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The problem of variational data assimilation for a nonlinear evolution model is
formulated as an optimal control problem to find the initial condition function
(analysis). The data contain errors (observation and background errors); hence
there is an error in the analysis. For mildly nonlinear dynamics the analysis error
covariance can be approximated by the inverse Hessian of the cost functional in the
auxiliary data assimilation problem, and for stronger nonlinearity by the ‘effective’
inverse Hessian. However, it has been noticed that the analysis error covariance is
not the posterior covariance from the Bayesian perspective. While these two are
equivalent in the linear case, the difference may become significant in practical terms
with the nonlinearity level rising. For the proper Bayesian posterior covariance a
new approximation via the Hessian is derived and its ‘effective’ counterpart is
introduced. An approach for computing the mentioned estimates in the matrix-
free environment using the Lanczos method with preconditioning is suggested.
Numerical examples which validate the developed theory are presented for the
model governed by Burgers equation with a nonlinear viscous term. Copyright c©
2012 Royal Meteorological Society
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1. Introduction

Over the past two decades, methods of data assimilation

(DA) have become vital tools for analysis and prediction

of complex physical phenomena in various fields of science

and technology, but particularly in large-scale geophysical

applications such as numerical weather and ocean

prediction. Among the few feasible methods for solving

these problems the variational data assimilation method

called ‘4D-Var’ is the preferred method implemented at

some major operational centres, such as the UK Met

Office, ECMWF, Meteo France and GMAO (USA). The

key ideas of the method were introduced by Sasaki

(1955), Penenko and Obraztsov (1976) and Le Dimet and
Talagrand (1986). Assuming that an adequate dynamical
model describing the evolution of the state u is given,
the 4D-Var method consists in minimization of a specially
designed cost functional J(u) which includes two parts: the
squared weighted residual between model predictions and
instrumental observations taken over the finite observation
period [0, T]; and the squared weighted difference between
the solution and the prior estimate of u, known as
the ‘background term’ ub. Without this term one would
simply get the generalized nonlinear least square problem
(Hartley and Booker, 1965), whereas in the presence of
the background term the cost functional is similar that
considered in Tikhonov’s regularization theory (Tikhonov,
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1963). The modern implementation of the method in
meteorology is known as the ‘incremental approach’ (see
Courtier et al., 1994). Curiously, it took over a decade for the
data assimilation community to realize that the incremental
approach is nothing else but the Gauss–Newton method
applied for solving the optimality system associated with
J(u) (see Lawless et al., 2005).

The error in the optimal solution (or ‘analysis error’)
is naturally defined as a difference between the solution
u and the true state ut ; this error is quantified by the
analysis error covariance matrix (see, for example, Thacker,
1989; Rabier and Courtier, 1992; Fisher and Courtier, 1995;
Yang et al., 1996; Gejadze et al., 2008). This perception of
uncertainties in the 4D-Var method is probably inherited
from the nonlinear least square (or nonlinear regression)
theory (Hartley and Booker, 1965). A less widespread point
of view is to consider the 4D-Var method in the framework
of Bayesian methods. Among the first to write on the
Bayesian perspective on DA one should probably mention
Lorenc (1986) and Tarantola (1987). For a comprehensive
review on the recent advances in DA from this point of
view see, for example, Wikle and Berliner (2007) and
Stuart (2010). So far, it has been recognized that for
the Gaussian data errors (which include observation and
background/prior errors) the Bayesian approach leads to
the same standard 4D-Var cost functional J(u) to be
minimized. However, it is not yet widely recognized that the
conception of the estimation error in the Bayesian theory
is somewhat different from the nonlinear least squares
theory and, as a result, the Bayesian posterior covariance
is not exactly the analysis error covariance. These two are
conceptually different objects, which can sometimes be
approximated by the same estimate. In the linear case
they are quantitatively equal; in the nonlinear case the
difference may become quite noticeable in practical terms.
Note that the analysis error covariance computed at the
optimal solution can also be named ‘posterior’, because it
is, in some way, conditioned on the data (observations and
background/prior). However, this is not the same as the
Bayesian posterior covariance.

An important issue is the relationship between the analysis
error covariance, the Bayesian posterior covariances and
the Hessian H = J ′′(u). A well-known fact which can be
found in any textbook on statistics (e.g. Draper and Smith,
1966) is that in the case of the linear dependence between
the state variables (exogenous variables) and observations
(endogenous variables) the analysis error covariance is equal
to H−1. For the nonlinear case this is transformed into the
statement that the analysis error can be approximated by
H−1, where H is a linearized approximation to H. Since the
analysis error covariance is often being confused with the
Bayesian posterior covariance, the latter is also thought to
be approximately equal to H−1. This misconception often
becomes apparent when one applies, or intends to apply,
elements of the variational approach in the framework of
sequential methods (filtering) (see, for example, Dobricic,
2009, p. 274; Auvinen et al., 2010, p. 319; Zupanski et al.,
2008, p. 1043). In the 4D-Var framework, the analysis error
covariance must be considered to evaluate the confidence
intervals/regions of the analysis or corresponding forecast.
However, it is the Bayesian posterior covariance which
should be used as a basis for evaluating the background
covariance for the next assimilation window if the Bayesian
approach is to be consistently followed.

In this paper we carefully consider relationships between
the two mentioned covariances and the Hessians H and
H. A new estimate of the Bayesian posterior covariance
via the Hessians has been suggested and its ‘effective’
counterpart (similar to the ‘effective inverse Hessian’)
(see Gejadze et al., 2011) has been introduced. We believe
these are new results which may have both theoretical
and applied value as for data assimilation, so in a
more general framework of the inverse problems and
parameter estimation theory (Tarantola, 2005). The issue
of computational efficiency is not considered to be of
major importance in this paper; however, all introduced
estimates are, in principle, computable in large-scale
problem set-ups.

The paper is organized as follows. In section 3 we
state the variational DA problem to identify the initial
conditions for a nonlinear evolution model. In section
4 the equation for analysis error is given through the
errors in the input data using the Hessian of the auxiliary
DA problem, and the basic relationship between analysis
error covariance and the inverse of this Hessian is
established. Similarly, in section 5 the expression for
the Bayesian posterior covariance involving the original
Hessian of J(u) and the Hessian of the auxiliary DA
problem is derived. In section 6 the ‘effective’ estimates
are introduced and in section 7 the key implementation
issues are considered. In section 8 the asymptotic properties
of the regularized least square estimator and of the
Bayesian estimator are briefly discussed. The details of
numerical implementation are presented in section 9
and the numerical results which validate the presented
theory in section 10. The main results of this paper are
summarized in the Conclusions. The Appendix contains
additional material on the asymptotic properties of the
estimators.

2. Overview

Let u be the initial state of a dynamical system and y
incomplete observations of the system. It is possible to write
the initialization-to-data map as

y = G(u) + ξo,

where G represents the mapping from the initial state to the
observations and ξo is a random variable from the Gaussian
N(0, Vo). The objective is to find u from y.

In the Bayesian formulation u has the prior density ρprior

from the Gaussian N(ub, Vb). The posterior density ρpost is
given by Bayes’ rule as

ρpost(u) = const · exp(−�(u) −
1

2
‖V

−1/2
b (u − ub)‖2),

where

�(u) =
1

2
‖V−1/2

o (y − G(u))‖2

(for details see section 5).
The 4D-Var solution, which coincides with the maximizer

of the posterior density, is found by minimizing �(u) +
1
2
‖V

−1/2
b (u − ub)‖2 (see Eqs (2)–(3)). The minimizer ū

solves the optimality system

D�(ū) + V−1
b (ū − ub) = 0

Copyright c© 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2012)
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(see Eqs (4)–(6)).
With this notation the paper addresses the following

issues:

(i) The posterior covariance is given by

Epost((u − umean)(u − umean)∗),

where umean = Epostu and Epost denotes averaging
(expectation) with respect to ρpost (see Eq. (32)).
The posterior covariance is often approximated by
trying to find the second moment of ρpost centred
around ū instead of umean (see Eq. (33)), which is
natural because ū is the output of 4D-Var. In the
linear Gaussian set-up umean and ū coincide. This is
not true in general, but can be expected to be a good
approximation if the volume of data is large and/or
noise is small (see section 8).

(ii) The analysis error covariance is associated with
trying to find an approximation around the truth
ut , whereas the data are also assumed to come
from the truth: y = G(ut) + ξo, ub = ut + ξb, where
ξo ∼ N(0, Vo) and ξb ∼ N(0, Vb) are the observation
and background error, respectively. The analysis error
is defined as δu = u − ut and its covariance is given
by

Ea((u − ut)(u − ut)∗) = Ea(δuδu∗)

(see Eq. (22)), where Ea denotes averaging (expec-
tation) with respect to the analysis error density ρa

which, taking into account the definitions of the data
y and ub, can be defined as follows:

ρa(u) = const · exp(−�(u) −
1

2
‖V

−1/2
b (u − ut)‖2),

where

�(u) =
1

2
‖V−1/2

o (G(ut) − G(u))‖2.

The analysis error covariance can be approximated
by the inverse of the Hessian H of the auxiliary cost
function

1

2
‖V−1/2

o DG(ut)v‖2 +
1

2
‖V

−1/2
b v‖2,

where v is a function belonging to the state space
(see Eqs (20)–(21)). Since ut is not known, ū is used
instead of ut .

