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Abstract

We present results of molecular dynamics simulations of the interface between water and 2-

nitrophenyloctyl ether (NPOE). This system is analyzed in detail using a procedure to calculate 

intrinsic profiles of several important properties (density, radial distribution functions, hydrogen 

bonds, molecular orientation, self-diffusion). The interface was found to be molecularly sharp, 

but corrugated by thermal fluctuations. Using a method based on capillary wave theory, we have 

estimated the interfacial tension and obtained good agreement with values calculated from the 

virial route. The results were compared to simulations of the water/nitrobenzene interface. The 

presence of an alkyl chain in NPOE introduces an added degree of hydrophobicity, which causes 

an increase in the interfacial tension. Furthermore, interfacial NPOE molecules are less organized 

than nitrobenzene and show a distinct dynamic response. These results shed light on the observed 

differences between these two organic liquids in electrochemical studies.
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1. Introduction

Liquid/liquid interfaces have attracted a great deal of interest from the scientific 

community, mostly due to their presence in many chemical, physical and biological processes, 

such as phase transfer catalysis, liquid-liquid extraction and drug delivery
1
. One particular area of 

enormous importance is that of molecule transfer across water/organic interfaces
2
. A crucial 

aspect controlling the efficiency of these transfer processes is the choice of organic solvent. The 

most widely used solvents for this purpose are n-octanol, 1,2-dichloroethane and nitrobenzene 

(NB)
3
. The latter has a low miscibility with water and is simultaneously a good medium for ion 

solvation, due to its high dielectric constant. However, its use is limited by a relatively high 

toxicity. Recently, 2-nitrophenyloctyl ether (NPOE) has emerged as a promising alternative to the 

solvents mentioned above, and has shown great potential in ion-transfer studies across 

water/organic interfaces
4-6

. NPOE shares some of the advantages of NB, but toxic effects on 

human beings are not known to occur. Recently, our group has presented the first molecular 

simulation studies of NPOE, one focusing on the pure liquid properties and on ion solvation
7
, and 

another one examining the interactions of NPOE with dissolved water molecules
8
. However, in 

order to better understand molecule transfer processes at liquid/liquid interfaces, it is necessary to 

gather fundamental knowledge of the molecular-level properties of the interface itself. In this 

paper, we perform detailed molecular dynamics (MD) simulations of the water/NPOE interface 

with the aim of characterizing the local structure and dynamics of this interface. The results are 

compared to experimental data, where available, and to the properties of the water/nitrobenzene

interface.

Molecular simulations are able to provide molecular-level information about interfacial 

systems in a way that is not generally possible using experimental techniques
2
. This is caused 

mainly by the fluidity of the interface and by its buried nature, which precludes local 
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3

experimental probing. Thus, many studies have been devoted to simulations of liquid/liquid 

interfaces (see review by Benjamin
2
 and references therein). Some of the most insightful results 

regarding these systems have been obtained in early studies of water/organic interfaces. In 

particular, Linse
9
 and Benjamin

10
 conclusively established a picture of an interface that is 

relatively sharp on the molecular level, but is broadened by thermal fluctuations. They reached 

this conclusion by dividing the plane parallel to the interface in square meshes of different 

resolutions and then examining the variations in interfacial width
9,10

 and position
10

with degree of 

mesh refinement. This picture was confirmed in nearly all subsequent simulation studies of 

realistic liquid/liquid interfaces, and led to attempts to model these systems using capillary wave 

theory (CWT)
11,12

. Several authors
10,13-18

have attempted to calculate the interfacial tension based 

on the original form of CWT, but quantitative agreement with experiment and with values 

calculated from the simulations by alternative routes was not always obtained.

The presence of the interface induces anisotropies in structural and dynamic properties in 

the direction normal to the interfacial plane. The most obvious example of this is the density 

profile, which exhibits a transition from one bulk density to the other across a relatively narrow 

interfacial region
9,10,13-21

. Other properties have been calculated for several water/organic 

interfaces, including radial distributions functions (RDFs)
10,15,17,19

, hydrogen bonds
9,10,13-15,17-19,21

, 

molecular orientations
9,10,13-15,17-24

 and self-diffusion coefficients
10,13-15,23

. For this purpose, the 

simulation box is usually divided in slices parallel to the interfacial plane and properties are 

computed as a function of distance to the interface. In most cases, the interface is defined 

globally, i.e., it is assumed to be a plane located somewhere between the two bulk phases (the 

exact location of this plane is itself a subject of debate). Although it is able to shed some light 

into the way bulk phases are affected by the interface, this method of calculation is unable to 

provide a detailed description of the intrinsic properties of the interfacial system. The reason for 

this is that the liquid/liquid interface is normally not flat; instead, as discussed above, it is 
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4

corrugated by capillary waves. Thus, properties calculated relative to a global definition of the 

interface are subject to smoothing caused by fluctuations of the interfacial plane. 

In an effort to circumvent this problem, Fernandes et al.
16

 have proposed a procedure for 

decoupling fluctuations of the interfacial plane from those occurring perpendicularly to the 

interface. Using this method, they calculated density profiles that showed pronounced oscillations 

in the vicinity of the interface, which died out as the bulk phases were approached. Their method 

was later applied to other liquid/liquid interfaces
17,18

, but it was not conclusively established that 

true intrinsic profiles were obtained. Tarazona and Chacón
25,26

 developed a self-consistent 

method for the identification of the interfacial plane as the minimal-area surface going through a 

set of pivot atoms. They have applied it to calculate intrinsic density profiles of several 

liquid/vapor interfaces
25-28

. These advances have prompted Chowdhary and Ladanyi
29

 to adapt 

their procedure to water/alkane interfaces. As well as density profiles, those authors also 

computed molecular orientation profiles as a function of distance to the locally defined interface. 

In a recent paper
30

, we have modified the method of Fernandes et al.
16

 by extending it to atomic 

resolution. In so doing, we were able to obtain true intrinsic density profiles, as well as several 

other intrinsic properties, for the water/NB interface, thus conclusively establishing a detailed 

molecular-level description of this interface. In the present article, we apply the same 

methodology to the water/NPOE interface. The paper is organized as follows: Section 2 provides 

details of the theoretical methods employed, including potential models, simulation details, local 

interface definition, calculation of the interfacial tension, molecular orientations and diffusion 

coefficients; our results are presented and discussed in Section 3; conclusions are given in 

Section 4.

2. Computational Details

2.1 Potential Models
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5

Water molecules were represented by the SPC/E potential
31

with rigid bonds and angle. 

NPOE and NB were modeled by the OPLS all-atom transferable potential
32,33

 with rigid bonds, 

flexible angles and flexible dihedrals. The resulting potential energy is thus the sum of harmonic 

angle-bending terms, proper and improper torsional terms, Lennard-Jones and Coulomb 

electrostatic terms. Parameters for the organic liquids were reported in a previous publication
7
. A 

twin range cutoff scheme was employed to calculate the short-range dispersion interactions, with 

cutoff radii of 1.1 and 1.5 nm. A long-range dispersion correction was added to both energy and 

pressure. Long-range electrostatics were handled using the particle-mesh Ewald method
34

 with a 

real-space cutoff of 1.1 nm. A diagram depicting the molecular structure of NB and NPOE, 

including the nomenclature given to each atom type, is shown in Figure 1.

Figure 1

2.2 Simulation Methods

We have performed MD simulations in the NPzAT ensemble
20

 using GROMACS 3.3
35,36

. 

Equations of motion were integrated with the Verlet leapfrog algorithm
37

 and a time step of 2 fs. 

