moment

M̃max = ∆Mlim/∆Msh, (21)

and it had a value of 1.551 for Type 2 dressed weldment [4].
Therefore,M̃max is dependent on the particular geometric con-
figuration of the weldment, and therefore should be taken into
account in the formulation of parametric relations. Following
this assumption and Eqs (18) and (21) the normalised bending
moment is introduced in the following form:

M̃ =
M

Msh
=

M M̃max

Mlim
with Mlim =

σy w thk2

2
√

3
. (22)

Thus, the awareness of the parent material yield stressσy

of the steel AISI type 316N(L) reported in Table 1 of [4] and
geometrical parameters of specimen (thk = 26 andw = 200)
allows the calculation of the limit bending moment asMlim =

10.564 [kN · m] for the conditions of experiments [6, 7, 8, 9].
If the weld geometry is the same as in the cruciform weldment
specimens, theñMmax = 1.551 and the values of normalised
bending moment̃M in experiments [6, 7, 8, 9] are calculated as
reported in Table 4 of [4]. For other geometrical configurations
of weldments, the set of̃M will be slightly different, because
M̃max is individual for each geometrical configuration and were
estimated numerically using step-by-step FEA.

Table 3 lists the values of̃Mmax corresponding to the geo-
metric configurations defined in Table 1 for type 1 and 2 weld-
ments. These values are calculated by Eq. (21), which includes
the values ofMlim andMsh obtained numerically for each of the
10 configurations using step-by-step FEA with an EPP material
model. Using the values ofM from Table 2, the values of̃Mmax

reported in Table 3 and the value ofMlim = 10.564 [kN · m],
the values of normalised momentM̃ for each configuration and
each∆εtot can be calculated by applying Eq. (22). Thus, in or-
der to provide the values of̃M in fully analytical form, the val-
ues ofM̃max have to be defined as dependent on the geometric
parameters of the weld profile (α andβ).

The maximum normalised moment̃Mmax 1 for the type 1
weldment is dependent on angleα as follows

M̃max 1(α) = f1(α) [1 − H(α)] + f2(α) H(α) with

f1(α) = m1α +m2, f2(α) = m3α +m4 and

H(α) = 0.5+ 0.5 tanh

(

α −m5

m6

)

.

(23)
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Figure 4: Numerical values of maximum normalised momentM̃max from Ta-
ble 3 fitted by analytic approximations (23) and (24)

In notation (23)m1 = 0.00483 andm2 = 1.50906 are fit-
ting parameters of the first linear partf1(α); m3 = 0.02062 and
m4 = 1.37825 are fitting parameters of the second linear part
f2(α); m5 = 8.28436 is the value ofα corresponding to intersec-
tion of functionsf1(α) and f2(α) andm6 = 5 is the smoothing
parameter in an analytic approximationH(α) of the Heaviside
step function. The result of fitting thẽMmax 1 numerical values
from Table 3 by the analytic functioñMmax 1(α) in the form of
Eq. (23) is illustrated in Fig. 4.

Since the difference between values ofM̃max for types 1 and
2 corresponding to the same values ofα is relatively small, it
can be concluded that the angleα has a much more significant
impact on the maximum normalised momentM̃max 2 than the
angleβ for the type 2 weldment. Moreover, the effect ofβ on
M̃max 2 is limited to a quite narrow range of angles. Therefore,
an optimal way to account for angleβ is to fit the difference be-
tweenM̃max 2 andM̃max 1 from Table 3 with a Gaussian function
dependent onβ and produce a symmetric “bell” curve. In this
case, the maximum normalised momentM̃max for the types 1
and 2 weldments is dependent on anglesα andβ:

M̃max(α, β) = M̃max 1(α) +m7 exp
(

−m8
[

β −m9
]2
)

, (24)

wherem7 = 0.06768 is the height of the curve’s peak,m8 =

0.01437 controls the width of the “bell”, andm9 = 25.995 is
the position of the centre of the peak. To reduce the number of
variables in Eq. (24), the angles ofα andβ were chosen so that
their values formed a linear relation

β(α) = 44.1451− 0.76530α. (25)

Substitution of Eq. (25) into Eq. (24) means thatM̃max is a func-
tion of α only, as illustrated in Fig. 4.

Finally, taking Eq. (20) for the bending momentM and
Eq. (13) for the fully plastic momentMlim , which are both de-
pendent on material properties (E, ν, B, β, σy) and parameters
of plate cross-section (w and thk), and Eq. (24) for the max-
imum normalised moment̃Mmax dependent on parameters of
weld profile (α andβ), and using them in Eq. (22) results in
the fully parametric formulation of the normalised bendingmo-
ment dependent on total strain rangeM̃(∆εtot).

