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Abstract

DNA sequence alignments are usually not homogeneous. Mosaic structures

may result as a consequence of recombination or rate heterogeneity. Interspe-

cific recombination, in which DNA subsequences are transferred between differ-

ent (typically viral or bacterial) strains may result in a change of the topology of

the underlying phylogenetic tree. Rate heterogeneity corresponds to a change of

the nucleotide substitution rate. Various methods for simultaneously detecting

recombination and rate heterogeneity in DNA sequence alignments have recently

been proposed, based on complex probabilistic models that combine phylogenetic

trees with factorial hidden Markov models or multiple changepoint processes. The

objective of my thesis is to identify potential shortcomings of these models and

explore ways of how to improve them.

One shortcoming that I have identified is related to an approximation made in

various recently proposed Bayesian models. The Bayesian paradigm requires the

solution of an integral over the space of parameters. To render this integration

analytically tractable, these models assume that the vectors of branch lengths

of the phylogenetic tree are independent among sites. While this approximation

reduces the computational complexity considerably, I show that it leads to the

systematic prediction of spurious topology changes in the Felsenstein zone, that

is, the area in the branch lengths configuration space where maximum parsimony

consistently infers the wrong topology due to long-branch attraction. I demon-

strate these failures by using two Bayesian hypothesis tests, based on an inter- and

an intra-model approach to estimating the marginal likelihood. I then propose a

revised model that addresses these shortcomings, and demonstrate its improved

performance on a set of synthetic DNA sequence alignments systematically gen-

erated around the Felsenstein zone.

The core model explored in my thesis is a phylogenetic factorial hidden Markov

model (FHMM) for detecting two types of mosaic structures in DNA sequence

alignments, related to recombination and rate heterogeneity. The focus of my

work is on improving the modelling of the latter aspect. Earlier research efforts by

other authors have modelled different degrees of rate heterogeneity with separate

hidden states of the FHMM. Their work fails to appreciate the intrinsic difference

between two types of rate heterogeneity: long-range regional effects, which are

potentially related to differences in the selective pressure, and the short-term
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periodic patterns within the codons, which merely capture the signature of the

genetic code.

I have improved these earlier phylogenetic FHMMs in two respects. Firstly,

by sampling the rate vector from the posterior distribution with RJMCMC I

have made the modelling of regional rate heterogeneity more flexible, and I infer

the number of different degrees of divergence directly from the DNA sequence

alignment, thereby dispensing with the need to arbitrarily select this quantity

in advance. Secondly, I explicitly model within-codon rate heterogeneity via a

separate rate modification vector. In this way, the within-codon effect of rate

heterogeneity is imposed on the model a priori, which facilitates the learning of

the biologically more interesting effect of regional rate heterogeneity a posteriori.

I have carried out simulations on synthetic DNA sequence alignments, which have

borne out my conjecture. The existing model, which does not explicitly include

the within-codon rate variation, has to model both effects with the same modelling

mechanism. As expected, it was found to fail to disentangle these two effects. On

the contrary, I have found that my new model clearly separates within-codon rate

variation from regional rate heterogeneity, resulting in more accurate predictions.
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Chapter 1

Introduction and methodology

Organisms which reproduce asexually like bacteria, amoebas, and viruses have

different evolutionary patterns than organism which undergo sexual recombina-

tion. There is a linear trace of the genetic material from one generation to the

next under asexual reproduction. Having more than one parent in reproduction

results in more than one path in back tracking the genetic history of an organism.

Recently studies of bacteria and viruses have shown that genes can be horizon-

tally transferred between cells as shown in Robertson et al. (1995). This process

of evolutionary changes is also referred to as recombination. In latter sections

more information will be given to explain this effect. For the moment it suffices

to say that this can allow more diverse and abrupt changes to the evolutionary

progress of the organism.

1.1 Molecular Sequence Data

In all organisms the genetic material is stored and encoded in either DNA (De-

oxyribonucleic acid) or RNA (Ribonucleic acid). RNA is used as the main source

of storage of genetic material for viruses. DNA is used by higher level organisms.

There are 4 bases for the encoding of genetic material in DNA. These are Ade-

nine (A), Thymine (T), Cytosine (C), and Guanine (G). These base molecules

are specific in that G and C bond together, and A and T bond together as pairs.

In RNA the difference is that Thymine does not exist and is replaced with Uracil

(U) as a base pair in those positions. Mutations between sequences of DNA or

RNA are due to substitutions which are considered to be stochastic.

In the single nucleotide mutations, which are called point mutations, there

1



2 Chapter 1. Introduction and methodology

Figure 1.1: DNA sequence alignment

The image shows a subset of a sequence alignment of the

haemoglobin gene. The 6 species listed on the left of the align-

ment name the DNA stretches which run horizontally. Taken from

http://www.bioss.ac.uk/staff/dirk/talks/lectureDougArm0203.pdf.

are two types of substitutions. Nucleotides A and G are in a group of molecules

called purines and nucleotides C and T in a group called pyrimidines. Mutations

between nucleotides within the groups are called transitions, and mutations be-

tween the groups are called transversions. Making this differentiation is useful

since the frequencies of transitions and transversions are not the same.

In comparing different DNA sequences, analogous pairs of nucleotides are con-

sidered in an alignment. The alignment of different length sequences is a separate

topic and is introduced in Durbin et al. (1998). Figure 1.1 shows a short section

of a sequence alignment for a set of different species. The different nucleotide

sequences are arranged by species in rows. The columns of the nucleotides se-

quence alignments are used to compare the differences between the genomes of

each species.

1.2 Phylogenetic trees

Phylogenetics has the purpose of reconstructing the evolutionary relationships

between organisms from a sequence alignment. Many sources of evidence for

an evolutionary reconstruction can be used such as fossils, phenotypic traits,

and others. This thesis is concerned with relationships built upon molecular

data. The goal is to use the sequence alignments to construct a tree whose

structure depicts the evolutionary relationship between the sequences. Both the

evolutionary history and the ancestry can be seen from a phylogenetic tree. In

building phylogenetic trees we assume that the force of evolution is fundamentally
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Figure 1.2: Example phylogenetic tree

A basic example of a phylogenetic tree used to demonstrate the basic features and

information it represents is shown here. What can be seen are the bifurcation

points which are instances of speciation where the lineage continues with time

to 2 different species. This common point can be traced back to the time when

the 2 species share a common ancestor. This can be useful for tracing the age of

new traits seen after a speciation event. The distance between nodes represents

time which is flowing upwards. The leaves of the tree are referred to as taxa, and

the extant species are the leaves which can be observed (here the dinosaurs are

extinct). Taken from 1999 Addison Wesley Longman, Inc.

probabilistic when causing the mutations to emerge, and this probabilistic model

or a suitable approximation is desired when building the tree. The term, taxa

is used for the organisms whose genetic material is present in the alignment.

Figure 1.2 shows an example of a phylogenetic tree where the extant species are

shown with simple diagrams.

Phylogenetic trees are bifurcating, binary, tree structured graphical models.

The bifurcation points are nodes which represent common ancestral genomes.

These ancestral nodes bring together the pair of species which have deviated fur-

ther down the tree with time. The leaves of the tree represent the extant species

which can be observed (unless extinct). Bifurcations are important, because the

time passed since the separation between new features can be useful information.

The branch lengths are the distance between nodes on the graphical model (rep-

resentation) of the phylogenetic tree and are used to denote phylogenetic time.

This shows the number of expected mutations per site, and is the product of the
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rate of mutation and time.

There are different possible arrangements of the bifurcations of the phyloge-

netic tree. Different arrangements result in different clustering of species’ dis-

tances between them. Figure 1.3 shows the graphic model representation of

phylogenetic trees estimated from a sequence alignment. This sequence align-

ment subset is depicted in figure 1.1. A chosen arrangement is termed topology.

Different topologies may place bifurcations in a different order, and this can be

interpreted as grouping species to be closer or further apart between each other.

For example in one topology a human may be inferred to be closely related to a

rabbit, and in another topology the presence of an additional bifurcation in the

tree between humans and the human-rabbit common ancestor would suggest that

another species was more closely related to humans than rabbits. Subfigure a)

shows a rooted tree whereas subfigure b) shows an unrooted tree. Rooted trees

are directed according to time. The root depicts the beginning of time and the

distance from it (the time passed since the time of the root). Unrooted trees

have no root for a starting time point. The number of topologies which are pos-

sible is derived from the number of sequences, or taxa, that are being compared.

This is because of the permutations of the bifurcations for the taxa. As the

number of sequences increases the number of possible tree topologies increases

super-exponentially. For m DNA sequences there are

(2m−3)!! (1.1)

rooted topologies for the taxa, and

(2m−5)!! (1.2)

different unrooted topologies. The double factorial denoted is similar to standard

factorial m! = m(m− 1)(m− 2) . . .(2)(1) in that the difference in the values be-

tween products is 2 rather than 1, m!! = m(m−2)(m−4) . . .(3)(1). To denote a

topology the S variable is used that can take on one of the topologies of the set

1, . . . ,(2m−5)!!. These relationships are derived in the appendix A.1.

Previously in this section rate heterogeneity and branch lengths were men-

tioned. Both of these have related effects on the phylogenetic tree. Rate hetero-

geneity (without considering the branch lengths yet) scales the size of the tree to

be larger or smaller and is done uniformly. The ratio of the individual lengths

between nodes is kept the same and there is a coefficient scaling the size of all of
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a) b)

Figure 1.3: Example of rooted and unrooted phylogenetic trees as graphical models

An example sequence alignment is shown in figure 1.1 and is used to generate the

phylogenetic trees in the two subfigures a) and b). From the alignment we can see

that the first species, the frog, has smallest number of common nucleotides with

any other sequence and as a result it is drawn further away from any other species.

The human and the rabbit have the fewest number of mutations between them and

therefore have the smallest distance between them and their common ancestor.

These lengths between nodes are called branch lengths and will be spoken about

in more depth in later sections. Subfigure a) shows a rooted tree that has an

estimated root from the time point where the divergence and speciations began

for all the extant species. Subfigure b) shows an unrooted tree connecting the

taxa. A common ancestor for all the taxa is not inferred, and neither is a time

point for the initial starting point of the evolution process. Figures taken from

talks of Dirk Husmeier.
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those lengths. This coefficient is referred to as a rate factor and is denoted by ρ.

A ratefactor value less than 1 is indicative of negative selection pressure, a value

close to 1 for neutral selection and a value greater than 1 for positive selection.

The individual branch lengths are denoted with, wi, and the vector of all the

branch lengths in the phylogenetic tree is denoted by w. For an unrooted tree

of m taxa (from m sequences), there are m−2 internal nodes and 2m−3 branch

lengths, so 1 ≤ i ≤ (2m− 3). The mutations observed for a particular topology

are the number of mutations between species separated by a bifurcation. These

mutations are converted into a branch length representation of the phylogenetic

time that has passed (this is discussed in more detail in subsections 1.4, 1.5 ).

1.3 Models of nucleotide substitution

A distribution for the substitution of nucleotides x ∈ A,C,G,T into another

nucleotide or into itself is required for a probabilistic model of phylogenetics.

P(∗|x,w), is the distribution for any mutation that is conditional on the present

nucleotide and the branch length which is the phylogenetic time. Phylogenetic

time is the product of the rate of mutation and time, and gives an expectation for

the number of mutations. Figure 1.4 shows in subfigure a) the process of substitu-

tions based on the present nucleotide, and b) a possible graphical demonstration

of the probability of the substitution process along phylogenetic time. We can

see that when no phylogenetic time has passed the probability of the present

nucleotide to be found there is 1. At infinite phylogenetic time we can see the

rate of change of the substitution probability becoming zero as the memory of the

present state has an effect that converges to zero in the infinite approximation.

From the graph it can be seen that all the nucleotides have equal probability at

the largest value on the horizontal axis which is the branch length. The branch

length is the product of time with the mutation rate which gives an intuitive use

for the expected number of mutations to be seen. From the graph we can see

that there is a faster increase for the probability of nucleotide A to be substituted

into G which is a transition as introduced in subsection 1.1. A transversion in

this case would be a substitution into a nucleotide C or T. In general, transitions

are a more probable substitution than a transversion. This will be elaborated in

subsection 1.3.3.
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a) b)

Figure 1.4: Substitution Model

An example of how a probabilistic approach considers nucleotide substitutions.

Subfigure a) shows the model of a substitution process with the Markov inde-

pendence, that the probability of a certain nucleotide being substituted with any

other nucleotide is dependent on the present nucleotide. The branch length is used

as a parameter, in the nucleotide substitution model, to change the distribution

of the substitutions. Subfigure b) shows the probabilities of the substitutions as

they vary with the branch length, w. The branch length represents the length of

the expected substitutions and so is proportional to time and the mutation rate,

w = (ρ)× (time). On the vertical axis we have the probability and the horizontal

axis is the branch length which is phylogenetic time. When no time has passed

there is no probability to find a different substituted nucleotide, and at infinite

phylogenetic time we see no rate of change in the nucleotides’ substitution prob-

abilities, as the stationary distribution has been achieved. Figures taken from

Husmeier et al. (2005a).
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1.3.1 Nucleotide substitution models

There are various nucleotide substitution models for modelling mutations in phy-

logenetic trees. In this section the details of nucleotide substitution models are

given, these form the framework for the following work. The subsection 1.5 and

figure 1.4 describe the concepts of the nucleotide substitution models and its

relation to likelihood methods in phylogenetics.

In this section we let yi(t) ∈ A,C,G,T , stand for the nucleotide at a site i and

at a time t. For convenience and where necessary to aid the reader, the use of

some of these symbols may differ in later sections. The index of the site in the

alignment of length N takes on values from 1 till N, i ∈ 1, . . . ,N. The theory of

homogeneous Markov chains underlies the assumptions used to build the model

of nucleotide substitutions.

1. The process is Markov:

P(yi(t +∆t)|yi(t),yi(t−∆t), . . .) = P(yi(t +∆t)|yi(t))

2. The Markov process is homogeneous in time:

P(yi(s+ t)|yi(s)) = P(yi(t)|yi(0))

3. The Markov process is the same for all positions: P(yi(t)|yi(0)) =

P(yk(t)|yk(0))∀i,k ∈ 1, . . . ,N

4. Substitutions at different positions are independent of each other:

P(y1(t), . . . ,yN(t)|y1(0), . . . ,yN(0)) = ΠN
i=1P(yi(t)|yi(0))

The Markov assumption for nucleotide substitution models implies that pre-

vious substitutions do not affect the probability of the next substitution, as seen

from the first point in the above list. During the course of evolution the process

of substitutions remains the same and shifting the same event to a later time

does not change the probability of the event (the second in the list). The third

property in the list shows that process of substitutions is the same for all the sites

in the alignment. The last property is the assumption that the mutations in the

columns of the alignment are independent of those in other columns.