(iii) Owing to different centring of Gaussian data, the
posterior covariance and the analysis error covariance
are different objects and should not be confused. They
are equal in the linear case.

(iv) Computing D� to find the 4D-Var solution requires
computing (DG)∗ and this may be found from
an adjoint computation (see Eq. (5)). Computing
the approximation of the posterior covariance at ū
requires finding the Hessian

H(ū) = D2�(ū) + V−1
b

(see Eqs (45)–(47)) and inverting it. The second
derivative D2�(ū) requires computing D2G(ū).
Important (and sometimes expensive to compute)
terms coming from F′′(ū) in the notation to follow
cannot be neglected here.

(v) The posterior covariance can be approximated using
the formula which includes both the Hessians H

and H (see Eq. (51)). Other subsequently coarse
approximations include H−1 and H−1. The latter
coincides with the approximation of the analysis error
covariance. Actual implementation of the algorithms
for computing the above estimates is detailed in the
paper. Owing to the presence of linearization errors,
the ‘effective’ values of all the covariance estimates
have to be preferred (see section 6) if they are
computationally affordable.

(vi) We put a distance metric (see Eq. (68)) on
operators/matrices and use this to compare all of
the different notions of covariance. It is important
to distinguish between differences arising from
conceptual shifts of perspective and those arising from
approximations. For example, H−1 must be used for
estimating the analysis error covariance, not H−1. In
this case, the latter (if available by means of a different
approach; see, for example, Yang et al., 1996), can be
used as an approximation to H−1. Vice versa, it is
H−1 that should be used for estimating the posterior
covariance, not H−1. However, the latter can be used
to approximate H−1.

3. Statement of the problem

Consider the mathematical model of a physical process that
is described by the evolution problem:

∂ϕ

∂t
= F(ϕ) + f , ϕ

∣

∣

t=0
= u, (1)

where ϕ = ϕ(t) is the unknown function belonging, for
any t ∈ (0, T), to a state space X, u ∈ X, F is a nonlinear
operator mapping X into X. Let Y = L2(0, T; X) be a space

of functions ϕ(t) with values in X, ‖ · ‖Y = (·, ·)
1/2
Y , f ∈ Y .

Suppose that for a given u ∈ X, f ∈ Y there exists a unique
solution ϕ ∈ Y to Eq. (1).

Let ut be the ‘true’ initial state and ϕt the solution
to the problem (Eq. (1)) with u = ut , i.e. the ‘true’
state evolution. We define the input data as follows:
the background function ub ∈ X, ub = ut + ξb and the
observations y ∈ Yo, y = Cϕt + ξo, where C : Y → Yo is
a linear bounded operator (observation operator) and Yo is
an observation space. The functions ξb ∈ X and ξo ∈ Yo may
be regarded as the background and the observation error,
respectively. We assume that these errors are normally
distributed (Gaussian) with zero mean and the covariance
operators Vb· = E[(·, ξb)X ξb] and Vo· = E[(·, ξo)Yo ξo] ,
i.e. ξb ∼ N (0, Vb), ξo ∼ N (0, Vo), where ‘∼’ is read ‘is
distributed as’. We also assume that ξo, ξb are mutually
uncorrelated and Vb,Vo are positive definite, and hence
invertible.

Let us formulate the following DA problem (optimal
control problem) with the aim to identify the initial
condition: for given f ∈ Y find u ∈ X and ϕ ∈ Y such that
they satisfy Eq. (1), and on the set of solutions to Eq. (1) a
cost functional J(u) takes the minimum value, i.e.

J(u) = inf
v ∈ X

J(v), (2)

Copyright c© 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2012)
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where

J(u) =
1

2
(V−1

b (u − ub), u − ub)X ,

+
1

2
(V−1

o (Cϕ − y), Cϕ − y)Yo .

(3)

The necessary optimality condition reduces the problem
(Eqs (2)–(3)) to the following system (Lions, 1968):

∂ϕ

∂t
= F(ϕ) + f , ϕ

∣

∣

t=0
= u, (4)

−
∂ϕ∗

∂t
− (F′(ϕ))∗ϕ∗ = −C∗V−1

o (Cϕ − y), (5)

V−1
b (u − ub) − ϕ∗

∣

∣

t=0
= 0, (6)

with the unknowns ϕ, ϕ∗, u, where (F′(ϕ))∗ is the adjoint
to the Frechet derivative of F, and C∗ is the adjoint to
C defined by (Cϕ, ψ)Yo = (ϕ, C∗ψ)Y , ϕ ∈ Y , ψ ∈ Yo. All
adjoint variables throughout the paper satisfy the trivial
terminal condition, e.g. ϕ∗

∣

∣

t=T
= 0. Having assumed that

the system (Eqs (4)–(6)) has a unique solution, we will
study the impact of the errors ξb, ξo on the optimal solution
u.

4. The analysis error covariance via inverse Hessian

In this section an equation for the analysis error is derived
through the errors in the input data, the approximate
relationship between the analysis error covariance and the
Hessian of the auxiliary DA problem is established and the
validity of this approximation is discussed.

Let us define the analysis (optimal solution) error
δu = u − ut and the corresponding (related via Eq. (7)) field
deviation δϕ = ϕ − ϕt . Assuming F is continuously Frechet
differentiable, there exists ϕ̃ = ϕt + τ (ϕ − ϕt), τ ∈ [0, 1],
such that the Taylor–Lagrange formula (Marchuk et al.,
1996) is valid: F(ϕ) − F(ϕt) = F′(ϕ̃)δϕ. Then from Eqs
(4)–(6) we get

∂δϕ

∂t
− F′(ϕ̃)δϕ = 0, δϕ|t=0 = δu, (7)

−
∂ϕ∗

∂t
− (F′(ϕ))∗ϕ∗ = −C∗V−1

o (Cδϕ − ξo), (8)

V−1
b (δu − ξb) − ϕ∗|t=0 = 0. (9)

Let us introduce the operator R(ϕ) : X → Y as follows:

R(ϕ)v = ψ , v ∈ X, (10)

where ψ is the solution of the tangent linear problem

∂ψ

∂t
− F′(ϕ)ψ = 0, ψ |t=0 = v. (11)

The adjoint operator R∗(ϕ) : Y → X acts on the function
g ∈ Y according to the formula

R∗(ϕ)g = ψ∗|t=0, (12)

where ψ∗ is the solution to the adjoint problem

−
∂ψ∗

∂t
− (F′(ϕ))∗ψ∗ = g. (13)

Then, the system for errors (Eqs (7)–(9)) can be
represented as a single operator equation for δu:

H(ϕ, ϕ̃)δu = V−1
b ξb + R∗(ϕ)C∗V−1

o ξo, (14)

where

H(ϕ, ϕ̃) = V−1
b + R∗(ϕ)C∗V−1

o CR(ϕ̃). (15)

The operator H(ϕ, ϕ̃) : X → X can be defined by the
successive solutions of the following problems:

∂ψ

∂t
− F′(ϕ̃)ψ = 0, ψ |t=0 = v, (16)

−
∂ψ∗

∂t
− (F′(ϕ))∗ψ∗ = −C∗V−1

o Cψ , (17)

H(ϕ, ϕ̃)v = V−1
b v − ψ∗|t=0. (18)

In general, the operator H(ϕ, ϕ̃) is neither symmetric nor
positive definite. However, if both its entries are the same,
i.e. ϕ = ϕ̃ = θ , it becomes the Hessian H(θ) of the cost
function J1 in the following optimal control problem: find
δu and δϕ such that

J1(δu) = inf
v

J1(v), (19)

where

J1(δu) =
1

2
(V−1

b (δu − ξb), δu − ξb)X

+
1

2
(V−1

o (Cδϕ − ξo), Cδϕ − ξo)Yo ,

(20)

and δϕ satisfies the problem

∂δϕ

∂t
− F′(θ)δϕ = 0, δϕ

∣

∣

t=0
= δu. (21)

We shall call the problem (Eqs (19)–(20)) the ‘auxiliary
DA problem’ and the entry θ in Eq. (21) the ‘origin’ of the
Hessian H(θ). Let us note that any ξb ∈ X and ξo ∈ Yo can
be considered in Eq. (20), including ξb = 0 and ξo = 0.

