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Abstract: 

 

Ion specific effects on the aqueous solubilities of biomolecules are relevant in 

many areas of biochemistry and life sciences. However, a general and well-supported 

molecular picture of the phenomena has not yet been established. In order to contribute to 

the understanding of the molecular-level interactions governing the behavior of 

biocompounds in aqueous saline environments, classical Molecular Dynamics 

simulations were performed for aqueous solutions of four amino acids (alanine, valine, 

isoleucine and 2-amino-decanoic acid), taken as model systems, in the presence of a 

series of inorganic salts. The MD results reported here provide support for a molecular 

picture of the salting-in/salting-out mechanism based on the presence/absence of 

interactions between the anions and the non-polar moieties of the aminoacids. These 

results are in good qualitative agreement with experimental solubilities and allow for a 

theoretical interpretation of the available data. 

 

 

 

 

 

 

 

 

 

Keywords: amino acids, solubilities, Hofmeister series, molecular interactions, 

molecular dynamics  

Page 2 of 33

ACS Paragon Plus Environment

Submitted to The Journal of Physical Chemistry

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



 

Introduction 

 

 Aqueous saline solutions are the natural environment of most biological 

molecules. The study of the effect of the nature and concentration of ions on the 

solubility of biomolecules is thus of utmost importance to understand the biochemistry of 

natural systems, develop medical and pharmaceutical responses to diseases induced by 

biochemical disorders 1-4, and improve the efficiency of biotechnological processes 5,6.  

Specific ion effects on biomolecule solubility were first identified from the ability 

of certain salts to precipitate proteins in aqueous solution 7, and are now recognized to be 

general and relevant in a wide range of biochemical processes 8-13. Although the rank of 

the relative influence of ions on the physico-chemical behavior of aqueous systems, 

known as the Hofmeister series 7, is well established, the underlying molecular 

mechanisms are far from being elucidated and consensual, in spite of the several 

explanations proposed during the last century 8,10,14-23. The interpretation originally 

proposed was based on the ability of a particular ion to alter the hydrogen-bond network 

of water 14,16,17,23. For some authors, there was little doubt that the main cause of the 

effect was how the bulk water structure was affected by ions that could be considered 

either “water structure makers” or “water structure breakers”. While salting-out inducing 

species, typically referred to as "kosmotropes", were believed to be able to "create" the 

bulk water structure, tending to precipitate proteins and prevent unfolding, salting-in 

inducing ions, classified as "chaotropes", would "destroy" it, leading to the solubilization 

and destabilization of folded macromolecules. Lately, the structure maker/breaker 

classical dogma has been severely questioned in face of new evidence 24-30 obtained in the 

past few years. Both experimental 24-27 and simulation studies 28-30 seem to indicate that 

the ions have little effect on the overall hydrogen bonding of water in bulk solution, and 

newer theories emphasizing the significant role of dispersion forces and involving the 

relative polarizabilities of the ions and the specific ion binding have been proposed 18,31. 

One of the most consistent theories to understand the effect of salts on the aqueous 

solubility of molecules was suggested by Zhang et al. 10,15,19 to describe specific ion 

effects on the solubility of poly(N-isopropylacrylamide) in water. They claim that the 

Page 3 of 33

ACS Paragon Plus Environment

Submitted to The Journal of Physical Chemistry

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



Hofmeister effects of salts on the solubilities of macromolecules depend on direct 

interactions of the ions with the solutes (macromolecules) and with water molecules in 

the first hydration shell of the solutes. This theory was recently successfully extended by 

us to the interpretation of the solubility of charged molecules in aqueous solutions of 

inorganic salts or amino acids 32-35.  

The current interest in the Hofmeister series and its effects is evident from the 

explosion of publications on this subject 24-30. Undoubtfully, long-held classical ideas 

about changes in bulk water structure are progressively being overturned as new data 

flurries. Nevertheless, the lack of a universal molecular picture to explain this 

phenomenon makes it consensual that further research on this matter is mandatory.  

Besides their commercial and biochemical relevance, amino acids are the simplest 

building blocks of more complex biomolecules, such as peptides and proteins, and are 

therefore ideal molecules to be studied as model compounds. It is not surprising, thus, 

that much effort has been put into the study of their solubility properties with the aim of 

understanding the solubility, stability, activity and selectivity behavior of proteins and 

other biomolecules in aqueous saline media. The effect of salts on the aqueous 

solubilities of amino acids is experimentally well documented and phenomenologically 

well established. Experimental measurements of the solubility of amino acids in 

(water+salt) mixtures reveal that this property is affected by the nature and concentration 

of both the cation and the anion of the electrolyte, as well as by the structural 

characteristics of the biomolecules 36-43. The influence of different conditions, including 

pH 36,38,44 and temperature 40,42,43, have also been considered. As a general trend, ion 

effects on amino acid aqueous solubilities follow the Hofmeister series. Nevertheless, 

there are still some contradictory results 37,41, not to mention the lack of a consistent 

molecular description of the phenomenon. Clearly, alternative approaches and methods 

capable of providing evidence for the interactions that govern the influence of common 

salts on the aqueous solubilities of amino acids are required. Only then will it be possible 

to reach a solid and deep knowledge of the behavior of proteins and more complex 

biomolecules and, consequently, thoroughly understand some biochemical processes and 

control their biological implications 1, identify the causes and develop medical solutions 
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for so many diseases associated to protein disfunctions 2-4, and improve the efficiency of 

biotechnological processes 5,6. 

In order to contribute to the understanding of the molecular mechanisms behind 

the effect of salts on the solubility of amino acids in aqueous solutions, molecular 

dynamics (MD) simulations were performed in this work for aqueous solutions of four 

amino acids - alanine (Ala), valine (Val), isoleucine (Ile), and a non-natural amino acid 

(2-amino-decanoic acid, Ada), all depicted in Figure 1 - in the presence of salts such as 

NaCl, KCl, NaNO3, NaClO4, and Na2SO4, at T = 298.15 K. The ions were selected in 

order to span the entire range of effects observed experimentally on amino acid aqueous 

solubility, from salting-in, to salting-out effects, passing through salts that have a 

negligible impact on the solubility. With the choice of these specific amino acids, we 

intend to simulate the effects of a different range of physical and chemical properties 

such as polarity and hydrophobicity. Moreover, because natural environments are very 

often neutral and, in addition, most of the experimental data available refers to aqueous 

saline solutions of amino acids at pH = 7, the simulations consider only the zwitterionic 

forms of the solutes.  