Constraints on the bond lengths were enforced using the LINCS algorithm
38

. The chosen

ensemble requires keeping the number of molecules (N), the temperature (T), the cross-sectional 

area (A) and the pressure normal to the interfacial plane (Pz) constant during the simulation run. 

The Nosé-Hoover thermostat
39,40

 was applied to control the temperature at 298 K, while the 

normal pressure was kept at 1 bar using the semi-isotropic form of the Parrinello-Rahman 

barostat
41

. The interfacial systems were constructed by first equilibrating two separate boxes 

containing the water and organic liquids with the same cross-sectional dimensions. These boxes 

were then fitted together leaving a small gap between them in order to avoid atomic overlap. A 

translation of the entire system in the direction perpendicular to the interface was performed until 

the center of mass of the organic phase was located in the middle of the simulation box. The 

resulting simulation box was a cuboid, elongated in the direction perpendicular to the interface 
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6

(Lz > Lx = Ly = L). Lx and Ly were kept fixed, keeping the cross-sectional area constant, while Lz

was allowed to fluctuate. Periodic boundary conditions were applied in all directions, giving rise 

to two separate interfaces. The system was equilibrated until Lz oscillated around a constant value

(typically after about 500 ps), and properties were then sampled during 5 ns. The sampling 

periods were divided into blocks of 200 ps for averaging purposes. We have performed a single 

simulation run for water/NB, with L = 3.5 nm and Lz ≈ 8.5 nm, which included 296 NB 

molecules and 1757 water molecules. For water/NPOE, we have performed simulation runs with 

L = 3.5 nm and L = 4.5 nm, in both cases with Lz ≈ 10 nm. The former included 180 NPOE 

molecules and 1757 waters, while the latter included 270 NPOE molecules and 3007 waters. All 

results shown here were observed to be independent of the value of L within the chosen range.

2.3 Global and Intrinsic Properties

Global properties of the interfacial system were calculated relative to the interface 

location defined in terms of a fixed coordinate frame. In other words, the interface was defined 

globally as a plane residing halfway between the bulk water and organic phases. Global 

properties were computed for each configuration of a given MD run using the following 

procedure. First, the z coordinates of each site were rescaled by a fixed amount so as to place the 

center of mass of the organic phase at the origin, thus eliminating artifacts due to possible 

translational drift of the interface
10

. Then, the simulation box was divided in the z direction into 

slabs of 0.04 nm width. Finally, the instantaneous value of the property of interest for each 

species was calculated in each slab. Averaging over the whole sampling period yields the global 

profile of the chosen property.

Intrinsic properties, on the contrary, were calculated relative to a local definition of the 

interfacial plane. More precisely, a procedure was employed to locate the limits (l) of each phase 

(water and organic) at the finest possible resolution, and properties in the opposite phase were 

then computed relative to this location. To achieve this, we divided the xy plane of the simulation 
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7

box in a square mesh of a pre-defined resolution, given by an integer parameter N. We are thus 

left with N
2

prisms of size z

yx L
N

L

N

L
×× . In each of these prisms, we have located the limits of 

the water (organic) phase, defined as the z coordinate of the water (organic) site that protruded 

furthest into the organic (water) phase but was still linked to the bulk water (organic) phase. This 

definition excludes overhangs and dissolved molecules from the calculation of the interface 

location. Once this was done, the chosen property was computed separately in each prism, by 

dividing it into 0.04 nm slabs, relative to these limits. Averaging over all prisms and all 

configurations of the sampling period yields the average profile of the property of interest at the 

chosen value of N.

The procedure described in the previous paragraph is similar to the one proposed by 

Fernandes et al.
16

 for the calculation of intrinsic density profiles. However, as demonstrated in 

our previous publication
30

, those authors employed a value of N that was too low to obtain true 

intrinsic profiles. Their choice was based on the derivation by Weeks
42

 of a capillary wave 

Hamiltonian, which imposed L/N > ξ, where ξ is the bulk correlation length of the fluid. This 

variable is normally taken to be of the order of molecular size, following the argument that 

“capillary waves” are no longer meaningful below molecular dimensions. However, Tarazona 

and Chacón
25-27

 have shown that one must go beyond the limits of applicability of CWT in order 

to calculate true intrinsic profiles. More precisely, the resolution for defining the interfacial plane 

should be close to the value of the Lennard-Jones site diameter (σ) of the liquid
26

. Only at this 

resolution is the profile free from the influence of thermal fluctuations of the interface position. 

Here, we adopt this criterion for choosing the optimal value of N in order to obtain true intrinsic 

profiles across the interface. Thus, for a given component (water, NB or NPOE), N was chosen 

such that L/N was approximately equal to the diameter of the largest atomic site of the opposite 

phase. The largest site of the SPC/E model is σ = 0.31656 nm and the largest site of both the NB 
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8

and NPOE models (according to the OPLS potential) is σ = 0.355 nm. Therefore, for L = 3.5 nm 

the water intrinsic profiles were obtained at N = 10 and the organic intrinsic profiles at N = 11, 

while for L = 4.5 nm the water and organic profiles were calculated at N = 13 and N = 14, 

respectively. Further details regarding the choice of N as well as the implementation of the 

calculation procedure were given in a previous publication
30

.

By determining the limits of each phase, it is also possible to calculate the interface 

position (h) and width (w) in each prism. This is done using the following equations:

2

OLWL

L

ll
h

+
= (1)

2

ORWR

R

ll
h

+
= (2)

OLWLL llw −= (3)

WRORR llw −= (4)

The subscripts L, R, W and O are for the left interface, the right interface, the water phase and 

the organic phase, respectively. One can then average h and w over all prisms and all sampled 

configurations to obtain distributions of these properties for the chosen value of N. A very similar 

procedure was previously employed by Linse
9
 and by Benjamin

10
 to demonstrate the sharp and 

corrugated nature of the water/organic interface.

2.4 Interfacial Tension

In this paper, the interfacial tension (γ) was calculated from the simulations using two 

independent methods. The first is the so-called virial route, which is based on a relationship 

between γ and the integral of the components of the pressure tensor over the whole simulation 

box. The expression for calculating the surface tension in our systems is
12

:








 +
−=

22

1 yyxx

zzzV

PP
PLγ (5)

Page 8 of 52

ACS Paragon Plus Environment

Submitted to The Journal of Physical Chemistry

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



9

where Pij is the ij component of the pressure tensor, the factor ½ is due to the presence of two 

interfaces and the angle brackets represent an ensemble average. The box length in the direction 

normal to the interface is included in the ensemble average since it is allowed to vary. This 

method permits the direct calculation of the interfacial tension from the simulated trajectory, but 

normally suffers from large statistical errors due to fluctuations of the pressure tensor 

components. However, as we will see below, our simulation runs are long enough to allow 

statistically meaningful results to be obtained.

The other method for calculating γ is based on CWT, more precisely on a relation between 

the interfacial tension and the width of the interface due to capillary wave fluctuations (wcw):









=

ξπγ
LTk

w ln
2 cw

B2

cw (6)

where kB is the Boltzmann constant. This expression neglects the effects of gravity, which is a 

reasonable assumption given the small length scale of the simulations
2
. In order to calculate γ, 

one must obtain an estimate of the capillary wave width and of the bulk correlation length. This is 

not straightforward. Several previous studies
10,13-18

 have computed the total width of the 

interface, usually from the mean square deviation of the interface position, and applied it directly 

in equation (6) together with rough estimates of ξ (ranging from 0.4 to 0.9 nm). The rather loose 

interpretation of these parameters has led to frequent disagreement with interfacial tensions 

calculated by the virial route.