Further, we assume that the optimal solution (analysis)
error δu is unbiased, i.e. E[δu] = 0 (the validity of this
assumption in the nonlinear case will be discussed in section
8), with the analysis error covariance operator

Vδu· = E[(·, δu)X δu] = E[(·, u − ut)X (u − ut)]. (22)

In order to evaluate Vδu we express δu from Eq. (14), then
apply the expectation E to (·, δu)Xδu. Let us note, however,
that the functions ϕ, ϕ̃ in Eqs (7)–(9) are dependent on
ξb, ξo and so are the operators R(ϕ̃), R∗(ϕ), and it is
not possible to represent δu through ξb, ξo in an explicit
form. Therefore, before applying E we need to introduce
some approximations of the operators involved in Eq. (14)
independent of ξb, ξo. Consider the functions ϕ̃ = ϕt + τδϕ

Copyright c© 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2012)
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and ϕ = ϕt + δϕ in Eqs (7)–(9). As far as we assume that
E[δu] ≈ 0, it is natural to consider E[δϕ] ≈ 0. Thus the best
value of ϕ and ϕ̃ independent of ξo, ξb is apparently ϕt and
we can use the following approximations:

R(ϕ̃) ≈ R(ϕt), R∗(ϕ) ≈ R∗(ϕt). (23)

Then Eq. (14) reduces to

H(ϕt)δu = V−1
b ξb + R∗(ϕt)C∗V−1

o ξo, (24)

where

H(·) = V−1
b + R∗(·)C∗V−1

o CR(·). (25)

Now we express δu from Eq. (24):

δu = H−1(ϕt)(V−1
b ξb + R∗(ϕt)C∗V−1

o ξo)

and obtain the expression for the analysis error covariance
as follows:

Vδu = H−1(ϕt)(V−1
b + R∗(ϕt)C∗V−1

o CR(ϕt))H−1(ϕt)

= H−1(ϕt)H(ϕt)H−1(ϕt) = H−1(ϕt).

(26)

In practice the ‘true’ field ϕt is not known (apart from
the ‘identical twin experiment’ set-up); thus we have to use
its best available approximation ϕ̄ associated to a certain
unique optimal solution ū defined by the real data (ūb, ȳ),
i.e. we have to use

Vδu = H−1(ϕ̄). (27)

This formula is equivalent to a well-established result (see
Thacker, 1989; Rabier and Courtier, 1992; Courtier et al.,
1994), which is usually deduced (without considering the
exact equation (14)) by straightforwardly simplifying the
original nonlinear DA problem (Eqs (2)–(3)) under the
assumption that

F(ϕ) − F(ϕt) ≈ F′(ϕ)δϕ, ∀ϕ, (28)

which is called the ‘tangent linear hypothesis’ (TLH). In
particular, in Rabier and Courtier (1992, p. 671), the error
equation is actually derived in the form

(V−1
b + R∗(ϕ)C∗V−1

o CR(ϕ))δu

= V−1
b ξb + R∗(ϕ)C∗V−1

o ξo.
(29)

It is obvious that the operators R(ϕ), R∗(ϕ) in this
equation depend on the errors via ϕ and they cannot be
treated as being constant with respect to δu when computing
the expectation E [(·, δu)Xδu], as has been done by Rabier
and Courtier (1992). From Eq. (29) the authors nevertheless
deduce the formula (27); hence there is no difference in
practical terms between the two approaches. However, it is
clear from our derivation that the best estimate of Vδu via
the inverse Hessian can be achieved given the origin ϕt . The
error in this estimate is an averaged (over all possible
implementations of ϕ and ϕ̃) error due to transitions
R(ϕ̃) → R(ϕt) and R∗(ϕ) → R∗(ϕt); we shall call it the
‘linearization’ error. The use of ϕ̄ instead of ϕt in the

Hessian computations leads to another error, which we shall
call the ‘origin’ error. It is important to distinguish these
two errors. The first one is related to the method in use
and can be eliminated if the error equation (14) for each
ξ1, ξ2 is satisfied exactly. This can be achieved by solving
the perturbed original DA problem in the Monte Carlo
loop with a large sample size, for example. The second one,
however, cannot be eliminated by any method, given that
the state estimate almost always differs from the ‘truth’. It
should be mentioned in advance that the origin error can be
significantly larger than the linearization error. This means,
for example, that the use of the computationally expensive
Monte Carlo instead of the inverse Hessian may lead to only
marginal quality improvement. This issue is discussed in
Gejadze et al. (2011) and a method of accessing the possible
magnitude of the origin error is a subject of a forthcoming
paper.

In the context of our approach, the ‘tangent linear
hypothesis’ should be rather considered in the form

F(ϕ) − F(ϕt) ≈ F′(ϕt)δϕ, ∀ϕ. (30)

There is a clear difference between Eqs (30) and (28). For
example, if we assume that E[δϕ] = 0 then E[F′(ϕt)δϕ] = 0;
however, E[F′(ϕ)δϕ] = E[F′(ϕt + δϕ)δϕ] 
= 0. One can
easily imagine situations in which the condition (30) is
far less demanding than (28). It is customarily said in the
geophysical literature that Vδu can be approximated by the
inverse Hessian if the TLH (Eq. (28)) is valid, which should
be true if the nonlinearity is mild and/or the error δu and,
subsequently, δϕ are small. We would say more precisely
that the linearization error in Vδu approximated by H−1(ϕt)
is small if the TLH (Eq. (30)) is valid. Moreover, we derive
Eq. (26) via Eq. (14). From this derivation one can see
that the validity of Eq. (26) depends on the accuracy of the
approximations (23), which may still be accurate though Eq.
(30) is not satisfied. This partially explains why in practice
the approximation (26) is reasonably accurate if Eq. (30)
is evidently not satisfied. Another reason is rooted in the
stochastic properties of the nonlinear least squares estimator,
as discussed in section 6. However, it is hardly possible to
judge on the magnitude of the origin error in relation to the
condition (30) being valid or not.

5. Posterior covariance

In this section the expression for the Bayesian posterior
covariance involving the Hessians of the original functional
J(u) and the auxiliary functional J1(δu) is derived, and
its possible approximations are discussed. The results of
this section demonstrate that the analysis error covariance
and Bayesian posterior covariance are different objects and
should not be confused.

Given ub ∼ N (ūb, Vb), y ∼ N
(

ȳ, Vo

)

, the following
expression for the posterior distribution of u is derived
from the Bayes theorem (for details see Stuart, 2010):

p(u|ȳ) = const · exp (−
1

2
(V−1

b (u − ūb), u − ūb)X)

× exp(−
1

2
(V−1

o (Cϕ − ȳ), Cϕ − ȳ)Yo ).

(31)

It follows from Eq. (31) that the solution to the variational
DA problem (Eqs (2)–(3)) with the data y = ȳ and ub = ū
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is equal to the mode of p(u, ȳ) (see, for example, Lorenc,
1986; Tarantola, 1987). Accordingly, the Bayesian posterior
covariance has to be defined by

Vδu· = E[(·, u − E[u])X (u − E[u])], (32)

with u ∼ p(u|ȳ). Clearly, in order to compute Vδu by the
Monte Carlo method, one must generate a sample of pseudo-
random realizations ui from p(u|ȳ). In particular, in the
ensemble filtering methods (see Evensen, 2003; Zupanski
et al., 2008) these are produced by solving the optimal
control problem (i.e. inverse problem!) for independently
perturbed data at the current time step by explicitly using
the Kalman update formula in the EnKF of Evensen (2003)
or by minimizing the nonlinear cost function in the MLEF
of Zupanski et al. (2008). Then, the sample mean and the
sample covariance (equivalent to Eq. (32)) are computed.
As far as the ensemble filtering methods are considered a
special case of the Bayesian sequential estimation (Wikle
and Berliner, 2007, p. 10), we may call the covariance
obtained by the described method the ‘Bayesian posterior
covariance’. Following a similar approach in variational DA,
one should consider ui to be the solutions to the DA problem
(Eqs (2)–(3)) with the perturbed data ub = ūb + ξb, and
y = ȳ + ξo, where ξb ∼ N (0, Vb), ξo ∼ N (0, Vo). Further,
we assume that E[u] = ū, where ū is the solution to the
unperturbed problem (Eqs (2)–(3)), in which case Vδu can
be approximated as follows:

Vδu· = E[(·, u − ū)X (u − ū)] = E[(·, δu)X δu]. (33)

We will show that this covariance is different from the
classical analysis error covariance (Rabier and Courtier,
1992) evaluated at the optimal solution ū.

Now, in order to build the posterior error covariance,
let us consider the unperturbed optimality system (Eqs
(4)–(6)) with fixed ub = ūb, y = ȳ:

∂ϕ̄

∂t
= F(ϕ̄) + f , ϕ

∣

∣

t=0
= ū, (34)

−
∂ϕ̄∗

∂t
− (F′(ϕ̄))∗ϕ̄∗ = −C∗V−1

o (Cϕ̄ − ȳ), (35)

V−1
b (ū − ūb) − ϕ̄∗

∣

∣

t=0
= 0, (36)

with the solution {ū, ϕ̄, ϕ̄∗}. Let us now introduce the
perturbations as follows: ub = ūb + ξb, y = ȳ + ξo, where
ξb ∈ X, ξo ∈ Yo. The perturbed solution {u, ϕ, ϕ∗} satisfies
Eqs (4)–(6). Let us denote δu = u − ū, δϕ = ϕ − ϕ̄ and
δϕ∗ = ϕ∗ − ϕ̄∗. Then from Eqs (4)–(6) and (34)–(36) we
obtain for {δu, δϕ, δϕ∗}

∂δϕ

∂t
= F(ϕ) − F(ϕ̄), δϕ

∣

∣

t=0
= δu, (37)

−
∂δϕ∗

∂t
− (F′(ϕ))∗δϕ∗

= [(F′(ϕ))∗ − (F′(ϕ̄))∗]ϕ̄∗ − C∗V−1
o (Cδϕ − ξo),

(38)

V−1
b (δu − ξb) − δϕ∗

∣

∣

t=0
= 0. (39)

Using the Taylor–Lagrange formulas F(ϕ) = F(ϕ̄) +
F′(ϕ̃1)δϕ, F′(ϕ) = F′(ϕ̄) + F′′(ϕ̃2)δϕ, and introducing ϕ̃1 =
ϕ̄ + τ1δϕ, ϕ̃2 = ϕ̄ + τ2δϕ, τ1, τ2 ∈ [0, 1], we derive the
system for errors:

∂δϕ

∂t
= F′(ϕ̃1)δϕ, δϕ

∣

∣

t=0
= δu, (40)

−
∂δϕ∗

∂t
− (F′(ϕ))∗δϕ∗

= [(F′(ϕ̃2))∗ϕ̄∗]′δϕ − C∗V−1
o (Cδϕ − ξo),

(41)

V−1
b (δu − ξb) − δϕ∗

∣

∣

t=0
= 0, (42)

which is equivalent to a single operator equation for δu:

H(ϕ, ϕ̃1, ϕ̃2)δu = V−1
b ξb + R∗(ϕ)C∗V−1

o ξo, (43)

where

H(ϕ, ϕ̃1, ϕ̃2) = V−1
b

+ R∗(ϕ)(C∗V−1
o C − [(F′(ϕ̃2))∗ϕ̄∗]′)R(ϕ̃1).