MD simulation methods have proved to be a valuable tool for the investigation of 

biochemical systems 45-47, including studies on the interaction of common ions with 

proteins and peptides 47, and we have used them previously to understand the 

mechanisms behind the influence of salts on the behavior of other charged molecules 

such as ionic liquids 33. This approach has, however, been seldom used to study aqueous 

saline solutions of amino acids 48. In this work, the analysis of the radial distribution 

functions (RDFs) of the various groups and moieties, estimated by MD, and of the 

coordination numbers (C.N.) of ions around the amino acids, will give an insight into the 

preferential interactions between amino acids, ions and water, and provide support for a 

molecular mechanism behind the effects of salts on the behavior of amino acids in saline 

solutions. It is important to notice that the choice of force field employed in MD 

simulations has been shown to significantly affect some properties of aqueous ionic 

solutions, particularly as far as the pairing of simple ions with charged macromolecular 

surfaces or the pairing between small ions in water, considered key physical phenomena 

to explain many observed Hofmeister effects, is concerned 49-51. Actually, small changes 
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in the effective pair potential between interacting ions can significantly affect solution 

thermodynamics and contact ion-pairing, and thus some force fields have failed to 

reproduce realistically the thermodynamics of electrolytes at certain concentrations 52,53. 

For this reason, complementary data generated using different combinations of ion 

potentials will be additionally provided and discussed here. It will be shown that although 

absolute degrees of binding are somewhat affected by the choice of model, relative 

changes along the Hofmeister series are unchanged. Moreover, the present results are in 

qualitative agreement with experimental solubility data reported in the literature, which 

affords further consistency to our approach. 

 

Computational Methods 

 

MD calculations were performed for aqueous solutions of the zwitterionic forms 

of the amino acids in the presence of the salts. For KCl, three concentrations (0.25, 0.5 

and 1.0 mol dm-3) were selected. For the other salts, a concentration of 1.0 mol dm-3 was 

used. The simulations were carried out using the isothermal-isobaric NpT (T = 298.15 K 

and p = 1 bar) ensemble and the GROMACS 4.04 molecular dynamics package 54. The 

equations of motion were integrated with the Verlet-Leapfrog algorithm 55 and a time 

step of 2 fs. The Nosé-Hoover thermostat 56,57 was used to fix the temperature while the 

Parrinello-Rahman barostat 58 was employed to fix the pressure. Starting configurations 

were generated in cubic boxes with lateral dimensions of 45 Å, and periodic boundary 

conditions were applied in three dimensions. The systems were prepared by randomly 

placing amino acids, ions and water molecules in the simulation box. Six amino acid 

molecules were included in each box, solvated by 900 water molecules. 17 cation-anion 

pairs were incorporated to obtain the 1.0 M concentration, except for KCl for which 

boxes with 4 and 9 cation-anion pairs were also used to obtain molarities of 0.25 M and 

0.5 M, respectively. Then, a 10000 step energy minimization was performed and 

followed by two simulations, the first one with 50000 steps for equilibration and the final 

one with 5000000 steps for production. After equilibration, the values of the box volume 

ranged between 28.0 and 29.7 nm3, depending on the particular combination of amino 
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acids and ions. Equilibration was checked by ensuring that all observables (including the 

RDFs) fluctuated around their equilibrium values during the production stage. 

The intermolecular interaction energy between pairs of neighboring atoms was 

calculated using the Lennard-Jones potential to describe dispersion/repulsion forces and 

the point-charge Coulomb potential for electrostatic interactions. Long-range electrostatic 

interactions were accounted for using the particle-mesh Ewald method 59, with a cutoff of 

1.0 nm for the real-space part of the interactions. A cutoff radius of 1.2 nm was used for 

the Lennard-Jones potential, and long-range dispersion corrections were added to both 

energy and pressure. All bond lengths were held rigid using the LINCS constraint 

algorithm 60, while angle bending was modeled by a harmonic potential and dihedral 

torsion was described (where appropriate) by a Ryckaert-Bellemans function. Potentials 

available in the literature were taken for all the species considered in the simulations. 

Water was described by the rigid SPC/E model 61, while the OPLS all-atom potential was 

used for the amino acids and for the sodium 62, potassium 62 and chloride 63 ions. For the 

perchlorate and nitrate ions, the models of Cadena and Maginn were used 64,65. Finally, 

the force field parameters of the second model proposed by Cannon et al. were used for 

sulfate 66. The effect of ion force field selection on the description of the systems was 

evaluated by performing additional MD simulations for Val/NaCl/water systems using 

ten selected combinations of five potentials for Na+ and Cl- ions (Smith-Dang 67, Dang 68, 

Weerasinghe-Smith 49, Aqvist 62 and Chandrasekhar 63 force fields).  

Coordination numbers were calculated for the interactions between selected atoms 

in the saline solutions of Val and Ada. For that purpose, the function N(r) was obtained 

by integrating the corresponding RDFs (g(r)):  

2

0

( ) 4. . . ( . ( ))
r

BN r r g r drπ ρ= ∫   (1) 

where ρB is the number density of each atom in the bulk. The C.N. of a given ion (or 

water molecule) around a particular group of the amino acid may be calculated from 

several different RDFs (e.g., for ClO4
- coordination around the NH3

+ group, the C.N. can 

be obtained from N-Cl, N-OCl, HN-Cl or HN-OCl RDFs). In such cases, we verified the 

consistency of the calculations by checking that coordination numbers obtained from 

different RDFs were in close agreement. The values presented in this paper were obtained 
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from RDFs showing the most well-defined minima, thus enabling a more accurate 

truncation of the curve. The chosen RDFs (labels of selected atoms) are indicated in the 

corresponding tables, while the truncation radii are provided in Tables S2 and S3 of the 

Supporting Information. 

 

 

Results and Discussion 

 

In this work, MD simulation data is used to gather evidence for a molecular 

mechanism that can explain the experimental aqueous solubility of amino acids in the 

presence of salts available in the literature. From an analysis of the experimental data 36-

43, it is clear that the type and magnitude of the solubility effects observed are dependent 

on the nature and concentration of the anion of the salt, as well as on the structural 

characteristics of the amino acids. In order to better rationalize and interpret these effects, 

they will be considered separately and discussed in the subsections below. 

It is worth to note that the experimental data used in the discussion was obtained 

at T=298.15 K and pH=7. Under these conditions, all the amino acids are expected to be 

in their zwitterionic forms 69. The structure of the amino acids considered in the MD 

simulations and the correspondent atom labeling are displayed in Figure 1. 

 

 

 

Effect of the anion 

 

To infer about the anion effect on the aqueous solubilities of aminoacids, the 

RDFs calculated from the MD simulations of Val in aqueous solutions of a series of 

sodium salts were considered. These RDFs provide a quantitative description of 

enhancement (values larger than 1) or depletion (values smaller than 1) of densities of 

ions or water around a selected part of the amino acid molecule.  