6



4. Structural integrity assessments

4.1. Numerical creep-fatigue evaluation

Since the principal goal of the research is the formulation
of parametric relations able to describe long-term structural in-
tegrity of weldments, the creep-fatigue strength of each ofthe
configurations from Table 1 should be evaluated in a wide range
of loading conditions. These conditions are presented by dif-
ferent combinations of∆εtot in the parent plate outer fibre, as a
characteristic of fatigue effects, and duration∆t of dwell period,
as a characteristic of creep effects. The set of∆εtot values used
are the same as in the experimental studies [6, 7, 8, 9], see Ta-
ble 2. The set of∆t values used are the same as in the previous
simulation study [4]: 0, 0.5, 1, 2, 5, 10, 100, 1000 and 10000
hours. Therefore, for each of the 10 configurations 45 creep-
fatigue evaluations must be performed with different values of
∆εtot and∆t. In order to estimate 450 values of number of cy-
cles to failureN?, 450 FE-simulations of the parametric models
shown in Fig. 2 have been carried out, using the LMM method,
material models and constants given in [4]. The outputs of the
LMM have been processed by the creep-fatigue procedure pro-
posed in [4] to evaluateN?, because it has been successfully
validated against experimental data [6, 7, 8, 9].

The concept of the proposed creep-fatigue evaluation proce-
dure, considering time fraction rule for creep-damage assess-
ment, is explained in detail in [4] and consists of 5 steps:

1. Estimation of saturated hysteresis loop using the LMM;
2. Estimation of fatigue damage using S-N diagrams;
3. Assessment of stress relaxation with elastic follow-up;
4. Estimation of creep damage using creep rupture curves;
5. Estimation of total damage using an interaction diagram.

Since the LMM requires lower computational effort com-
pared to other methods, it appears to be an effective tool for ex-
press analysis of a large number of different loading cases using
automation techniques. In order to perform 450 FE-simulations
in CAE-system ABAQUS and effectively retrieve 450 values of
N?, 3 analysis improvements using automation have been de-
veloped and applied in this parametric study.

The first automation technique is the embedding of all 5 steps
of the proposed creep-fatigue evaluation procedure in FOR-
TRAN code of user material subroutine UMAT containing the
implementation of the LMM and material models described in
[4]. For a detailed description of the numerical procedure for
the creep strain and flow stress estimation in the LMM code
refer to [5, 20], and for a general guide to the LMM imple-
mentation using the ABAQUS user subroutines refer to [19].
The creep-fatigue evaluation procedure is implemented once
the LMM has converged upon the stabilised cyclic behaviour.
The LMM analysis was performed using three load instances in
the cycle with creep dwell: 1) end of direct loading, 2) end of
dwell period, 3) end of reverse loading. This results in a sat-
urated hysteresis loop in terms of effective strain and effective
von Mises stress for each integration point in the FE-model,as
shown in Fig. 5 of [4]. The most important parameters (derived
in the 1st step of the procedure) for further creep-fatigue evalu-
ation are the total strain range∆εtot, stressσ1 at the beginning

of dwell period and the elastic follow-up factorZ. These pa-
rameters from each integration point with material properties
for elasticity, fatigue and creep, defined in the ABAQUS in-
put file, are transferred into a new subroutine. This subroutine
implements the next 4 steps of the procedure [4], which calcu-
lates and outputs the following parameters into ABAQUS result
ODB-file: time to creep rupturet∗, creep damage accumulated
per cycleωcr

1c, number of cycles to fatigue failureN∗, fatigue
damage accumulated per 1 cycleωf

1c, and the most important
– total number of cycles to failure in creep-fatigue conditions
N? obtained using the damage interaction diagram proposed by
Skelton and Gandy [22]. It should be noted that this evaluation
procedure was implemented in previous work [4] using Excel
spreadsheets only for the most critical locations, identified man-
ually as sites of∆εtot andσ1 maximum values.

An example of the creep-fatigue evaluation procedure out-
puts for the configuration no. 2 (typically dressed) of type 2
weldment corresponding to the loading case of∆εtot = 1% and
∆t = 5 hours is illustrated in Fig. 5. These results correspond
to the FEA contour plots of the LMM outputs (obtained in Step
1) including∆εtot, εcr, εeq

vM at the beginning of dwell andεeq
vM

at the end of dwell, explained in [4] and illustrated there in
Fig. 9. The critical location withN? = 279 cycles to failure
for this case is the corner element in the weld toe adjacent to
HAZ. The distribution of pure creep damageωcr with maxi-
mum valueωmax

cr = 0.294 at the critical location is shown in
Fig. 5a. The distribution of pure fatigue damageωf with max-
imum valueωmax

f = 0.375 at the critical location is shown in
Fig. 5b. The distribution of total damageωtot with maximum
valueωmax

tot = 0.669 at the critical location is shown in Fig. 5c.
It should be noted that value ofωmax

tot doesn’t exceed 1, because
the non-linear damage interaction diagram [22] is used in creep-
fatigue evaluation. The distribution ofN? with minimum value
N?min = 279 at the critical location is shown in Fig. 5d.