(44)

Here, the operators R and R∗ are defined in section 4
and H(ϕ, ϕ̃1, ϕ̃2) : X → X can be defined by the successive
solution of the following problems:

∂ψ

∂t
= F′(ϕ̃1)ψ , ψ

∣

∣

t=0
= v, (45)

−
∂ψ∗

∂t
− (F′(ϕ))∗ψ∗

= [(F′(ϕ̃2))∗ϕ̄∗]′ψ − C∗V−1
o Cψ ,

(46)

H(ϕ, ϕ̃1, ϕ̃2)v = V−1
b v − ψ∗

∣

∣

t=0
. (47)

Let us underline that the term involving F′′ on the
right-hand side of Eq. (41) is of first-order accuracy with

respect to δϕ–the same as C∗V−1
0 Cδϕ–and therefore it

cannot be neglected in derivation of the covariance. In
general, the operator H(ϕ, ϕ̃1, ϕ̃2) is neither symmetric nor
positive definite. However, if all its entries are the same,
i.e. ϕ = ϕ̃1 = ϕ̃2, it becomes the Hessian H(ϕ) of the cost
function in the original DA problem (Eqs (2)–(3)), which is
symmetric and, also, positive definite if u is a minimum point
of J(u). Equation (46) is often referred to as the ‘second-
order’ adjoint model (Le Dimet et al., 2002). Technically,
this is simply an adjoint model with a specially defined
source term.

As before, we assume that E(δu) ≈ 0. Let us accept the
following approximations:

R(ϕ̃1) ≈ R(ϕ̄), R∗(ϕ) ≈ R∗(ϕ̄),

[(F′(ϕ̃2))∗ϕ̄∗]′ ≈ [(F′(ϕ̄))∗ϕ̄∗]′. (48)

Then the exact error equation (43) is approximated as
follows:

H(ϕ̄)δu = V−1
b ξb + R(ϕ̄)∗C∗V−1

o ξo, (49)
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where

H(·) = V−1
b + R∗(·)(C∗V−1

o C − [(F′(·))∗ϕ̄∗]′)R(·). (50)

Now, we express δu from Eq. (49):

δu = H
−1(ϕ̄)(V−1

b ξb + R(ϕ̄)∗C∗V−1
o ξo),

and obtain an approximate expression for the posterior
error covariance:

Vδu ≈ V1 = H
−1(ϕ̄)(V−1

b + R∗(ϕ̄)V−1
o R(ϕ̄))H−1(ϕ̄)

= H
−1(ϕ̄)H(ϕ̄)H−1(ϕ̄),

(51)

where H(ϕ̄) is the Hessian of the cost function J1 in the
auxiliary DA problem (Eqs (19)–(20)), computed at θ = ϕ̄.

Obviously, the above double-product formula could be
overly sensitive to the errors due to the approximations (48).
By assuming H(ϕ̄)H−1(ϕ̄) ≈ I we obtain a more stable (but,
possibly, less accurate) approximation:

Vδu ≈ V2 = H
−1(ϕ̄). (52)

It is interesting to note that H−1(ϕ̄) is known as the
asymptotic Bayesian covariance in the framework of the
Bayesian asymptotic theory (see Heyde and Johnstone, 1979;
Kim, 1994). By assuming H−1(ϕ̄) ≈ H−1(ϕ̄) we obtain
from Eq. (51) yet another (more crude than Eq. (52))
approximation:

Vδu ≈ V3 = H−1(ϕ̄), (53)

i.e. the inverse Hessian of the auxiliary DA problem can be
considered as an approximation to both the posterior error
covariance and the analysis error covariance evaluated at ϕ̄.

6. ‘Effective’ covariance estimates

At the end of section 4 the linearization and origin errors
in the analysis error covariance were discussed. We say that
the linearization error can be relatively small even though
the TLH is violated to a certain degree. However, when
the nonlinearity becomes stronger and/or the input data
errors become larger, the inverse Hessian may not properly
approximate the analysis error covariance (even for the
known ‘true’ state), in which case the ‘effective’ inverse
Hessian (see Gejadze et al., 2011) should be used instead:

Vδu = E
[

H−1(ϕ)
]

. (54)

Apparently, the same must be true for the posterior error
covariance computed by Eq. (51). By following the reasoning
of Gejadze et al. (2011), let us consider the discretized
nonlinear error equation (43) and write down the expression
for δu:

δu = H
−1(ϕ, ϕ̃1, ϕ̃2)(V−1

b ξb + R∗(ϕ)C∗V−1
0 ξo).

For the covariance Vδu we have an expression as follows:

Vδu = E[H−1V−1
b ξbξ

T
b V−1

b H
−1]

+ E[H−1R∗(ϕ)C∗V−1
0 ξoξ

T
o V−1

0 CR(ϕ)H−1]

+ E[H−1V−1
b ξbξ

T
o V−1

o CR(ϕ)H−1]

+ E[H−1R∗(ϕ)C∗V−1
o ξoξ

T
b V−1

b H
−1],

(55)

where H−1 = H−1(ϕ, ϕ̃1, ϕ̃2). As discussed in Gejadze
et al. (2011), we approximate the products ξbξ

T
b , ξoξ

T
o ,

ξbξ
T
o and ξoξ

T
b in (55) by E[ξbξ

T
b ] = Vb, E[ξoξ

T
o ] = Vo,

and E[ξbξ
T
o ] = 0, E[ξoξ

T
b ] = 0 (since ξb and ξo are mutually

uncorrelated), respectively. Thus we write an approximation
of Vδu as follows:

Vδu = E
[

H
−1(ϕ, ϕ̃1, ϕ̃2) H(ϕ) H−1(ϕ, ϕ̃1, ϕ̃2)

]

.

First, we substitute a possibly asymmetric and indefinite
operator H(ϕ, ϕ̃1, ϕ̃2) with the Hessian H(ϕ), in which case
we obtain

Vδu ≈ V
e
1 = E

[

H
−1(ϕ) H(ϕ) H−1(ϕ)

]

. (56)

Here we keep in mind that ϕ := ϕ(u) = ϕ(ū + δu),
where δu is a random vector; therefore it is the variable
of integration in E. Next, by assuming H(ϕ)H−1(ϕ) ≈ I
we obtain a more stable (but, possibly, less accurate)
approximation:

Vδu ≈ V
e
2 = E

[

H
−1(ϕ)

]

. (57)

Finally, by assuming H−1(ϕ) ≈ H−1(ϕ) we obtain yet
another (more crude than Eq. (57)) approximation:

Vδu ≈ V
e
3 = E

[

H−1(ϕ)
]

, (58)

which is equivalent to Eq. (54). Therefore, the ‘effective’
inverse Hessian can also be considered as an approximation
to the posterior error covariance.

7. Implementation remarks

In this section the key implementation issues, including
preconditioning, regularization and computation of the
‘effective’ covariance estimates, are considered.

7.1. Preconditioning

Preconditioning can be used to accelerate computation
of the inverse Hessian by iterative methods such as
BFGS or Lanczos. The latter evaluates the eigenvalues and
eigenvectors (or, more precisely, the Ritz values and Ritz
vectors) of an operator using the operator–vector action
result. Since H is self-adjoint, we must consider a projected
Hessian in a symmetric form:

H̃(·) = (B−1)∗
H(·)B−1,

with some operator B : X → X, defined in such a way

that: (a) most eigenvalues of H̃ are clustered around 1;
(b) there are only a few eigenvalues significantly different
from 1 (dominant eigenvalues). A sensible approximation

of H̃−1 can be obtained using these dominant eigenvalues
and the corresponding eigenvectors, the number of which is
expected to be much smaller than the state-vector dimension

M. After that, having computed H̃−1, one can easily recover
H−1 using the formula

H
−1(·) = B−1

H̃
−1(·)(B−1)∗.