The conventional kosmotropic/chaotropic model would interpret the observed 

effects of the salts on the solubility of the amino acids as resulting from a modification of 
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the water structure, and thus on the solvation of the amino acids by water in the presence 

of salts. The RDFs presented in Figure 2 show, however, an entirely different picture. Not 

only are no significant differences observed on the water distribution around the amino 

acids due to the presence of salts, but actually, contrary to what the previous model 

would suggest, a small but noticeable decrease of the intensity of the RDF peak on going 

from Na2SO4 to NaCl/NaNO3 to NaClO4, is observed around the apolar moieties of the 

amino acids. This would suggest that the amino acid is actually more solvated by water in 

the presence of SO4
2-, a kosmotropic ion, than in the presence of ClO4

-, a chaotropic ion 

that induces salting-in. This observation is confirmed by analysis of the water 

coordination numbers around the terminal carbon atoms (Ct) of Val and Ada, presented in 

Table 1 – the water C.N. is much smaller for ClO4
- than for the other ions. In Ada, this 

dehydration effect is accompanied by a non-negligible aggregation of non-polar chain 

ends, as evidenced by the Ct-Ct coordination number (Table 1), which is largest in the 

presence of ClO4
-. Nevertheless, it is important to notice that such chain aggregation was 

only observed for Ada (which possesses a rather long alkyl chain), while a stronger 

hydration of the terminal carbons in SO4
2- solutions than in ClO4

- mixtures was verified 

for all the systems under study.  

The origin of this dehydration was analyzed by performing two additional 

simulations with a single Ada monomer in perchlorate and sulfate solutions, thus 

eliminating aggregation effects. In this case, the calculated coordination numbers for the 

interaction between the terminal carbon atom and water show an increase of ~3 water 

molecules when going from perchlorate (C.N.=17.48) to sulfate (C.N.=20.01), Table 2, 

which is similar to the difference found in the simulations with 6 Ada molecules on 

perchlorate (C.N.=11.44) and on sulfate (C.N.=14.33) solutions (Table 1). Additionally, 

the coordination numbers calculated for the interaction between Ct and the anions are ~1 

in the presence of ClO4
- and 0 in the case of SO4

2- solutions. This shows clearly that 

perchlorate anions appear near the hydrophobic chains, contrasting with the behavior 

found for solutions containing sulfate anions. Therefore, it is possible to suggest that, due 

to the preferential binding of the perchlorate anion to the non polar moieties of Ada, the 

interactions between the Ada tails are enhanced and, thus, it is more likely that chain 

aggregation occurs as a consequence of dehydration, rather than the opposite. We suggest 
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a mechanism responsible for approaching the Ada tails similar to that described very 

recently by some of us for the role of silicate anions on the growing mechanism of 

surfactant micelles in the early stages of the synthesis of periodic mesoporous silica.70,71 

In Figures 3(a-e) the RDFs of the anions around Ct and CB atoms (representative 

of the non-polar part of Val), around the O and C atoms of the carboxylate group, and 

around the N atom of the amino group (representatives of the charged moieties of Val), 

are displayed. The first remarkable result is that two anions present opposite extreme 

behaviors. While ClO4
- exhibits an appreciable affinity for Ct and CB, as suggested by the 

intense first peak of the RDFs of Figures 3(a) and 3(b), the distribution for SO4
2- around 

Ct does not reveal the presence of this ion in the first solvation layer (Figure 3(a)). In 

contrast, the RDFs of Figure 3(e) show a clear and intense association of the anions, in 

particular of SO4
2-, with the positively charged amino group of Val. The higher intensity 

of the SO4
2- peak in the RDF may result from it being a divalent anion. All the other 

monovalent anions have RDF peaks of similar intensities; however ClO4
- seems to be 

more distant from the nitrogen atom than the other anions. The interaction of anions with 

the negatively charged carboxyl group (Figures 3(c) and 3(d)) is small, as expected due to 

the electrostatic repulsion, being significant around the oxygen atoms only for SO4
2-. The 

highest affinity of the latter to the carboxyl group is a consequence of the presence of a 

higher number of Na+ cations around COO- moieties in SO4
2- solutions. This will shield 

unfavorable interactions of SO4
2- anions with the negatively charged parts of the amino 

acid and promote the indirect binding observed in the RDF. 

As far as NO3
- and Cl- are concerned, the RDFs suggest that they present a 

somewhat intermediate behavior between those two extremes. They show relatively weak 

interactions with CB and, while the RDFs suggest the presence of some structuring for 

these anions around Ct, no significant association to Ct is observed. The binding of Cl- to 

the apolar moieties is somewhat weaker than that of NO3
-, as demonstrated by the more 

intense peak shown in the RDFs of the latter (Figures 3(a) and 3(b)). On the other hand, 

Cl- is closer than NO3
- to the charged groups of Val (Figure 3(e)). Nevertheless, with the 

exception of the interaction anion····N(NH3) atom, the interactions disclosed by the RDFs 

are weak for both species. 
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The calculated RDFs provide interesting qualitative insight about the differences 

in water/salt/amino acid interactions. Quantitative evidence can be obtained from the 

analysis of the coordination numbers determined for the interactions between selected 

atoms in aqueous saline solutions of Val. From the results displayed in Table 1, it can be 

seen that the concentration profiles of the various ions and water molecules around the 

amino acids are actually consistent with the molecular interpretation obtained above from 

the structural data. Comparing the C.N. obtained for the interactions of the Ct atom of Val 

with the different anions, it is observed that the highest values occur for ClO4
- (0.50) and 

the lowest for SO4
2- (0.13). In contrast, the number of SO4

2- ions surrounding each NH3
+ 

group is the highest relative to the other ionic species. Furthermore, the intermediate 

values calculated for the C.N. for the interactions in NaCl, NaNO3 and KCl are consistent 

with the less significant impact of these salts on the aqueous solubility of the 

biomolecules. Nevertheless, Cl- and NO3
- ions show distinct behavior – while Cl- 

interacts weakly with both polar and apolar regions, NO3
- shows appreciable interactions 

with both apolar and polar moieties. In the latter case, the two effects cancel each other 

and the net result is a small impact on solubility. 

The picture that emerges from the MD simulation results is that the water 

structure and the solvation of the aminoacids by water is not significantly affected by the 

presence of salts. Concerning the interactions of the salts with the amino acid, it is 

observed that while salting-out inducing anions, such as SO4
2-, are highly bonded to the 

amino acid charged moieties, they do not interact with its apolar parts, particularly with 

the terminal carbons, Ct. On the contrary, salting-in inducing anions, such as ClO4
-, 

interact favorably with the amino acid apolar moieties, while their interaction with the 

charged part is weaker than observed for salting-out inducing salts. These results are in 

agreement with what was previously observed concerning the effect of salts on the 

solubility of ionic liquids 32-35 and, even more important, they are consistent with the 

experimental observations reported for the aqueous solubility of Val in presence of 

inorganic salts 39,40.  

According to the simulation results, the interaction of SO4
2-, an ion possessing 

high charge-density, with a hydrophobic moiety of the amino acid is a highly unfavorable 

process, so this ion excludes itself from the vicinity of the apolar groups of Val due to its 
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preferential hydration and preferential binding to the charged parts of the amino acid. As 

a result, the solubility of the amino acid in water decreases, as observed experimentally 
40. In contrast, the large and weakly hydrated ClO4

- interacts directly with the apolar 

moieties of Val through a combination of ion-induced dipole and dispersion interactions, 

promoting the stabilization of the amino acid in water and therefore a salting-in effect. 

