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Abstract

We investigate methods for the treatment of long-range interactions in the
context of grand canonical Monte Carlo (GCMC) simulations of water adsorption in
slit-shaped activated carbon pores. Several approaches, ranging from the simple
minimum image convention to the more complex two-dimensional Ewald
summations, are implemented and compared with respect to accuracy and speed of
computation. The performance of some of these methods in GCMC is found to be
significantly different from that in molecular dynamics applications. Of all the
methods studied, one proposed by Heyes and van Swol was the most promising,
providing the best balance between accuracy and speed. In our application, it was
shown to be about 2 times faster than the fastest of the two-dimensional Ewald
methods. We expect this conclusion to apply in general to systems that are periodic in

two dimensions and finite in the third.

1 Introduction

Our interest in the calculation of long-range interactions in confined phases
arises from the grand canonical Monte Carlo simulation of water adsorption in carbon
pores containing polar surface sites. The simulation of polar molecules such as water
requires the calculation of the electrostatic potential between two point charges, as
given by Coulomb's law. The total potential in a system comprised of a set of point

charges involves two nested sums over all charges:
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where the factor 'z is applied because each interaction is counted twice.

In the above equation, g; is the charge on site i, r; is the distance vector
between sites i and j and g is the vacuum permittivity (8.85419x10™* C*J'm™). This
potential is long-ranged, that is to say, it does not vanish at a relatively short distance,
as is the case with dispersion interactions. In simulations of bulk systems, the
simulation cell is usually replicated periodically in all three space dimensions, in
order to reproduce an infinite medium. In this type of system, the sum over all pairs of
charges, as calculated from equation (1), is conditionally convergent. Therefore, more
elaborate procedures, such as the Ewald summation technique are required. In three-
dimensional periodic systems, this technique is well established [1,2]. In the Ewald
method, each point charge is surrounded by a charge distribution of equal magnitude
and opposite sign, which is conveniently chosen to be Gaussian. The width of the
distribution is controlled by an arbitrary parameter, k¥, which can be optimised for
speed of convergence. In principle, the final result of the sum is independent of k. The
potential due to this new set of screened charges is short-ranged and can be summed
efficiently. However, this screening effect has to be cancelled, which is done by
adding a compensating charge distribution. This compensating distribution is a
smoothly varying periodic function, which can be represented by a rapidly converging
Fourier series. After it is summed in reciprocal (Fourier) space, the total is
transformed back into real space. Since this scheme includes the interaction of the

charge i with itself, this self-term must be subtracted from the total. The final result is
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In equation (2), V is the volume of the simulation cell, given by V' = L xL,xL.,
n are the real space lattice vectors, given by n = (n.L., n,L,, n.L.) with n., n, and n.
integers, and k are the reciprocal space vectors, given by k = (2nn./L., 2nn,/L,,
2nn./L;). The prime over the summation indicates that we omit i = for n = 0.

The Ewald summation method is fast and, in principle, exact, so it has been
widely used to calculate the potential energy in systems which are periodic in all three
dimensions. However, we are interested in simulating adsorption in slit-shaped pores
(infinite in two dimensions and finite in the third). Therefore, the simulation cell must
be replicated in only two dimensions. In contrast to 3D systems, in systems with slab
geometry the sum of the Coulomb interactions is absolutely convergent. Nevertheless,
the summation converges very slowly and special methods must be employed to make
the potential calculations practical. An additional complication arises from the
anisotropy of the system, which invalidates the straightforward use of the 3D Ewald
sum. Several methods have been proposed over the years for dealing with this
problem [3-16] and various comparative studies have also been presented [17-22]. In
these studies, the various methods have been compared on the basis of their
performance in the calculation of the total potential and/or the forces between the
molecules, mostly with application to molecular dynamics (MD) simulations. The
conclusions drawn from the comparisons of the methods with respect to accuracy will

be equally valid for Monte Carlo simulations. However, the comparison with respect



to speed of computation is different in Monte Carlo simulations, where the total
potential in the cell need not be calculated, and a method that is very suitable for MD
applications might not have the same advantages in MC. In this paper, we present a
comparison between a series of methods for the treatment of long-range interactions
in the context of grand canonical Monte Carlo (GCMC) simulation of water
adsorption in a slit-shaped carbon pore. To our knowledge, this is the first

investigation of its type with GCMC applications in mind.