With these 4 properties aforementioned, a 4-by-4 transition matrix can be

made with the equations for the nucleotide substitution process in the phyloge-
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netic trees,

P(t) =


P(y(t) = A|y(0) = A) . . . P(y(t) = A|y(0) = T )

P(y(t) = G|y(0) = A) . . . P(y(t) = G|y(0) = T )

P(y(t) = C|y(0) = A) . . . P(y(t) = C|y(0) = T )

P(y(t) = T |y(0) = A) . . . P(y(t) = T |y(0) = T )

 . (1.3)

The particular site where a mutation/substitution is made can be ignored since

the process is identical along the sites as shown previously. The equations of

the process in eq 1.3 use the symbol t as an indicator of time, please note that

in other sections t is used for indexing the site number in the alignment. As

mentioned, there is no chance for mutations to occur without a certain amount

of time having passed and the identity matrix, I, for a nucleotide substitution

matrix arises when t = 0,

P(t = 0) = I (1.4)

The rate matrix, Q, is a constant matrix. The values in the entries do not

change over time, and is used to define the transition matrix for values of t

other than 0. In subsection 1.3.2 the Jukes Cantor model is introduced and is

where the concepts discussed here are demonstrated for the simplest cases. Later,

the Kimura model (subsection 1.3.3) is shown with its increased flexibility and

consequent increase in complexity.

For an infinitesimally small time interval dt the ansatz is made:

P(dt) = P(0)+Qdt = I+Qdt (1.5)

The homogeneous Markov chain satisfies the Chapman-Kolmogorov equation (Pa-

poulis (1991) section 6 and pages 635-642):

P(t1 + t2) = P(t1)P(t2) = P(t2)P(t1), (1.6)

for arbitrary t1, t2 ≥ 0. Setting t1 = t and t2 = dt the general expression for the

transition matrix at any time t plus time dt is given by,

P(t +dt) = P(dt)P(t). (1.7)

Substituting P(dt) with that of eq 1.5 gives,

P(t +dt) = (I+Qdt)P(t) (1.8)
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which follows to produce;

P(t +dt)−P(t) = QP(t)dt (1.9)

P(t +dt)−P(t)
dt

= QP(t)

where dt→ 0 the left hand side can be rewritten,

dP(t)
dt

= QP(t). (1.10)

This differential equation has the solution,

P(t) = eQt , (1.11)

and this gives the transition matrix for values of time t and is evaluated via a

Taylor series expansion. Transition matrices must have their columns to sum

to 1 to be a proper transition matrix. This is because there must be a valid

distribution for the probability of observing a nucleotide at any time from all

possible initial states. For this to arise the columns of the rate matrix must sum

to 0, and is proved by (using eq 1.5):

1 = ΣiPik(dt) = 1+dtΣiQik⇔ ΣiQik = 0 (1.12)

Here t is used to denote physical time, but in later sections the nucleotide

substitution processes (and consequently the transition matrix) will be expressed

in terms of phylogenetic time or the branch length, w. By defining λ = 4β (where

β is the rate of change for the substitutions),

w = λt. (1.13)

Very frequently we will express the probability of observing a nucleotide, y,

as being dependent on the ancestral nucleotide, x, and the branch length w (the

amount of phylogenetic time that has passed between the nucleotide present and

the ancestral nucleotide); P(y|x,w). The transition matrix is now rewritten with

the conditional probabilities dependent on the ancestral nucleotide and the branch

length as well,

P(w) =


P(A|A,w) P(A|C,w) P(A|G,w) P(A|T,w)

P(G|A,w) P(G|C,w) P(G|G,w) P(G|T,w)

P(C|A,w) P(C|C,w) P(C|G,w) P(C|T,w)

P(T |A,w) P(T |C,w) P(T |G,w) P(T |T,w)

 (1.14)
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As pointed out in figure 1.4, for large branch lengths, the probability of each

nucleotide is approximately 1
4 . This is the stationary distribution of the matrix

which it converges to in the full extent of phylogenetic time and is invariant to

the substitution matrix. It will be shown for this model that this has a uniform

distribution over the nucleotides (P(A) = P(C) = P(G) = P(T ) = 0.25) and is the

equilibrium distribution for the transition matrix.

A column vector u dependent on the branch length (phylogenetic time) is

used to represent the marginal distribution over the 4 possible nucleotides. This

allows an investigation of the properties of the distributions of nucleotides and

the branch lengths (over the course of time). For a general marginal distribution,

u(w) = (P(y(w) = A),P(y(w) = C),P(y(w) = G),P(y(w) = T )) (1.15)

and is a homogeneous Markov chain with the transition matrix P (as in eq 1.7),

u(w0 +w) = P(w)u(w0). (1.16)

and since the Markov chain is ergodic and converges to its stationary distribution

regardless of the initial conditions. We can say that for the arbitrary set of

nucleotides in u,

limw→∞u(w) = π, (1.17)

where π is the stationary distribution (a vector of nucleotide probabilities). The

vector π is denoted by,

π = (ΠA,ΠC,ΠG,ΠT ) . (1.18)

The invariance of the vector π towards the transition matrix gives the equilibrium

distribution by,

P(w)π = π. (1.19)

The branch length is also a function of physical time, and is defined for all values

of time greater than 0. The overall change is zero for the stationary equilib-

rium distribution, and therefore the rate matrix with respect to the equilibrium

distribution is zero;

Qπ = 0. (1.20)

This is obtained by substituting eq 1.11 into eq 1.19.

From the property of homogeneity, the rate matrix is also assumed to be

constant over the whole phylogenetic tree. For a given topology, each branch

length of the branch length vector w, has the same rate matrix and the equilibrium

distribution of the nucleotides is the same.
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α α α

α

α

α

-3α

-3α -3α

-3α

Figure 1.5: Jukes and Cantor model of nucleotide substitution

The nucleotide substitution where any different nucleotide replaces the original

nucleotide occurs with a rate α. The non-diagonal elements in the rate matrix of

eq 1.21 represent these substitutions with the rate α. The value −3α corresponds

to the diagonal elements in eq 1.21 when the nucleotide doesn’t change. The

thickness in the arrows is proportional to the values of the substitutions’ chances

of occurring. Figure adapted from Husmeier et al. (2005a).

1.3.2 Jukes-Cantor model of nucleotide substitution

The Jukes-Cantor model of nucleotide substitutions is a special case of other

models due to its simplicity, Jukes and Cantor (1969). The simplification is that

it does not differentiate between transition and transversion substitutions, and

has a uniform equilibrium distribution across the nucleotides. Every substitution

from one nucleotide to another nucleotide of different value is treated equally.

The rate matrix Q for this model is,

Q =


−3α α α α

α −3α α α

α α −3α α

α α α −3α

 . (1.21)

From the matrix the rate of substitution to different nucleotides is α and substi-

tutions not changing the nucleotide is −3α. Figure 1.5 displays a diagram of the

Jukes Cantor substitution process.

For the 2 different types of substitution events the transition matrix will use

the notation for substitution events into the same nucleotide with d̃(t) and the
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transitions into different nucleotides with g̃(t)),

P(t) =


d̃(t) g̃(t) g̃(t) g̃(t)

g̃(t) d̃(t) g̃(t) g̃(t)

g̃(t) g̃(t) d̃(t) g̃(t)

g̃(t) g̃(t) g̃(t) d̃(t)

 . (1.22)

Eq 1.10 defines the rate of change for the transition matrix, dP(t)/dt = RP(t);

for the Jukes-Cantor model the elements of the rate matrix can be substituted

giving:
dPi j(t)

dt
=−3αPi j(t)+α ∑

k 6= j
Pik(t). (1.23)

The term for the sum of the non-identical substitutions can be simplified by using

∑k 6= j Pik(t) = 1−Pi j and inserted into the above,

dPi j(t)
dt

=−3αPi j(t)+α
(
1−Pi j

)
= α−4αPi j(t). (1.24)

This linear differential equation when solved requires the initial conditions

Pii(0) = 1 meaning that the probability of there being no mutation at time 0 is 1

and for non-identical substitutions where i 6= j the probability is 0, Pi j(0) = 0. A

solution is found for the identical and non-identical substitutions as follows:

Pii(t) = 0.25+0.75e−4αt (1.25)

Pi j(t) = 0.25−0.25e−4αt . (1.26)

As time approaches infinity the second term in both equations becomes negligible

and the probability for both equations and therefore each nucleotide is the same

at 0.25 which is the stationary distribution. This shows how the matrix entries

in eq 1.22 and eq 1.27 can be found. The equations for the entries of substitution

events are (utilising eq 1.11 as when producing eq 1.45- 1.47 and the previous

equations),

f̃ (t) =
1
4
(
1− e−4αt) (1.27)

d̃(t) = 1−3 f̃ (t) =
1
4
(
1+3e−4αt) . (1.28)

For this model the free parameter is α which is not identifiable (confounded

with t). The value of α is chosen such that the branch lengths indicate the average

number of mutations. The general case is found in Minin et al. (2005),

∑
j

Qijπ =−1. (1.29)
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The symmetry of the Jukes-Cantor rate matrix allows a scalar form to be derived;

4(−3α)1/4 =−1⇒ 3α = 1. This involves using a variable to denote this, λ = 3α.

These events are modelled by a Poisson process (in time t) with decay rate λ = 3α

,

Pj(t) =
eλt(λt) j

j!
, j = 1,2,3 (1.30)

and here j represents the number mutations. Setting the branch lengths to be

w = λt, the equation is,

Pj(w) =
e−ww j

j!
. (1.31)

For the average number of mutations < j > the following can be derived,

< j > = ∑
∞
0 jPj(w) (1.32)

= ∑
∞
j=0 j e−ww j

j! (1.33)

= e−w
∑

∞
j=1

w j

( j−1)! (1.34)

= e−ww∑
∞
j=1

w j−1

( j−1)! (1.35)

= e−ww∑
∞
j=0

w j

( j)! (1.36)

= e−wwew (1.37)

= w. (1.38)

To interpret the evolutionary process in terms of branch lengths, w = λt, we can

define λ = 3α and the equations become:

f (w) =
1
4

(
1− e−

4
3 w
)

(1.39)

d(w) = 1−3 f̃ (w) =
1
4

(
1+3e−

4
3 w
)

. (1.40)

This allows us to easily substitute these equations in eq 1.22 to get P(w). The

model has the equilibrium distribution as t→ ∞ and the stationary vector π:

Qπ = 0, (1.41)

is

π =
(

ΠA =
1
4
,ΠC =

1
4
,ΠG =

1
4
,ΠT =

1
4

)
. (1.42)

This equilibrium distribution can be found easily from examining the limiting

cases of eq 1.22 and eq 1.39. There is only 1 free parameter in this model being

the value of α, which under the setting for the branch lengths results in no free

parameters. α is not identifiable and which is set such that the branch lengths
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can be interpreted as the average number of mutations. The Kimura model of the

next section 1.3.3 becomes equivalent to this model when the α and β parameters

are equal to each other.

1.3.3 Kimura Model

The Kimura model Kimura (1981) is a more flexible model of nucleotide substitu-

tion than the Jukes Cantor model previously described in subsection 1.3.2. The

Kimura rate matrix has the form,

Q =


−2β−α β α β

β −2β−α β α

α β −2β−α β

β α β −2β−α

 (1.43)

The rows from top to bottom and the columns from the left to right correspond to

the nucleotides in the order that they do in eq 1.3 (A/C/G/T). The α parameter

in the rate matrix denotes the rate for a transition, and β that of a transversion.

Subsection 1.5 introduced the difference between these two types of substitutions.

The figure 1.6 depicts the model via a diagram showing the rates of substitutions

between the 4 possible nucleotides. The rate of substitution is not uniform across

all possibilities as it is for the Jukes-Cantor model shown in figure 1.5. The

thickness of an arrow is approximately proportional to the rate of substitution

between nucleotides. This is used to depict how the transition substitutions are

more frequent than the transversion substitutions.

The 3 different types of substitution events in the transition matrix are abbre-

viated; the substitution into the same nucleotide with d̃(t), the transitions with

g̃(t), and the transversions with f̃ (t):

P(t) =


d̃(t) f̃ (t) g̃(t) f̃ (t)

f̃ (t) d̃(t) f̃ (t) g̃(t)

g̃(t) f̃ (t) d̃(t) f̃ (t)

f̃ (t) g̃(t) f̃ (t) d̃(t)

 . (1.44)

The equations for these entries of substitution events are (which were derived for
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Figure 1.6: Kimura model of nucleotide substitution

The parameter for the transitions is denoted with α, and for the transversions with

β. The value −2β−α corresponds to the diagonal elements in eq 1.43 denoting

events where the nucleotide does not change. The thickness in the arrows is

proportional to the values of the substitutions’ chances of occurring and it is seen

how the transitions are more likely than the transversions. Figure taken from

Husmeier et al. (2005a).
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the Jukes-Cantor model),

f̃ (t) =
1
4

(
1− e−4βt

)
(1.45)

g̃(t) =
1
4

(
1+ e−4βt−2e−2(α+β)t

)
(1.46)

d̃(t) =
(
1−2 f̃ (t)− g̃(t)

)
, (1.47)

which arise from eq 1.11 and can be found in Durbin et al. (1998). Now the

transition-transversion ratio can be defined in the proper context,

τ =
α

β
. (1.48)

Substituting the branch lengths into eq 1.45- 1.47 gives,

f (w) =
1
4

(
1− e−

4
3 (2+τ)w

)
, (1.49)

g(w) =
1
4

(
1+ e−

4
3 w−2e−

4
3

τ+1
2 w
)

, (1.50)

d(w) = 1−2 f (
4
3

w)−g(
4
3

w). (1.51)

This model has 2 free parameters since the stationary distribution is fixed at the

uniform distribution. From the transition-transversion ratio, τ, there are 2 free

parameters, the α and β, minus 1 (for identifiability) leaving 1 free parameter for

this model. The transition-transversion parameter is usually set to the default

value, τ = 2, producing the graphs of the demonstration of nucleotide models in

fig 1.4. The actual number of free parameters will be minus 1 of this number due

to the constraint that parameter β is fixed to solve an identifiability issue for the

transition transversion ratio, as written in Minin et al. (2005). The identifiability

issue arises between the magnitudes of α and β taking on multiple values for the

same value of τ. The constraint used is ∑i Riiπi = −1 which was solved for the

scalar situation of the Jukes-Cantor model in eq 1.23 and eq 1.24.