According to the simulation results, the interactions of Cl- and NO3
- are milder than those 

of the two other ions, and intermediate impacts on the solubility are expected. The Cl- 

anion will have a negligible effect on the amino acid's aqueous solubility or at least a 

slight salting-out effect since it avoids interacting with the apolar parts. The NO3
-, 

however, seems to be able to establish interactions with the hydrophobic moieties of the 

solute and thus to increase its solubility. These observations are in good agreement with 

the experimental results found in the literature for the behavior of Val in aqueous 

solutions of NaNO3 and NaCl 39. 

Explanations for the salt effect on the solubility of biomolecules based on 

interactions of the ions and water molecules with the hydrocarbon backbones and the 

charged amino and carboxyl groups of peptide fragments are not entirely novel and were 

used by Khoshkbarchi and Vera 37, although without any evidence, to interpret the 

experimental solubility data obtained for (amino acid+water+salt) systems. Recently, 

neutron diffraction experiments carried out on aqueous mixtures containing denaturant 

ions have provided evidence for the role of the hydration strength of the latter on protein 

stability in aqueous solutions 72 and strongly support that a major contribution to the 

denaturant effect is the preferential interaction of the ions with the protein surface. 

Strongly hydrated ions are preferentially retained in the bulk solvent and excluded from 

the protein surface, whereas a weak hydration leads to a preferential interaction of the ion 

with the protein surface. Other works concerning the study of aqueous saline solutions of 

proteins by MD simulation techniques 46 have shown that ion effects on protein 

association and solubility are the result of a balance between direct binding of small ions 

with charged amino acid moieties and interaction of large ions with non-polar surface 

patches. MD simulation studies on the effect of ions on the interaction between 

hydrophobic surfaces 30 suggest a strong correlation between the strength of that 

interaction and the degree of preferential binding/exclusion of the ions relative to the 
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surfaces. An increased interaction between hydrophobic surfaces (referred to as salting-

out) is associated with high charge density ions which exhibit preferential exclusion by 

forming strong hydration complexes away from the hydrophobic surfaces. A decreased 

interaction (referred to as salting-in) is associated with low charge density ions that 

exhibit preferential binding. The results obtained here are in line with the conclusions of 

these works, stressing the importance of the presence/absence of interactions between the 

ions and the non-polar moieties of the biomolecules on the promotion of salting-

in/salting-out effects, instead of an indirect effect mediated by the water structure. 

A question that comes up in this context is the importance of contact ion-pair 

interactions between oppositely charged moieties, as well as their sensitivity to the force 

field model used. Indeed, ion pairing is a physical phenomenon that has been very often 

considered in explanations of the observed Hofmeister effects, and whose importance is 

commonly recognized in the understanding of the structure and stability of biological 

systems. The effect of ion-pairing can be assessed from the RDFs of the interactions 

between the salt cations and the central atoms of the anions for different valine/salt/water 

systems obtained for the different salts (cf. Supporting Information) and from the results 

displayed in Table 1 for the C.N. calculated for the C+····A- interactions. According to 

these results, ion-pairing is significant in the case of NaCl, but less evident for the other 

salts considered. This is consistent with the weaker interactions observed between this 

salt and both polar and apolar regions of the amino acids. However, this result brings up 

an (apparent) controversy – if the SO4
2- affinity to the COO- moiety is promoted, as 

discussed above, via Na+····COO- interactions, one would expect a stronger Cl- affinity to 

the COO- moiety, inconsistent with the strong Na+/Cl- pairing observed. Such non-local 

effects highlight the limitations of analyzing the interactions only in terms of pair RDFs. 

A more complete explanation would require the calculation of the full Ornstein-Zernike 

equations 70, but this is outside the scope of this work. Nevertheless, one can take into 

account the following considerations. Indeed, while in the case of Na2SO4 the Na+ cation 

interacts preferentially with the COO- group, promoting an indirect binding of the SO4
2- 

anions to the latter, in NaCl systems Na+ established more favorable interactions with Cl- 

in bulk solution than with COO-. As a consequence, a higher number of SO4
2- anions 

(compared to Cl-) will be found in the vicinity of the carboxyl group, as supported by the 
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C.N. calculated for the interaction Na+····COO- (0.576 for Na2SO4 against 0.284 for 

NaCl).  

It is well documented that solution thermodynamics and contact ion-pairing are 

rather sensitive to small changes in the effective pair potential between the interacting 

ions and therefore, the accuracy of the simulated properties, especially solubility, may 

depend on the particular description of ion-ion interactions 49-53. As a matter of fact, in 

previous works it has been shown that the formation of ion pairs in, for instance, aqueous 

NaCl solutions 49,50 or aqueous solutions with carboxylate-based anions 51, can be 

significantly overestimated and are strongly dependent on the force field model used. To 

take this issue into account, additional MD simulations for Val/NaCl/water systems using 

ten selected combinations of five potentials (Smith-Dang 67, Dang 68, Weerasinghe 49, 

Aqvist 62 and Chandrasekhar 63 force fields) for Na+ and Cl- ions were performed. 

Nevertheless, it is worth to note that the values obtained for the Na+····Cl- C.N. with the 

OPLS potential agree with the corresponding C.N. calculated using the recently 

developed Weerasinghe-Smith potential 49 for Na+ and for Cl- (please see entries 

OPLS/OPLS and WS/WS in Table S1) It has been shown that the latest model reproduces 

many of the known properties of sodium chloride solutions including density, isothermal 

compressibility, ion diffusion constants, relative permittivity, and heat of mixing 49, a fact 

that supports the reliability of the results provided in the present work. One should, 

however, be aware of some of the limitations associated to the use of the OPLS potential, 

namely in the description of the ion-pairing. Actually, based on the activity coefficients 

of the ions 69, COO- should pair more than Cl- (i.e., C.N. (COO-····Na+) > C.N. (Na+····Cl-

)). Only some of the results presented in Table S1 confirm this trend. As previously 

shown by Hess et al 51, the OPLS model does not correctly describe the thermodynamic 

behavior of sodium salt solutions. Nevertheless, since the OPLS model was used for Na+ 

in all the calculations performed in this work, the ion potential will not have influence on 

the relative comparison and interpretation of the results obtained with different anions. 

The general patterns of interaction of Val with ions which induce pronounced 

solubility effects, such as SO4
2- and ClO4

-, are qualitatively similar to those observed for 

the other amino acids studied in this work. However, as can be seen from the RDFs of the 

various anions with the polar and apolar moieties of Ile and Ada (cf. Supporting 
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Information), there are a few differences which might justify, for these larger aminoacids, 

the difference observed in the magnitude of the effects promoted. For the ions placed in 

the middle of the rank of the Hofmeister series, such as NO3
- and, to a certain extent, Cl-, 

those dissimilarities are more detectable and may become marked enough in order to 

justify not only differences in the magnitude of the solubility effects induced, but also in 

their direction as discussed below. 

 

 

Effect of the amino acid side chain 

 

The structural characteristics of each amino acid are a determining factor in the 

magnitude and direction of the solubility effects promoted by salts. To evaluate the 

influence of the amino acid side chain, the effect of a salting-out inducing ion positioned 

at the extreme of the Hofmeister series - SO4
2- - and a salting-in ion positioned at the 

opposite extreme - ClO4
- - were studied.  