By comparing Eq. (50) to (25) we notice that H(·) is
different from H(·) due to the presence of the second-order
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term [(F′(·))∗ϕ̄∗]′. If we assume that the difference between
H(·) and H(·) is not large, then H−1/2(·) can be used for
efficient preconditioning of H(·). Thus we will look for the
projected Hessian:

H̃(·) = H−1/2(·)H(·)H−1/2(·), (59)

in which case the posterior error covariance Vδu can be
approximated by the following estimates:

V1 = H−1/2(ϕ̄)H̃−2(ϕ̄)H−1/2(ϕ̄), (60)

V2 = H−1/2(ϕ̄)H̃−1(ϕ̄)H−1/2(ϕ̄). (61)

It is clear, therefore, that H−1/2(ϕ̄) has to be computed
first. For computing H−1(·) itself the preconditioning in the

form B−1 = V
1/2
b is used. The result can be presented in

limited-memory form:

H−1(·) = V
1/2
b H̃−1(·)V

1/2
b , (62)

with

H̃−1(·) = I +

K1
∑

i=1

(s−1
i − 1)UiU

T
i , (63)

where {si, Ui}, i = 1, . . . , K1 << M are the eigenvalues and

eigenvectors of H̃(·) for which the values of |s−1
i − 1| are

most significant. The matrix functions theory (see, for
example, Bellman, 1960) asserts that for any symmetric
matrix A (which may be presented in the form A = BDBT ,
where D is a diagonal matrix, B is an orthogonal matrix)
and for any function f the following definition holds:

f (A) = Bf (D)BT .

In particular, if f is the power function, we obtain as
follows:

Aα = BDαBT , α ∈ R. (64)

For example, if H̃ is presented in the form H̃ =
USUT (symmetric eigenvalue decomposition), then H̃−1 =
US−1UT . Assuming that only K1 first eigenvalues are distinct

from 1, i.e. (s−1
i − 1) ≈ 0, ∀i > K1, we obtain Eq. (63). Let

us mention that in geophysical literature the expression
(63) is usually derived in a more cumbersome way by
considering the Sherman–Morrison–Woodbury inversion
formula (see, for example, Powell and Moore, 2009). Given
the pairs {si, Ui}, the limited-memory square root operator

H̃−1/2(·) can be computed as follows:

H̃−1/2(·) = I +

K1
∑

i=1

(s
−1/2
i − 1)UiU

T
i . (65)

Thus we can compute H−1/2(·)v = V
1/2
b H̃−1/2(·)v, which

is needed for Eq. (59). Another way to compute H̃−1/2(·)v is
the recursive procedure suggested in Tshimanga et al. (2008,

Appendix A, Theorem 2). The operators H̃−1(·) and H̃−2(·)

can also be computed by the Lanczos algorithm in the
limited-memory form equivalent to (Eq. (63)):

H̃
−1(·) = I +

K2
∑

i=1

(λ−1
i − 1)UiU

T
i , (66)

H̃
−2(·) = I +

K2
∑

i=1

(λ−2
i − 1)UiU

T
i , (67)

where {λi,Ui}, i = 1, . . . , K2 are the dominant eigenvalues

and eigenvectors of H̃(·), the number of which is expected
to be much smaller than K1. The advantage of computing
V1 or V2 in the form (60), (61) is therefore obvious: the
second-order adjoint model has to be called only K2 times.

7.2. Regularization

Let us consider two symmetric positive definite M × M
matrices A and B and introduce the divergence matrix
Ŵ(A, B) = B−1/2AB−1/2. We define the Riemann distance
between A and B as follows:

µ(A, B) =
∥

∥log Ŵ(A, B)
∥

∥ =

(

M
∑

i=1

log2 γi

)1/2

, (68)

where γi are the eigenvalues of Ŵ(A, B) (see, for example,
Moakher, 2005).

Comparing Eqs (60) and (61) and taking into account
Eqs (66) and (67), we notice that the Riemann distance
between V3 = H−1 and V2 is defined by (λ−1

i − 1), whereas

the distance between V3 and V1 is defined by (λ−2
i − 1).

Therefore, the norm of V1 can be significantly larger than
that of V2, which clearly explains the increased sensitivity of
V1 to the approximation error due to transitions (Eq. (48))
(as compared to V2). A simple approach to regularize V1 is
to present it in the form

V1 = H−1/2(ϕ̄)H̃−(1+α)(ϕ̄)H−1/2(ϕ̄), (69)

with

H̃
−(1+α)(·) = I +

K2
∑

i=1

(λ
−(1+α)
i − 1)UiU

T
i , (70)

where α = α(λ1, . . . , λK2 ) ∈ (0, 1). The idea of this
approach is to bound the distance between V1 and
V2 dependent on the values (λ−1

i − 1). For example,
the following rule defining α is suggested and used in
computations:

α =

{

cos( π
2

x), |x| ≤ 1

0, |x| > 1
, (71)

x = logβ(λmax),

where λmax < 1 is the eigenvalue for which 1 − λi takes
the largest positive value, and β > 1 is the regularization
parameter to be chosen. Let us note that if all λi ≥ 1, no
regularization is required, i.e. α = 1.
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7.3. Computation of the ‘effective’ estimates

Let us consider, for example, Eq. (58):

Vδu ≈ V
e
3 = E

[

H−1(ϕ)
]

.

The field ϕ = ϕ(x, t) in this equation corresponds to
the perturbed optimal solution u = ū + δu, which is the
solution to the optimality system (Eqs (4)–(6)) with the
perturbed data ub = ūb + ξb and y = ȳ + ξo. Given a set of
independent perturbations ξ i

b, ξ i
o, i = 1, . . . , L, where L is

the sample size, one can compute a set of ui and then V e
3 as

a sample mean:

V
e
3 =

1

L

L
∑

i=1

[

H−1(ϕ(ui))
]

. (72)

Clearly, this method is very expensive because it requires
a set of optimal solution to be computed. A far more feasible
method is suggested in Gejadze et al. (2011). The idea of the
method is to substitute a set of optimal solutions by a set of
functions which belong to and best represent the same (as
the optimal solutions) probability distribution. Assuming
that u has a close-to normal distribution we are looking for
V e

3 which satisfies the system as follows:

{

V e
3 = E

[

H−1(ϕ(u))
]

,

u ∼ N
(

ū,V e
3

)

.
(73)

A very significant reduction of computational costs can
be achieved if H−1/2(ϕ(ū)) is used for preconditioning when
computing H−1(ϕ(ui)) (see also Gejadze et al., 2011). In the
same way as V e

3 the estimates V e
2 and V e

1 can be computed.

8. Asymptotic properties of the analysis and posterior
errors

In this section the asymptotic properties of the regularized
least square estimator (4D-Var) and of the Bayesian
estimator are discussed. These are important properties
which justify the use of the Hessian-based approximations
of the covariances considered in this paper.

Let us consider the error equations (14) and (43). Both
these equations can be rewritten in an equivalent form (see
Appendix):

J ′′(ũ) δu = −J ′(û), (74)

where J is the cost functional (3), ũ = û + τ (u − û), τ ∈
[0, 1] and δu = u − û (û = ut and û = ū for Eqs (14) and
(43), correspondingly). This form of the error equation
coincides with the equation obtained in Amemiya (1983)
while considering the nonlinear least-squares estimation
problem for a cost functional similar to Eq. (3), but without
the penalty (background) term. In this case, the statistical
properties of the nonlinear least-squares estimator have been
analysed by many authors. For a univariate case, the classical
result (see Jennrich, 1969) states that δu is consistent and
asymptotically normal if ξo is an independent identically
distributed (i.i.d.) random variable with E[ξo] = 0 and
E[ξ 2

o ] = σ 2 < ∞. In the data assimilation problem (Eqs
(1)–(3)) ‘asymptotically’ means that, given the observation
array, T → ∞ given the finite observation time step dt, or

dt → 0 given the finite observation window [0, T]. Let us
stress that for the asymptotic normality of δu the error ξo

is not required to be normal. This original result has been
generalized to the multivariate case and to the case of serially
correlated, yet identically distributed observations, by White
and Domowitz (1984), whereas an even more general case
is considered in Yuan and Jennrich (1998).

In the present paper we consider the complete cost
functional (Eq. (3)) and, correspondingly, both J ′′ ≡ H(ϕ̃)
and J ′ in Eq. (74) contain additional terms, i.e.

J ′′(ũ) = V−1
b + R∗(ϕ̃)(C∗V−1

o C − [(F′(ϕ̃))∗ϕ̄∗]′)R(ϕ̃),

− J ′(û) = V−1
b ξb + R∗(ϕ̂)C∗V−1

o ξo.

To analyse a possible impact of these terms let us follow the
reasoning of Amemiya (1983, pp. 337–345). It is concluded
that the error δu is consistent and asymptotically normal
when: (a) the right-hand side of the error equation is normal;
(b) the left-hand side matrix converges in probability to a
non-random value. These conditions are met under certain
general regularity requirements to the function F(ϕ), which
are incomparably weaker than the tangent linear hypothesis
and do not depend on the magnitude of the input errors.
It is easy to see that the first condition holds if ξb is

normally distributed. Since V−1
b is a constant matrix, the

second condition always holds, as long as it holds for
R∗(ϕ̃)(C∗V−1

o C − [(F′(ϕ̃))∗ϕ̄∗]′)R(ϕ̃). Therefore, one may
conclude that δu from Eqs (14) and (43) is bound to
remain asymptotically normal. In practice, the observation
window [0, T] and the observation time step dt are always
finite, implying the finite number of i.i.d. observations.
Moreover, it is not easy to access how large the number of
observations must be for the desired asymptotic properties to
be reasonably approximated. Some nonlinear least-square
problems in which the normality of the estimation error
holds for ‘practically relevant’ sample sizes are said to
exhibit a ‘close-to-linear’ statistical behaviour. The method
suggested in Ratkowsky (1983) to verify this behaviour
is, essentially, a normality test applied to a generated
sample of optimal solutions, which is hardly feasible for
large-scale applications. Nevertheless, for certain highly
nonlinear evolution models it is reasonable to expect that the
distribution of δu might be reasonably close to normal if the
number of i.i.d. observations is significant in time (typically,
in variational DA for the medium-range weather forecast
one uses T = 6 h with the observation step dt = 2 min),
and the observation network is sufficiently dense in space.