A more complex method, the HKY model, is described in the appendix in

section A.3. It allows greater flexibility in modelling substitutions by having a

non-uniform stationary distribution for the base frequencies of the nucleotides.

1.4 Non-probabilistic methods of phylogenetic tree

reconstruction

This thesis is concerned with probabilistic methods of phylogenetic tree recon-

struction, with the main motivation being that the process of evolution is in-
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herently stochastic producing mutations at random. There are 3 main groups

of methods of phylogenetic tree construction in general use, which are based on

genetic distance, clustering and parsimony. A short introduction to these non-

probabilistic methods is presented later in this section.

The main benefit of non-probabilistic methods is that they can be imple-

mented with ease and they have very efficient completion times. For large groups

of sequences, such as the trees of life, non-probabilistic methods are commonly

used for grouping together hundreds of species in large sequence alignments.

Dirk Husmeier (2003) reviews many of these methods in chapter 4 of his book.

1.4.1 Evolutionary distances and clustering

All distance based or clustering methods of sequence alignments have in common

that they do not consider the sequences in relation to a phylogenetic tree. In-

stead these methods build the tree iteratively based upon the distance metric as

each of the sequences are processed. Having a distance metric does not assist in

constructing ancestral species. A benefit of this method over that of parsimony

(subsection 1.4.2) and maximum likelihood (section 1.5) is that the order of the se-

quences in the alignment does not affect the results. The main drawback of these

methods is that they do not account for substitutions which are not observable

from the extant sequence data, and that they suffer from information loss. These

two consequences are visible from the two images shown in figure 1.7. Subfigure

a) shows various situations that may arise where the true number of substitutions

is not estimated using a distance measure between sequences. Subfigure b) shows

how a distance matrix can be constructed from the pairwise distances between

sequences. Such a matrix contains less information than a phylogenetic tree, as

it is additionally capable of representing the order of the ancestry and the type

of the substitutions.

1.4.2 Parsimony

Parsimony searches for the evolutionary history which minimises the number of

mutations between sequences. The columns (sites) of the sequence alignment

are considered to be independent and a candidate topology for the alignment is

chosen when assessing its suitability to the data. For each topology considered,

the number of mutations required between the ancestral species and the extant
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Figure 1.7: Depiction of the 2 main drawbacks of distance methods

Subfigure a) shows how using pairwise distances of the sequence data can un-

derestimate the true number of substitutions. Subfigure b) shows how distance

metrics on sequence data results in information loss compared to methods which

construct a phylogenetic tree. Figures are taken from Husmeier et al. (2005a).
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Figure 1.8: Parsimonious phylogenetic tree reconstruction

The figure shows how a topology is chosen using the parsimonious method of

phylogenetic tree construction. This approach is demonstrated using trees con-

structed from sequence alignments of 4 taxa. In this example the column of

nucleotides is, A,A,C,C. From the 3 candidate topologies we can see that the first

one grouping taxa 1 and 2 to be adjacent to each other has only 1 required mu-

tation along the central branch length whereas the other two topologies require

2 mutations each. Parsimony therefore would chooses the first topology. Figure

taken from Husmeier et al. (2005a).

species (more accurately the minimum the number of mutations required for the

transition) is calculated. The topology which necessitates the fewest substitutions

over all the sequence alignment is the chosen topology.

Figure 1.8 demonstrates how phylogenetic trees are reconstructed using par-

simony. The example data that the method is given is a sequence alignment of

4 taxa that have the nucleotides A, A, C, C at a particular site. From the 3

possible topologies that can be created using 4 taxa, the first topology grouping

taxa 1 and 2 to be adjacent has only 1 mutation whereas the other 2 topologies

have 2 mutations and are therefore less optimal given the criteria of the method

to minimise the number of mutations. The ancestral base pairs are chosen so

as to minimise the number of mutations for the topology. Each topology has

an associated count of the total number of mutations it incurs along the whole

alignment. The topology with the lowest count of mutations is chosen.

1.4.3 Felsenstein zone

Long branch attraction is an effect which causes methods such as parsimony 1.4.2

to infer the incorrect topology regardless of the amount of data provided. The

failure is inherent to the model, and the situations in which phylogenetic trees

produce data susceptible to this failure, are termed as being in the Felsenstein
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zone, Felsenstein (1978a).

Long branch attraction is seen when two taxa from different bifurcations on the

phylogenetic tree (non-adjacent taxa) have branch lengths proportionally larger

than the taxa they are grouped with (adjacent taxa). The lengths of non-adjacent

long branches are not taken into account in the nucleotide substitution model

and so it fails to relax the penalisations from having different nucleotides with

the adjacent taxa (which occurs frequently). As a consequence, a higher scoring

tree (one counting fewer substitutions) is found which groups the non-adjacent

taxa. This is best described by the subfigure a) in figure 1.9 which presents the

incorrect inference performed by parsimony. In the example, the strains with

long branches have different nucleotides compared to their closest relatives, and

parsimony groups them together to minimise the penalties along the topology. In

the probabilistic framework, on the other hand, these mismatches incur smaller

penalisations allowing them to have a smaller influence on the chosen topology.

Felsenstein (1978a) derives (for the general case) situations where models

based on parsimony tree construction methods will consistently infer the incor-

rect topology. This is shown for all cases with 4 sequences (resulting in trees with

5 branch lengths) where 2 non-adjacent branch lengths share the same length

d2, and the rest of the 3 branch lengths share an equal length d3 independent

of d2. A region where correct and incorrect inference occurs is shown for these

two lengths in subfigure b) of figure1.9. For both sets of lengths, d2 is on the

x-axis and d3 on the y-axis. Label ‘C’ stands for ‘correct’ inference and ‘NC’ for

‘incorrect’ inference. In region ‘C’ for the those values of d2 and d3, the topology

grouping the long branches is chosen rather than the topology used to generate

the data. Chapter 2 investigates these regions of correct and incorrect inference

using data sets spanning these 2 regions.

1.5 Likelihood methods

This section states some of the basic motivations and mathematical foundations

for probabilistic approaches towards building phylogenetic trees. The difference

between a statistical model and the statistical inference is that the model describes

the object of concern by setting the equations of the variables and probability dis-

tributions to the observations seen. Statistical inference studies how the random

samples observed are used in finding the parameters of the model.
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Figure 1.9: The consistent/non-consistent regions for tree estimation with parsimony

Subfigure a) shows how an application of parsimony can result in inferring the

incorrect topology if the tree falls in the Felsenstein zone (Felsenstein (1978b)).

In situations where two non-adjacent taxa both have substantially larger branch

lengths than their adjacent taxas’ branch length, they are susceptible to long

branch attraction. In subfigure b), for the two groups of branch lengths d2 and

d3 the regions of (c)onsistent and (n)on-(c)onsistent estimation of the true un-

derlying phylogenetic tree is shown. For a tree of 4 strains d2 includes the middle

branch lengths and two non-adjacent branches, an d3 represents the 2 remaining

non-adjacent branches. ‘C’ denotes consistency where when the branch lengths

of the two groups have a ratio within this region, then the parsimonious estima-

tion of the underlying tree is consistent with the data generating process. ‘NC’

denotes the region where the estimation process is not consistent with the un-

derlying true phylogeny. Subfigure a) taken from Husmeier et al. (2005a), and

subfigure b) adapted from Felsenstein (1978b).
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Likelihood methods are founded on a mathematical model that is defined

explicitly. It does not take an approach where it implies a certain model of oper-

ation. This is beneficial since the assumptions made can be examined, put under

scrutiny and be modified more easily. Likelihood, which probabilistic methods

use to optimise a clear criteria, are similar in this respect to parsimony but dif-

ferent to clustering methods. Parameters for features of evolution inspired from

biological evidence can also be incorporated into likelihood models.

A phylogenetic tree’s likelihood can be computed by considering the tree struc-

ture as a Bayesian network which is a graphical model. This thesis considers only

unrooted trees, and in computing the likelihood of the unrooted tree, the parent

node of the network can be placed anywhere along the ancestral nodes of the

graph. The directions of edges in the tree must be determined by an arbitrar-

ily placed root node for the Bayesian network to be factorised into a product

of conditional probabilities between the ancestral and extant nodes. Having a

substitution model based on likelihood as shown in figure 1.4 allows a probability

associated with substitutions between nodes in the network to be computed, and

a joint likelihood from the factorisation can be made.

Figure 1.10 shows in subfigure a) the directed graph of the Bayesian network.

Any general phylogenetic tree structure with a certain number of nodes can be

always be factorised to allow computation of the likelihood. Nucleotides are

represented by variable x, can take the value of any nucleotide xi ∈ A,C,G,T .

Arrows on the edges indicate descendants of nodes that are ancestors of the

node from where the arrow emerges from. These parent/ancestral nodes can be

identified with a subscript pa[i]. This way every nucleotide is descended from

another nucleotide which then carries back the probability of the root node to be

the ancestral nucleotide of all the nodes in the network. For a tree arising from m

sequences belonging to m different organisms, the factorisation of the likelihood

is given by:

P(x1, . . . ,xm) = ∏(xroot) ∏
i∈T/r

P(xi|xpa[i],wi). (1.52)

In expressing the set of the nodes in the network, T is introduced here to denote

the set of all the nodes in the tree. The product of all the conditional probabilities

in the tree excluding that of the root which is separate is denoted by i∈ T/r. The

probability of the nucleotides at the root can be set to any normalised distribution

and is taken to be uniform. In order to calculate the probabilities of the observed
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nucleotide sequence we must make an assumption about the root having a certain

nucleotide distribution. We are also compelled to assume that the ancestral sites

have this same distribution for the nucleotides at any site in the alignment. From

figure 1.10, subfigure a) shows the ancestral nodes shaded in lightly (z variables

as unknowns) and those parts with darker shading are the observed nucleotide

positions in the sequence alignment (extant nucleotides with y). The subscript of

the node refers to which of the known or unknown nodes it refers to. The joint

probability for the nodes of the network, P(y1,y2,y3,y4,z1,z2|w,S) is,

P(y1,y2,y3,y4,z1,z2|w,S) =

P(y1|z1,w1)P(y2|z1,w2)P(z2|z1,w5)P(y3|z2,w3)P(y4|z2,w4)Π(z1),
(1.53)

where z1 is chosen to be the root node. The root node, Π(z1), has probability 1
4

for all the nucleotides. The other components are the conditional probabilities

defined by the substitution matrix which is introduced in figure 1.4.

Subfigure b) in figure 1.10 shows the 16 possible nucleotide values the ancestral

nodes can take. They are marginalised over since they are not observed. The

summations of the hidden nodes in eq 1.53 can be done straight forwardly with

nested summations over the two hidden node variables, z1.

P(y|w,S) = P(y1,y2,y3,y4|w,S) = Σz2Σz1P(y1,y2,y3,y4,z1,z2|w,S), (1.54)

shows the marginalisation over the hidden ancestral nodes and obtains the prob-

ability of the extant nucleotides. For an unrooted tree of m taxa (leaves) there

are m−2 ancestral unobserved nodes. In general there are 4m−2 computations to

be performed in the marginalisation over all these nodes. To avoid this computa-

tional demand required for larger alignments, the peeling algorithm of Felsenstein

(1981) is used. It uses the sparse connectivity of the network, that there are

only bifurcations at the edges and the independence of nodes conditional on each

other. The exponential running time can be made polynomial similarly to Pearl’s

message passing algorithm, Pearl (1988).

The difference between rooted and unrooted trees is that for unrooted trees

that the root node can be chosen to be anywhere on the tree and for rooted trees

it has a fixed position. This is not discussed further in this thesis as only unrooted

trees are used. Unrooted trees use reversible models of nucleotide substitution

as defined in the Kimura model described in section 1.3.3. When calculating the

likelihoods with a reversible model of nucleotide substitution, the probabilities
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between the substitutions and the reverse substitution, conditional that the same

amount of phylogenetic time has passed (the same branch length) produces equal

probabilities:

P(x|y,w)Π(y) = P(y|x,w)Π(x). (1.55)

The variables x and y take on the value of one of the nucleotides. Therefore the

direction of the edges on the Bayesian network does not change the probability.

Changing the position of the root (that changes the edge directions along some

of the branch lengths) will not change the probability of the network. The root

distribution of nucleotides applies to the whole likelihood so that the overall

probability is the same irrespective of the root position. This is explained in

section 4.3 of Husmeier et al. (2005a).

At each site in an alignment of N columns, there are m nucleotides (gaps are

rejected), and the columns are addressed as yt . t is used as an index along the

alignment 1 ≤ t ≤ N. The peeling algorithm together with a nucleotide substi-

tution model allows the probability of a column of nucleotides in the sequence

alignment to be computed,

P(yt |w,S). (1.56)

To compute the likelihood for the whole sequence alignment it is assumed that

the columns are independent of each other. The N sites of the alignment make

the data used, D = y1, . . . ,yN , and the independence assumption allows the fac-

torisation of the whole alignment,

P(D|w,S) =
N

∏
t=1

P(yt |w,S). (1.57)

Increasing the likelihood of the data is the objective of the inference schemes

applied. This model will be changed in later sections, as will be shown. This

is the basic model which further modifications are built upon. DNAML is a

maximum likelihood implementation which is openly available, Felsenstein (1981)

and Felsenstein (1996).

1.6 Recombination

More accurately, this subsection discusses inter-specific recombination, which will

be referred to as recombination. Recombination in the study of phylogenetics

has been important for the correct reconstruction of the evolutionary histories of
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a)

b)

Figure 1.10: Graphical Model of the Phylogenetic tree

Subfigure a) shows a Bayesian network of a phylogenetic tree. The lightly shaded

nodes represent the ancestral species of the extant species which are observed,

and the extant observed data are black nodes. The arrows show the direction of

the dependencies between the nodes, the children of nodes are indicated by the

arrowheads. Subfigure b) shows the 16 possible different settings for the 2 an-

cestral unobserved nodes in the 4 taxa phylogenetic tree. These are marginalised

over to obtain a likelihood for the topology and other evolutionary parameters

such as the ratefactor and branch length vector. (figures taken from talks of Dirk

Husmeier)
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many unicellular pathogens. This relatively recent interest is less developed and

is not considered to be a part of the traditional approach towards phylogenetics.