The RDFs calculated for the S atom of SO4
2- around the Ct atom of Val, Ile and 

Ada, presented in Figure 4(a), show that the highest peak corresponding to S····Ct 

interactions shifts from about 0.65 to 0.85 nm when moving from Val to Ile, implying a 

closer approach of the anions to the Ct atoms of Val. In both cases, the intensity of the 

first peak is rather similar and a minor presence of SO4
2- is observed in the second 

solvation layer. The observed shift in the peaks correlates well with the increase in 

distance between Ct and the polar moieties of the amino acids from Val to Ile, which 

seems to imply that the anion····Ct interaction is simply a side-effect of the strong 

attraction between the ion and the polar groups. Consistently, for Ada, in which Ct is 

quite far from the polar moieties, the RDFs show that the anion concentration around Ct 

is below the average density, indicating that there is no interaction between the SO4
2- 

anions and the Ct atom of Ada.  

To clarify how the SO4
2- interactions decrease with the increasing size of the non-

polar moiety of the amino acid, the RDFs of the anion around each of the carbon atoms of 

Ada's side chain are presented in Figure 5(a). They show that the intensity of the 

distribution of the anions around the alkyl chain decreases and their position shifts away 
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from the chain as one progresses from the carbon atoms closer to the charged moieties of 

the amino acids to carbon atoms positioned in the terminal part of the alkyl chain. 

Actually, as indicated by the position and intensity of the peaks of the RDFs, the SO4
2- is 

still found in the first solvation layer around CB, it moves to more external layers on C2 

and C3, and it is absent in the last carbons of the chain. Clearly, the SO4
2- anions interact 

with charged moieties of the amino acids but seem unable to establish an interaction with 

non-polar moieties of the amino acid. The calculated C.N. values depicted in Table 1 

provide quantitative further evidence for this behavior. Actually, there are almost no 

SO4
2- anions around the Ct atom of Ada (C.N. for Ct····A

- interaction is 0.02), but their 

presence is still observed around the apolar groups of Val (C.N. for Ct····A
- interaction is 

0.13). Conversely, the C.N. for the NH3
+····A- interaction is very significant both in Val 

and Ada aqueous solutions. These qualitative and quantitative patterns suggest that as the 

non-polar moiety of the amino acid increases, the interactions with the anion become 

weaker and an increasingly stronger salting-out effect will be observed. This is in good 

agreement with the salting-out effects observed experimentally induced by the SO4
2- 

anions on amino acids 41. 

For very small amino acids like glycine (Gly), dominated by the charged moiety, 

the interactions with the SO4
2- anions will be favorable and a salting-in effect could be 

expected. This is what is observed experimentally by Ferreira et al. 41, explaining the 

apparently surprising observation of a salting-out inducing salt being able to induce 

salting-in. Going from Gly to Ala, the increase in the non-polar part of the amino acid 

would reduce the favorable interactions with the SO4
2- anions and explain why this 

salting-out inducing anion has essentially no effect on the Ala solubility 41, and has a 

salting-out effect for other amino acids with a larger non-polar moiety. 

To study the effects at the other extreme of the Hofmeister series, ClO4
-, a 

typically salting-in inducing ion, was used. The RDFs calculated for the Cl atom of the 

anion around the Ct of the amino acids, presented in Figure 4(b), show a completely 

different scenario from the case of SO4
2-. In fact, a comparison of the position and 

intensities of the peaks of the RDFs of Figure 4(b) with those of Figure 4(a) confirms that 

ClO4
- has a direct interaction with Ct in the first solvation layer that was absent for SO4

2-. 

The intensity of the peaks of the Cl····Ct contact pairs decreases from Val to Ada, but 
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there is still a clear interaction of ClO4
- with the Ct atom of Ada, which was totally absent 

in the case of SO4
2-. These structural data are consistent with the trend observed in the 

concentration profile of the anions. In fact, the C.N. for the Ct····A
- interactions in ClO4

- 

systems decrease from Val to Ada and are much higher than those calculated for the 

corresponding SO4
2- systems. 

The interactions of the anion with the increase in size of the non-polar moiety of 

the amino acid can be evaluated by the RDFs of the Cl atom of ClO4
- around the carbon 

atoms of Ada, depicted in Figure 5(b). They are remarkably different from the RDFs 

presented in Figure 5(a), suggesting that, unlike what happened with SO4
2-, ClO4

- is able 

to bind, although weakly, to the methylene groups of the alkyl chain of the 2-amino-

decanoic acid. It is also worth noticing that while the intensity and the positions of the 

RDFs peaks for Ci-S (i=B, 2, 3, ...., t) change monotonically with increasing distance to 

the polar region, indicating that SO4
2- actually avoids the most apolar moieties of the 

amino acid, the RDFs of Ci····Cl contact pairs show a non monotonic behavior, with a 

decrease of peak intensity from CB to C6 and then an increase back to Ct. This trend is 

likely to be related to the more pronounced aggregation of Ada's hydrophobic chains 

observed in ClO4
- aqueous solutions, which is responsible for a weaker binding of these 

anions to the carbon atoms positioned in the middle of the side chain of the amino acid.  

The interactions of the salting-in inducing ions, such as ClO4
-, are thus completely 

different from those observed for the salting-out inducing ions such as SO4
2-. The ClO4

- 

anion not only interacts less with the charged moieties of the amino acids, but also 

presents an interaction with their non-polar moieties through an ion-induced dipole 

interaction that is responsible for the salting-in effects induced by this anion, as 

previously observed for other charged molecules 33. Although no experimental data is 

available for this anion, the salting-in of amino acids promoted by anions is well 

established in the literature for NO3
-, which sits close to ClO4

- in the Hofmeister series 7,8. 

The results of the RDFs described constitute also a strong argument against the 

classical "structure maker/breaker" model and support a molecular model according to 

which the influence of salts on the solubility of amino acids in water is not the result of 

effects on water structure, but on the ability of the salt ions to act, or not, as cosolutes 

promoting the solvation of the amino acid. 
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As far as ions such as NO3
- and Cl-, positioned in the middle of the Hofmeister 

series, are concerned, some conclusions can also be drawn. As can be observed from the 

RDFs of NO3
- and Cl- around Ct of Val, Ile and Ada (see Figure 3(a) and Figures S1 and 

S2 in the Supporting Information), some structuring of these ions is observed around the 

terminal methyl group of the amino acids. As the non-polar moiety of the molecule 

increases, the interaction with NO3
- becomes more important, and around the Ct atom of 

Ada the RDF of NO3
- is similar to that of ClO4

-. This is in contrast to what is observed for 

Cl-, since these ions are totally absent from the vicinity of the terminal groups. When 

interactions with CB are considered, upon moving from Val to Ile, the binding of NO3
- to 

CB is slightly strengthened, both in the first and in the second solvation layers. The peaks 

referring to Cl-CB contact pairs, however, continue to be absent. These qualitative 

observations are entirely supported by the coordination numbers of NO3
- and Cl- around 

Ct atoms, shown in Table 1. 