2 Simulation and Potential Models

k.1 Molecular models

Water is represented by the TIP4P potential [23]. This model is composed of a
Lennard-Jones site at a location corresponding to the oxygen atom in the water
molecule, two positive point charges located at the positions of the hydrogen atoms
and a negative point charge placed a short distance away from the oxygen atom (“site

M”). The potential between two molecules is given by:
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The first term on the right hand side of equation (3) represents the short-range
interaction between the Lennard-Jones (L-J) sites of molecules i and j, while the
second term describes the Coulombic interaction between all point charges in both
molecules (sum over charges a in molecule i and charges b in molecule j). oy is the
fluid-fluid L-J site diameter and €4 1s the L-J well depth. Geometric and potential

parameters were taken from reference [23].



In this work, water is confined in a parallel, slit-shaped pore. Each pore wall is
described by an infinite number of graphitic layers composed of Lennard-Jones sites.
Furthermore, it is assumed that the walls are structureless, that is to say that the
carbon atoms are smeared out uniformly over the graphitic layer. The potential
between an adsorbate molecule and this smooth carbon surface is thus given by the

10-4-3 potential of Steele [24]:
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where p; is the number of carbon atoms per unit volume in the graphitic layer (114
nm™), A is the separation distance between layers of graphitic carbon (0.335 nm) and
z; 1S the distance between the adsorbate site and the surface. Solid-fluid Lennard-Jones
parameters were calculated using the Lorentz-Berthelot combining rules. The
simulation cell is rectangular, bounded in the z direction by the pore walls and
replicated in the x and y directions. The length of the simulation cell in both
directions parallel to the wall was chosen to be 30 A and periodic boundary conditions
are used in these directions.

We have studied configurations in which polar carbonyl groups are grafted to
the graphite wall. A carbonyl site is constituted by one L-J site for the oxygen atom
and two point charges (one on the oxygen and one on the carbon atom in the basal
plane). Parameters for this type of group were taken from the OPLS potential model
[25]. In table 1, we show the potential parameters for water, graphite and carbonyl

groups. [Insert table 1 about here]



2.2 Grand Canonical Monte Carlo

We have performed simulations in the Grand Canonical Ensemble, in which
the temperature (7), volume (/) and chemical potential (i) are kept constant. The
statistical mechanical basis and the algorithm for GCMC simulations are well
documented [1,2], and we have used the standard methodology.

In GCMC, there are three types of random trials: movements, creations and
destructions. The outcome of each trial depends on the difference in potential energy
between the old and new states [2]. In the case of long-range interactions, such as the
potential between two point charges, one has to sum over a series of periodic boxes
(counting only interactions that involve at least one molecule of the centre box —
where we want to calculate the potential). The efficient implementation of this
calculation is most easily explained with the help of a simplified diagram (figure 1).
As an example, we take a creation trial in the centre box. Before the creation (figure
la), the total potential in the centre box is given by the sum of the interactions
between the particle already there and its periodic images (we assume, for simplicity
of illustration, that only interactions with the two nearest images are significant).
Along with the particle in the centre box, an infinite number of periodic images is also
created in the trial (represented by only two images in the diagram). The total
potential after the creation is, thus, the result of all the interactions depicted in figure
1b. [Insert figure 1 about here]

As we are only interested in the energy difference, the interactions before the
creation are subtracted (figure 1¢). To make the program simpler, it is convenient that
all interactions be centred on the recently created molecule. Therefore, we use the fact

that the potential calculations depend only on the separation of the sites to obtain an



equivalent scheme, with all interactions centred on the created molecule (figure 1d).
The above discussion is also valid for destruction and move trials.