The introduction into phylogenetics till this point discussed finding a single

phylogenetic tree (topology) describing the whole sequence alignment’s evolution-

ary history. The process of recombination results in the change of the topology

along an alignment. This provides a more detailed explanation of the ancestry

of the present genetic material. With recombination events there can be two or

more topologies along the alignment creating a mosaic structure.

It is important to detect and infer recombination events and where they occur

to produce correct phylogenetic relationships for the data. Wrongly attributed

trees may result in false conclusions from investigations. Accounting for recom-

bination adds a significant amount of complexity to the model in terms of pa-

rameters that need to be assumed or estimated in the model. The number of

topologies scales super exponentially with the number of sequences in the align-

ment and is a large obstacle in phylogenetics. Modelling recombination involves

positioning break points between choices of topology along the alignment, each of

these topologies must also be inferred, and so modelling recombination creates a

difficult problem. To further exasperate the problem, the placement of the break

points is not an analytically tractable problem and is combinatorical in its nature.

1.6.1 The recombination process

Recombination events happen in unicellular organisms such as bacteria and

viruses. They can exchange or transfer genetic material (DNA subsequences)

between themselves. These subsequences may also be referred to as mosaic se-

quences.

Figure 1.11 depicts the process of recombination and the effect that it has on

the phylogenetic trees that are produced. The process follows the steps that two

non-adjacent strains on the phylogenetic tree exchange a subsequence of their

DNA between themselves. In the regions where there has not been an exchange

the phylogenetic relationships between the strains remains unchanged. In the

regions where an exchange has happened, the phylogenetic relationship (topology)

changes to bring together strains that contain a more similar evolutionary history

(closer in terms of phylogenetic time shown in the branch lengths). The figure

shows a region of horizontal transfer, the consequences it has on the sequence
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Figure 1.11: Recombination in DNA sequence alignments

The figure shows a phylogenetic tree where strains 2 and 3 undergo a recombina-

tion event in the central third of their genome. The transfer of genetic material

is seen in the change of darkness in the shading of strains 2 and 3 in the central

region. The regions of DNA surrounding the recombination event have the same

phylogenetic tree as the one on the top as no change has occurred there. In the

region where the recombination event occurred, a change in the topology is re-

quired so that the correct branching order is found that brings sequences together

with their closest relationships in adjacency. In the central region, the sequence

labelled 2 contains genetic material of strain 3 originally which is closest to strain

4, and the topology in this region changes to group those 2 strains together.

alignment, and the effect on the correctly inferred topologies in the respective

regions.

1.6.2 Classical methods for detecting recombination

There are various methods which can be used for detecting recombination that

have different approaches and features. Phylogenetic networks is one method

which can be used as an indicator for recombination in sequence alignments as

well as indicating other types of events. The method builds cyclic networks based

on probabilistic or non-probabilistic measures. The set of possible supported

trees are represented by splits without constructing ancestral species. The pre-

diction of recombination events is made without an estimate of the specific sites

where this occurs. This method is described in more detail in section 5.1 in
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chapter 5 where it is applied. Maximum chi-square, Maynard Smith (1992), is

another method which compares pairs of sequences with a putative recombinant

to detect recombination. This method does not take into account explicit phy-

logenetic relationships, and only takes into account polymorphic sites in DNA

which does not utilise the maximum amount of possible information. This results

in a poor resolution of the recombination break points. Partial Likelihoods As-

sessed Through Optimisation (PLATO), which is proposed in Grassly and Holmes

(1997) compares average likelihoods of putative recombinant regions against the

average likelihood of the whole sequence. It uses a statistic to determine topol-

ogy changes and the method becomes increasingly unreliable as the length of the

recombination region grows. TOPAL is another method which is used in the

chapter 5 and described in section 5.2. It is a fast method which can be applied

to large sequence alignments but suffers from the information loss inherent to

distance methods. There is also a method of detecting recombination based on

parsimony, RECPARS, and is presented in Hein (1993). It requires from the user

a set of tuning parameters to be chosen and suffers from long branch attraction

in the Felsenstein zone.

1.7 Exploring the effect of rate heterogeneity and

recombination across sequence alignments

The rate of mutation, which scales the branch lengths in a phylogenetic tree is

not uniform across DNA sequence alignments. Heterogeneity in the rate of muta-

tion can occur for a variety of reasons and has significant biological importance.

Inferring the correct rate of mutation for the different regions of an alignment has

also implications for inferring topology break points reliably as will be discussed

in later sections.

Figure 1.12 has two subfigures to demonstrate the changing of the rate of mu-

tation (via a ratefactor) and the branch length vector. Subfigure a) shows three

regions of differing rate heterogeneity. The sections show a ratefactor equal to

1, less and greater than 1. The topology is kept the same, as well as the branch

length vector, but the branch lengths are all scaled according to the ratefactor

uniformly along the alignment. Subfigure b) shows 3 different trees of the same

topology with differing branch length vectors. The ratefactor value is kept con-
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Figure 1.12: The effect of rate heterogeneity and changes in branch lengths to phy-

logenetic trees

The two subfigures depict the effects of rate heterogeneity and branch length

differences. Subfigure a) shows three regions of rate heterogeneity on a sequence

alignment. The regions have a ratefactor equal, less and greater than one. The

topology stays the same and so does the branch length vector along the sequence.

The number of expected mutations observed are scaled with the ratefactor. The

branch lengths vary according to ρ. Subfigure b) demonstrates three different

trees of the same topology and ratefactor, but having a different branch length

vector.

stant meaning that the relative values change (direction of the vector of branch

lengths), but the sum of the lengths ∑ ẇi = constant over the three different trees.

As was illustrated in Figure 1.11, there are topology breakpoints along the

DNA sequence alignment as well. The break points for rate heterogeneity can

coincide with those of the topology break points, but this is not a requirement

(since real biological data can produce these effects independently of one or the

other). Figure 1.13 illustrates this. Subfigure a) shows the more specific case

where break points between the different ratefactors coincide with those for the

topology changes along the alignment. Subfigure b) shows an example alignment

where the ratefactor breakpoints do not coincide with those of the topology break

points. It is seen that the taxa adjacencies in the phylogenetic trees attributed
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to different regions can change and within homogeneous topology regions the

scaling for the complete set of branch lengths can change as well and this rate

heterogeneity can be maintained over further topology changes.

The independent detection of topology and ratefactor break points is what is

achieved in Husmeier (2005) with the implementation of the phylogenetic factorial

HMM (phylo-FHMM). Subsection 1.9.4 describes the model used to infer and

place the break points for the two factors separately.

1.8 Bayes Theorem and Bayesian Networks

Throughout this thesis, we will use the Bayesian paradigm as it allows to quantify

uncertainties and incorporate knowledge in a natural way. A prior probability is

needed to express a degree of belief in events before measured data appears,

a likelihood function that models the data, and this gives an estimate of the

uncertainty. When considering a certain hypothesis H the concern is with the

posterior probability of the hypothesis given the data, which is proportionate to

the product of the prior probability and the likelihood.

Conditional probabilities for H the hypothesis and D the data are;

P(D|H) =
P(D,H)

P(H)
(1.58)

and

P(H|D) =
P(D,H)

P(D)
. (1.59)

Bayes formula is based on the prior probability of the event/hypothesis we are

concerned with, the likelihood of the data under the event of the hypothesis, and

the marginal likelihood of the data. These allow the posterior probability of the

hypothesis given the data to be computed,

posterior =
prior x likelihood

marginal likelihood
(1.60)

P(H) is the prior probability for event H, P(D|H) is the likelihood, P(D) is the

marginal likelihood of the data, and P(H|D) the posterior probability;

P(H|D) =
P(H)P(D|H)

P(D)
. (1.61)

The hypothesis can concern many different choices such as the dependency struc-

ture between sets of proteins in a genetic network, the association between smok-

ing and cancer, the topology state sequence along a DNA sequence alignment,

and many others.
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Figure 1.13: Illustration of the effect on a phylogenetic tree in the presence of rate

heterogeneity as well as topology break points

This figure has two subfigures a) and b) which illustrate the effect on the phyloge-

netic tree along the DNA sequence alignment when there are both topology break

points arising from recombination as well as break points for the rate heterogene-

ity. ‘Topo’ is used for the abbreviation of topology. Topology 1 joins strains 1

and 2 to be adjacent, and Topology 2 has strains 1 and 3 being adjacent. There

are 3 rate state values used ρ1, ρ2, and ρ3 where ρ2 < ρ3 < ρ1. Subfigure a) shows

two break points separating the alignment into 3 sections. Before the first and

after the second breakpoint the regions have the same topology and the change

is that the central region contains Topology 2. Each region has a different rate-

factor uniformly scaling the complete set of branch lengths. Subfigure b) differs

from a) in that there is now only 1 break point for the ratefactors in the central

region. This does not align with a break point for the topologies. As a result, in

the region where a recombination event has occurred, the scaling of the branch

lengths changes in this region.
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The marginal likelihood of the data P(D) is the sum of the space of differ-

ent hypothesis which are independent without overlap between them (it is the

denominator in the partition function acting as a normalising constant),

P(D) = ΣiP(D,Hi) = ΣiP(D|Hi)P(Hi), (1.62)

where i is used here as an index for the individual hypothesis. Since P(D) is a

constant between all the hypothesis the comparison can be written as

P(H|D) ∝ P(H)P(D|H), (1.63)

also as the space of the possible hypothesis may be too vast to explore exhaus-

tively. Alternative methods can be used in these cases, such as statistical sampling

(Markov chain Monte Carlo).

The Bayesian paradigm can be used to build Bayesian Networks. A Bayesian

network is a probabilistic graphical model, where nodes correspond to random

variables and are connected with directed edges representing the conditional prob-

abilities between the variables. The nodes are either observed random variables

or latent/hidden random variables. Each node takes the parent(s) value(s) as

input for computing the pdf of that node.

The graphical structure M of a Bayesian network has its nodes represented

with V and the directed edges with E . The graph structure is defined by the set

of edges connecting the vertices, M = (V,E). If an edge connects two nodes A

and B and the arrow on the directed edge is towards node B, then A is referred

to as the parent of B while B is referred to as the child of A. Figure 1.14 shows

a Bayesian network diagram. There are 5 nodes representing random variables,

V = A,B,C,D,E, and the set of edges E = (A,B),(A,C),(B,D),(C,D),(D,E). Node

A shows that a parent can have multiple children, and node D how multiple

parents are possible. If there were no directions (arrows) on the edges then this

graph would have a cycle between nodes A/B/C/D, but by following the edges a

cycle is restricted. For a cycle to exist, the edges must point in the same direction

until the original node is arrived at. This Bayesian network’s joint probability

P(A,B,C,D,E) is equal to the product of the conditional probability relationships,

P(A,B,C,D,E) = P(A)P(B|A)P(C|A)P(D|B,C)P(E|D). (1.64)

The factorisation for Bayesian networks from their joint probability into the prod-

uct of conditional probability relationships can be done by considering the set of
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Figure 1.14: Bayesian network example

The circles are nodes representing random variables, which can be latent/hidden.

The edges connecting the nodes show conditional independence relationships. At

the end of the edges are arrows distinguishing on which side is a parent node

(where the edge originates from), and a child node indicated by the arrow head.

A parent node may have more than 1 children dependent on its value, shown by

node A, and a node may have more than 1 parent shown by node D. The joint

probability of the network, P(A,B,C,D,E), is factorised into a product of the indi-

vidual conditional probability relationships; P(A)P(B|A)P(C|A)P(D|B,C)P(E|D).

random variables involved in the network; X1,X2, . . . ,Xn identified with the index

i which takes the values 1, . . . ,n. pa[i] is used to address the parent nodes of a

node i in the network, and for the random variables which are the parents of Xi,

Xpa[i] is used. The joint probability of the set of random variables in the graph

can be written as a factorisation in terms of the parent random variables present

in the joint probability;

P(X1,X2, . . . ,Xn) = Π
N
i=1P(Xi|Xpa[i]). (1.65)

The property of the Markov blanket can be used to find the factorisations of the

random variables based on the conditional probability distributions. The Markov

blanket for a particular node is the set of children, parents, and coparents (the

other parents of this node’s children). Given the Markov blanket for a particular

node the rest of the nodes in the network are independent given this set. Using i

again as an index for a certain node in the network, and MB[i] as the set of nodes

in the Markov blanket of node i, XMB[i] are the random variables corresponding to

MB[i]. The factorisation of eq 1.65 is denoted according to the Markov blanket,

P(Xk|X1, . . . ,Xk−1,Xk+1, . . . ,Xn) = P(Xk|XMB[i]). (1.66)
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The conditional probabilities defined by the structure M of the Bayesian

network can take on various functional forms. The probabilities can be from a

Normal distribution, Gamma distribution, Poisson distribution and many others.

These distributions have parameters which need to be defined. In the example of

figure 1.14 the Markov blanket of node D is B, C, and E.

1.9 Hidden Markov models

The hidden Markov model (HMM) is a type of Bayesian network with hidden

nodes and non-hidden nodes (observables). This model has been applied to nat-

ural language processing (NLP), speech recognition, and bioinformatics among

other areas. For the problem of detecting the topology along the sites of the

DNA sequence alignment which is not known beforehand, the complete sequence

of data provides evidence towards the estimation of the topology at each site

rather than utilising each single column of DNA independently (which would

result in over-fitting).