An important breakthrough in the modeling of liquid/liquid interfaces by CWT has been 

put forward by Senapati and Berkowitz
43

. They have made use of a model proposed by Weeks
42

, 

which describes the interface as consisting of an intrinsic component, with an associated density 

profile and width, over which capillary waves are superimposed. Therefore, the total interfacial 

width (wt) may be defined as the squared sum of the capillary wave width and the intrinsic width 

(wi):
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10

2

cw

2

i

2

t www += (7)

In the original form of CWT, it was assumed that the interface was perfectly flat in the absence 

of capillary waves
11

. Thus, a step function was taken for the intrinsic density profile, implying an 

intrinsic width of zero. This has led to the direct use of wt in equation (6) in previous studies.

However, several theoretical and experimental studies have demonstrated the existence of a 

smooth intrinsic density profile with a finite width
25-30,44

.

It was shown by Sides et al.
45

 that equation (7) is exact when the total and intrinsic widths 

are obtained from the square root of the variance of the global and intrinsic density profiles, 

respectively. Here, we adopt their approach and compute wt and wi by fitting the global and 

intrinsic density profiles to appropriate mathematical expressions. More precisely, we fit the 

profiles to an error function form (the form used by Sides et al.
45

) with a superimposed 

exponentially damped oscillation
46

:

( ) ( )B

e

2
1 erf 1 exp cos

2 2

z
z A Bz z

Cw

ρ π
ρ

     
= + +            

 (8)

where ρ(z) is the z-dependent density, ρB is the equilibrium bulk density, we, A, B and C are 

fitting parameters. We have chosen to keep ρB fixed at the equilibrium value of the pure 

component densities in order to reduce the number of free parameters. Parameter we is related to 

the width of the profile, A controls the amplitude of the oscillations, B controls their decay rate 

and C is the oscillation period. Equation (8) is able to satisfactorily capture the oscillations 

present in the density profiles calculated at water/organic interfaces
30

. The variance of the profile 

is given by:

( )2 2

o e 1w w A= + (9)

Another advance introduced by Senapati and Berkowitz
43

 was a method to calculate the 

interfacial tension without the need for an assumed value of the bulk correlation length. This 
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11

method requires that at least two simulations with boxes of different cross-sectional areas be 

performed for the same system. The interfacial tension may then be calculated from:

( )
B

cw 2 2

cw, cw,

ln
2

I

III II

k T L

Lw w
γ

π

 
=  

−  
(10)

This equation is obtained by applying equation (6) to each simulation (denoted by subscripts I

and II), and combining both expressions to eliminate ξ (assuming that this value does not depend 

on the box size). The bulk correlation length itself can then be extracted from equation (6) using 

the value of γcw calculated in equation (10).

In summary, the procedure employed here to calculate the interfacial tension from CWT 

is as follows: i) perform two simulations with different values of L; ii) in each simulation,

calculate the global and intrinsic density profiles using the procedure described in section 2.3; iii) 

fit those profiles to equation (8) and calculate their variances from equation (9); iv) substitute the 

squared total width (variance of the global profile) and the squared intrinsic width (variance of 

the intrinsic profile) in equation (7) to compute the width due to capillary wave fluctuations; v) 

use wcw for each simulation in equation (10) to calculate the interfacial tension; vi) use equation 

(6) with the calculated value of γcw to obtain the bulk correlation length.

2.5 Hydrogen Bonds and Radial Distribution Functions

We have calculated global and intrinsic profiles for the number of hydrogen bonds per 

molecule formed between two different water molecules. Furthermore, profiles for bonds formed 

between hydrogen atoms of water and oxygen atoms in the nitro group of NB or NPOE were also 

computed, as these were observed to take place in these systems
8
. Two molecules were 

considered to form a hydrogen bond if their oxygen and hydrogen atoms were located at a 

distance below 0.24 nm (i.e., up to the first minimum of the O-H RDF in bulk water). 

Additionally, we have calculated a profile for the total number of neighbors in the first water 

coordination shell. This quantity was defined as the number of water molecules whose center of 
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12

mass was located within a radius of 0.35 nm (i.e., up to the first minimum of the O-O RDF in 

bulk water) from the central water molecule. The procedure for calculating these profiles was 

analogous to the one described in section 2.3, except that, in order to achieve better statistics,

slabs of 0.2 nm were used to divide the system in the z direction.

Radial distribution functions between pairs of atoms belonging to the same species were 

calculated as a function of distance to the interface using the same slices as for the hydrogen bond 

profiles. The RDF in slice i between a reference site a and another site b was built as a 

distribution of distances between all sites b (in all slices) and each of the reference sites a whose z

coordinates fall within the limits of slice i, normalized by the average number density of those 

sites in the bulk phase. RDFs between sites belonging to different species (cross-species RDFs) 

were also computed. These were calculated in the interfacial region alone, and were normalized 

by the average number density of reference sites in the bulk phase.

2.6 Molecular Orientation

The simplest procedure for studying the orientation of molecules at interfaces is based on 

calculating a profile for the average value of some characteristic angle as a function of distance to 

the interface. In most cases, the angle between the dipole vector of the water molecule and the 

interface normal was chosen as the characteristic angle
9,20,47

. A method that yields more 

information involves calculating the distribution of this characteristic angle in slices 

perpendicular to the interface. This method has been applied to the angle between the interface 

normal and the water dipole vector
10,13-15,17-21,23

, the water H-H vector
10

 and the water O-H 

vector
14,17,19,21

. In some studies, the procedure was also applied to organic molecules
9,10,13-15,17-19

. 

Naturally, by computing the distribution of the angle instead of simply its average value, a more 

detailed description of the water orientation was obtained. Nevertheless, as pointed out by 

Jedlovszky et al.
22

, monovariate distributions of angles are insufficient to completely describe the 

orientation of the water molecules. Instead, one must employ a bivariate angle distribution, which 
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13

uniquely defines the orientation of a given water molecule
22

. In this paper, we apply Jedlovszky’s 

method to determine the orientation of both water and organic molecules as a function of distance 

to the interface, using both a global and a local definition of the interfacial plane. The global and 

intrinsic bivariate angle distributions were calculated in slices of 0.2 nm width at several 

distances from the interfacial plane.

The angles chosen to describe the water molecule are those proposed by Jedlovszky et 

al.
22

: i) the angle between the interface normal and the water dipole vector (θ); ii) the angle 

between the vector normal to the molecular plane and the projection of the interface normal onto 

the plane perpendicular to the dipole vector (φ). Since one cannot distinguish between molecular 

normal vectors pointing in opposite directions, possible values of the angle φ fall in the range 

0º ≤ φ ≤ 90º. This choice of vectors implies that an isotropic orientation of water molecules leads 

to uniform distributions of φ and of cos(θ). A more detailed description of this procedure, 

together with a diagram depicting the chosen angles and vectors was presented in the original 

publication by Jedlosvsky et al.
22

.

The above method was applied to describe the orientation of the organic molecules as 

well. In this case, the chosen angles were: i) the angle between the interface normal and the 

vector bisecting the nitro group (θ); ii) the angle between the vector normal to the nitro group and 

the projection of the interface normal onto the plane perpendicular to the bisector vector (φ). This 

is analogous to applying the same definition used for water molecules to the nitro group of NB 

and NPOE. We have concentrated on the orientation of the nitro group because this group is the 

one involved in hydrogen bonds with water
8
. Furthermore, even though the full nitrobenzene 

orientation cannot strictly be defined by only two angles, the orientation of the nitro group 

provides a good estimate of the orientation of the entire NB molecule, since it is preferentially 

aligned with the aromatic plane
7
. Unfortunately, this is not the case for NPOE, since the 

orientation of this molecule possesses many more degrees of freedom. Indeed, there is no simple 
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14

way to uniquely define the orientation of the entire molecule, and thus we restrict ourselves to 

analyzing the orientation of the nitro group.