In order to sample configurations that are characteristic of equilibrium, the
system must be allowed to equilibrate. This is done by starting from a random
configuration and discarding a large number of initial steps. The number of
equilibration steps varied according to the operating conditions, but was never less
than 2x10° and as large as 107 for the highest densities. The sampling period was
divided into 20 blocks of at least 10° steps, so as to obtain a set of independent
samples. From these values, an overall average density and a standard deviation were
calculated. Each type of MC trial was chosen randomly with the same probability. In
the case of water (a multi-site molecule) the move trial entailed a random rotation as
well as a translation of the molecule. Calculations were performed on Sun Ultra 10

workstations.

3 Long range interactions.

The approaches studied here are:

e Minimum Image Convention (MI)

e 2D Ewald method of Heyes, Barber and Clarke. [8] (HBC)

e 2D Ewald method of Rhee, Halley, Hautman and Rahman [10] (RHHR)
e 2D Ewald method of Hautman and Klein [11] (HK)

e Method of Nijboer and de Wette [12] (NdW)

e 3D Ewald Summation for slabs [14] (3DEW)

e Method of Heyes and van Swol [15] (HvVS)

e Method of Lekner [16] (LK)



As all methods examined are well documented, we will not describe them in
detail, but rather give a simplified description of each procedure, while assessing each
method's advantages and disadvantages.

The simplest choice for the simulation of confined water is to simply ignore
the long-range character of the potential by making the simulation cell sufficiently
large. The minimum image convention with a cutoff radius can then be employed.
This was the method used in the earlier simulations of water in carbon pores [3,4],
when the lower computer power available made any more complex treatments
impractical. It has been shown by several authors [14,17,21] that the results obtained
using this procedure are significantly less accurate than those obtained with 2D
versions of the Ewald sum. Furthermore, the calculations seem to depend on the type
of cutoff scheme employed [14]. (An alternative, and quite distinct approach to the
simulation of water was taken by Miiller and coworkers [5-7] who modelled hydrogen
bonding by a square-well potential.)

The first derivation of the Ewald sums for 2D periodic systems that we have
considered is that due to Heyes et al. [§], also derived independently by de Leeuw and
Perram [9]. They used an approach analogous to the original (3-D) Ewald method, but
the in-plane (s;;) and out-of-plane (z;;) distances are separated in the Fourier part. The

potential energy between a molecule i and all other molecules j is given by
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where m and h are the two-dimensional real and reciprocal lattice vectors and A4 is the
area of the simulation cell in the periodic dimensions, given by 4 = LxL,. We have
neglected the sum over different sites in the same molecule for simplicity of notation.

A similar treatment, but with a different screening function, is the basis of the
method due to Rhee ef al. [10], who also included a multipole expansion in the z
direction (for details, see [10]). Another Ewald method is due to Hautman and Klein
[11], who used a Taylor series expansion of the inverse inter-particle distance 1/r; in
powers of z;/s;. This function is used in both the real- and the Fourier-space
summations. Full equations are given in references [11] and [19]. Nijboer and
deWette [12] devised a formulation that computes the whole potential in Fourier
space. Although simple, this method cannot in practice be used on its own, since it
diverges as z;—0. Smith [13] proposed the use of a hybrid HBC-NdW method, which
makes use of the HBC formulation at small out-of-plane separations and uses the
NdW expressions at large z;;.

An entirely different approach is to use the standard 3D Ewald Summations
but including a sufficiently large empty space between successive boxes in the z
direction, in order to avoid an artificial influence of the periodic images in this
direction. This method has been used by Shelley and Patey [14] to simulate water
confined between planar walls. However, it was shown by Spohr [17] that the results
from the 3D Ewald method converged to the values obtained from the 2D methods
only when the length of the simulation box in the z direction was very large (more
than 5 times larger than the length in the x and y directions). The addition of a
correction term to the 3D Ewald method was proposed by Yeh and Berkowitz [18].

This term is appropriate for a slab geometry and is given by
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where z; is the cartesian coordinate of molecule i. It is easy to see that the contribution

from this term to the potential on a single molecule i is given by
2 N
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Thus, to calculate the potential energy between a molecule i and all other molecules j
in the corrected 3DEW, one must simply use equation (2) (without the sum over i)
and add the correction term in equation (7). By performing these calculations for
several test cases, Yeh and Berkowitz concluded that the corrected method would
converge to the desired results for an empty space equal to the length of the
simulation box in the x and y directions.