The picture that emerges from the RDFs follows the trend of the Hofmeister 

series. Like ClO4
-, NO3

- is more strongly bound to the apolar part of the amino acids than 

Cl- and is therefore able to promote salting-in. As the capability to interact with the non-

polar moiety of the amino acid decreases, observed upon moving towards Cl- and SO4
2-, 

the salting-in inducing ability disappears and the salts become increasingly salting-out 

inductors. This observations closely follow the observed experimental effects on the 

amino acid solubility in aqueous salt solutions 37,39,41. In general terms, thus, both the 

RDFs and the C.N. results suggest that the affinity of the ions to the non polar moieties of 

the amino acids is a key factor to determine the solubility effects of salts on aqueous 

solutions of the latest.  

 

 

Effect of the concentration of the salt 

 

The experimental data available for the solubility of Ala in aqueous solutions of 

KCl at several salt concentrations presents a peculiar behavior 41. A salting-in effect 

appears to occur at very low salt concentration, while at higher concentrations, the 

solubility of the amino acid has an inverse dependence with the salt concentration 41. 
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To assess the effect of salt concentration on the aqueous solubility of amino acids, 

MD calculations for aqueous solutions of Ala in the presence of KCl at three different 

salt concentrations were performed. The RDFs obtained are displayed in Figure 6. They 

show that the interactions both with the charged and with the non-polar moieties of the 

amino acid decrease with the concentration. As discussed above, the results obtained here 

and those previously reported for the effect of salts on the solubility of ionic liquids 32-35 

indicate that the salting in/out effects are controlled by the presence/absence of 

interactions with the non-polar moieties of the aminoacids. If for low salt concentrations 

the interactions with Ct are strong enough to induce salting-in, the decrease in the 

intensity of these interactions with increasing concentration, shown by the RDFs, follows 

a pattern similar to what is observed as one moves from salting-in towards salting-out – 

i.e., ions show progressively weaker interactions with the non-polar parts of the amino 

acid. The same conclusions can be drawn from the concentration profiles of the Cl anion 

around polar and apolar moieties of the aminoacid, shown in Supporting Information 

(Figure S4). The changes in the profiles with concentration are thus coherent with a 

transition in behavior from salting-in to salting-out, as observed experimentally by 

Ferreira et al.41.  

 

Conclusion 

 

Molecular Dynamics simulations have been performed in an attempt to 

understand, at the molecular level, the experimentally observed solubility behavior of 

amino acids in aqueous saline solutions. The RDFs and C.N. show clear signs of 

important interactions of ClO4
- with the apolar part of the amino acids, while strong 

association with the charged groups and absence of interaction with the hydrophobic 

moieties are observed for the high charge-density sulfate ion. As the chain of the amino 

acid increases, the preference of ClO4
- for the apolar moieties and the lyophobicity of 

SO4
2- become more pronounced, resulting in stronger salting-in and salting-out effects 

induced, respectively, by these ions. The interactions established by NO3
- are 

comparatively less intense, but there is still a clear preference for apolar groups, that 

becomes more prominent as the alkyl chain of the amino acid increases. The least 
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significant interactions were observed for the Cl- ion and, accordingly, its impact on the 

amino acid solubilities is the least important. These results support a mechanism of 

salting-in based on the direct interaction of the anions with the non-polar moiety of the 

amino acids. They suggest that the salt effect is not related with the changes in the water 

structure but instead result from the type and intensity of interactions that are established 

between the salt ions, the water molecules and the amino acids and, thus, their magnitude 

and direction are dependent on the nature and concentration of the cations, anions and 

amino acids that are present in a given system. 

We have tested several combinations of different force field models for ions. 

Although quantitative values, such as coordination numbers, are somewhat sensitive to 

details of the model, the qualitative insight obtained is independent of the choice of force 

field. It is worth noticing, however, that the molecular interpretations given in this work 

are based on results derived from MD simulations which do not include explicit 

polarization. Although the importance of the inclusion of polarization effects on the 

description of the solution thermodynamics and of contact ion pairing has been 

demonstrated, indicating that interactions with hydrophobic regions will in general 

increase (depending on the polarizability of the species and on the hydrophobic character 

of the interaction site) while those with polar moieties will in general decrease 

(depending on the species nature) 47,48,71,72, the use of a polarizable potential is still 

computationally too demanding. Even though the reported results have proved to be 

reliable and perfectly valid for the models investigated, polarizable simulations of the 

systems under study should be considered in future work, as they would be useful to 

verify the hypothesis and interpretations here proposed.  

The systems studied here, involving interactions between ions, amino acids and 

solvent, are fairly complex, both from a qualitative and quantitative perspective. The use 

of the Kirkwood-Buff theory, however, has proved to be very promising in the 

quantification of MD simulation results for complex systems 75 and should be therefore 

considered in future projects. Another suggestion for future work is the explicit 

calculation of solvation free energies of aminoacids in the presence of salts. Although 

they are computationally demanding, and may present some technical difficulties to 
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account for the presence of ions in the solvent medium, they should provide results that 

can be more directly related to experimental solubilities. 

The molecular-level mechanism reported here for the solubility of amino acids in 

the presence of salts can be helpful for understanding the solubility and stability behavior 

of proteins and more complex biomolecules in saline environments, and thus be relevant 

for development and further research in the domains of biochemistry and life sciences.  

 

 

 

Acknowledgments 

The authors thank Programa Ciência 2007 and financial support from Fundação 

para a Ciência e a Tecnologia for post-doctoral grant SFRH/BPD/44926/2008 of Luciana 

I. N. Tomé.  

 

Supporting Information 

Radial distribution functions calculated for ions around isoleucine, ions around 2-amino-

decanoic acid, and ion pairing in different valine/salt/water solutions, as well as 

coordination numbers calculated for Val/NaCl/water systems using different 

combinations of Na+ and Cl- potentials. This information is available free of charge via the 

Internet at http://pubs.acs.org/. 

 

References 

 (1) Mader, S. Biology, 9th ed.; McGraw Hill: New York, 2007. 
 (2) Chiti, F.;Dobson, C. M., Annual Rev. of Bioch. 2006, 75, 333. 
 (3) Kakizuka, A., Trends Genet. 1998, 14, 396. 
 (4) Dennis, J. S., Nature 2003, 426, 900. 
 (5) Zhao, H., J. Mol. Catalys. B: Enzymatic 2005, 37, 16. 
 (6) Eyal, A. M.;Bressler, E., Biotechnol. Bioeng. 1993, 41, 287. 
 (7) Hofmeister, F., Arch. Exp. Pathol. Pharmakol. 1888, XXIV, 247. 
 (8) Kunz, W.;Henle, J.;Ninham, B. W., Curr. Opin. Colloid Interface Sci. 
2004, 9, 19. 
 (9) Collins, K. D.;Washabaugh, M. W. Q., Rev. Biophys. 1985, 18, 323. 
 (10) Zhang, Y. J.;Furyk, S.;Bergbreiter, D. E.;Cremer, P. S., J. Am. Chem. Soc. 
2005, 127, 14505. 
 (11) Kunz, W.;Lo Nostro, P.;Ninham, B. W., Curr. Opin. Colloid Interface Sci. 
2004, 9, 1. 