9. Numerical validation

In this section the details of numerical implementation are
provided. These include the description of the numerical
experiments and of the numerical model.

9.1. Description of numerical experiments

In order to validate the presented theory a series of
numerical experiments has been performed. We assign a
certain function u to be the ‘true’ initial state ut . Given
ut , we compute a large (L = 2500) ensemble of optimal
solutions {ui(ut)}, i = 1, . . . , L by solving L times the data
assimilation problem (Eqs (2)–(3)) with the perturbed data
ub = ut + ξb and y = Cϕt + ξo, where ξb ∼ N (0, Vb) and
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ξo ∼ N (0, Vo). Based on this ensemble the sample mean
and sample covariance matrix are computed. The latter
is further processed to filter out the sampling error (as
described in Gejadze et al., 2011); the result is considered
to be the reference (‘true’) value V̂ of the analysis error
covariance matrix Vδu. Obviously, each ensemble member
ui(ut) may be regarded as a unique ‘true’ optimal solution ū
conditioned on a ‘come true’ implementation of the random
processes ξb and ξo, which define the input data ūb and ȳ.
Next we choose ū to be a certain ui(ut) for which the statistics
d = (ui − ut)TV̂−1(ui − ut) are close enough to the state-
vector dimension M (d has χ2-distribution with M degrees
of freedom). For any ū we compute a large (L = 2500)
ensemble of optimal solutions {ui(ū)}, i = 1, . . . , L by
solving L times the data assimilation problem (Eqs (2)–(3))
with the perturbed data ub = ūb + ξb and y = ȳ + ξo. Based
on this ensemble the sample mean and sample covariance
matrix are computed. The latter is further processed to filter
out the sampling error; the result is considered to be the

reference (‘true’) value V̂ of the posterior error covariance
matrix Vδu associated with chosen ū. Next we compute the
estimates of Vδu: V1 by Eq. (51), V2 by Eq. (52), V3 by Eq.
(53), V e

1 by Eq. (56), V e
2 by Eq. (57) and V e

3 by Eq. (58),

and compare them to V̂ . The accuracy of approximations
of Vδu by different V can be quantified by the Riemann
distance µ(V,Vδu) defined by Eq. (68). It is also worth noting

that H̃−1 = Ŵ(H−1, Vb) and H̃−1 = Ŵ(H−1, H−1). Since the
computational efficiency is not the major issue in this paper,
the ‘effective’ estimates V e

1 , V e
2 and V e

3 are evaluated as
the sample mean (see Eq. (72) for V e

3 ) using the first 100
members of the ensemble {ui(ū)}, which are available after
computing the reference posterior error covariance V̂.

9.2. Numerical model

As a nonlinear evolution model for ϕ(x, t) we use the 1D
Burgers equation with a nonlinear viscous term:

∂ϕ

∂t
+

1

2

∂(ϕ2)

∂x
=

∂

∂x

(

ν(ϕ)
∂ϕ

∂x

)

, (75)

ϕ = ϕ(x, t), t ∈ (0, T), x ∈ (0, 1),

with the Neumann boundary conditions

∂ϕ

∂x

∣

∣

∣

∣

x=0

=
∂ϕ

∂x

∣

∣

∣

∣

x=1

= 0 (76)

and the viscosity coefficient

ν(ϕ) = ν0 + ν1

(

∂ϕ

∂x

)2

, ν0, ν1 = const > 0. (77)

The nonlinear diffusion term withν(ϕ) dependent onϕ′
x is

introduced to mimic the eddy viscosity (turbulence), which
depends on the field gradients (pressure, temperature),
rather than on the field value itself. This type of ν(ϕ) also
allows us to formally qualify the problem (Eqs (75)–(77))
as strongly nonlinear (see Fučik and Kufner, 1980). Let us
mention that Burgers’ equations are sometimes considered
in DA context as a simple model of atmospheric flow motion.

We use the implicit time discretization as follows:

ϕi − ϕi−1

ht
+ df x

(

1

2
w(ϕi)ϕi − ν(ϕi)

∂ϕi

∂x

)

= 0, (78)

where i = 1, . . . , N is the time integration index and
ht = T/N is a time step. The spatial operator is discretized
on a uniform grid (hx is the spatial discretization step,
j = 1, . . . , M is the node number, M is the total number
of grid nodes) using the ‘power law’ first-order scheme
as described in Patankar (1980), which yields quite a
stable discretization scheme (this scheme allows ν(ϕ)
as small as 0.5 × 10−4 for M = 200 without noticeable
oscillations). For each time step we perform nonlinear
iterations on coefficients w(ϕ) = ϕ and ν(ϕ), assuming
initially that ν(ϕi) = ν(ϕi−1) and w(ϕi) = ϕi−1, and keep
iterating until Eq. (78) is satisfied (i.e. the norm of the
left-hand side in Eq. (78) becomes smaller than a threshold
ǫ1 = 10−12M1/2). In all computations presented in this
paper the following parameters are used: observation period
T = 0.32, discretization steps ht = 0.004, hx = 0.005, state
vector dimension M = 200, and parameters in Eq. (77)
ν0 = 10−4, ν1 = 10−6.

For numerical experiments two initial conditions ut =

ϕt(x, 0) have been chosen; these will be referred to below as
case A and case B. For each case, the state evolution ϕt(x, t)
is presented in Figure 1 (left) and (right), respectively.
A well-known property of Burgers’ solutions is that a
smooth initial condition evolves into shocks. However,
the diffusion term in the form Eq. (77) helps to limit the
field gradients and to avoid the typical oscillations. The
first initial condition is a lifted cos function. Apparently,
the area to the left of the minimum points at x = 0.5
and x = 1 are the areas where the shocks form. The
level of nonlinearity related to the convective term can
be easily controlled in this case by adding a constant. In
the second case, we combine two cos functions of different
frequency and sign. Moreover, in the area x ∈ (0.45, 0.55)
one has ϕt(x, 0) = 0, i.e. only the nonlinear diffusion process
initially takes place in this part of the domain. Different
observation schemes are used: for case A–the sensor location
coordinates x̂k = {0.35, 0.4, 0.5, 0.6, 0.65}; and for case
B– x̂k = {0.35, 0.45, 0.5, 0.55, 0.65}.

9.3. Additional details

The consistent tangent linear and adjoint models (operators
R and R∗) have been generated by the Automatic
Differentiation tool TAPENADE (Hascoët and Pascual,
2004) from the forward model code implementing Eq.
(78). The consistent second-order term [(F′(·))∗ϕ̄∗]′ has
been generated in the same way from the piece of the
code describing the local spatial discretization stencil, then
manually introduced as a source term to the adjoint model
(Eq. (17)) to form the second-order adjoint model. Both
adjoint models have been validated using the standard
gradient tests.

Solutions to the DA problem (Eqs (2)–(3)) have been
obtained using the limited-memory BFGS minimization
algorithm (Liu and Nocedal, 1989). For each set of
perturbations the problem is solved twice: first starting
from the unperturbed state ut (or ū), then starting from
the background ub = ut + ξb (or ub = ūb + ξb). If close
results are obtained, the solution is accepted as an ensemble
member. This is done to avoid difficulties related to a
possible multi-extrema nature of the cost function (Eq. (3)).
In all computations reported in this paper less than 3% of
solutions have been eventually discarded for each ensemble.
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(a) (b)

ϕ ϕ

Figure 1. Field evolution. Left: case A; right: case B.
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Figure 2. Correlation function.

The eigenvalue analysis of operators has been performed
by the Implicitly Restarted Arnoldi Method (symmetric
driver dsdrv1, ARPACK library; Lehoucq et al., 1988). The

operators H̃(ϕ(ū)) and H̃(ϕ(ū)) needed for evaluating V1,2,3

have been computed without limiting the number of Lanczos
iterations. However, when computing the effective values
Ve

1,2,3, the number of iterations have been limited by 20 and
only the ‘converged’ eigenpairs (parameter tol = 0.001 in

dsdrv1) has been used to form H̃(ϕ(ui)) and H̃(ϕ(ui)).
The background error covariance Vb is computed

assuming that the background error belongs to the Sobolev
space W2

2 (0, 1) (see Gejadze et al., 2010, for details). The
resulting correlation function is as presented in Figure 2; the
background error variance is σ 2

b = 0.02 and the observation

error variance is σ 2
o = 0.001.

10. Numerical results

In this section we consider the numerical results which
validate the presented theory.