2.7 Self-diffusion Coefficients

The dynamic behavior of the interface was studied by calculating global and intrinsic 

profiles for the diffusion coefficients of water and organic molecules. The profiles were obtained

using the procedure described in section 2.3, but with 0.25 nm slices perpendicular to the z

direction. These slices are significantly thinner than those used in most previous studies, but the 

long simulation times used here allow for statistically meaningful results to be obtained. At the 

start of each sampling block, the reference time was set to zero and the positions of all sites were 

stored. In subsequent time steps, the squared displacement of each site relative to the reference 

position was computed. The displacement was assigned to the slice in which the molecule was 

located at the current time step. At the end of the sampling block, the mean-square displacement 

in each slice was calculated and the process was repeated until the end of the run. The diffusion 

coefficient in direction x, say, may then be obtained from a fit to the linear portion of the mean-

square displacement plotted as a function of time, following Einstein’s relation:

( ) ( ) tDxtx xii
t

20lim
2
=−

∞→
(11)

where Dx is the self-diffusion coefficient in the x direction, t is time and xi(t) is the x coordinate 

of particle i at time t. Due to the geometry of the simulation box, diffusion in the x and y

directions is indistinguishable. As such, our results are discussed in terms of the average value of 

these two coefficients, denoted Dxy, and the value corresponding to diffusion in the direction 

perpendicular to the interface, Dz.

3. Results and Discussion

3.1 The Interface
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15

The procedure described in section 2.2 yields a system with the organic phase in the 

center of the simulation box, separated from the water phase by two interfaces. This is 

exemplified in Figure 2, where we show a snapshot obtained after equilibrating the water/NPOE 

interface. By visual inspection of the snapshot, it can be observed that there is very little extent of 

mixing between the two phases. Nevertheless, the interface is not flat but seems to exhibit strong 

corrugations.

Figure 2

A more detailed picture of the interface can be obtained by examining the probability 

distributions of interfacial width and position as we refine the resolution of the interfacial plane, 

by increasing the value of the parameter N (see section 2.3). Results of such calculations for 

water/NPOE are shown in Figure 3. These results manifest the signature of a molecularly sharp 

interface that is broadened by thermal fluctuations. As we refine the resolution, we are able to 

capture more accurately the instantaneous position of the interfacial plane (the location halfway 

between the limits of each phase). The distribution in Figure 3a becomes significantly broader as 

we increase N, and at the molecular level (largest N shown) the position of the interfacial plane 

fluctuates widely. This shows clearly that the interfacial plane itself is significantly corrugated. 

The interfacial width distribution (Figure 3b), on the other hand, maintains approximately the 

same width, but its center shifts towards progressively lower values as N increases. In other 

words, the limits of each phase are moving closer to each other as the resolution is refined. This 

means that the interface is relatively sharp on the molecular level. The picture of the water/NPOE 

interface arising from our simulation results is qualitatively similar to the water/NB interface
14,30

, 

as well as to other water/organic interfaces
9,10,13,15,17-21

.

Figure 3

Once we have established that the interface is sharp and corrugated, it is possible to 

compute intrinsic interfacial properties by applying the procedure described in section 2.3, which 
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eliminates fluctuations of the interfacial plane from the averaging process. In Figure 4, we show 

the result of this procedure applied to the calculation of the density profile for water/NPOE. This 

intrinsic density profile (thick line) is compared to the corresponding global profile (thin line), 

obtained with the usual averaging procedure based on a fixed reference frame, as well as to the 

intrinsic water/NB profile in a simulation box with the same cross-section. It is immediately clear 

that the intrinsic profiles of both water and organic show strong density oscillations in the 

interfacial region. The global profiles, on the contrary, are much smoother – a small first peak is 

still visible in the NPOE profile, but is practically absent in the case of water. This smoothing of 

the density profile results from corrugations of the interfacial plane brought about by thermal 

fluctuations. Only by decoupling these from fluctuations perpendicular to the interface are we 

able to obtain the true intrinsic density profiles for the liquid/liquid interface. Indeed, we have 

shown
30

 that our water intrinsic density profiles were identical to those obtained by Chowdhary 

and Ladanyi
29

 using a different procedure.

Figure 4

In the intrinsic profiles for both water and organic, the density increases smoothly but 

steeply as we move from the opposite phase to the bulk region, until it reaches a first peak. The 

fact that the density rise is smooth, rather than a discontinuous step, suggests that the interface 

possesses some finite intrinsic width, in agreement with Weeks’ interpretation of CWT
42

. The 

existence of a finite intrinsic width for liquid/liquid interfaces has been argued previously
29,43,45

, 

and supports the procedure outlined in section 2.4 for calculation of the interfacial tension. 

Following this method, we have fitted the global and intrinsic density profiles obtained in our 

simulations to equation (8). From the fits, the variances of the profiles were computed, using 

equation (9), and then substituted in equation (7) to estimate the capillary wave contribution to 

the total interfacial width. Finally, the interfacial tension for water/NPOE was calculated from 
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equation (10) using data for two different values of L. The results of this procedure are shown in 

Table 1, together with values calculated previously
30

 for water/NB.

Table 1

In our previous publication
30

, we have shown that the procedure described above was able 

to yield interfacial tension values based on CWT that were consistent with direct calculations via 

the virial route – equation (5). The present results for the water/NPOE interface reinforce that 

claim. Indeed, the values of γ obtained from the two methods are in good agreement with each 

other. The simulated interfacial tension for water/NPOE is higher than for water/NB. This is to be 

expected, because NPOE is not as polar as NB. The former can be thought of as a combination of 

a nitrobenzene molecule and an octane chain (see Figure 1). This aliphatic chain renders the 

molecule more hydrophobic, and thus increases its tension at the interface with water. Another 

conclusion that can be drawn from Table 1 is that the intrinsic width of the water/NPOE interface 

is smaller than for water/NB, which is probably also related to the increased hydrophobicity of 

NPOE. The intrinsic width reflects the extent of molecular-level mixing between the two phases, 

and this should be smaller for a more hydrophobic organic liquid. Finally, it is also clear that the 

bulk correlation length is larger for NPOE than for NB. If one considers that ξ is closely related 

to the size of the organic molecule, a higher value for the bulkier NPOE is to be expected, and 

this is indeed the case. It should be noted, however, that the value of the bulk correlation length is 

somewhat sensitive to the details of the calculation procedure
30

.

The interfacial tension of NB calculated from the simulation with the OPLS potential is 

significantly higher than the experimental value
48

. A better estimate
30

 is provided by the model of 

Michael and Benjamin
14

, which was purposefully developed for nitrobenzene. Unfortunately, we 

have not been able to find experimental values for the water/NPOE interfacial tension in the 

available literature. Such values would provide a good test for the ability of the OPLS potential 

model to describe the interactions between water and NPOE. However, we have obtained a crude 
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estimate of γ for water/NPOE based on experimental data for the standard Gibbs energy of 

transfer of large ions across this interface
49

. Samec et al.
49

 argue that the Gibbs energy of transfer 

(∆G) of large ions will depend mostly on a term that is related to solvophobic interactions. This 

term may be approximated using a semi-empirical expression that is proportional to the 

interfacial tension
49,50

. Thus, we have used their value of ∆G for the largest ion studied (the 

tetrapentylammonium cation) and applied equations (11-13) of their paper to extract a value for 

the interfacial tension of water/NPOE. This “experimental” value, shown also in Table 1, lies 

significantly below the simulation values. This is reasonable, given that we should expect the 

OPLS model to overestimate γ  for water/NPOE in the same way as for water/NB. Indeed, it is 

reassuring that the difference between the interfacial tension of water/NPOE and water/NB in the 

simulation (3.3 mN/m if we use the CWT values) is similar to the difference between the

corresponding experimental values (3.5 mN/m). Therefore, even though the OPLS model cannot 

provide accurate quantitative results for the interfacial tension of these interfaces, it does describe 

the trend of increasing γ  from NB to NPOE, and thus qualitatively captures the physics of the 

system. Agreement between simulation and experiment could probably be improved by tuning 

the unlike-pair interactions between water and organic molecules, but this is beyond the scope of 

this work.