We have also looked into two other non-Ewald methods, the first of which
was proposed by Heyes and van Swol [15]. This method calculates the sum of the
simple Coulomb expression over a small number of periodic boxes (up to a truncation
radius R.) and then includes a correction term for the rest of the boxes up to infinity.
The expression for this correction term is obtained by expanding the potential from
each image charge about z;; = 0 and then replacing the periodic discrete charges with a
uniform charge density distribution (this is equivalent to replacing the double sum
over the two periodic dimensions with a two-dimensional integral in that plane). The
full expressions for the potential in HvS with a unit box length in the x and y
dimensions (once again neglecting the sum over different sites in the same molecule

for simplicity of notation) are:
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In the above equation, #, and n, are the components of the unit lattice vector in
the x and y directions, n¢ is the number of cells in each direction over which the lattice
sums are performed, and x;;, y;; and z; are the cartesian components of r;. The last
term in Equation 8 accounts for the contributions from molecules in replicas further
than nc cells from the simulation cell.

The last method considered is originally due to Lekner [16] and was published
in a corrected form by Grenbech-Jensen et al. [26]. It is based on a representation of
the forces acting on the particles in terms of a sum of trigonometric and Bessel
functions. Expressions for the potential are then obtained from integration of the

forces (see [16] and [26] for full equations).

4 Results and Discussion

We will start by comparing the performance of the simplified MI convention
with the full 2D Ewald summation (we have chosen HBC for this comparison, since it
is considered the most accurate of the Ewald methods [19]). The MI methodology has
been recently revived for the simulation of water/methanol mixtures by Shevade et al.
[27,28]. As a justification for the use of this algorithm, they have suggested that the
difference in potential between the MI convention and a full 2D Ewald summation
was below 1%. We have found this to be true only for very close packed systems with
a large number of molecules (in which case the potential in the vicinity of a water
molecule is dominated by the interactions with its nearest neighbours). For low
densities, the difference in potential increased in some cases above 50%, which is
clearly non-negligible. We have compared adsorption isotherms obtained with both
the MI convention and HBC, and have observed the results to be significantly
different. One of those comparisons, for a pore width of 9.5A and a surface site

density of 2.67 sites/nm’, is shown in figure 2. The discrepancies are clear, especially
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in the pressure at which pore filling occurs (lower with MI) and in the density of
water after pore filling (higher with MI). This leads us to conclude that the MI
convention should not be used in simulations of confined water. [Insert figure 2 about
here]

Moving on to the more accurate, but more computationally demanding Ewald
methods, we have started by looking at the version of the 3DEW for slab geometry.
figure 3 shows the potential on a water molecule as a function of the ratio L./L, for the
two different methods (3DEW with and without the correction term). It is clear that
the result converges to the value obtained using the full HBC summation in both
cases, but the correction term significantly improves this convergence, particularly at
low values of L.. We can see that the 3DEW method plus the correction term is able
to calculate an essentially accurate value for the potential (error below 1% relative to
the full HBC result) if we use L,=2. The reason for the success of this method lies in
the fact that the correction term effectively compensates for the contributions of the
replicas of the simulation cell in the z direction, which are unphysical in two-
dimensional periodic systems [18]. [Insert figure 3 about here]