For a given ‘true’ initial state (case A or case B),
from the first 50 members of the corresponding ensemble
{ui(ut)} we choose 10 optimal solutions ū such that the
Riemann distance µ(H−1(ū), H−1(ū)) given by Eq. (68)
is most significant. These solutions are numbered as

ūk, k = 1, . . . , 10 and referred to below as ‘case Ak’ or
‘case Bk’. For each ūk we compute the sample of {ui(ūk)},
then, consequently, the sample mean, the sample covariance

and the reference posterior error covariance V̂ related to ūk.
Finally we compute the estimates V1,2,3 and Ve

1,2,3 and the

measures µ(Vi, V̂) and µ(Ve
i , V̂). The results are summarized

in Table 1.
The first column of Table 1 contains µ2(V3, V̂), which

is the squared Riemann distance between the posterior

covariance V̂ and its most crude estimate V3 = H−1(ϕ̄).
Thus we expect µ(V3, V̂) to have the largest value among
all measures involving other estimates of Vδu. Let us recall
that H−1(ϕ̄) is usually considered as an approximation
to the analysis error covariance Vδu (see Eq. (27)). The
latter is sometimes regarded as the Bayesian posterior
covariance, which is a conceptual mistake. Technically, the
difference is clear: for computing the posterior covariance
one must take into account the second-order term, whereas
in computing the analysis error covariance this term
simply does not appear. The second column of Table 1

contains µ2(V2, V̂) where V2 = H−1(ϕ̄). Let us recall that
H−1(ϕ̄) is considered the asymptotic posterior covariance

in Bayesian theory. The third column contains µ2(V1, V̂),
whereV1 = H−1(ϕ̄)H(ϕ̄)H−1(ϕ̄) is the posterior covariance
estimate suggested in this paper. According to the theory
presented, for small input errors ξo, ξb one should expect

µ(V1, V̂) < µ(V2, V̂) < µ(V3, V̂).

In practice, this relation may not stand (as can be seen
from the table) due to linearization errors, as discussed in
section 6. In this case one should expect this behaviour to
be true at least for ‘effective’ estimates, i.e.

µ(Ve
1, V̂) < µ(Ve

2, V̂) < µ(Ve
3, V̂) < µ(V3, V̂). (79)

Looking at Table 1 we note that this condition always
holds, which validates the presented theory. In some cases
the overall reduction of the Riemann distance (compare

µ(Ve
1, V̂) to µ(V3, V̂)) is about an order of magnitude or

even larger. In some cases, e.g. A5, B2, this reduction is
not significant. It is difficult, therefore, to warrant a certain
level of distance reduction for each particular case, and this
should be accessed in an average sense. The table additionally
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Table 1. Summary of numerical experiments: squared Riemann distance µ2(·, ·).

Case µ2(V3, V̂) µ2(V2, V̂) µ2(V1, V̂) µ2(Ve
3 , V̂) µ2(Ve

2 , V̂) µ2(Ve
1 , V̂)

A1 3.817 3.058 4.738 2.250 1.418 1.151

A2 17.89 18.06 21.50 2.535 1.778 1.602

A3 10.89 9.183 8.988 4.725 3.013 2.627

A4 3.489 2.960 4.286 2.190 1.342 1.079

A5 5.832 5.070 5.778 3.710 2.886 2.564

A6 9.048 8.362 10.16 2.539 1.748 1.474

A7 20.21 19.76 22.24 4.290 3.508 3.383

A8 1.133 0.585 1.419 1.108 0.466 0.246

A9 20.18 20.65 24.52 2.191 1.986 1.976

A10 10.01 8.521 8.411 3.200 2.437 2.428

B1 7.271 6.452 6.785 2.852 1.835 1.476

B2 16.42 14.89 14.70 15.61 14.11 13.77

B3 9.937 10.70 17.70 4.125 3.636 3.385

B4 6.223 5.353 11.50 2.600 1.773 1.580

B5 10.73 9.515 9.875 4.752 3.178 2.530

B6 6.184 4.153 8.621 4.874 2.479 1.858

B7 9.551 9.818 26.51 3.912 3.195 2.971

B8 5.948 4.845 7.105 3.484 2.105 1.745

B9 17.10 15.69 16.77 5.025 4.186 3.854

B10 8.230 7.685 7.827 3.787 2.861 2.647

demonstrates the correctness and potential of the ‘effective
value’ approach suggested in Gejadze et al. (2011). By

comparing µ(Ve
3, V̂) and µ(V3, V̂) in cases A2, A7, A9 and

B9 one can note that the Riemann distance is drastically
reduced if the ’effective’ inverse Hessian is used instead of
the inverse Hessian at point ū.

The following examples show what the Riemann distance
actually means in terms of the error in covariance estimate.
Let us consider the mean deviation vector σ and the
correlation matrix r defined as follows:

σ (i) = V
1/2(i, i),

r(i, j) = V(i, j)/(σ (i)σ (j)), i, j = 1, . . . , M,

and denote σ3, σ e
1,2,3, σ̂ as the mean deviation vectors and r3,

re
1,2,3, r̂ as the correlation matrices associated correspondingly

with V3, Ve
1,2,3 and V̂. Naturally, σ̂ and r̂ are used as the

reference values. The mean deviation error is characterized
by the vector

ε = log2(σ/σ̂ ). (80)

The logarithmic error (Eq. (80)) is particularly appro-
priate when comparing positive quantities since it shows
(symmetrically!) how many times the reference value is
either over- or underestimated. The error in the correlation
matrix is characterized by

ǫ = |r − r̂|. (81)

Let us denote by ε3, εe
1,2,3 the error vectors associated with

σ3, σ e
1,2,3, and by ǫ3, ǫe

1,2,3 the error matrices associated with
r3, re

1,2,3.
For demonstration, two cases for each initial condition

have been chosen: A2, A8 and B6, B9. The reference mean
deviation σ̂ for cases A and B is presented in Figure 3 (left)
and (right), correspondingly.

In Figure 4 the logarithmic error ε (see Eq. (80)) is
shown as follows: ε3 (error associated with V3 = H−1) as

the boundary of the light-filled area 3; εe
3 (error associated

with Ve
3 = E[H−1]) in line 3e; εe

2 (error associated with

Ve
2 = E[H−1]) in line 2e; and εe

1 (error associated with

Ve
1 = E[H−1HH−1]) as the boundary of the dark-filled

area 1e. The presented figures confirm the main result:

the mean deviation error is the largest for the posterior

covariance being estimated by V3 (boundary of area 3) and

the smallest - by Ve
1. For example, see case A2 (upper/left

panel), area 0.48 < x < 0.5, or case B9 (lower/right panel),

area 0.5 < x < 0.52, where the estimated σ is about three

times smaller than the actual value. If the ‘effective’ estimate

V3
e is used (line 3e), this error is noticeably reduced. In case

B6 (upper/right panel) no benefit from usingVe
3 instead ofV3

can be noticed; however, the benefit of using the estimatesVe
2

(line 2e) and Ve
1 (boundary of area 1e) is clearly manifested.

On the other hand, case B9 represents an example where no

noticeable benefit is achieved when using Ve
2 and Ve

1 instead

of Ve
3. Nevertheless, it is obvious from the figures that Ve

1

is, on average, the best estimate available (see also Table 1).

Case B6 (upper/right panel) is also interesting in the way

that σ associated with Ve
3 and V3 is mainly overestimated

(ε > 0). Relying on all 20 cases considered in numerical

simulation one may conclude that V3 = H−1 is more likely

to provide underestimated values of σ .

The absolute error in the correlation matrix ǫ (see

Eq. (81)) is shown in Figure 5. Here, for each case

considered, sub-cases (a), (b) and (c) displaying ǫ3, ǫe
3

and ǫe
1 correspondingly are presented. The distance between

an element ǫ(i, j) and the diagonal element ǫ(i, i) is counted

by (j − i)hx along the axis x′. The features to be noticed in

Figure 5 are similar to those discussed previously. As before,

the error associated with V3 = H−1 (sub-case (a)) is the

largest and the error associated with Ve
1 (sub-case (c)) is the

smallest. In case A2, the main error reduction is achieved by

using the ‘effective’ estimate Ve
3 instead of the point estimate

V3, whereas usage of Ve
1 instead of Ve

3 does not make too

much difference. The opposite behaviour can be observed

in case B6.
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Figure 3. Reference mean deviation σ̂ (x) (corresponds to V̂). Left: cases A2, A8; right: cases B6, B9. This figure is available in colour online at
wileyonlinelibrary.com/journal/qj
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Figure 4. Logarithmic errors in the mean deviation (Eq. (80)): ε3(x), εe
3(x), εe

2(x) and εe
1(x). This figure is available in colour online at

wileyonlinelibrary.com/journal/qj

11. Conclusions

In this paper we consider the hind-cast (initialization)
data assimilation problem, which is a typical problem in
meteorology and oceanography. The problem is formulated
as an initial value control problem for a nonlinear evolution
model governed by partial differential equations and the
solution method (called 4D-Var) consists in minimization
of the cost function (Eq. (3)) under constraints (Eq.
(1)). In finite dimensions this is equivalent to solving the
regularized nonlinear least squares problem. The statistical

properties of the optimal solution (analysis) error are usually
quantified by the analysis error covariance matrix: the
approach possibly inherited from the nonlinear regression
theory where a similarly defined covariance matrix is used
to quantify asymptotic properties of the nonlinear least-
squares estimator. Less often the 4D-Var method had been
considered in the Bayesian perspective, but this point of view
becomes increasingly popular. In particular, it is recognized
that in the case of Gaussian input errors the Bayesian
approach yields the same cost functional as considered
in 4D-Var. However, some authors seem to fall short in
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Figure 5. Absolute errors in the correlation matrix (Eq. (81)): ǫ3(x, x′), sub-case (a); ǫe
3(x, x′), sub-case (b); ǫe

1(x, x′), sub-case (c). This figure is available
in colour online at wileyonlinelibrary.com/journal/qj

recognizing that in this case it would be consistent to utilize
a somewhat different error measure, namely the proper
(Bayesian) posterior covariance. Let us note that the analysis
error covariance is sometimes called ’posterior’ in the sense
that it is conditioned on the data, i.e. it is obtained after the
data have been assimilated. The main purpose of this paper
has been to demonstrate that the analysis error covariance
and the Bayesian posterior covariance are different objects
and this difference is not merely a subtle theoretical issue.