3.2 The Water Phase

The presence of an interface induces changes in the organization of both liquids in its 

vicinity. In this section, we make use of intrinsic profiles calculated for several properties to shed 

light on the structure and dynamics of the water phase in the interfacial region. A closer 

examination of the intrinsic water density profile in Figure 4 shows the presence of a prominent 

peak adjacent to the interface. Beyond this peak, the density oscillations are progressively 

dampened until the bulk phase is reached. The first peak reveals a strong density enhancement in 

the liquid layer in immediate contact with the organic phase. As we will see later, water 
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molecules in this first layer exhibit properties that are significantly different from bulk water. One 

striking conclusion that can be drawn from Figure 4 is that the water intrinsic profiles for the 

interfaces with NB and NPOE are extremely similar. This suggests that the structure of the water 

phase is not strongly affected by the nature of the opposite hydrophobic phase. Our subsequent 

analysis of other properties of water confirms this observation.

More detail about the structure of the water phase can be obtained by examining radial 

distribution functions calculated in slices parallel to the interfacial plane. Figure 5a shows RDFs 

between water oxygens (OW) based on a global definition of the interface, while Figure 5b shows 

the same RDFs but based on a locally defined interfacial plane. The curves that are furthest away 

from the interface are identical to those obtained in pure water simulations
31

. As the interface is 

approached, density depletions in the surrounding environment cause a progressive decrease in 

the limiting value of the RDF and in the second peak. However, the first peak, characteristic of 

hydrogen bonding, remains practically intact even very close to the organic phase. This is 

reinforced in the intrinsic RDFs, which show that even water molecules that are protruding far 

into NPOE (last slice in Figure 5b) maintain their H-bonding character. This observation points to 

a very resilient hydrogen-bonded network for the water phase, persisting even in close vicinity to 

the organic liquid. Other water-water RDFs (not shown) corroborate these observations.

Figure 5

A more quantitative measure of the hydrogen bonding network of water is depicted in 

Figure 6. Here we show profiles for the number of water-water H-bonds per water molecule (thin 

dashed line), the number of neighbors in the first coordination shell (thick dashed line), the ratio 

between these two quantities (dotted line) and the number of water-NPOE bonds per water 

molecule (thin line). The latter are formed between water hydrogens (HW) and oxygen atoms 

belonging to the nitro group (ON), as shown in our previous simulation study of water dissolved 

in NPOE and NB
8
. In the center of the water phase, the number of neighbors and number of H-
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bonds per molecule exhibit values that are characteristic of bulk water. Moving toward the 

organic phase causes a reduction in the number of water-water hydrogen bonds, but also a 

decrease in the total number of neighbors. The ratio of these two values, however, increases as 

the interface is approached, which means that each interfacial water molecule is forming more

hydrogen bonds per neighbor. Simultaneously, an increase in the number of bonds formed with 

NPOE is also evident close to the interface. These observations can be explained by an attempt 

on the part of water molecules to maximize the number of H-bonds, thus maintaining their 

network as intact as possible even in the vicinity of the hydrophobic interface.

Figure 6

The intrinsic H-bond profiles show the same trend as the global ones, but the former can 

be related to the intrinsic density profiles. Thus, we can see that changes in the degree of 

hydrogen bonding only start to become evident close to the first density peak; water molecules 

that form the second peak (and beyond) show bulk values. The density enhancement in the water 

layer adjacent to the interface contributes to maintain the integrity of the hydrogen-bonded 

network, compensating for the presence of the organic phase. Molecules in this interfacial layer 

form very few bonds with nitro-group oxygens, and these only start to become significant for 

water molecules that protrude into the organic phase. As we move into this phase, the statistics 

worsen, due to the reduced number of water molecules. Nevertheless, we can clearly identify an 

increase in strength of the water-water bonds as well as an increase in the number of water-NPOE 

bonds. The trends shown in Figure 6 are very similar to the behavior observed in the water/NB 

system
30

. The only minor difference is a somewhat higher value of water-NB bonds (relative to 

water-NPOE) for molecules deep within the organic phase, which can be attributed to the higher 

polarity of nitrobenzene.

The bivariate orientation profiles for water molecules, shown in Figures 7 and 8, further 

elucidate the effect of the interface on the structure of the water phase. To construct these figures, 
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we have calculated the probability of finding a molecule with a given pair of angles θ and φ in 

slices parallel to the interfacial plane. For each slice, areas colored in red correspond to higher 

angle-pair probabilities and blue areas correspond to lower probabilities. As expected based on 

the results discussed above, water molecules in the second density peak and in the bulk region 

adopt an isotropic orientation, typical of pure water (see last three slices in Figure 7 and last two 

slices in Figure 8). Molecules that form the first density peak, on the other hand, have a strong 

preference to arrange themselves with their molecular plane parallel to the interface (cos θ = 0; 

φ = 0º). This allows them to maximize the number of hydrogen bonds with existing neighbors, in 

tune with the results presented in Figure 6. Thus, it is clear that the interfacial water layer, in 

immediate contact with the organic phase, forms a protective “wall” in which the molecules are 

closely packed and arranged so as to maximize the degree of water-water hydrogen bonding.

Figure 7

Due to the corrugations of the interface, described above, some water “fingers” extend 

into the core of the organic phase. The edges of these fingers are composed of molecules that 

adopt a distinct preferential orientation: with their molecular plane perpendicular to the interface 

and with one hydrogen atom almost parallel to the interface normal (cos θ ≈ 0.5; φ = 90º). This 

peak is evident in the global orientation profile (first two slices in Figure 7), but is reduced to a 

ridge in the intrinsic profile. This confirms that we are not dealing with a layer of water 

molecules that are perpendicularly oriented, but rather with a restricted number of molecules –

those that are almost completely surrounded by organic molecules. Their preferred orientation 

allows for the formation of a hydrogen bond with another water molecule in the parallel layer, as 

pointed out by Jedlovszky et al.
22

, but also allows for the formation of a bond with the nitro 

group of NPOE, via the protruding hydrogen atom. In our previous work
30

, we have observed a 

very similar behavior at the water/NB interface and have presented a diagram illustrating these 

preferred orientations (see Figure 15 of Ref. 30), which have a pronounced effect on the 
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orientation of interfacial nitrobenzene molecules. As we will see below, this effect is also present 

for NPOE, but it is less pronounced.

Figure 8

We complete our analysis of the water phase by looking at the profiles for the self-

diffusion coefficient, shown in Figure 9. The diffusion parallel to the interface in the bulk region 

tends toward the value calculated independently for pure water
8
. However, this coefficient 

decreases slightly as we move toward the NPOE phase. NPOE molecules are much slower than 

water, and thus their presence induces a decrease in mobility of the latter. The decrease in the 

water diffusion coefficient is more pronounced for NPOE than for NB
30

, which can be explained 

by the much lower bulk diffusion coefficient of NPOE (by more than an order of magnitude)
7
.