Exactly the same approach is used to demonstrate an example
of a type 1 weldment comprising geometry configuration no. 2
(typically dressed) and loading case of∆εtot = 1% and∆t =
5 hours. Figure 6 shows the outputs of FEA with the LMM,
while Fig. 6 shows the outputs of the creep-fatigue evaluation
procedure. The critical location withN? = 206 cycles to failure
for this type 1 is the same as for the type 2 weldment – the
corner element in the weld toe adjacent to HAZ.

The distribution of total strain range∆εtot, with maximum
value ∆εmax

tot = 1.58 % at the critical location, is shown in
Fig. 6a. The distribution of equivalent creep strainεcr at load
instance 2 with maximum valueεcr

max = 2.40953E-3 at the crit-
ical location is shown in Fig. 6b. The distribution of equiv-
alent von Mises stressσeq

vM at the beginning of dwell at load
instance 1 with valueσeq

1 = 334.743 MPa at the critical loca-
tion is shown in Fig. 6c. The distribution of equivalent von
Mises stressσeq

vM at the end of dwell at load instance 2 with
valueσeq

2 = 287.954 MPa at the critical location is shown in
Fig. 6d. Therefore, the drop of stress∆σeq = 46.789 MPa dur-
ing ∆t = 5 hours of dwell provides the value of elastic follow
up factorZ = 7.25 at the critical location.

The distribution of pure creep damageωcr with maximum
valueωmax

cr = 0.323 at the critical location is shown in Fig. 7a.
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The distribution of pure fatigue damageωf with maximum
valueωmax

f = 0.345 at the critical location is shown in Fig. 7b.
The distribution of total damageωtot with maximum value
ωmax

tot = 0.668 at the critical location is shown in Fig. 7c. The
distribution ofN? with minimum valueN?min = 206 at the criti-
cal location is shown in Fig. 7d.

In spite of the same critical location and almost equal values
of the accumulated total damage at failure for types 1 and 2
weldments, type 1 has less residual life caused by the increased
values of parameters characterising the hysteresis loop (∆εtot,
εcr, σeq

1 , σeq
2 andZ). Thus, one can conclude that geometrical

parameterβ has a significant influence onN?.
The second automation technique is the development of

a stand-alone application using Embarcadero Delphi inte-
grated development environment using Delphi programming
language. This simple application automatically carries out
the sequence of all 45 FE-simulations with differentM (cor-
responding to∆εtot according to Table 2) and∆t values for
each of the configurations from Table 1. This is implemented
by automated modification of the UMAT subroutine including
changing of loading values (M and∆t) and output file names,
therefore producing 45 ABAQUS result ODB-files.

The third automation technique is the development of a script
using ABAQUS Python Development Environment (Abaqus
PDE) using Python programming language [23]. This simple
script, when started in ABAQUS/CAE environment, appends
the list of 45 ABAQUS result ODB-files corresponding to one
configuration. For each of ODB-files, it reads the values ofN?

in each integration point, selects the integration point with min-
imum value ofN? over the FE-model, and writes the element
number, integration point number and material name to an out-
put text file. Therefore, the critical locations and corresponding
values ofN? are extracted automatically for all 450 configura-
tions and loading cases. Obtained results can be used for the
formulation of an analytic assessment model suitable for the
fast estimation ofN? for a variety of loading conditions (̃M and
∆t) and geometrical weld profile parameters (α andβ).

4.2. Analytic assessment model

For each of the 10 configurations from Table 1, the array of
assessment results consisting of 45 values ofN? correspond-
ing to particular values ofM̃ and∆t is fitted using the least
squares method by the following function proposed in the form
of power-law in [4]:

log
(

N?
)

= M̃−b(∆t)/ a (∆t) , (26)

where the fitting parameters dependent on dwell period∆t are

a (∆t) = a3 log(∆t + 1)3 + a2 log(∆t + 1)2

+a1 log(∆t + 1) + a0 and

b (∆t) = b3 log(∆t + 1)3 + b2 log(∆t + 1)2

+b1 log(∆t + 1) + b0,

(27)

and the independent fitting parameters are reported in Table(4).
In order to capture all configurations with an unified set of

fitting parameters, parametersa0, a1, a2, a3, b0, b1, b2, b3 from

Table 4 should be defined as dependent on geometric param-
etersα andβ using the least squares method. For the type 1
weldments these parameters are dependent on angleα only:

aT1
0 (α) = −4.175· 10−5α2 + 2.72 · 10−3α + 0.227,

aT1
1 (α) = −2.169· 10−3α + 1.21 · 10−1,

aT1
2 (α) = 1.907· 10−3α − 7.093· 10−2,

aT1
3 (α) = −5.352· 10−4α + 1.968· 10−2

bT1
0 (α) = −4.76324· 10−3α + 0.793,

bT1
1 (α) = 1.42 · 10−4α2 − 8.547· 10−3α + 0.4028,

bT1
2 (α) = 1.531· 10−3α − 0.3015,

bT1
3 (α) = −3.08 · 10−4α + 8.364· 10−2.