In this paper the difference between the analysis error
covariance and the Bayesian posterior covariance has been

thoroughly examined. These two conceptually different
objects are quantitatively equal in the linear case, but may
significantly differ in the nonlinear case. The analysis error
covariance can be approximated by the inverse Hessian of
the auxiliary DA problem (Eqs (19)–(20)), i.e. by V3, or by
its ‘effective’ valueVe

3. The Bayesian posterior covariance has
to be approximated by a double-product formula (Eq. (51)),
i.e. byV1, or by its ‘effective’ valueVe

1. The difference between
V1 and V3 is due to the presence of the second-order term in
Eq. (46), which vanishes in the linear case. Thus, technically,
the second-order adjoint analysis is involved when dealing

Copyright c© 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2012)



Analysis Error Covariance versus Posterior Covariance

with the Bayesian posterior covariance only. As far as the
authors are concerned, estimates V1 and Ve

1 have never
previously been suggested and studied. In Bayesian theory,
the inverse Hessian of the cost function in the original DA
problem (Eqs (2)–(3)), here referred to as V2, is considered
to be the asymptotic posterior covariance and, therefore,
an approximation to the posterior covariance when a finite
number of observations are involved. However, no quantity
similar to the ‘effective’ value Ve

2 can be found. Here we
demonstrate that V2 and Ve

2 are just simplified versions of V1

andVe
1. A stable (regularized) method for computing V1 and

Ve
1 in the matrix-free environment using the Lanzcos method

with preconditioning has been suggested. This method may
be feasible for large-scale applications.

The results of numerical experiments fully validate the
presented theory. It has been shown that the analysis error
covariance and Bayesian posterior covariance can differ quite
significantly. Here we do not raise a detailed discussion about
which one is to be used in certain circumstances. Let us only
mention that the analysis error covariance should probably
be considered in relation to the confidence intervals/regions
issue, and the Bayesian posterior covariance in all types
of sequential estimation. An important conclusion is that
due to linearization errors the point estimate V1, which is
expected to be better thanV3, can actually be far less accurate
thanV3. Therefore, it is likely that only the ‘effective’ estimate
Ve

1 may have a practical value. Surely, the computational cost
of Ve

1 is significantly higher than the cost of V3; however,
it is still far lower than the cost of direct evaluation of the
ensemble of optimal solutions, at least for a large enough
observation period.

Appendix

Consider the error equation (43) in the form

H(ϕ, ϕ̃1, ϕ̃2)δu − R∗(ϕ)C∗V−1
o ξo − V−1

b ξb = 0. (A1)

We show below that the left-hand side of Eq. (A1) is
related to the difference of the gradients of the cost function
J at the point u, which is the solution of the optimality system
(Eqs (4)–(6)), and at the point ū, which is the solution of the
unperturbed optimality system. By definition ofH(ϕ, ϕ̃1, ϕ̃2)
(see Eq. (44)), we get

H(ϕ, ϕ̃1, ϕ̃2)δu = V−1
b δu − ψ∗|t=0, (A2)

where

∂δϕ

∂t
= F(ϕ) − F(ϕ̄), δϕ|t=0 = δu, (A3)

−
∂ψ∗

∂t
− (F′(ϕ))∗ψ∗

= [(F′(ϕ))∗ − (F′(ϕ̄))∗]ϕ̄∗ − C∗V−1
o Cδϕ.

(A4)

From the definition of R∗(ϕ) (see Eqs (12)–(13)), we have

R∗(ϕ)C∗V−1
o ξo = θ∗|t=0, (A5)

where

−
∂θ∗

∂t
− (F′(ϕ))∗θ∗ = C∗V−1

o ξo, θ∗
∣

∣

t=T
= 0. (A6)

Then

H(ϕ, ϕ̃1, ϕ̃2)δu − R∗(ϕ)C∗V−1
o ξo = V−1

b δu − δϕ∗|t=0,

(A7)

where δϕ∗ = ψ∗ + θ∗, and δϕ∗ is the solution of the adjoint
problem (Eq. (38)). Therefore, the left-hand side of Eq. (A1)
is reduced to

H(ϕ, ϕ̃1, ϕ̃2)δu − R∗(ϕ)C∗V−1
o ξo − V−1

b ξb

= V−1
b δu − δϕ∗|t=0 − V−1

b ξb,
(A8)

and we can represent Eq. (A1) in the form

V−1
b δu − δϕ∗|t=0 − V−1

b ξb = 0. (A9)

The gradient J ′(u) is calculated by the formula

J ′(u) = V−1
b (u − ub) − ϕ∗

∣

∣

t=0
, (A10)

where ϕ∗ is defined by Eqs (4)–(5). The gradient J ′(ū) is
given by

J ′(ū) = V−1
b (ū − ub) − ϕ∗

1

∣

∣

t=0
, (A11)

where ϕ∗
1 satisfies the adjoint problem

−
∂ϕ̄∗

1

∂t
− (F′(ϕ̄))∗ϕ̄∗

1 = −C∗V−1
o (Cϕ̄ − y). (A12)

The function ϕ∗
1 can be represented as ϕ∗

1 = ϕ̄∗ + η∗,
where ϕ̄∗ is the solution to Eq. (35), and η∗ is the solution
to the problem

−
∂η∗

∂t
− (F′(ϕ̄))∗η∗ = C∗V−1

o ξo, η∗
∣

∣

t=T
= 0. (A13)

From Eqs (A10)–(A11) we get

J ′(u) − J ′(ū) = V−1
b δu − δϕ∗

∣

∣

t=0
+η∗

∣

∣

t=0
, (A14)

i.e.
V−1

b δu − δϕ∗
∣

∣

t=0
= J ′(u) − J ′(ū) − η∗

∣

∣

t=0
.

Hence the left-hand side of Eq. (A9) has the form

V−1
b δu − δϕ∗|t=0 − V−1

b ξb

= J ′(u) − J ′(ū) − η∗
∣

∣

t=0
−V−1

b ξb,
(A15)

and we can represent (A1) in the form

J ′(u) − J ′(ū) = V−1
b ξb + η∗

∣

∣

t=0
, (A16)

or, applying the Taylor–Lagrange formula,

J ′′(ũ)δu = V−1
b ξb + η∗

∣

∣

t=0
, (A17)

where J ′′(ũ) is the Hessian of the original functional J at
ũ = ū + τ (u − ū), τ ∈ [0, 1], i.e. it coincides with H(ϕ̃)
(see Eq. (50) for the definition of H). It is not difficult to see
that the right-hand side of Eq. (A17) is

V−1
b ξb + η∗

∣

∣

t=0
= V−1

b ξb + R∗(ϕ̄)C∗V−1
o ξo = −J ′(ū).

Hence Eq. (A1) is equivalent to the following:

J ′′(ũ)δu = −J ′(ū). (A18)

The equation in the form Eq. (74) can be similarly derived
from Eq. (14).
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Hascoët L, Pascual V. 2004. TAPENADE 2.1 user’s guide. INRIA
Technical Report, no. 0300.

Heyde C, Johnstone I. 1979. On asymptotic posterior normality for
stochastic processes. J. R. Stat. Soc. B41: 184–189.

Jennrich RI. 1969. Asymptotic properties of nonlinear least square
estimation. Ann. Math. Statist. 40: 633–643.

Kim J-Y. 1994. Bayesian asymptotic theory in a time series model with a
possible nonstationary process. Economet. Theor. 10: 764–773.

Lawless AS, Gratton S, Nichols NK. 2005. Approximate iterative methods
for variational data assimilation. Int. J. Numer. Meth. Fl. 1: 1–6.

Le Dimet FX, Talagrand O. 1986. Variational algorithms for analysis
and assimilation of meteorological observations: theoretical aspects.
Tellus 38A: 97–110.

Le Dimet F-X, Navon IM, Daescu DN. 2002. Second-order information
in data assimilation. Mon. Weather Rev. 130: 629–648.

Lehoucq RB, Sorensen DC, Yang C. 1988. ARPACK Users Guide: Solution
of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi
Methods. SIAM: Philadelphia, PA.

Lions JL. 1968. Contrôle optimal des systèmes gouvernés par des équations
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