The Figure 1.15 shows the structure of the hidden Markov model. The back-

bone of the chain connects the hidden state variables, St , where St is dependent

on St−1 and St+1 from the Markov blanket. Each observation yt is dependent

on the parent hidden state variable St . The directed arrows indicate the parent

to children relationship. The conditional independencies between nodes on this

structure is given through the Markov blanket and is explained in Heckerman

(1999). The probability of a single observation is independent of all the other

observations and hidden state variables given its parent state variable,

P(yt |y1, . . . ,yt−1,yt+1, . . . ,yN ,S1, . . . ,SN) = P(yt |St). (1.67)

The state transitions in the sequence of observations are only dependent on the

previous state variables,

P(St+1|S1, . . . ,St ,y1, . . . ,yt) = P(St+1|St). (1.68)

For the given sequence of observations, y1, . . . ,yN and state sequence S the joint

probability can be found,

P(y1, . . . ,yN ,S1, . . . ,SN) =
N

∏
t=1

P(yt |St)P(St |St−1)P(S1). (1.69)
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Figure 1.15: HMM structure

The hidden Markov model offers useful conditional independencies. The obser-

vations are denoted with yt for the index values running along 1 to N for the

sequence of observations, and each observation is associated with a hidden state

variable S. The arrows show the association of parents to children. The individ-

ual observations can be found independently of other observations given the state

variable value, P(yt |y1, . . . ,yt−1,yt+1, . . . ,yN ,S1, . . . ,SN) = P(yt |St), and the state

variable transitions by P(St+1|St). For a sequence of state transitions, S, and ob-

servations the likelihood is the product of the observations and state transitions,

∏
N
t=1 P(yt |St)∏

N
t=2 P(St |St−1). Figure taken from Husmeier et al. (2005a).

The structure of the dependencies between the nodes is Markovian. The simplifi-

cation allows the complexity of an exhaustive search of the hidden state sequences

(eg. topologies or ratestates) to not be exponential in the number of hidden nodes

(sequence length). With there being 3 possible topologies for a 4 strain alignment,

the exhaustive search would have 3N paths to search.

Given that there may be many states in the HMM, eq 1.69 may include the

product (multiplicative) of many subsequently low numbers causing there to be

underflow in the floating point arithmetic of the software used for implementing

the model. To overcome this potential pitfall, the log likelihood is used. In later

sections this may not be explicitly mentioned but it is used without mention to

avoid inaccuracies.

Important algorithms for performing inference on HMMs are the Forward

Algorithm in appendix A.7 which does filtering, the Forward-Backward Algorithm

in appendix A.8 that does smoothing and the Viterbi Algorithm in appendix A.6

which performs decoding. Figure 1.16 illustrates these two processes.
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Figure 1.16: HMM filtering and smoothing

The figure illustrates the data used when conditioning on a particular site t when

the process of filtering and smoothing is performed. The grey box depicts the

amount of data used and the index t is used to show the place of the index in the

data. Filtering is shown on the top of the two diagrams which is performed by the

forward algorithm described in appendix A.7. The bottom diagram shows HMM

smoothing performed by the forward-backward algorithm shown in appendix A.8.

1.9.1 Application of HMMs for inferring the topology states

along sequence alignments

Here the application of HMMs in phylogenetics for inferring recombination break

points is demonstrated and explained. McGuire et al. (2000) designed a likelihood

method shown in figure 1.17. This figure shows a short DNA sequence alignment

and indicates the fourth column. As each column is independent of other columns,

the probability of the set of nucleotides at each site can be found. Not all the

parameters used are presented here, such as the rate heterogeneity so that the

motivation for HMMs used in detecting recombination is clearer. The set of

candidate topologies for the given sequence alignment is shown in the left bottom.

For the column of nucleotides the probability is found via P(yt |St ,w,θ). The

distribution of the topologies for each site is required when inferring the mosaic

structure (break points) along the alignment S.

The parameter for the probability of changing topologies along the sites is

important for detecting recombination. The recombination state transition pa-

rameter’s use is shown in figure 1.18 which has two subfigures. Subfigure a)

illustrates the effect of the topology transition parameter which is expressed as

the probability of not changing topology from one site to another site along the

sequence alignment, P(St |St−1) = νS when St = St−1. The probability 1− νS is
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Figure 1.17: Sequence Alignment column parameters and likelihood

In the illustration, at the top there is a depiction of a sequence alignment, and

the arrow above the fourth column indicates that the nucleotides at that site are

to being examined. Each column of nucleotides is taken to be independent of

each other and for this reason the model of the HMM is appropriate. yt is used

to represent the column of nucleotides, and the probability of the columns at

site t in the alignment given the parameters of the topology St , branch lengths

w, and evolutionary parameters from the substitution model θ can be found;

P(yt |St ,w,θ). Other essential parameters used in the model for calculating the

probability of a column are introduced later. The 3 candidate topologies for the 4

strain sequence alignment are shown in the lower left. Obtaining the distribution

of the topologies per site allows for inferring the sequence of the topologies along

the whole alignment S as is described later. Figure taken from Husmeier et al.

(2005a).
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the probability of changing topologies and is uniformly distributed amongst the

2 possible candidates, (1−νS)/2. Subfigure b) shows the effect of νR, the ratestate

transition parameter. The ratestate parameter is the probability of remaining in

the same ratestate which scales uniformly the complete set of branch lengths for

the phylogenetic tree. The probability of transitioning into a different ratestate

along the sequence is 1−νR/K̃ , where the denominator is K̃. The number of rates-

tates is not restricted or known apriori unlike the number of topologies which is

restricted by the number of sequence alignments.

The data, D of the sequence alignment is the set of the columns at each

site D = (y1,y2, . . . ,yN). The sequence of hidden topology states for the set of

sites along the alignment is S = (S1,S2, . . . ,SN). Eq 1.69 displays the factorisa-

tion of the HMM with only the dependency of the topology states. The HMM

used, developed and tested uses different extensions. Developments further in

the thesis involve including the parameter vector for the evolutionary nucleotide

substitution parameters θ, the branch lengths w, the ratefactor vector ρ, and the

vector of relative codon rate heterogeneity λ. The HMM factorisation will be

presented again with the introduction of the new parameters. Modelling the rate

heterogeneity requires the factorial HMM that is discussed later in section 1.9.4.

Introducing only the branch lengths and nucleotide substitution parameters with-

out the ratefactors is;

P(D,S,w,θ,νS) = P(y1, . . . ,yN ,S1, . . . ,SN ,w,θ,νS) (1.70)

=
N

∏
t=1

P(yt |St ,w,θ)
N

∏
t=2

P(St |St−1,νS)P(S1)P(w)P(νS)P(θ).

The prior probabilities P(w), P(νS), and P(θ) are assumed to be independent and

the product of the three can be taken from the joint P(νS,w,θ) = P(w)P(νS)P(θ).

The transition probability between states (P(St |St−1,νS)) is dependent on the

recombination parameter/probability, νS. For this model without rate hetero-

geneity being considered, the emission probabilities are:

P(yt |St ,w,θ). (1.71)

With the Kimura model, subsection 1.3.1, the nucleotide substitution parameters

θ is the transition-transversion ratio ts/tv, and for the more complex model HKY

in appendix A.3, θ = (ts/tv,π) (where π is defined in eq 1.18).

Because the different phylogenetic trees cannot share the same set of branch

lengths, the branch lengths are a separate vector for each topology. The same
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Figure 1.18: Transition Probabilities and Modelling Recombination

Subfigure a) shows how the transition probability νS works for changing the topol-

ogy. νS is the probability of the topology not changing from one state to the other

along the sites of the sequence alignment, P(St |St−1) where St = St−1. In a 4 strain

DNA sequence alignment there are 2 other candidates and the probability 1−νS

is the probability of there being a topology change. The probability 1−νS is dis-

tributed uniformly across the possible candidates giving a probability of (1−νS)/2

for a transition to a different topology. Subfigure b) shows the analogous role for

the transition parameter νR. This parameter is the probability of the rate state

not changing between sites in the HMM model along the alignment P(Rt |Rt−1).

The probability for changing a rate state is 1−νR and is distributed uniformly

amongst the possible rate states. The number of ratestates is not restricted to

the number of strains in the alignment. There can be an arbitrary number of rat-

estates, so the transition probability into a particular ratestate is 1−νR/K̃ , where

K̃ is the number of rate components available to transition into. Figures adapted

from Husmeier et al. (2005a).



1.9. Hidden Markov models 41

holds for nucleotide substitution parameters and the relative ratefactors for the

codon positions, but not for the ratefactors. It would be more accurate when

writing the emission probability to have the subscripts shown:

P(yt |St ,wSt ,θSt ). (1.72)

To simplify the notation the subscripts conditioning on the relevant topology at

the site t and the topology allocated, have been removed. The accumulation

of the vectors for all the topologies are considered part of the denoted vectors;

eg. w = (w1, . . . ,wK). The experiments and simulation performed were only on

sequences of 4 species so the variable K is 3 at all times (in later stages K is used

for different quantities).

Figure 1.19 shows the dependency structure of the HMM chain for the topol-

ogy states at the sites along the DNA sequence alignment using the constructions

of figure 1.17 and figure 1.18. t indexes a site in the alignment, the white nodes

are the hidden state for the topology, the black nodes are the observations of the

columns of nucleotides, w is the vector of branch lengths, and νS the topology

state transition parameter for the probability of not changing topologies between

sites. The arrows show the dependency structure between the nodes. The prob-

ability of the observations depends on the topologies and branch lengths but the

model introduces other parameters as well such as the ratefactor value at each site

and the factor accounting for the codon rate heterogeneity as well. The nucleotide

substitution vector is also present in the model but not in the figure.

The topology state sequence S is a product of the probabilities of state transi-

tions which can be homogeneous or heterogeneous state transitions. The sequence

of topology state transitions is given by:

P(S) = P(S1, . . . ,SN) =
N

∏
t=2

P(St |St−1)P(S1) (1.73)

where the probability of the first state P(S1) is set to be uniform over the set of

possible values that it can take. The component P(St |St−1) which represents the

hidden topology state transition probability as,

P(St |St−1,νS) = ν
δ(St ,St−1)
S

(
1−νS

K−1

)[1−δ(St ,St−1)]

. (1.74)

The function denoted by δ(.) is the Kronecker delta symbol taking the value of 1

when the transition is homogeneous St = St−1 and the value of 0 when the states

are not equal (a recombination event).
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S

w

Figure 1.19: Diagram of the νstate parameter for the detection of recombination.

Topology state break points are modelled as changes in the hidden state variables

along the topology HMM chain. The subscript t in the state variables of y and

S denote the sites in the DNA sequence alignment. The black nodes, y, are

observations which are not hidden (D). The white nodes are the hidden states

which must take the value of a particular candidate topology (of which there are

3 for 4 sequences in the alignment). The arrows between the nodes represent the

conditional dependencies. α and β in squares are the hyper parameters for the

beta distribution of νS. The probability (emission probability) of the observation

at yt is shown to be dependent on the topology state St and the vector of branch

lengths w. The emission probability is dependent, in the model used, on the

vector of nucleotide substitution parameters θ and the ratefactor allocated to site

t. Later in further sections the codon structure of DNA will also be an important

variable for the probability emission at each site. The topology at a site t depends

on the topologies at adjacent sites, St−1 and St+1 and the topology state transition

parameter νS. Figure adapted from Husmeier et al. (2005a).
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The state transition parameters are unknown beforehand, especially as the

mosaic structure of the sequence alignment is also unknown. In many cases it

is optimised using the Baum-Welch algorithm which contains an optimisation

criteria of the likelihood of the sequence. In this work this approach is not taken,

but a specific variant of the expectation-maximisation algorithm (EM algorithm)

is used instead. Subsection 1.9.3 describes the algorithm and is presented in

Husmeier and McGuire (2003). This implementation samples the value of the

state transition parameters from the posterior distribution.

1.9.2 Beta distribution for the transition parameter between

the hidden states in the hidden Markov model

In the appendix section A.4 introduces the beta distribution. The beta distribu-

tion is used as a prior for the HMM hidden state transition parameter ν. It is a

conjugate to the binomial distribution, meaning that a Beta distribution remains

when the prior combined with the binomial. The recombination parameter, νS
1,

is a binomial random variable. When the data set is large the effect of the prior

becomes less significant against the likelihood of the data. (these alpha and beta

parameters for the Beta distribution should not be confused with the alpha and

beta values of the forward-backward algorithm)

From figure 1.20, subfigure a) shows a set of subplots of the Beta distribution

for different values of its two parameters α and β. For each plot shown the Beta

distribution used had the parameter β = 2. The α parameter value is changed so

that the mean of the distribution would be equal to 0.5, 0.6, 0.7, 0.8, 0.9, and

0.95. It is visible how the density shifts towards the mean and is constrained

between the domain values of [0,1].

The subfigure b) from figure 1.20 shows the transition probability between

homogeneous and non-homogeneous regions. Each change of state requires the

probability 1−ν, so an unbroken single stretch of a particular state value would

push the ν value very close to 1 maximising the log-likelihood of the model for

data. Frequent state changes would lower the value of ν to reduce the penalisation

of 1− ν for the large number of times it will occur. Given the value of ν the

expected segment length n can be computed. The probability for the segment

1breakpoint parameter for the topology states
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length n is,

P(n) = ν
n−1(1−ν). (1.75)

The expected segment length (average n for N→ ∞) is,

〈n〉= Σ
N
n=1nP(n) = (1−ν)ΣN

n=1nν
n−1 = (1−ν)

d
dv

Σ
N
n=1ν

n = (1−ν)
d
dv

1
1−ν

=
1

1−ν
.

(1.76)

1.9.3 Sampling from the posterior distribution of the hidden

state transition probabilities

The approach used in this thesis to sample the state transition parameters for

the HMM differs significantly from the Baum-Welch algorithm. An optimisation

criteria is not used but a sampling method is used which draws samples from

the posterior distribution. Another important aspect is the simplification in the

modelling approach taken. It is assumed that the probability of the transitions

is identical in transitions between non-identical states. Figure 1.18 depicts the

modelling approach of the hidden state transitions with a diagram. In terms of

the transition matrix A, Ak,l = Ak,m for these terms which are off the diagonal, and

are equal to the probability of changing states (1−ν) divided by the number of

possible non-homogeneous state transitions; Ak,l =( 1−νS)/K−1. For the topology

state transitions νS is used, and νR is used for the ratefactor state transitions. The

diagonal entries Ak,k (probabilities of not changing state) are νS for the topology

transition probabilities and νR for the ratefactor state changes.