Figure 9

A more interesting trend is observed in the diffusion perpendicular to the interface: the 

curve exhibits a minimum close to the interface. The decrease in perpendicular mobility of the 

interfacial water molecules is most likely due to the nature of the protective “wall” described 

above. In this interfacial layer, the density is higher, molecules are more closely packed and form 

stronger hydrogen bonds. Thus, it is reasonable to expect reduced motion in the direction normal 

to the interfacial plane (which would otherwise disrupt the tightly packed layer). As we move 

further into the organic phase, this effect dies out and the perpendicular diffusion coefficient 

increases again. This minimum in Dz has also been observed in our current and previous
30

simulations of the water/NB interface. Another aspect that is worth noticing is that the interface 

has a much stronger effect on Dz than on Dxy. Indeed, the former does not even reach bulk values

in the center of the water phase, which suggests that the simulation box is not large enough to 

eliminate all effects of the interface (as seen above, the effect is not so pronounced for

thermodynamic and structural properties, and bulk values are attained).

3.3 The Organic Phase
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The intrinsic density profiles for the organic liquids (see Figure 4) exhibit oscillations that 

persist much further into the bulk region than in the case of water. Furthermore, the NB profile is 

significantly different from that of NPOE. The first major difference is the higher density reached 

in the bulk phase by NB. The bulk density values of both organic liquids agree well with 

independent calculations from pure-component simulations
7
. The other main difference is that the 

density oscillations persist for longer distances in the case of NPOE, relative to NB. This can be 

explained by the fact that the NPOE molecule is much larger and bulkier than the NB molecule, 

and thus more sensitive to packing constraints
7
 imposed by the interface.

Figure 10

In Figure 10, we show the RDFs between carbon atoms attached to the nitro group (CN) of 

NB at several distances to the interface. Far from the interface, the curves are identical to those 

obtained in simulations of the pure component
7
. The depletion in density caused by the presence 

of the water phase brings about a decrease in the limiting value of the RDF and in the intensity of 

the main peak. However, one can notice a change of shape in the RDF as we approach the water 

phase. The features at shorter distances (shoulder at 0.4 nm and first part of the main peak, at 

0.55 nm) become more prominent in the region just prior to the interfacial layer (e.g., second and 

third slices in Figure 10b). The strengthening of these features is a reflection of NB molecules 

with an antiparallel alignment
51

.

Figure 11

Figure 12

More information regarding the molecular organization of nitrobenzene at the interface 

can be obtained from the bivariate orientation profiles (see Figures 11 and 12). From these plots, 

we can see that bulk molecules, as expected, adopt an isotropic orientation. As we move closer to 

the interface, we can distinguish a preference for orientation perpendicular to the interfacial plane 

(cos θ = -1 or 1). Molecules in this region, which are not in direct contact with water, are aligned 
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in an antiparallel fashion and are responsible for the enhancement of the short-distance features in 

the RDFs of Figure 10. Following this layer, we observe a peak at cos θ = 0 and φ = 90º, 

characteristic of molecules that are oriented with both their dipole and their normal vectors 

parallel to the interfacial plane. This orientation allows for the formation of a hydrogen bond 

between the oxygen atom of NB, which points to the water phase, and the hydrogen atom of 

water, which is protruding into the organic phase (see Figure 7). Finally, we encounter the 

tightly-packed interfacial layer (corresponding to the main peak in the density profile of Figure 

4), where the NB molecules are oriented with their molecular planes parallel to the interface (cos 

θ = 0 and φ = 0º). This detailed orientation profile is qualitatively similar to that obtained 

previously using a different model for NB
30

.

Figure 13

We move now to an analysis of the structure of interfacial NPOE, starting with the CN-CN

RDFs shown in Figure 13. Once again, the curves tend toward the pure component results
7
 in the 

bulk region. The NPOE molecule is more complex than NB, due to the presence of the alkyl 

chain, and thus it becomes more difficult to draw conclusions from the RDFs. Nevertheless, a 

region can be identified, particularly in the intrinsic profile of Figure 13b, where the shoulder at 

0.45 nm becomes more prominent. In analogy with nitrobenzene, this peak is probably due to 

molecules packed with their aromatic rings in an antiparallel arrangement. This type of 

arrangement can also be inferred from the bivariate orientation profiles, shown in Figures 14 and 

15. From these plots, it appears that the tendency for antiparallel alignment is even more 

pronounced than for NB. Indeed, we can identify three distinct regions (as opposed to only two 

for NB) where the NPOE nitro groups are oriented perpendicularly to the interfacial plane with 

their bisector vector pointing alternately to the water phase (cos θ = 1) and away from the water 

phase (cos θ = -1). This arrangement is present even in the bulk region (e.g., last slice of Figure 

Page 24 of 52

ACS Paragon Plus Environment

Submitted to The Journal of Physical Chemistry

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



25

15), which shows that structural anisotropies imposed by the interface are much more persistent 

in NPOE than in NB.

Figure 14

Figure 15

As we move closer to the interface, the preference for perpendicular orientation gradually 

shifts to a parallel arrangement (cos θ = 0 and φ = 0º), and this is the preferred orientation in the 

interfacial layer (corresponding to the main peak in the density profile). The peak at cos θ = 0 and 

φ = 90º observed for NB is reduced to a small ridge in the case of NPOE (e.g., third slice in 

Figure 14). Considering that this orientation, in which an oxygen atom points into the water 

phase, is the main responsible for water-organic hydrogen bonds, one can relate the less 

prominent peak to the reduced number of such bonds relative to NB (see Figure 6). This may be 

caused by steric interference from the alkyl chains, which does not favor this type of orientation. 

In general, one can say that interfacial NPOE molecules are less organized than NB, and this is 

most likely due to the presence of the hydrophobic chain in the former.

Finally, we look at the NB and NPOE diffusion coefficients, shown in Figures 16 and 17, 

respectively. The NB profiles for lateral diffusion show a small increase in the diffusion 

coefficient from bulk values as the interface is crossed. This effect of increased mobility caused 

by the contact with faster water molecules is analogous to that observed for water (Figure 9), but 

in the opposite direction. Also in analogy with water, the perpendicular diffusion coefficient of 

NB molecules shows a minimum in the vicinity of the interface. This minimum is caused by the 

reduced mobility in the close-packed interfacial layer. The two profiles converge as we move 

further into the bulk of the water phase.

Figure 16

The lateral diffusion profiles for NPOE (open symbols in Figure 17) show a similar trend 

to the NB results, except that the increase in mobility caused by the contact with water molecules 
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is much more substantial (up to a fourfold increase in Dxy). NPOE molecules in the bulk region 

experience significant entanglement of the alkyl chains, manifested by close contacts present in 

RDFs between NPOE chain atoms
7
. This entanglement is the main cause for the observed strong 

reduction of the pure-component diffusion coefficient (and concomitant increase in viscosity) of 

NPOE relative to NB
7
. As we approach the interface, contact with smaller and more mobile water 

molecules reduces this entanglement, increasing the diffusion coefficient. The influence of water 

is also felt in the case of NB, but less so, since nitrobenzene does not suffer from chain 

entanglement.

Figure 17

Dz, however, shows a remarkably different trend compared to NB: it increases 

monotonically and does not exhibit a minimum at the interface. This is despite the fact that a 

tightly packed layer of NPOE molecules also exists at the interface with water (see Figure 4). The 

observed trend is the result of two competing effects. On the one hand, the reduction of the chain 

entanglement caused by the contact with water (as discussed above) brings about a very strong 

increase in mobility. On the other hand, the effect of the interfacial layer is to reduce the degree 

of perpendicular mobility. In water and NB, which are more mobile, the latter effect is more 

significant than the former, and a minimum appears in the profiles for Dz. In NPOE, however, the 

first effect is much stronger, and the minimum is reduced to a region of constant Dz. In other 

words, the increase in mobility caused by the presence of water is sufficient to offset the effect of 

the density increase in the interfacial layer.