(28)

For the type 2 weldments these parameters include the de-
pendence on angleα from Eqs (28) and an additional effect of
angleβ as in the following form:

aT2
0 (α, β) = aT1

0 (α) + 3.179· 10−4 β + 2.355· 10−3,

aT2
1 (α, β) = aT1

1 (α) − 1.636· 10−3 β + 3.043· 10−2,

aT2
2 (α, β) = aT1

2 (α) + 1.636· 10−3 β − 3.043· 10−2,

aT2
3 (α, β) = aT1

3 (α) − 4.136· 10−4 β + 7.33 · 10−3,

bT2
0 (α, β) = bT1

0 (α) + 0.0291

−1.684· 10−4 exp(0.1622β),

bT2
1 (α, β) = bT1

1 (α) − 0.1789,

bT2
2 (α, β) = bT1

2 (α) + 0.1558,

bT2
3 (α, β) = bT1

3 (α) − 4.546· 10−2.

(29)

The verification of the fit quality using the the geometrical
parameters (α andβ) for the proposed relations (28) and (29)
is implemented by applying Eqs (26) and (27) to estimateN?.
Number of cycles to failureN? is estimated for each of the 10
configurations using the corresponding values of angles from
Table 1 and for the same load combinations as were used for the
LMM analyses. The results of the verification are illustrated on
diagrams in Fig. 8 for type 1 and Fig. 9 for type 2 weldments in
the form ofN? obtained with the analytic function (26) vs.N?

obtained with the LMM. Comparison of the analytic and nu-
mericN? for both types of weldments shows that the quality of
analytic predictions is quite close to the line of optimal match
and provides a uniform scatter of results through all variants
of loading conditions and configurations. The discrepancy be-
tween analytic predictions and numerical LMM outputs is gen-
erally found to be within the boundaries of an inaccuracy factor
equal to 2, which is allowable for engineering analysis, produc-
ing both conservative and non-conservative results. It should
be noted thatN? for type 1 weldments approximately belongs
to the range from 10 to 106 (see Fig. 8), while for type 2 weld-
ments it belongs to the range from 1 to 105 (see Fig. 9). This
observation shows that type 1 weldment is less creep-fatigue
resistant than type 2 weldment in the same ranges of loading
conditions and manufacturing variations. This fact could be ex-
plained by the significantly smaller amount of weld and parent
material used for manufacturing of type 1 weldment compared
to type 2 for the same plate thickness, resulting in less rigidity
and load-bearing capacity for type 1 weldment. Another im-
portant observation is that the average creep-fatigue resistivity
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Table 4: Sets of fitting parameters for Eq. (27) not dependenton∆t corresponding to configurations from Table 1

Conf.
Type 1 weldment Type 2 weldment

No. 1 No. 2 No. 3 No. 4 No. 5 No. 1 No. 2 No. 3 No. 4 No. 5
a0 0.22459 0.24922 0.26192 0.26872 0.265840.24646 0.25916 0.27454 0.27947 0.27007
a1 0.11759 0.11152 0.07864 0.05009 0.023840.07922 0.06958 0.06265 0.04906 0.03958
a2 -0.0733 -0.0606 -0.0281 -0.0074 0.01115-0.0383 -0.0196 -0.0131 -0.0052 -0.0035
a3 0.02034 0.01692 0.00765 0.00151 -0.00310.01101 0.00559 0.00352 0.00083 0.00032
b0 0.77482 0.76997 0.72078 0.63676 0.572240.59539 0.71263 0.72463 0.66209 0.60055
b1 0.39622 0.35439 0.29853 0.26549 0.310700.38309 0.16595 0.11959 0.09628 0.06507
b2 -0.3080 -0.2892 -0.2725 -0.2349 -0.2455-0.2711 -0.1207 -0.1161 -0.0924 -0.0630
b3 0.08473 0.08028 0.07884 0.07130 0.071340.06572 0.02987 0.03439 0.03033 0.02533

of configuration no. 1 (perfectly dressed) is relatively thehigh-
est among all configurations for both types of weldments. The
average resistivity is slightly reducing from one configuration
to another with the growth of angleα value as shown in Figs 8
and 9, resulting in the minimum averageN? for the configura-
tion no. 5 (coarsely as-welded).