Page 21 of 33

ACS Paragon Plus Environment

Submitted to The Journal of Physical Chemistry

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



 (12) Baldwin, R. L., Biophys. J. 1996, 71, 2056. 
 (13) Bauduin, P.;Nohmie, F.;Touraud, D.;Neueder, R.;Kunz, W.;Ninham, B. 
W., J. Mol. Liq. 2006, 123, 14. 
 (14) Batchelor, J. D.;Olteanu, A.;Tripathy, A.;Pielak, G. J., J. Am. Chem. Soc. 
2004, 126, 1958. 
 (15) Zhang, Y. J.;Cremer, P. S., Curr. Opin. Colloid Interface Sci. 2006, 10, 
658. 
 (16) Vanzi, F.;Madan, B.;Sharp, K., J. Am. Chem. Soc. 1998, 120, 10748. 
 (17) Washabaugh, M. W. Q.;Collins, K. D., J. Biol. Chem. 1986, 261, 2477. 
 (18) Bostrom, M.;Williams, D. R. M.;Ninham, B. W., Phys. Rev. Lett. 2001, 
87, 168103. 
 (19) Zhang, Y. J.;Furyk, S.;Sagle, L. B.;Cho, Y.;Bergbreiter, D. E.;Cremer, P. 
S., J. Phys. Chem. C 2007, 111, 8916. 
 (20) Omta, A. W.;Kropman, M. F.;Woutersen, S.;Bakker, H. J., 2003, 301, 
347. 
 (21) Gurau, M. C.;Lim, S. M.;Castellana, E. T.;Albertorio, F.;Kataoka, 
S.;Cremer, P. S., J. Am. Chem. Soc. 2004, 126, 10522. 
 (22) Bostrom, M.;Williams, D. R. M.;Ninham, B. W., Phys. Rev. Lett. 2001, 
87, 347. 
 (23) Zou, Q.;Bennion, B. J.;Daggett, V.;Murphy, K. P., J. Am. Chem. Soc. 
2002, 124, 1192. 
 (24) Holz, M.;Grunder, R.;Sacco, A.;Meleleo, A., J. Chem. Soc., Faraday 

Trans. 1993, 89, 1215. 
 (25) Holz, M., J. Mol. Liq. 1995, 67, 175. 
 (26) Sacco, A.;De Cillis, F. M.;Holz, M., J. Chem. Soc., Faraday Trans. 1998, 
94, 2089. 
 (27) Westh, P.;Kato, H.;Nitshikawa, K.;Koga, Y., J. Phys. Chem. A 2006, 110, 
2072. 
 (28) Kalra, A.;Tugcu, N.;Cramer, S. M.;Garde, S., J. Phys. Chem. B 2001, 105, 
6380. 
 (29) Zangi, R.;Berne, B. J., J. Phys. Chem. B 2006, 110, 22736. 
 (30) Zangi, R.;Hagen, M.;Berne, B. J., J. Am. Chem. Soc. 2007, 129, 4678. 
 (31) Bostrom, M.;Williams, D. R. M.;Ninham, B. W., Biophys. J. 2003, 85, 
686. 
 (32) Freire, M. G.;Carvalho, P. J.;Silva, A. M. S.;Santos, L. M. N. B. 
F.;Rebelo, L. P. N.;Marrucho, I. M.;Coutinho, J. A. P., J. Phys. Chem. B 2009, 113, 202. 
 (33) Freire, M. G.;Neves, C. M. S. S.;Silva, A. M. S.;Santos, L. M. N. B. 
F.;Marrucho, I. M.;Rebelo, L. P. N.;Shah, J. K.;Maggin, E. J.;Coutinho, J. A. P., J. Phys. 

Chem. B 2010, 114, 2004. 
 (34) Tomé, L. I. N.;Domínguez-Pérez, M.;Cláudio, A. F. M.;Freire, M. 
G.;Marrucho, I. M.;Cabeza, O.;Coutinho, J. A. P., J. Phys. Chem. B 2009, 113, 13971. 
 (35) Tomé, L. I. N.;Varanda, F. R.;Freire, M. G.;Marrucho, I. M.;Coutinho, J. 
A. P., J. Phys. Chem. B 2009, 113, 2815. 
 (36) Carta, R.;Tola, G., J. Chem. Eng. Data 1996, 41, 414. 
 (37) Khoshkbarchi, M. K.;Vera, J. H., Ind. Eng. Chem. Res. 1997, 36, 2445. 
 (38) Carta, R., J. Chem. Thermodyn. 1998, 30, 379. 

Page 22 of 33

ACS Paragon Plus Environment

Submitted to The Journal of Physical Chemistry

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



 (39) Pradhan, A. A.;Vera, J. H., J. Chem. Eng. Data 2000, 45, 140. 
 (40) Ramasami, P., J. Chem. Eng. Dat 2002, 47, 1164. 
 (41) Ferreira, L. A.;Macedo, E. A.;Pinho, S. P., Ind. Eng. Chem. Res. 2005, 44, 
8892. 
 (42) Ferreira, L. A.;Macedo, E. A.;Pinho, S. P., Fluid Phase Equilib. 2007, 
255, 131. 
 (43) Ferreira, L. A.;Macedo, E. A.;Pinho, S. P., J. Chem. Thermodyn. 2009, 41, 
193. 
 (44) Brown, M. G.;Rousseau, R. W., Biotechnol. Prog. 1994, 10, 253. 
 (45) Micaêlo, N. M.;Soares, C. M., J. Phys. Chem. B 2008, 112, 2566. 
 (46) Lund, M.;Vrbka, L.;Jungwirth, P., J. Am. Chem. Soc. 2008, 130, 11582. 
 (47) Heyda, J.;Vincent, J. C.;Tobias, D. J.;Dzubiella, J.;Jungwirth, P., J. Phys. 

Chem. B 2010, 114, 1213. 
 (48) Heyda, J.;Hrobárik, T.;Jungwirth, P., J. Phys. Chem. A 2009, 113, 1969. 
 (49) Weerasinghe, S.;Smith, P. E., J. Chem. Phys. 2003, 119, 11342. 
 (50) Hess, B.;Holm, C.;van der Vegt, N., J. Chem. Phys. 2006, 124, 164509. 
 (51) Hess, B.;van der Vegt, N., PNAS 2009, 106, 13296. 
 (52) Fyta, M.;Kalcher, I.;Dzubiella, J.;Vrbka, L.;Netz, R. R., J. Chem. Phys. 
2010, 132, 24911. 
 (53) Joung, I. S.;Cheatham III, T. E., J. Phys. Chem. B 2009, 113, 13279. 
 (54) Hess, B.;Kutzner, C.;van der Spoel, D.;Lindahl, E., J. Chem. Theory 

Comput. 2008, 4, 435. 
 (55) Hockney, R. W.;Goel, S. P. J., J. Comput. Phys. 1974, 14, 148. 
 (56) Nosé, S., Mol. Phys. 1984, 52, 255. 
 (57) Hoover, W. G., Phys. Rev. A 1985, 31, 1695. 
 (58) Parrinello, M.;Rahman, A., J. Appl. Phys. 1981, 52, 7182. 
 (59) Essman, U.;Perela, L.;Berkowitz, M. L.;Darden, T.;Lee, H.;Pederson, L. 
G., J. Chem. Phys. 1995, 103, 8577. 
 (60) Hess, B.;Bekker, H.;Berendsen, H. J. C.;Fraaije, J. G. E. M., J. Comp. 