This approach is described in Husmeier and McGuire (2003) on page 319 and

320. This transition probability is a recombination parameter because the state

transitions represent a change point in the topology state along the alignment

(for νS). The state transition parameter ν is a binomial random variable, and the

beta distribution is conjugate to it (discussed in subsection 1.9.2). The sampling

of the transition probability is from the pdf of the beta distribution in eq A.11

and using the appropriate symbol of ν (either νS or νR),

P(ν) = Beta(ν|α,β) =
Γ(α+β)
Γ(α)Γ(β)

ν
α−1(1−ν)β−1. (1.77)

The parameters α and β change the value of the mean and the variance of the

distribution. They are used in the prior belief of the number of change point

observations made along the sequence of hidden states. The Kronecker delta
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a)

b)

Figure 1.20: Illustrations of the Beta Distribution for the hidden state transition

parameter

The transition probability between the hidden states (ν) of the HMM, for the

topology states it is νS and for the ratestates νρ. Subfigure a) shows a set of sub-

plots of the probability density across the domain of the Beta distribution; [0,1].

The parameter β = 2 for each plot, the value of the mean is equal to the value

displayed above the plot, µ =α /(α+β) from which the value of α can be inferred.

The α and β parameters can be interpreted as the number of observations seen

of the two possible outcomes of the Bernoulli trial, and are appropriate for the

modelling of ‘state change/no state change’. Subfigure b) shows the effect of the

compound probability for the ν. Longer stretches of sites (homogeneous topology

regions) favour a high transition probability to increase the product of the prob-

ability for the log likelihood of the model. Shorter homogeneous regions favour

lower values of ν to reduce the penalisation of more frequent state changes. From

the value of ν the expression for the expected number of sites a homogeneous

region will contain; 〈n〉=1 /(1−ν). Figures taken from Husmeier et al. (2005a).
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function is used(δ()̇) for δ(St ,St−1) to equal 1 when St = St−1 and 0 when St 6= St−1.

A variable Ψ is defined to represent the number of homogeneous state changes

along the hidden state trajectory, Ψ = ∑
N−1
t=1 δ(St ,St +1). The joint of the model

is directly proportional to the prior times the likelihood of the state transition

probability,

P(D,S,w,θ,νS) ∝ ν
Ψ+α−1
S (1−νS)N−Ψ+β−2, (1.78)

which is required for eq 1.105. This proportionality can be seen from eq 1.87.

The normalisation factors from the resulting beta distribution were omitted and

the normalised expression can be used to give the posterior distribution of the

transition probabilities to sample from,

P(νS|D,S,w,θ) = B(νS|Ψ+α,N−1−Ψ+β). (1.79)

With the samples of the transition probability the A matrix can be made and the

trellis of the HMM for the state sequences can be calculated.

1.9.4 The phylogenetic factorial hidden Markov model (phylo-

FHMM)

Subsection 1.9 presented the hidden Markov model (HMM) and the equations

which defined it. HMMs were originally first used in the field of phylogenetics

in Felsenstein and Churchill (1996) and Yang (1995) for modelling rate variation

among the sites in the sequence alignment. A set of finite rates were chosen to be

applied along the alignment and the HMM provided correlations between the rates

of the neighbouring sites as for the topologies previously described. It is assumed

in these papers that the topology (phylogenetic tree) is known beforehand or that

another method has inferred it. Subsection 1.7 introduces the evolutionary aspect

of rate heterogeneity and gives a brief overview of its biological importance. This

subsection presents the work of extending the HMM to a factorial hidden Markov

model (FHMM) that will combine the estimation of topology break points and

rate variation break points in one model. The subsection 1.7 serves as a primer

for this concept.

The model applying the HMM to topologies was presented in Husmeier and

Wright (2001) and prior to that in McGuire et al. (2000) for the purpose of detect-

ing recombination in DNA sequence alignments as described in subsection 1.9.1.

The dependency between the sites is restricted to the Markov blanket explained
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in Heckerman (1999). For a given DNA sequence alignment of N columns, a

HMM of N hidden states is made, (1 hidden state to represent a topology at a

given site/column) and the index t takes values within the range of the sequence

1≤ t ≤ N. Each hidden state for the HMM is denoted by S, the state at a par-

ticular site is St , and the topology that the hidden states can take on at each site

of the HMM chain is St ∈ τ1, . . . ,τK . The symbol K is used to denote the total

number of topologies. The total number of topologies is determined by the num-

ber of sequences present in the DNA sequence alignment, m, which is given by

the formula presented in eq 1.2. The observed states are the nucleotides present

in the alignment where all the sites are grouped under D. At each column is a

vector of nucleotides, yt whose emission probability is dependent on the topology,

as defined in eq 1.71, the branch lengths w, and the parameters for the nucleotide

substitution model θ. As described in the publication of the FHMM in Husmeier

(2005), the nucleotide substitution parameters can be excluded from the sampling

procedure. This creates a reduction in the computational costs, and has a small

effect on the topology statesequences sampled.

The phylogenetic factorial hidden Markov model (phylo-FHMM) is presented

in Husmeier (2005). The factorial hidden Markov model consists of two apriori

independent HMM chains. The HMM attempting to infer a correct topology

sequence along an alignment belongs to one chain and the ratefactors in the

other. If there are large variations in the rate of mutation (the complete set of

branch lengths changes their magnitude), then the model is no longer suscep-

tible to misinterpret these changes as topology break points. As a result rate

variation mosaics can be inferred correctly. The FHMM can distinguish between

recombination events and rate variation along a sequence alignment.

Each HMM chain is combined into the factorial HMM (FHMM). Where

changes between topologies represent recombination events the changes in the

scalings represent different states of selective pressure upon the organism’s

genome. The algorithms for inference on the HMM still apply to the individual

chains whose parameters both will affect the global posterior probability of the

complete model (forward-backward algorithm A.8, nested Gibbs sampling A.9,

and the stochastic forward backward algorithm 1.9.5). The inference is performed

in a hierarchical Bayesian model. Groups of the parameters in the model are made

and then Gibbs sampling is performed upon the groups of parameters. Figure 1.21

shows the Bayesian network of the FHMM. The hidden topology states St along
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Figure 1.21: The phylogenetic FHMM draw as a Bayesian network.

The figure shows the factorial hidden Markov model (FHMM) applied to phylo-

genetic trees. There are two HMM chains, 1 for the hidden topology states and

the second for the hidden ratefactor states. At each site t in the DNA sequence

alignment there is a hidden state drawn as an empty circle along the HMM chains.

The ratefactors at each site represent a scaling parameter for the vector of nor-

malised branch lengths, w = ẇ×ρ. The topologies are presented as a branching

order on the bifurcations and which strains are adjacent to each other. At the

site t in the alignment the effect of the two chains on the resulting phylogenetic

tree is displayed.

the alignment are shown on the top chain and the bottom chain for the ratestates

Rt taking the value of a ratefactor ρ. The branch lengths at each site in the

alignment are a result of the scaling of the normalised vector of branch lengths

by the ratefactor selected at that site along the HMM chain; w = ẇ×ρ.

The number of ratefactors available K̃ are predefined and their values fixed.

Further sections describe the extension to relax these constraints. Each ratestate

R can take on the value of the ratefactors ρi ∈ ρ1, . . . ,ρK̃ . The ratefactor vector

is denoted by ρ.

In the work of Husmeier (2005) an independent product of exponential dis-

tributions is put on the branch lengths. This was introduced in Suchard et al.

(2003). The product of the independent branch lengths for the branch length
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vector w is applied at each site,

P(w|ρ) = ∏
i

P(wi|ρ), (1.80)

and the exponential distribution for each branch length is

P(wi|ρ) =
1
ρ

e
−wi

ρ . (1.81)

The model follows no-common-mechanism model (NCM) of Tuffley and Steel

(1997) where each of these branch length vectors is applied independently at each

site in the alignment (contrast to assuming a branch length vector for the complete

alignment). The integration of the branch lengths are analytically tractable since

the likelihood is conjugate to this prior,

P(yt |St ,ρt) =
Z

P(yt |St ,w)P(w|ρt)dw. (1.82)

The ratefactor without the individual branch lengths along the phylogenetic tree

acts as an average amount of evolutionary change representing the average number

of mutations, or average branch length, which is sampled along the second HMM

chain in the FHMM.

Eq 1.73 and eq 1.74 show the equations for the topology states that mirror

these for the rate state transitions along the HMM chain. The ratestate sequence

R has its dependency modelled for the whole sequence as the topology states

when considering the probability of the state transitions,

P(R) = P(R1, . . . ,RN) =
N

∏
t=2

P(Rt |Rt−1)P(R1). (1.83)

The probability of the first state P(R1) is set to be uniform over the set of possible

values that it can take. The component P(Rt |Rt−1) which models the hidden

ratestate transition probability is,

P(Rt |Rt−1,νR) = ν
δ(Rt ,Rt−1)
R

(
1−νR

K̃−1

)[1−δ(Rt ,Rt−1)]

. (1.84)

The prior on νR follows a beta distribution mirroring that for the topology state

transition prior.

The emission probabilities defined previously are applied to the HMMs and

values of the hidden topology states. The branch lengths were taken into con-

sideration as well. Given the option of choosing the independent product of
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exponential priors on the branch lengths from Suchard et al. (2003) with the

no-common-mechanism model, the branch lengths can be omitted and the two

emission probabilities are shown for both cases. The form of the dependency of

the column data when the branch lengths are removed from the model is,

P(yt |St ,Rt ,θ), (1.85)

P(yt |St ,Rt ,θSt ).

Then the form where they are included,

P(yt |St ,Rt ,w,θ) (1.86)

P(yt |St ,Rt ,wSt ,θSt ),

which are extended from equations 1.71 and 1.72 by use of the FHMM allowing

the columns of nucleotides to be dependent on both the topology and ratefactor

at a site.

Extending eq 1.70 of the likelihood of the HMM, to account for the HMM of

ratestates has this form (excluding the branch lengths),

P(D,S,R,νS,νR) = (1.87)

=
N

∏
t=1

P(yt |St ,Rt)
N

∏
t=2

P(St |St−1,νS)
N

∏
t=2

P(Rt |Rt−1,νR)×P(S1)P(R1)P(νS)P(νρ).

Using the marginal posterior probabilities of the ratestates along the sites of

the sequence alignment will allow comparisons of the probabilities of the various

possible ratestates. Mosaic structures along the alignment allude to differences

in selective pressure over the genome.

Here the method used is stochastic forward backward algorithm which samples

the state sequences of the HMM chain and is described in section 1.9.5 (the same

applies for both the topology and rate states);

P(Rt |Rt+1, . . . ,RN ,y1, . . . ,yN) =
P(Rt+1|Rt = k)αt(Rt = k)
ΣiP(Rt+1|Rt = i)αt(Rt = i)

. (1.88)

The complete state sequences for the rate or topology states is obtained by

marginalising over the joint posterior distribution of P(S,R,νS,νR|D) which is

directly proportional to the joint likelihood of the model. The complete state

sequences for the ratefactor and topologies can be obtained from these equations:

P(S|D) = ∑
R

Z
P(S,R,νS,νR)dνSdνR (1.89)

P(R|D) = ∑
S

Z
P(S,R,νS,νR)dνSdνR. (1.90)
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These two integrals are analytically intractable and therefore are approximated

by drawing statistically consistent samples using MCMC. Samples are drawn from

the joint posterior distribution using a Gibbs sampling procedure (Casella and

George (1992)) which is described in subsection 1.10.2. In this Gibbs sampling

procedure one parameter group (eg. one of the hidden state transition parameters

or one of the statesequences) is sampled after another and the sampler cycles

through all the parameters iteratively. The subsection on Gibbs sampling presents

this in more detail.

1.9.5 Stochastic forward-backward algorithm

In contrast to the objective of the Viterbi algorithm (Appendix A.6) in finding the

mode of the distribution P(S1, . . . ,SN |y1, . . . ,yN), the objective of the stochastic

forward-backward algorithm is to sample (instead of optimising) a whole state

sequence from the conditional distribution P(S1, . . . ,SN |y1, . . . ,yN).

The discussion of this method and application to HMMs in detecting mo-

saic sequences, is given in Werhli et al. (2006). The stochastic forward-backward

algorithm is a modification of the forward-backward algorithm described in Ap-

pendix A.8, and is used within an unnested Gibbs sampling procedure. The

computational costs are reduced from those of the nested Gibbs-within-Gibbs

sampling procedure described in Appendix A.9. The computational costs are

reduced due to the improvement in the mixing and convergence of the Markov

chain. The study of Werhli et al. (2006) has empirical results showing two orders

of a magnitude reduction, from 105,106 to 103,104 in the steps of test simulations.

It is essential to utilise the structure of the HMM for computational efficiency.

Brute force (naive) approaches require exponential computational times in terms

of the length of the HMM chain. The stochastic forward backward algorithm

samples the whole state sequence of the posterior distribution. The motivation

of the algorithm is in the following sequence of equations:

P(St |St+1, . . . ,SN ,y1, . . . ,yN) (1.91)

∝ P(St ,St+1, . . . ,SN ,y1, . . . ,yN) (1.92)

= P(yt+1, . . . ,yN ,St+1, . . . ,SN |St ,y1, . . . ,yt)P(St ,y1, . . . ,yt) (1.93)

= P(yt+1, . . . ,yN ,St+1, . . . ,SN |St)αt(St). (1.94)

Here αt is the alpha parameter from the forward backward algorithm
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P(St ,y1, . . . ,yt) described in eq A.28. Continuing from the above equations,

= P(yt+1, . . . ,yN ,St+2, . . . ,SN |St+1)P(St+1|St)αt(St) (1.95)

∝ P(St+1|St)αt(St). (1.96)

This last step can be done since P(yt+1, . . . ,yN ,St+2, . . . ,SN |St+1) is independent of

St and cancels out in the normalisation as a constant factor. The alphas represent

the set of forward probabilities (likelihoods under the model) with the first forward

sweep of the forward-backward algorithm, and it is for the first t columns in the

sequence alignment. At the last site in the alignment the distribution of the

alphas (at site t = N), is for all the hidden states at that site given the complete

set of observations made. The initialisation of the stochastic forward-backward

algorithm is,

P(SN = k|y1, . . . ,yN) =
αN(SN = k)

ΣiαN(SN = i)
. (1.97)

Using the last state in the chain as a starting point, a recursion can be made from

N− 1 to 1 for all the states in the chain. For the consecutive state continuing

until the first state at the first site can be found with,

P(St |St+1, . . . ,SN ,y1, . . . ,yN) =
P(St+1|St = k)αt(St = k)
ΣiP(St+1|St = i)αt(St = i)

. (1.98)

This way allows a state sequence to be sampled from the posterior distribution

and in polynomial running time. It requires the forward algorithm to be run first.