Having defined the number of cycles to failureN? by
Eq. (26), the residual service life in years is therefore depen-
dent on the duration of 1 cycle, which consists of dwell period
∆t and relatively short time of deformation as follows:

L? = N?
[

∆t
365· 24

+
2 ∆εtot(M̃)

ε̇ (365· 24 · 60 · 60)

]

, (30)

whereε̇ = 0.03%/s is a strain rate according to experimental
conditions [6, 7, 8, 9], and the parametric analytical relations for
∆εtot(M̃) are derived in Sect. 3. These relations consist of Eqs
(9), (16) and (17) given in Sect. 3.1 to evaluate∆εtot(∆σ(M)),
whereM is replaced byM̃ andMlim using Eq. (22) andM̃max

using Eq. (24) given in Sect. 3.2. The aforementioned group
of equations for the relation∆εtot(M̃) include the geometrical
parameters of parent plate cross-section (thk andw) and weld
profile (α andβ), and parent plate material parameters (E, ν,
B, β, σy). This group of equations (9), (16), (17), (22) and
(24) replaces Eq. (35) from [4], which is suitable for only one
particular variant of weldment (type 2), weld profile (conf.2 –
typically dressed) and parent plate cross-section [6, 7, 8,9].

5. Parametric formulation of FSRF

Since the functionN?(M̃,∆t) proved its validity in the pre-
vious subsection, it can be applied for the fast creep-fatigue
assessments of new welded structures during the design stage.
However, it is generally hard to generate conclusions aboutthe
service conditions (̃M,∆t) required to estimate particular value
of N?. Loading conditions comprise a wide range of mechani-
cal loading described bỹM or corresponding range of∆εtot in
parent material adjacent to welded joints. Thus, introduction
of a Fatigue Strength Reduction Factor (FSRF) allows a wide
range of mechanical loading relevant to application area ofa
designed welded structure to be captured. The FSRF takes into
account the difference in behaviour of the weldment compared
to the parent material, considering weldments to be composed

of parent material. The FSRF is determined experimentally by
comparing the fatigue failure data of the welded specimen with
the fatigue curve derived from tests on the parent plate material.

The current approach in R5 Volume 2/3 Procedure [10] op-
erates with the fixed values of FSRF for 3 different types of
weldments taking into account dressed and as-welded variants,
which consider only the reduction of fatigue strength of weld-
ments compared to the parent material. For austenitic steel
weldments [24, 25], FSRF= 1.5 is prescribed for both vari-
ants of type 1, and FSRF= 1.5 for type 2 dressed and FSRF=
2.5 for as-welded variant. All this variety of the FSRFs is rep-
resentative of the reduction in fatigue endurance caused bythe
local strain rangeεtot enhancement in the weldment region due
to the material discontinuity and geometric strain concentration
effects. The introduction of FSRF as dependent on∆t in [4] us-
ing functionN?(M̃,∆t) for the case of type 2 dressed weldment
allowed the influence of creep to be taken into account, and
to provide the adjusted values of FSRF for the real operation
conditions, where creep-fatigue interaction takes place.There-
fore, the same approach [4] is applied to obtain∆t-dependent
FSRFs for a variety of geometrical configurations considering
additional dependence on parameters of weld profile (α andβ).

For this purpose Eq. (26) is converted analytically to the rela-
tion M̃(N?,∆t) and inserted into the group of relations∆εtot(M̃)
given in the end of previous subsection, resulting in the relation
∆εtot(N?,∆t, α, β). This relation describes the∆εtot in the par-
ent material remote from weldment corresponding to particular
values ofN? and∆t for a particular geometrical configuration
of weldment defined byα andβ. Thus, the FSRFs, appropri-
ate to varying values of∆t and equal values ofN?, are defined
by the relation between the S–N diagram corresponding to fa-
tigue failures of parent material plate and S–N diagrams fora
weldment defined byα andβ:

FSRF= ∆εpar
tot (N

?) /∆εtot(N?,∆t, α, β), (31)

where the S–N diagram for parent material plate is defined as

log
(

∆ε
par
tot

)

= p0 + p1 log(N∗) + p2 log(N∗)2
, (32)

with the following polynomial coefficients referring to [25]:
p0 = 2.2274,p1 = −0.94691 andp2 = 0.085943.