Chem. 1997, 18, 1463. 
 (61) Berendsen, H. J. C.;Grigera, J. R.;Straatsma, T. P., J. Phys. Chem. 1997, 
91, 6269. 
 (62) Aqvist, J., J. Phys. Chem. 1990, 94, 8021. 
 (63) Chandrasekhar, J.;Spellmeyer, D. C.;Jorgensen, W. L., J. Am. Chem. Soc. 
1984, 106, 903. 
 (64) Cadena, C.;Maggin, E. J., J. Phys. Chem. B 2006, 110, 18026. 
 (65) Canongia Lopes, J. N.;Deschamps, J.;Pádua, A. A. H., J. Phys. Chem. B 
2004, 108, 2038. 
 (66) Canoon, W. R.;Pettitt, B. M.;McCammon, J. A., J. Phys. Chem. 1994, 98, 
6255. 
 (67) Smith, D. E.;Dang, L. X., J. Chem. Phys. 1994, 100, 3757. 
 (68) Dang, L. X., J. Am. Chem. Soc. 1995, 117, 6954. 
 (69) CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, 
1982. 
 (70) Case, D.;Manby, F. R., Molec. Phys. 2010, 108, 307. 
 (71) Jungwirth, P.;Tobias, D. J., Chem. Rev. 2006, 106, 1259. 

Page 23 of 33

ACS Paragon Plus Environment

Submitted to The Journal of Physical Chemistry

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



 (72) Vrbka, L.;Mucha, M.;Minofar, B.;Jungwirth, P.;Brown, E. C.;Tobias, D. 
J., Curr. Opin. Colloid Interface Sci. 2004, 9, 67. 
 

Page 24 of 33

ACS Paragon Plus Environment

Submitted to The Journal of Physical Chemistry

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



Figures 

 
 

 
 
 

 

 

 

 

(i)             (ii)              (iii) 

 
 

 

 

 

 

(iv) 

 

Figure 1. Structure of the amino acids studied in this work – (i) alanine (Ala); (ii) valine 

(Val); (iii) isoleucine (Ile); (iv) 2-amino-decanoic acid (Ada) – and corresponding atom 

labeling. Ct stands for the terminal carbon atom of the amino acid side chain while CB is 

used to denote the first carbon atom of the amino acid side chain.  
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(a) (b) 

 
(c) 

Figure 2. Radial distribution functions of the water oxygens around the terminal carbon 

atom (Ct) of (a) Val, (b) Ile and (c) Ada, in pure water and in the presence of the different 

inorganic salts. 
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Figure 3. Radial distribution functions between different molecular regions of Val and 

the central atom of the anions (Cl, N or S): (a) and (b) Ct and CB atoms of the side chain; 

(c) and (d) C and O atoms of the carboxylate group; (e) N atom of the amino group. 
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(a) (b) 

 

 

Figure 4. Radial distribution functions of the S atom of Na2SO4 (a) and of the Cl atom of 

NaClO4 (b) around Ct atoms of Val, Ile and Ada. 
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(a) (b) 

 

 

Figure 5. Radial distribution functions of the S atom of Na2SO4 (a) and of the Cl atom of 

NaClO4 (b) around the carbon atoms of Ada’s side chain. 
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(a) 

 

(b) 

Figure 6. Radial distribution functions of the Cl atom of KCl around (a) Ct atom and (b) 

N atom of the amino group of Ala, at three different concentrations. 
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Table 1. Calculated coordination numbers for the interactions between selected atoms in aqueous saline solutions of valine (Val) and 
2-amino-decanoic acid (Ada).a,b 

NH3
+
····A

- NH3
+
····H2O

e COO
-
···C

+f COO
-
···H2O

g Ct····A
- h Ct····H2O 

i C
+
····A

- j
 Ct····Ct Salt 

Val Ada Val Ada Val Ada Val Ada Val Ada Val Ada Val Ada Ada 
NaClO4 0.25c 0.21 c 2.48 2.24 0.24 0.12 5.02 4.65 0.50 0.42 10.90 11.44 0.19 0.18 0.81 

Na2SO4 0.50
 c
 0.60

 c
 2.37 2.14 0.58 0.30 4.92 4.66 0.13 0.02 11.88 14.33 0.26 0.33 0.45 

NaCl 0.13 d 0.16 d 2.75 2.43 0.28 0.26 5.22 4.73 0.15 0.11 11.63 14.01 0.51 0.48 0.65 
NaNO3 0.25 c 0.36 c 2.67 2.46 0.23 0.22 5.33 5.11 0.19 0.26 11.68 13.65 0.18 0.18 0.46 

KCl 0.10 d 0.12 d 2.70 2.62 0.08 0.12 5.34 5.16 0.14 0.11 11.57 14.85 0.46 0.50 0.36 
a NH3

+ refers to the cationic amine group of the amino acid; A- refers to the salt anion; COO- refers to the carboxyl group of the amino acid; C+ refers to the salt cation; Ct refers to 
the terminal C atoms in the apolar chain of the amino acid. Largest quantity for each pair appears in bold case. 
b The values of r at which the RDFs used for the calculation of the coordination numbers were truncated are presented in Table S2. 
c Calculated from the HN-Oanion RDF 
d Calculated from the HN-Cl RDF 
e Calculated from the HN-Owater RDF 
f Calculated from the OCOO-Cation RDF 
g Calculated from the OCOO-Hwater RDF 
h Calculated from the Ct-Anion Center RDF 
i Calculated from the Ct-Owater RDF 
j Calculated from the Cation-Anion Center RDF 

 

Table 2- Calculated coordination numbers (C.N.) for the interactions between selected atoms in aqueous saline solutions containing a 
single 2-amino-decanoic acid species.a 

Ct····A
-b Ct····H2O

c 
Salt 

r
d
 C.N. r

d
 C.N. 

NaClO4 0.66 0.96 0.55 17.48 
Na2SO4 N.P.e - 0.56 20.01 
a A- refers to the salt anion; Ct refers to the terminal C atoms in the apolar chain of the amino acid.  
b Calculated from the Ct-Anion Center RDF 
c Calculated from the Ct-Owater RDF 
d Values of r (nm) at which the RDF was truncated 
e RDF does not present any peak. C. N. calculated at r=0.66 nm (end of first peak for NaClO4) is 0.05 only. 
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