We now compare the performance of the Ewald methods described in the
previous section (HK, HBC, RHHR and 3DEW plus correction term). In terms of
accuracy, we have observed that HBC produces the most accurate results, which
agrees with a previous comparison between HK, HBC and NdW by Widmann and
Adolf [19]. The results for computer time as a function of the screening parameter, K,
for those four methods are shown in figure 4. The number of real- and reciprocal-
space vectors used in the summations were fine-tuned in order to obtain a maximum
error of 1% in the potential, relative to the full HBC result. We can see that at the

optimum value of «k, all the methods have comparable speeds, with HBC being the

13



fastest. In contrast, Widmann and Adolf [19] found HBC to be the slowest method.
This reflects the fact that the total potential was calculated in their MD simulations,
requiring two nested sums over all molecules in the box. In the standard 3DEW (and,
indeed, in the HK, NdW and RHHR methods), it is possible to replace these two
summations by only one, using complex algebra [1]. This apparent disadvantage of
the HBC method disappears in our MC simulations. Since it is only necessary to
calculate the difference in potential energy when one molecule is affected, there is no
need to compute the double sum over all molecules. Hence, the HBC method
becomes much more competitive. [Insert figure 4 about here]

Direct comparisons between all methods were made for a series of test cases
(changing the number of molecules, pore width, and box length). Results for one of
these test cases are shown in table 2. All parameters for each method were optimised
to give the fastest computing time for an error in potential smaller that 1% (relative to
the full HBC result). All test cases have shown the same trend. By looking at the table
we can confirm that HBC is indeed the fastest of the Ewald methods. Both RHHR and
HK suffer from accuracy problems, particularly at large z, and in the case of HK an
approximate expansion must be used as s—0 [19]. As for the 3D version, the
efficiency of the method is hindered by the fact that the summations have to be
performed over three dimensions instead of two. However, it is reasonable to expect
that this method will become more competitive in MD simulations, due to its
simplicity. [Insert table 2 about here]

The Lekner method suffers from divergence problems at very small z and this
problem is overcome only by including a prohibitively large number of terms in the
summation. Some authors [29] have suggested the development of a combined

method that takes advantage of the good properties of HK at small z and makes use of
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the fast convergence of the Lekner method at larger z separations, but this possibility
was not investigated further.

HvS is seen to be the fastest method by a factor of 2 (relative to HBC) in the
example presented here (a similar performance was found in other test cases), which
represents a significant improvement. Even though this method is still about 5 times
slower than the MI convention, it is the optimal method for our work, since it is
capable of producing an essentially accurate potential in a relatively short time. We
have chosen the cutoff number of boxes, nc, to be 3, since it provides us with a

suitable balance between accuracy and speed of computation.

5 Conclusions

We have compared several methods for the treatment of long-range
interactions in grand canonical Monte Carlo simulation of water adsorption in slit-
shaped pores. The method of Heyes and van Swol [15] had the best performance in
this application. We see no reason to believe that this conclusion is specific to our
particular system, but rather that it is likely to apply in general to long-range

interactions in phases confined in spaces that are unbounded in two dimensions.
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table 1: Potential parameters for water molecules, graphite walls and carbonyl sites.

Site o/nm &/(J.mol™) gle
Water H 0.0 0.0 +0.52
0) 0.3154 649.3 0.0
M 0.0 0.0 -1.04
Graphite C 0.340 232.8 0.0
Carbonyl C 0.0 0.0 +0.5
0) 0.296 879.6 -0.5
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table 2: Comparison of several methods for treatment of long-ranged interactions. All

methods are optimised for a maximum error of 1% in the potential energy.
p p gy

Method Computing time/s
HBC 3.0
RHHR 7.4
HK 4.0
3D Ewald + correction 7.7
HvS 1.6
Lekner 55.6
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figure 1: Diagram describing the calculation of the potential energy difference in a

GCMC creation trial.
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figure 2: Water adsorption isotherms in a pore of width 9.5A with a density of 2.67
carbonyl sites/nm” on the surface. The two curves represent results obtained with the
2D Ewald sum (diamonds) and with the MI convention (open squares). Error bars are

the size of the symbols used.
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figure 3: Potential energy on a water molecule as a function of the relative dimension
of the simulation cell in the z direction. Triangles are for the 3D Ewald sum, open
diamonds for the 3D Ewald sum plus the correction term and the dashed line is the

result obtained using the full 2D Ewald sum (HBC).
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figure 4: Computing time as a function of the screening parameter k for four different
Ewald methods: HK (triangles), HBC (open diamonds), RHHR (circles) and

3D-+correction (open squares). Lines are a guide to the eye.
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