The FSRFs estimated by Eq. (31) corresponding to the range
of ∆t ∈

[

0...105
]

hours are defined in some particular range of
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Table 5: The values of FSRFs for pure fatigue for types 1 and 2 weldments
corresponding to the configurations from Table 1

Conf. 1 2 3 4 5
Type 1 1.146 1.444 2.062 2.896 3.308
Type 2 1.362 1.682 2.372 3.137 3.430

N?. This range is different for each value of∆t characterised
by reducing value of the averageN? with the growth of∆t. The
upper bound of theN? range is governed by the mathematical
upper limit of the S–N diagram∆εpar

tot (N
?) for parent material

plate, which is defined in [4] as log(N?max) = p1/(2 p2) = 5.51
or∆εpar

tot (105.51) = 0.416%. The lower bound of theN? range is
flexible and governed by∆t using the following function:

log
(

N?min

)

= 3− 0.5 log(∆t + 1) . (33)

Finally, for each of the 10 configurations from Table 1 the
FSRF is defined as a continuous function of∆t using Eq. (31)
using simple averaging procedure over a dynamic range ofN?

from log
(

N?min

)

to log
(

N?max
)

with step 0.01. The resultant de-
pendencies of FSRFs on∆t are illustrated in Fig. 10a for type
1 and in Fig. 10b for type 2 weldments with designation of dif-
ferent configurations. First of all, these figures show signifi-
cant enhancement of FSRF for dwells∆t > 0.1 hour caused
by creep, which is important for design applications. The ini-
tial values of FSRFs corresponding to pure fatigue conditions
(∆t = 0) are listed in Table 5 and could be compared with the
values recommended in R5 Volume 2/3 Procedure [10].

The FSRF for type 1 dressed weldments is within the range
1.146–1.444 depending on the quality of grinding, while R5
gives the value 1.5 (refer to [24, 25]), which is more conser-
vative. The FSRF for type 1 precisely welded joints with-
out grinding is within the range 1.444–2.062 depending on the
quality of welding, while R5 gives the same value 1.5, which is
non-conservative. The FSRF for type 1 coarsely welded joints
without any additional treatment may reach up to 3.308, while
R5 doesn’t give any value for this case.

The FSRF for type 2 dressed weldments is within the range
1.362–1.682 depending on the quality of grinding, while R5
gives the value 1.5, which approximately corresponds to aver-
age value for the obtained range. The FSRF for type 2 precisely
welded joints without grinding is within the range 1.682–2.372
depending on the quality of welding, while R5 gives the value
2.5, which is more conservative. The FSRF for type 2 coarsely
welded joints without any additional treatment may reach upto
3.43, while R5 doesn’t give any value for this case.

Using the proposed approach in this work, the values of FS-
RFs reported in Table 5 could be easily revised, if the ranges
of anglesα andβ characterising the quality of weldment are
modified. It should be noted that the FSRF of 1.682 for type 2
dressed weldment revises the value of 1.77 reported in previous
work [4], because the form of fitting functions (26) and (27) has
been improved in this work providing less conservatism inN?

predictions for pure fatigue.

6. Conclusions

The parametric study on creep-fatigue strength of the steel
AISI type 316N(L) weldments of types 1 and 2 according to
classification of R5 Vol. 2/3 Procedure [10] at 550◦C has been
implemented using the LMM. The study is based upon the latest
developed creep-fatigue evaluation procedure [4] considering
time fraction rule for creep-damage assessment. This procedure
has been successfully validated in [4] against experimental data
[6, 7, 8, 9] comprising reverse bending tests of cruciform weld-
ments for different combination of loading conditions (dwell
period∆t and normalised bending momentM̃).

Parametric models of geometry and FE-meshes for both
types of weldments shown in Figures 1 and 2 are developed
in a way which allows variation of parameters governing shape
of the weld profile (anglesα andβ) and loading conditions (∆t
andM̃). Five configurations, characterised by individual sets of
parameters listed in Table 1, are proposed to present different
fabrication cases and to characterise weldment manufacturing
quality. For each of configuration, the total number of cycles
to failure N? in creep-fatigue conditions is assessed numeri-
cally for different loading cases using several LMM-analysis
automation techniques described in Sect. 4.1. The obtainedset
of N? is extrapolated by the analytic function (26) dependent on
M̃ with fitting functions (27) dependent on∆t, which includes
the fitting parameters (28) and (29) dependent on geometrical
parameters (α andβ). The difference in analytical predictions
compared to LMM-based assessment is that the results for pure
fatigue are relatively conservative, but are still within the factor
of 2 allowed by engineering standards, as shown in in Fig. 11.

Proposed function (26) forN? shows good agreement with
numerical results obtained by the LMM in Figures 8 and 9 for
types 1 and 2 weldments correspondingly. The discrepancy be-
tween analytic predictions and numerical LMM outputs is gen-
erally found to be within the boundaries of an inaccuracy factor
equal to 2, which is allowable for engineering analysis, produc-
ing both conservative and non-conservative results. Therefore,
it is used for the identification of FSRFs intended for design
purposes and dependent on∆t and geometrical parameters (α
andβ). The proposed function for FSRFs (31) is applied to all
10 configuration from Table 1 characterised byα andβ in or-
der to obtain continuous dependencies on∆t, which are shown
in Figures 10a and 10b for types 1 and 2 weldments respec-
tively. Therefore, this approach improves upon existing design
techniques, e.g. in R5 Procedure [10], by considering the sig-
nificant influence of creep. Moreover, the obtained FSRFs for
pure fatigue revises the values recommended in R5 Procedure
[10] removing the redundant conservatism for type 1 dressed
weldments and type 2 undressed weldments.