This method improves on the Gibbs-within-Gibbs sampling of the hidden state

sequences described in subsection A.9. The approach of sampling the whole state

sequence with Gibbs-within-Gibbs sampling has lower computational costs than

that of the stochastic forward backward algorithm, but it has poorer mixing and

convergence; see Werhli et al. (2006) for an empirical comparison. The nested

Gibbs-within-Gibbs scheme is described in Husmeier and McGuire (2003), where

each state St is sampled in a separate step of a Gibbs sequence. Boys et al. (2000)

describes the methods but also introduces this improved approach used here.

1.10 Sampling methods

In this section a set of sampling methods are described. These methods are used

in the rest of the thesis.
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1.10.1 Markov Chain Monte Carlo and Metropolis Hastings

Subsection 1.3.1 described some of the properties of Markov chains in the context

of models of nucleotide substitution and some parts will overlap here. A Markov

chain or Markov process has the Markov property that future states of the process

depend only on the present state. The future state transitions are dependent only

on the present state and not on past states. Stochastic processes with this prop-

erty for their conditional probability distributions are called Markov processes.

For discrete state values the property’s effect on the conditional distribution can

be seen with this equation:

P(Xn = xn|Xn−1 . . .X0 = x0) = P(Xn = xn|Xn−1 = xn−1). (1.99)

Here the Xi denote states and xi the values the states take on.

A Markov chain is used to refer to a Markov process which has a discrete

and finite set of state space variables and time being a discrete set as well. The

probabilities between the state changes are called transition probabilities. The

transition probabilities can be represented as the directed edges between nodes

on a directed graph.

The Markov chains of concern here are irreducible, meaning that there is a

non-zero probability of transition between any of the states in the Markov chain.

These Markov chains are aperiodic, as they do not have a certain amount of time

required before a state can be revisited. A state in the Markov chain is recurrent

if there is a finite time for a specific state to be revisited. There is the property of

ergodicity where a state i is ergodic if it is aperiodic and positive recurrent. For

a Markov chain to be ergodic all of the states must be ergodic as well, and the

model on the states defining the state transitions must allow any state to reach

another via a finite number of steps. This is independent of the initial state as it

holds for all the states. Reversible Markov chains are chains which are reversible

if the equation of detailed balance is satisfied (where x is the initial state and x′

the new proposed state):

P(x)Q(x,x′) = P(x′)Q(x′,x). (1.100)

Here the symbol P(x) refers to the probability of being in a state x and Q(x,x′)

the proposal probability of the state. If the transition probabilities do not change

during the progress of the state transitions then the Markov chain is said to be ho-

mogeneous. The distribution of the states, independent of the initial distribution,
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is the stationary distribution of the Markov chain (the stationary distribution is

the probabilities used in the above eq 1.100 for satisfying detailed balance).

The Metropolis-Hastings algorithm Metropolis et al. (1953) is a Markov chain

Monte Carlo (MCMC) method which simulates a Markov chain on a distribution

of interest which cannot be sampled from directly. The samples are not indepen-

dent from each other as in Importance sampling but have first order dependence

as with the standard Markov chains. This allows for samples to be concentrated

around regions of higher density that have larger influence on the results. Con-

sidering a distribution P(·), from which samples need to be drawn from, the state

x with density P(x), can have another state x′ (with density P(x′)) which is pro-

posed from another distribution (a proposal distribution) with density Q(x,x′).

The reverse proposal density is Q(x′,x), and the acceptance function that satisfies

detailed balance in eq 1.100 is,

Amin = Min

(
1,

P(x′)
P(x)

Q(x′,x)
Q(x,x′)

)
. (1.101)

The minimum between the comma separated values is chosen as the probability

for accepting the the move from x to x′.

From the property of ergodicity of the converged Markov chain whose samples

were drawn with the Metropolis-Hastings algorithm, the stationary distribution

will not change and gives a correct approximation to the underlying distribution

of P(·). A description of how the Metropolis algorithm is used in each section is

given. The convergence is possible due to the property of ergodicity of Markov

chains that will not depend on their initial state as the number of samples in-

creases.

1.10.2 Gibbs sampling

Gibbs sampling is a variant of the Metropolis Hasting MCMC algorithm dis-

cussed in subsection 1.10.1. The algorithm generates statistical samples consis-

tent with the joint probability distribution of two or more random variables. As

with MCMC, the goal is to sample in the limit of convergence from the joint dis-

tribution by generating samples that converge to the correct distribution. Gibbs

sampling allows sampling from the conditional distributions of each variable in

turn.

It is applicable in cases where the conditional distribution of the parameters

can be computed. Each sample of a single parameter conditional on the rest
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of the parameter vector is consistent with the distribution and this is done in a

sampling scheme where each of the parameters is sampled in the same way. The

scheme uses a burn-in and sampling phase, as with MCMC, and each iteration of

the simulation sequentially samples each of the parameters one after the other.

The stationary distribution of the desired joint distribution of the parameters

is achieved from the ergodicity of the Markov chain. The proposal distribution

satisfies detailed balance and the steps of picking a particular index (parameter)

in the parameter vector, and sampling it conditional on the rest of the variables

is explained in Neal (1993).

A component k is chosen from the vector x holding all of the variables

(the order does not affect the correctness of the sampling procedure). The

conditional distribution is P(xi+1
k |x j : j 6= k), and the probability of a vector is

P(x) = P(xi
k|x j : j 6= k)P(x j : j 6= k). The MCMC acceptance function is

Ak
(
xi

k,x
i+1
k

)
=min

[
1,

P(xi+1
k |x

i+1
j : j 6= k)P(xi+1

j : j 6= k)P(xi
k|x

i+1
j : j 6= k)

P(xi
k|x

i
j : j 6= k)P(xi

j : j 6= k)P(xi+1
k |x

i
j : j 6= k)

]
= 1.

(1.102)

The Gibbs sampling steps are therefore always accepted and the acceptance func-

tion is no longer needed. With each iteration each variable is sampled in turn.

Subsection 1.9.4 describes the FHMM model and does not include the descrip-

tion of the Gibbs sampling procedure for the parameters. The procedure in each

iteration samples one parameter group conditional on the rest of the parameters.

The symbol (i) denotes the iteration number in the simulation of the Markov

chain and to obtain the (i+1) iteration the following scheme is used:

S(i+1) ∼ P(·|R(i),ν
(i)
S ,ν

(i)
R ,D) (1.103)

R(i+1) ∼ P(·|S(i+1),ν
(i)
S ,ν

(i)
R ,D) (1.104)

ν
(i+1)
S ∼ P(·|R(i+1),S(i+1),ν

(i)
R ,D) (1.105)

ν
(i+1)
R ∼ P(·|R(i+1),S(i+1),ν

(i+1)
S ,D). (1.106)

The order of these equations can be changed as the samples are consistent with

the posterior distribution. Equation 1.103 and equation 1.104 sample the hidden

state trajectory of the a priori independent HMM chain via the stochastic forward-

backward algorithm described in subsection 1.9.5. Equations 1.105 and 1.106 can

be performed by sampling from beta distributions described in subsection 1.9.2.
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1.10.3 Reversible Jump Markov chain Monte Carlo

Reversible jump Markov chain Monte Carlo (RJMCMC) is presented in the paper

of Green (1995). It is an extension of MCMC described in subsection 1.10.1.

The improvement made is that the dimensionality of the parameter vectors are

sampled according to the posterior distribution rather than being of fixed length.

This very useful extension is used in this work to facilitate the ability to model

variable numbers of ratefactor components rather than fixed numbers of ratefactor

components which would otherwise have been the case. The RJMCMC method

can also be referred to as trans-dimensional MCMC.

For a parameter vector ρ, there is a length for the number of components

given by K̃, and this is denoted by ρK̃ . A new value of the dimensionality for K̃′

is denoted by; ρK̃′ . The number of parameters can increase via a birth or death

move:

(ρ,u) = (ρ1,ρ2) , (1.107)

which increases or decreases the number of components by 1. The variable u used

here is a sampled value from some distribution. The two parameters ρ1 and ρ2

are independent of each other. There are two other moves split and merge which

are not used in this thesis, but are discussed in appendix subsection A.12. For the

birth and death moves to be reversible, a bijective function is required between

the parameter spaces proposed, which is shown in appendix section A.16.

The RJMCMC scheme requires the likelihood ratio, the prior ratio, the inverse

proposal probability ratio, and the Jacobian to be defined. The form of the

acceptance function is similar to that of Metropolis Hastings. The Jacobian

is added to normalise the volume of the space when dimensions are added or

removed. The Jacobian allows the sampler to continue to satisfy detailed balance,

which is needed for the sampling scheme to remain statistically consistent with

the model inference is being performed on. Additionally the Jacobian allows

for potential parameter transformations that is described in more detail in the

appendix referenced from the previous paragraph. The form for the acceptance

equation for a RJMCMC move is,

{1, likelihood ratio×prior ratio×Mininverse proposal probability ratio×Jacobian}.
(1.108)

The abbreviations used for these terms respectively will be LR, PR, and IPPR

for the first 3 terms above.
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The sampling scheme chooses between 3 different moves which are birth, death

and relocation. In the relocation step the dimensionality of the parameter vector

does not change and the values of the vector components of ρK̃ are sampled via

MCMC. These can also be referred to as within-model moves and between-model

moves.

The acceptance of a specific birth move will be a function of the minimum

value between 1 and another term:

Ab = Min{
(

P(D|ρK̃′)
P(D|ρK̃)

× P(ρK̃′)
P(ρK̃)

× P(death)P(K̃′→ K̃)
P(birth)Q(ρ′)P(K̃→ K̃′)

×Jacobian

)
}.

(1.109)

The death move is a reciprocal of the birth move acceptance term.





Chapter 2

Addressing intrinsic inconsistencies

of various recent Bayesian methods

for detecting recombination

Here is presented the work that lead to the journal publication Husmeier and

Mantzaris (2008). The work is related to three recent Bayesian methods for de-

tecting recombination in DNA sequence alignments: the multiple change-point

model (MCP) of Suchard et al. (2003), the dual multiple change-point model

(DMCP) of Minin et al. (2005), and the phylogenetic factorial hidden Markov

model (PFHMM) of Husmeier (2005). The idea underlying the MCP is to seg-

ment the DNA sequence alignment by the insertion of change points, and to infer

different phylogenetic trees and nucleotide substitution rates for the separate seg-

ments thus obtained. Inference is carried out in a Bayesian way. Of particular

interest are the number and locations of the change points, which mark putative

recombination breakpoints. Starting from a truncated Poisson prior, the number

of change points is sampled from the posterior distribution with reversible jump

(RJ) Markov chain Monte Carlo (MCMC). A disadvantage of this approach is

the inability of the model to distinguish between recombination and rate hetero-

geneity. This shortcoming is addressed in the DMCP, where two separate change-

point processes associated with the phylogenetic tree topology and the nucleotide

substitution rate are employed. A related but different modelling paradigm is

provided by the PFHMM, where two a priori independent hidden Markov chains

are introduced, whose states represent the tree topology and nucleotide substi-

tution rate, respectively. The three models described above have one feature in

59
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common: different sites in the sequence alignment are associated with separate

branch lengths, which allows the latter to be integrated out analytically. This is

convenient, as the marginal likelihood of the tree topology, the nucleotide sub-

stitution rate, and further parameters of the nucleotide substitution model (like

the transition- transversion ratio) can be computed in closed from. In this way,

the computational complexity of sampling break points (MCP,DMCP) or hidden

state sequences (PFHMM) from the posterior distribution with MCMC is sub-

stantially reduced. The subject of the present work is to investigate the effect

of the approximation on which the analytic integration of the branch lengths is

based. We will demonstrate that as a consequence of this approximation, the

resulting model may predict spurious topology changes. A clearer analysis of the

underlying approximation reveals that the resulting model exhibits a behaviour

very similar to maximum parsimony, and that it is intrinsically susceptible to

the systematic failure in the Felsenstein zone (Felsenstein, 1978b) and described

in subsection 1.4.2. We propose a modification of the PFHMM without the

aforementioned distributional approximation for the branch lengths. This mod-

ification increases the computational complexity of the inference scheme, as the

branch lengths have now to be numerically sampled from the posterior distribu-

tion. However, we demonstrate that the resulting model will avoid the prediction

of spurious topology changes in the Felsenstein zone, and thereby increases the

accuracy of detecting recombination in DNA sequence alignments.

2.1 Methods

Consider an alignment D of m DNA sequences, N nucleotides long. Let each

column in the alignment be represented by yt , where the subscript t represents

the site, 1 ≤ t ≤ N. Hence yt is an m-dimensional column vector containing the

nucleotides at the t site of the alignment, and D = (y1, . . . ,yN). Given a proba-

bilistic model of nucleotide substitutions based on a homogeneous Markov chain

with instantaneous rate matrix Q, a phylogenetic tree topology S, and a vector

of branch lengths w, the probability of each column yt , P(yt |S,w,θ), can be com-

puted, as e.g. discussed in Husmeier et al. (2005a). Here, θ denotes a (vector) of

free nucleotide substitution parameters extracted from Q. For instance, for the
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HKY85 model of Hasegawa et al. (1985), we have

Q =


. απG βπC βπT

απA . βπC βπT

βπA βπG . απT

βπA βπG απC .

 (2.1)

where the dot in each row represents the additive inverse of the sum of the re-

maining elements in that row, π = (πA,πC,πG,πT ), with πi ∈ [0,1] and ∑i πi = 1,

is a vector of nucleotide equilibrium frequencies, and α,β ≥ 0 are separate nu-

cleotide substitution rates for transitions and transversions. For identifiability

between w and Q, the constraint ∑i Qiiπi = −1 is commonly introduced defined

in eq 1.29, which allows the branch lengths to be interpreted as expected num-

bers of mutations per site (see, e.g., Minin et al. (2005)). The normalisation

constraint on π further reduces the number of free parameters by one, so that

without loss of generality we have θ = (πA,πC,πG,τ), where τ = α/β ≥ 0 is the

transition-transversion ratio.