4. Conclusions

In this paper, we have presented for the first time simulation results of the interface 

between water and 2-nitrophenyloctyl ether. This organic solvent is very important in 

experimental electrochemical studies, and is seen as a promising alternative to traditional liquids 
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such as nitrobenzene. Our results show that the water/NPOE interface is molecularly sharp, but 

corrugated by capillary waves. These waves are suppressed in NPOE relative to NB, due to the 

higher degree of hydrophobicity of the former, causing an increase in the value of the interfacial 

tension. Values of this property calculated using capillary wave theory agree with estimates from 

the virial route, further validating the methodology proposed in our previous work
30

.

Our method of decoupling fluctuations of the interfacial plane from the averaging 

procedure allows for the calculation of intrinsic properties of the system. These provide a detailed 

picture of the molecular organization of the water and organic phases in the vicinity of the 

interface. In both liquids, our results reveal the presence of a tightly-packed interfacial layer, 

responsible for a density enhancement at the interface and composed of molecules oriented with 

their planes parallel to the interface. Water molecules organize themselves so as to maximize the 

extent of hydrogen bonding, be it with other water molecules or with the nitro groups of the 

organic molecules. The extent of water-organic bonds is reduced in NPOE, relative to NB, once 

more due to the increased hydrophobic character of the former. Despite the differences between 

the two solvents, the structure of the water phase is practically identical in both interfaces, 

suggesting that it does not depend strongly on the nature of the hydrophobic phase. This is in 

agreement with previous comparisons of different aqueous interfaces
24,29

.

The major difference between NPOE and NB is the presence of a long alkyl chain in the 

former. This imposes steric constraints that are responsible for the observed differences in 

molecular organization. Interfacial NPOE molecules tend to be less organized than NB 

molecules. In particular, the interfacial layer is not as clear-cut as in the case of nitrobenzene, and 

the preferred orientation that leads to water-organic hydrogen bonds is not as prominent. 

However, anisotropies imposed by the interface persist much further into the bulk region than for 

NB, which is due to the bulkier nature of the NPOE molecule. Entanglement between the alkyl 

chains in the bulk region causes a significant decrease in the diffusion coefficient of NPOE (more 
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than an order of magnitude lower than for NB). As the interface is approached, however, the 

contact with smaller and more mobile water molecules reduces this effect and increases the 

diffusion coefficient. This effect dominates the dynamic behavior of interfacial NPOE molecules 

and explains the differences observed relative to NB (where the entanglement effect is absent). It 

is likely that these differences in interfacial dynamic behavior will have a pronounced effect on 

the transfer of solutes across the interface with water
49

. Molecular dynamics simulations of ion 

transfer across the water/NB and water/NPOE interfaces are underway in our laboratory to shed 

light on this issue.
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Table 1 – Intrinsic interfacial widths, interfacial tensions and bulk correlation lengths for the 

studied interfaces.

water/NPOE water/NB

wi (nm)
 a

0.0428±0.0011 0.0487±0.0005

γexp (mN/m) 29
c

25.5
d

γV (mN/m)
b 45.5±3.8 39.7±3.3

γcw (mN/m)
 a 43.2 39.9

ξ (nm)
 a 0.99 0.58

a
– Calculated from CWT with fits to the density profiles.

b
– Calculated from the virial route.

c
– Estimated from values of ∆G of ion transfer taken from Ref. 49.

d
– Taken from Ref. 48.
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Figure 1. Schematic diagram depicting the molecular structure of NB (a) and NPOE (b), as well 

as the nomenclature used for each atom type.

Figure 2. Simulation snapshot of the water/NPOE interface with L=3.5 nm showing the shape of 

the simulation box and the coordinate axes. Oxygen atoms are shown in blue, carbon atoms in 

purple, nitrogen atoms in green and hydrogen atoms in white.

Figure 3. Probability distributions of the interface position (a) and width (b) for the water/NPOE 

interface with L=3.5 nm at different values of N (number of subdivisions on each side of a square 

mesh parallel to the interfacial plane – see text). The distributions are averaged over both 

interfaces.

Figure 4. Density profiles for the water/organic interfaces with L=3.5 nm: thin line – global 

water/NPOE profile; thick line – intrinsic water/NPOE profile; dashed line – intrinsic water/NB 

profile. The interface is at the origin, with water profiles on the left (negative values of z) and 

organic profiles on the right (positive values of z).

Figure 5. Global (a) and intrinsic (b) OW–OW radial distribution functions for the system 

water/NPOE with L=4.5 nm in slices perpendicular to the interface. The curves, from top to 

bottom, correspond to positions relative to the limit of the organic phase of: -0.9, -0.7, -0.5, -0.3, -

0.1, 0.1, 0.3, 0.5, 0.7 and 0.9 nm (positive values are within the organic phase). The last two 

slices of part b) are not shown because they are not statistically significant.

Figure 6. Global (a) and intrinsic (b) hydrogen bond profiles for the water/NPOE interface with 

L=4.5 nm: thick dashed line – number of molecules in the first coordination shell; thin dashed 

line – number of water-water hydrogen bonds per molecule; full line – proportion of bonded 

water molecules; dotted line – number of water-NPOE hydrogen bonds per water molecule. The 

water density profiles (thick lines) are superimposed for ease of visualization. Negative values 

are within the water phase.
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Figure 7. Global orientation distribution of water molecules for the system water/NPOE with 

L=3.5 nm calculated in slices perpendicular to the interface. Slices, from top to bottom, 

correspond to positions relative to the limit of the organic phase of: 0.9, 0.7, 0.5, 0.3, 0.1, -0.1, -

0.3, -0.5 and -0.7 nm (negative values are within the water phase). Red corresponds to high 

normalized probability and blue to low probability.

Figure 8. Intrinsic orientation distribution of water molecules for the system water/NPOE with 

L=3.5 nm calculated in slices perpendicular to the interface. Slices, from top to bottom, 

correspond to positions relative to the limit of the organic phase of: 0.3, 0.1, -0.1, -0.3, -0.5 and -

0.7 nm (slices closer to the organic phase are not statistically meaningful). Red corresponds to 

high normalized probability and blue to low probability.

Figure 9. Water diffusion coefficient profiles, global (a) and intrinsic (b), for the water/NPOE 

interface with L=4.5 nm. Open symbols are for diffusion in the plane of the interface, closed 

symbols are for diffusion perpendicular to the interface and the dashed line is the pure-

component diffusion coefficient. The water density profiles (thick lines) are superimposed for 

ease of visualization. Negative values are within the water phase.

Figure 10. Global (a) and intrinsic (b) CN–CN RDFs for the system water/NB with L=3.5 nm in 

slices perpendicular to the interface. The curves, from top to bottom, correspond to positions 

relative to the limit of the water phase of: 0.9, 0.7, 0.5, 0.3, 0.1, -0.1, -0.3, and -0.5 (the last three 

curves of part b) are not statistically meaningful). The first curves are highlighted with thick lines

for clarity.