Finally, in order to conclude about the global sensitivity of
creep-fatigue strength to a change of parameters, the set of
equations (26) – (29) forN?(M̃,∆t, α, β) are applied to create
a set of contour plots shown in Fig. 11. These plots charac-
terise the influence of geometric parameters (α andβ) on N?

at 4 different combinations of loading conditions (∆t and M̃)
for type 2 weldment. The global tendency is thatα generally
decreases the strength, whileβ generally increases it. However
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Figure 11: Contour plots for type 2 weldment characterisingthe influence of geometric parameters (α andβ) on number of cycles to failureN? for different
combinations of loading conditions (∆t andM̃) obtained with Eqs (26) – (29)

these effects are dependent on intensity of mechanical loadM̃
and length of dwell period∆t. The growth of∆t changes the
positive influence ofβ to negative and smoothes the negative
influence ofα on N?. The growth ofM̃ changes the negative
influence ofα to positive and smoothes the positive influence
of β on N?. The intensity of a parameter (α or β) influence is
characterised by the relative density of contour edges crossing
the corresponding axis. Since both parameters can not increase
their values simultaneously, only half of each plot, including
upper left, lower left and lower right corners, is of importance.
Figure 11 shows that the change of both loading parameters
(∆t andM̃) quite significantly changes the location of contour
edges, and therefore the contribution ofα andβ on N?.

Further research is devoted to parametric study on creep-
fatigue strength of Type 3 weldment, which includes the vari-
able distance between welded partsl as the 3rd geometric pa-
rameter along withα andβ. The function forN? should be
extended to account for the effect ofl based upon the numerical
results using LMM for different configurations. This will allow
consideration of the effect of l on the∆t-dependent FSRF for
Type 3 dressed and as-welded variants, which has the value of
3.2 for pure fatigue prescribed in R5 Vol. 2/3 Procedure [10].

Acknowledgements

The authors deeply appreciate the Engineering and Physical
Sciences Research Council (EPSRC) of the UK for the financial

support in the frames of research grant no. EP/G038880/1, the
University of Strathclyde for hosting during the course of this
work, and EDF Energy for the experimental data.

References

1. Lee, Y.-L., Barkey, M.E., Kang, H.-T..Metal Fatigue Analysis Hand-
book: Practical Problem-Solving Techniques for Computer-Aided Engi-
neering. Oxford: Butterworth-Heinemann; 2012.

2. Radaj, D., Sonsino, C.M., Fricke, W..Fatigue Assessment of Welded
Joints by Local Approaches. Cambridge: Woodhead Publishing Limited;
2nd ed.; 2006.

3. Łagoda, T.. Lifetime Estimation of Welded Joints. Berlin: Springer-
Verlag; 2008.

4. Gorash, Y., Chen, H.. Creep-fatigue life assessment
of cruciform weldments using the linear matching method.
Int J of Pressure Vessels& Piping 2012;:14 p., Manuscript
no. IPVP3257, in press, DOI: 10.1016/j.ijpvp.2012.12.003,
https://docs.google.com/open?id=0Bx4lucS7z9cpNC1ZX2V3REk0em8.

5. Chen, H.F., Chen, W., Ure, J.. Linear matching method on the evaluation
of cyclic behaviour with creep effect. In:Proc. ASME Pressure Vessels&
Piping Conf. (PVP2012). Toronto, Canada: ASME; 2012, July 15-19.

6. Bretherton, I., Knowles, G., Slater, I.J., Yellowlees, S.F.. The fatigue
and creep-fatigue behaviour of 26mm thick type 316L(N) welded cruci-
form joints at 550◦C: An interim report. Report for Nuclear Electric Ltd
no. R/NE/432; AEA Technology plc; Warrington, UK; 1998.

7. Bretherton, I., Knowles, G., Bate, S.K.. PC/AGR/5087: The fatigue
and creep-fatigue behaviour of welded cruciform joints: A second interim
report. Report for British Energy Generation Ltd no. AEAT-3406; AEA
Technology plc; Warrington, UK; 1999.

8. Bretherton, I., Budden, P.J.. Assessment of creep-fatigue endurance of
large cruciform weldments. In:Trans. 15th Int. Conf. on Structural Me-

13



chanics in Reactor Technology; SMiRT15 – F05/2. Seoul, Korea: IAS-
MiRT; 1999, p. 185–192.