Figure 11. Global orientation distributions of NB molecules for the system water/NB with L=3.5 

nm calculated in slices perpendicular to the interface. Slices, from top to bottom, correspond to 

positions relative to the limit of the organic phase of: -0.9, -0.7, -0.5, -0.3, -0.1, 0.1, 0.3, 0.5 and 

0.7 nm (positive values are within the organic phase). Red corresponds to high normalized 

probability and blue to low probability.
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Figure 12. Intrinsic orientation distributions of NB molecules for the system water/NB with 

L=3.5 nm calculated in slices perpendicular to the interface. Slices, from top to bottom, 

correspond to positions relative to the limit of the organic phase of: -0.1, 0.1, 0.3, 0.5, 0.7 and 0.9 

(slices closer to the water phase are not statistically meaningful). Red corresponds to high 

normalized probability and blue to low probability.

Figure 13. Global (a) and intrinsic (b) CN–CN RDFs for the system water/NPOE with L=4.5 nm 

in slices perpendicular to the interface. Lines and distances to the limit of the water phase are the 

same as in Figure 10.

Figure 14. Global orientation distributions of NPOE molecules for the system water/NPOE with

L=3.5 nm calculated in slices perpendicular to the interface. Colors and distances to the limit of 

the water phase are the same as in Figure 12.

Figure 15. Intrinsic orientation distributions of NPOE molecules for the system water/NPOE

with L=3.5 nm calculated in slices perpendicular to the interface. Colors and distances to the limit 

of the water phase are the same as in Figure 13.

Figure 16. NB diffusion coefficient profiles, global (a) and intrinsic (b) for the system water/NB 

at L=3.5 nm. Open symbols are for diffusion in the plane of the interface, closed symbols are for 

diffusion perpendicular to the interface and the dashed line is the pure-component diffusion 

coefficient. The organic density profiles (thick lines) are superimposed for ease of visualization. 

Positive values are within the organic phase.

Figure 17. NPOE diffusion coefficient profiles, global (a) and intrinsic (b) for the system 

water/NPOE at L=4.5 nm. Lines are the same as in Figure 16. Positive values are within the 

organic phase.
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Figure 1. Schematic diagram depicting the molecular structure of NB (a) and NPOE (b), as well 

as the nomenclature used for each atom type.
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Figure 2. Simulation snapshot of the water/NPOE interface with L=3.5 nm showing the shape of 

the simulation box and the coordinate axes. Oxygen atoms are shown in blue, carbon atoms in 

purple, nitrogen atoms in green and hydrogen atoms in white.
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Figure 3. Probability distributions of the interface position (a) and width (b) for the water/NPOE 

interface with L=3.5 nm at different values of N (number of subdivisions on each side of a square 

mesh used to define the interfacial plane – see text). The distributions are averaged over both 

interfaces.
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Figure 4. Density profiles for the water/organic interfaces with L=3.5 nm: thin line – global 

water/NPOE profile; thick line – intrinsic water/NPOE profile; dashed line – intrinsic water/NB 

profile. The interface is at the origin, with water profiles on the left (negative values of z) and 

organic profiles on the right (positive values of z).
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Figure 5. Global (a) and intrinsic (b) OW–OW radial distribution functions for the system 

water/NPOE with L=4.5 nm in slices perpendicular to the interface. The curves, from top to 

bottom, correspond to positions relative to the limit of the organic phase of: -0.9, -0.7, -0.5, -0.3, -

0.1, 0.1, 0.3, 0.5, 0.7 and 0.9 nm (positive values are within the organic phase). The last two 

slices of part b) are not shown because they are not statistically significant.
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Figure 6. Global (a) and intrinsic (b) hydrogen bond profiles for the water/NPOE interface with 

L=4.5 nm: thick dashed line – number of molecules in the first coordination shell; thin dashed 

line – number of water-water hydrogen bonds per molecule; full line – proportion of bonded 

water molecules; dotted line – number of water-NPOE hydrogen bonds per water molecule. The 

water density profiles (thick lines) are superimposed for ease of visualization. Negative values 

are within the water phase.
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Figure 7. Global orientation distribution of water molecules for the system water/NPOE with 

L=3.5 nm calculated in slices perpendicular to the interface. Slices, from top to bottom, 

correspond to positions relative to the limit of the organic phase of: 0.9, 0.7, 0.5, 0.3, 0.1, -0.1, -

0.3, -0.5 and -0.7 nm (negative values are within the water phase). Red corresponds to high 

normalized probability and blue to low probability.
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Figure 8. Intrinsic orientation distribution of water molecules for the system water/NPOE with 

L=3.5 nm calculated in slices perpendicular to the interface. Slices, from top to bottom, 

correspond to positions relative to the limit of the organic phase of: 0.3, 0.1, -0.1, -0.3, -0.5 and -

0.7 nm (slices closer to the organic phase are not statistically meaningful). Red corresponds to 

high normalized probability and blue to low probability.
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Figure 9. Water diffusion coefficient profiles, global (a) and intrinsic (b), for the water/NPOE 

interface with L=4.5 nm. Open symbols are for diffusion in the plane of the interface, closed 

symbols are for diffusion perpendicular to the interface and the dashed line is the pure-

component diffusion coefficient. The water density profiles (thick lines) are superimposed for 

ease of visualization. Negative values are within the water phase.
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Figure 10. Global (a) and intrinsic (b) CN–CN RDFs for the system water/NB with L=3.5 nm in 

slices perpendicular to the interface. The curves, from top to bottom, correspond to positions 

relative to the limit of the water phase of: 0.9, 0.7, 0.5, 0.3, 0.1, -0.1, -0.3, and -0.5 nm (the last 

three curves of part b) are not statistically meaningful). The first curves are highlighted with thick 

lines for clarity.
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Figure 11. Global orientation distributions of NB molecules for the system water/NB with L=3.5 

nm calculated in slices perpendicular to the interface. Slices, from top to bottom, correspond to 

positions relative to the limit of the organic phase of: -0.9, -0.7, -0.5, -0.3, -0.1, 0.1, 0.3, 0.5 and 

0.7 nm (positive values are within the organic phase). Red corresponds to high normalized 

probability and blue to low probability.
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Figure 12. Intrinsic orientation distributions of NB molecules for the system water/NB with 

L=3.5 nm calculated in slices perpendicular to the interface. Slices, from top to bottom, 

correspond to positions relative to the limit of the organic phase of: -0.1, 0.1, 0.3, 0.5, 0.7 and 0.9

nm (slices closer to the water phase are not statistically meaningful). Red corresponds to high 

normalized probability and blue to low probability.
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Figure 13. Global (a) and intrinsic (b) CN–CN RDFs for the system water/NPOE with L=4.5 nm 

in slices perpendicular to the interface. Lines and distances to the limit of the water phase are the 

same as in Figure 10.
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Figure 14. Global orientation distributions of NPOE molecules for the system water/NPOE with 

L=3.5 nm calculated in slices perpendicular to the interface. Colors and distances to the limit of 

the water phase are the same as in Figure 12.
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Figure 15. Intrinsic orientation distributions of NPOE molecules for the system water/NPOE 

with L=3.5 nm calculated in slices perpendicular to the interface. Colors and distances to the limit 

of the water phase are the same as in Figure 13.
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Figure 16. NB diffusion coefficient profiles, global (a) and intrinsic (b) for the system water/NB 

at L=3.5 nm. Open symbols are for diffusion in the plane of the interface, closed symbols are for 

diffusion perpendicular to the interface and the dashed line is the pure-component diffusion 

coefficient. The organic density profiles (thick lines) are superimposed for ease of visualization.

Positive values are within the organic phase.
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Figure 17. NPOE diffusion coefficient profiles, global (a) and intrinsic (b) for the system 

water/NPOE at L=4.5 nm. Lines are the same as in Figure 16. Positive values are within the 

organic phase.
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