9. Bretherton, I., Knowles, G., Hayes, J.-P., Bate, S.K., Austin, C.J..
PC/AGR/5087: Final report on the fatigue and creep-fatigue behaviour of
welded cruciform joints. Report for British Energy Generation Ltd no.
RJCB/RD01186/R01; Serco Assurance; Warrington, UK; 2004.

10. Ainsworth, R.A., editor.R5: An Assessment Procedure for the High Tem-
perature Response of Structures. Procedure R5: Issue 3. British Energy
Generation Ltd, Gloucester, UK; 2003.

11. Nguyen-Tajan, T.M.L., Pommier, B., Maitournam, H., Houari, M.,
Verger, L., Du, Z.Z., et al. Determination of the stabilizedresponse of
a structure undergoing cyclic thermal-mechanical loads bya direct cyclic
method. In: Proc. 16th Annual ABAQUS Users’ Conference. Munich,
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Version 6.10 ed.; 2010.

13. Ponter, A.R.S., Chen, H.F.. A minimum theorem for cyclicload in
excess of shakedown, with application to the evaluation of aratchet limit.
European Journal of Mechanics – A/Solids2001;20(4):539–553.

14. Chen, H.F., Ponter, A.R.S.. A method for the evaluation of a ratchet limit
and the amplitude of plastic strain for bodies subjected to cyclic loading.
European Journal of Mechanics – A/Solids2001;20(4):555–571.

15. Chen, H.F.. Lower and upper bound shakedown analysis of structures
with temperature-dependent yield stress.Journal of Pressure Vessel Tech-
nology2010;132(1):011202:1–8.

16. Chen, H.F., Ponter, A.R.S.. A direct method on the evaluation of ratchet
limit. Journal of Pressure Vessel Technology2010;132(4):041202:1–8.

17. Chen, H.F., Ponter, A.R.S.. Linear matching method on the evalua-
tion of plastic and creep behaviours for bodies subjected tocyclic thermal
and mechanical loading.International Journal for Numerical Methods in
Engineering2006;68(1):13–32.

18. Ponter, A.R.S., Chen, H.F.. Modeling of the behavior of awelded joint
subjected to reverse bending moment at high temperature.Journal of
Pressure Vessel Technology2007;129(2):254–261.

19. Tipping, D.J.. The Linear Matching Method: A Guide to theABAQUS
User Subroutines. Generic Report no. E/REP/BBGB/0017/GEN/07; Cen-
tral Engineering Support; British Energy Generation Ltd, Gloucester, UK;
2008.

20. Ure, J., Chen, H., Tipping, D.. Development and implementation of the
ABAQUS subroutines and plug-in for routine structural integrity assess-
ment using the Linear Matching Method. In:Proc. SIMULIA Regional
User Meeting. Manchester, UK: Dassault Systèmes Simulia Corp.; 2012,
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Nomenclature

Abbreviations
EPP Elastic-perfectly-plastic
FEA Finite Element Analysis
FSRF Fatigue strength reduction factor
HAZ Heat-affected zone
LCF Low-cycle fatigue
LMM Linear Matching Method

MMA Manual Metal Arc
R-O Ramberg-Osgood

Variables, Constants
σ stress
∆σ stress range
σeop edge-of-plate stress
ε strain
ε̇ strain rate
ε̃ ratio between plastic and elastic strains
∆ε strain range
ω damage parameter
t time
∆t dwell period
E Young’s (elasticity) modulus
Ē effective elastic modulus
µ Poisson’s ratio
N number of cycles
L residual life
Z elastic follow-up factor
M bending moment
M̃ normalised moment
∆M moment range
P normal pressure
IX area moment of inertia
w, thk width and thickness of plate
α, β angles governing the form of weld profile
R1,R2 radiuses of weld profile for type 1 and type

2 weldments correspondingly
δ height of weld profile in type 1 weldment
D distance between opposite weld surfaces in

type 2 weldment
h1, d1, h2, d2 auxiliary geometrical parameters for type

1 and type 2 weldments correspondingly
σy yield stress
B, β R-O model constants
p0, p1, p2 coefficients for parent material S-N curve
a0, ..., a3, b0, ..., b3 fitting parameters forN?

m1, ...,m9 fitting parameters for̃Mmax

Subscripts, Superscripts
0 corresponding to initial value
cr creep
f fatigue
el elastic
pl plastic
∗ corresponding to pure fatigue
? corresponding to creep-fatigue
vM von Mises
eq equivalent
tot total
1c per 1 cycle
lim corresponding to limit load
sh corresponding to shakedown limit
parent corresponding to parent material
T1 corresponding to type 1 weldment
T2 corresponding to type 2 weldment
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