A Bayesian approach to phylogenetics without recombination was proposed

and tested in Yang and Rannala (1997) and Larget and Simon (1999), where the

objective is to sample the tree topology S, the branch lengths w, and the pa-

rameters of the nucleotide substitution model, θ, from the posterior distribution

P(w,S,θ|D) with MCMC. Generalising this scheme to the presence of recombi-

nation requires replacing the single topology-indicating variable S by a sequence

of topologies, S = (S1, . . . ,SN), where St (the ‘state’ at site t) represents the tree

topology at site t. Each state St ∈ {1, . . . ,K} can have a different vector of branch

lengths, wSt , and nucleotide substitution parameters, θSt . To simplify the nota-

tion, we introduce the accumulated vectors w = (w1, . . . ,wK) and θ = (θ1, . . . ,θK)

and define: P(yt |St ,wSt ,θSt ) = P(yt |St ,w,θ). This means that St indicates which

subvectors of w and θ apply.

Since a tree topology may change as a result of recombination, which corre-

sponds to a transition into another state St at the breakpoint t of the affected

region, our main objective is the prediction of the state sequence S = (S1, . . . ,SN).

This prediction should be based on the posterior probability P(St |D), which re-

quires a marginalisation over the other states

P(St |D) = ∑
S1

. . . ∑
St−1

∑
St+1

. . .∑
SN

P(S|D) (2.2)
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and the remaining parameters to be integrating out:

P(S|D) =
Z

P(S,w,θ|D)dwdθ (2.3)

Alternatively, if the objective is to detect only the location of recombination

breakpoints without explicitly inferring the tree topologies in the different regions

of the alignment, then the state sequences become nuisance parameters that have

to be marginalised over. In practice this is effected by the introduction of a

breakpoint detection operator, B , which is a function of the state sequence, S,

and then obtaining the posterior probabilities of the breakpoints by summing

over the state sequences:

P(B|D) = ∑
S

P(B|S)P(S|D)

The assumption made for all three models discussed in Section 4 – MCP, DMCP

and PFHMM – is that the integral over the branch lengths w can be solved

analytically. We will revisit this point in Section 2.5, after briefly summarising

the main ideas behind the three methods first.

2.2 Multiple change-point model (MCP)

In the MCP model, each state St ∈ {1, . . . ,K} in S = (S1, . . . ,SN) represents a

different tree topology. A separate vector of nucleotide substitution parameters

θk,k ∈ {1, . . . ,K}, and an overall divergence hyper parameter ρk,k ∈ {1, . . . ,K},
is associated with each state. As we will show later, in equation (2.9) and Sec-

tion 2.5, the hyper parameter ρk defines the prior distribution of the branch

lengths. The posterior probability is obtained from Bayes rule

P(S,θ,ρ,K|D) ∝ P(D|S,θ,ρ,K)P(S)P(θ)P(ρ)P(K) (2.4)

and requires the specification of various prior distributions. Note that the branch

lengths w have been integrated out analytically. The prior on the number of

states K is chosen to be a truncated Poisson distribution. For P(ρ) a factorisable

prior P(ρ) = ∏k P(ρk) is assumed, where each P(ρk) is taken to be an exponential

distribution. For P(θ) a similar factorisation is made: P(θ) = ∏k P(θk). The nu-

cleotide substitution model chosen in Suchard et al. (2003) is the HKY85 model

of (Hasegawa et al., 1985), where the nucleotide equilibrium frequencies are kept
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fixed, estimated from the whole DNA sequence alignment. Hence each θk cor-

responds to a single parameter, the transition-transversion ratio, and P(θk) is

chosen to be the exponential distribution again. Finally, a change-point process

is chosen as the prior on P(S). The posterior probability over the state assign-

ments is, in principle, obtained by marginalisation

P(S|D) = ∑
K

Z Z
P(S,θ,ρ,K|D)dθdρ (2.5)

from which the prediction of topology changes is obtained by further marginal-

isation, e.g. according to equation (3.3). In practice, the integral in (2.5) is

intractable and is approximated by sampling state sequences S and model param-

eters θ,ρ and K approximately from the posterior distribution of equation (2.4)

with reversible jump Markov chain Monte Carlo (RJMCMC).

2.3 Dual multiple change-point model (DMCP)

A disadvantage of the MCP model is its inability to distinguish between recom-

bination and rate heterogeneity. This shortcoming is addressed in the DMCP

model of Minin et al. (2005), where two separate change point processes asso-

ciated with the phylogenetic tree topology and the nucleotide substitution rate

are employed. Let S = (S1, . . . ,SN) denote, as before, a hidden state sequence

in which each state St ∈ {1, . . . ,K} is associated with a phylogenetic tree topol-

ogy. Denote by R = (R1, . . . ,RN) a separate hidden state sequence in which

each hidden state Rt ∈ {1, . . . ,K′} is associated with a divergence hyper param-

eter ρk′,k′ ∈ {1, . . . ,K′}, and a (vector of) nucleotide substitution parameter(s)

θk′,k′ ∈ {1, . . . ,K′}. Like P(S), the prior on R, P(R), is chosen to be a change-point

process, and both change-point processes are elected to be a priori independent:

P(S,R) = P(S)P(R). The objective of Bayesian inference is to sample both hidden

state sequences from the posterior distribution

P(S,R|D) = ∑
K

∑
K′

Z Z
P(S,R,K,K′,θ,ρ|D)dθdρ (2.6)

which is approximately effected with RJMCMC.
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2.4 Phylogenetic factorial hidden Markov model

(PFHMM)

The concept of the PFHMM of Husmeier (2005) is similar to the DMCP model.

The main difference is the choice of the prior distribution on the hidden state se-

quences, P(S,R) = P(S)P(R). Rather than using two a priori independent change-

point processes, two a priori independent homogeneous Markov chains are used.

The details of the PFHMM can be found in section 1.9.4.

Note that the change-point process is a special case of a Markov chain, in

which a state can only be visited once, without the possibility of a state reoccur-

ring. This is an unnatural assumption in the context of recombination. When a

recombination event has occurred in the central segment of a sequence alignment,

then the evolutionary history of this central segment will be different from the

flanking regions of the alignment. However, the two flanking regions share the

same evolutionary history. This can be modelled with a Markov chain of two

states and two transitions: from state 1 into state 2, and back from state 2 into

state 1. However, a change-point process does not provide a mechanism to com-

bine the two flanking regions into the same state. To rephrase this in terms of

Markov chains: a change-point process corresponds to a Markov chain with two

separate states for the two flanking regions, as the re-occurrence of a previously

visited state is impossible. Consequently, the model has to infer the identity of

the two states from the data. This is suboptimal, and it leads to an increased in-

ference uncertainty (especially for short sequence alignments); see Lehrach (2008)

for further details.

There are various differences in the detailed implementation of the methods.

For the PFHMM described in Husmeier (2005), the parameters K,K′, θ and ρ

are fixed. This allows the computationally expensive RJMCMC simulations to be

replaced by a much faster Gibbs sampling procedure. However, this difference is

not essential to the PFHMM. In fact, the constraints on the parameters have been

relaxed in Lehrach (2008) and Lehrach and Husmeier (2009), where – similarly

to the work of Minin et al. (2005) – RJMCMC was used.
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2.5 Analytic integration over the branch lengths

Consider a phylogenetic tree with topology S and branch lengths w, denote the

nucleotide substitution parameters by θ, and assume we are given a single column

y from a DNA sequence alignment. The probability of this column, y, is given by

the following standard form (see, e.g., Husmeier et al. (2005a)):

P(y|w,S,θ) = ∑
hidden

P(ỹr)∏
n

P(ỹn|ỹpa(n),w
pa(n)→n,θ) (2.7)

Here, ỹn = yn if the node n in the phylogenetic tree is observed (usually a leaf

node). Otherwise, ỹn is a hidden variable (usually an ancestral node corresponding

to a speciation point) that is marginalised over in the sum. The subscript r

represents the root note, which for a reversible nucleotide substitution model

can be chosen arbitrarily without affecting the probability of y. The length of

the branch connecting node n to its parent pa(n) is denoted by wpa(n)→n. The

factorisation in the expansion of equation (2.7) is defined by the phylogenetic tree

topology S. We are interested in integrating out the branch lengths w according

to

P(y|S,θ) =
Z

P(y|w,S,θ)P(w)dw (2.8)

We follow Suchard et al. (2003) and put a completely factorisable prior on the

vector of branch lengths:

P(w) = ∏
i

P(wi) =
1
ρ

exp
(
−wi

ρ

)
(2.9)

where wi is a single element of w representing the length of an individual branch

connecting two nodes in the phylogenetic tree. Inserting this expression and

equation (2.7) into equation (2.8) gives:

P(y|S,θ) =
Z

∑
hidden

P(ỹr)∏
n

P(ỹn|ỹpa(n),w
pa(n)→n,θ)P(wpa(n)→n)dw (2.10)

= ∑
hidden

P(ỹr)∏
n

Z
P(ỹn|ỹpa(n),w

pa(n)→n,θ)P(wpa(n)→n)dwpa(n)→n

Recall that ỹn and ỹpa(n) in P(ỹn|ỹpa(n),wpa(n)→n,θ) represent nucleotides. The

probability of nucleotide X mutating into Z along a branch of length w is of the

following general form (Suchard et al., 2003):

P(Z|X ,w,θ) = AZX exp(−BZX w)+CZX exp(−DXZw)+πZ (2.11)
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Here, AZX ,BZX ,CZX ,DXZ are nucleotide-dependent constants that are determined

by the eigensystem of the instantaneous rate matrix Q and, thus, depend on the

chosen nucleotide substitution model. For the HKY85 model, for instance, the

particular expressions can be found in Hasegawa et al. (1985). The last term, πZ,

represents the equilibrium frequency of nucleotide Z, which is a parameter of the

nucleotide substitution model. Hence, AZX ,BZX ,CZX ,DXZ and πZ are determined

by θ.

Combining equations (2.9) and (2.11) allows the branch length to be integrated

out analytically:

P(Z|X ,ρ) =
Z

P(Z|X ,w)P(w|ρ)dw

= πZ +
AZX

ρ

Z
exp
(
−
[

BZX +
1
ρ

]
w
)

dw

+
CZX

ρ

Z
exp
(
−
[

DXZ +
1
ρ

]
w
)

dw

= πZ +
AZX

1+BZX ρ
+

CZX

1+DXZρ
(2.12)

Inserting eq. (2.12) into eq. (2.10) gives the following closed-form solution:

P(y|S,θ) = ∑
hidden

P(ỹr)∏
n

(
πỹr +

Aỹn,ỹpa(n)

1+Bỹn,ỹpa(n)ρ
+

Cỹn,ỹpa(n)

1+Dỹn,ỹpa(n)ρ

)
(2.13)

Let us now consider a whole DNA sequence alignment D = (y1, . . . ,yN):

P(D|S,θ) =
Z

P(D|w,S,θ)P(w)dw =
Z N

∏
t=1

P(yt |w,S,θ)P(w)dw (2.14)

It is seen that the independence assumption of equation (2.9), P(w) = ∏i P(wi),

does not yet allow this integral to be solved in closed form. What is needed is

the expansion of the parameter space

w→ (w1, . . . ,wt , . . . ,wN) (2.15)

and the further independence assumption:

P(w1, . . . ,wt , . . . ,wN) =
N

∏
t=1

P(wt) (2.16)

Inserting this prior into eq. (2.14) gives

P(D|S,θ) =
N

∏
t=1

Z
P(yt |wt ,S,θ)P(wt)dwt =

N

∏
t=1

P(yt |S,θ) (2.17)
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where P(yt |S,θ) is given by (2.13). The commutation of the integral and the

product, which is a direct consequence of equations (2.15) and (2.16), allows the

integral to be solved in closed form, according to equations (2.10) and (2.13).

The upshot is that for the branch lengths to be integrated out analytically, the

model has to be modified so as to associate a separate branch length vector wt

with each position t in the DNA sequence alignment. This model is equivalent

to the no-common-mechanism model proposed by Tuffley and Steel (1997). It is

important to note that it is not the independence assumption of eq. (2.9) alone

that leads to this simplification, a conclusion one might erroneously draw from

Suchard et al. (2003). Rather, the more restrictive independence assumption of

eq. (2.16) is needed. As a consequence of the latter independence assumption and

the parameter expansion of eq. (2.15) the model is over-complex, though, with

no information sharing between different sites with respect to the branch length

estimation. In terms of statistical terminology, the expansion of eq. (2.15) turns

the structural parameters w into a set of incidental parameters1. As discussed in

Goldman (1990), this implies that maximum likelihood is no longer guaranteed to

provide a consistent estimator. This aspect, which has not been considered in any

of the three methods discussed in Section 4 – MCP, DMCP and PFHMM – causes

inconsistency problems that are related to those found in maximum parsimony.

We will investigate them more closely in the subsequent sections.

2.6 Data

We suspect that the assumption of independent site-specific branch lengths, as

discussed in Section 2.5, could lead to inconsistency problems akin to those that

affect maximum parsimony (Felsenstein, 1978b). To test this conjecture, we

tested the models on synthetic DNA sequence alignments. We used two dif-

ferent programs for generating these alignments: SEQGEN (Rambaut, 1996) and

the MATLAB programs used in Husmeier (2005). In both cases we simulated the

nucleotide substitution processes with the HKY model (Hasegawa et al., 1985),

using a transition-transversion ratio of 2 and uniform nucleotide equilibrium fre-

quencies. For SEQGEN, we used the implementation available via the web service

1 Structural parameters are parameters that appear in the probability distributions of all
the observations, whereas an incidental parameter appears in the probability distributions of
only a subset of the observations. See Goldman (1990) for further details.
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provided by the Pasteur Institute, available from

htt p : //mobyle.pasteur. f r/cgi−bin/MobylePortal/portal.py? f orm = seqgen.

The MATLAB programs used in Husmeier (2005) are available from

htt p : //www.bioss.ac.uk/sta f f /dirk/Supplements/,

and were preferred when running a large number of jobs in batch mode. We gener-

ated two different types of alignments: homogeneous alignments, and alignments

with mosaic structures.

2.6.1 Homogeneous DNA sequence alignment

A homogeneous DNA sequence alignment is an alignment where one single phy-

logenetic tree with a specified branch length vector is used in the data generating

process. We generated alignments from the 4-taxa tree depicted in Figure 2.1

for different settings of the branch length configurations, specified by the values

d2 and d3. This corresponds to a study originally carried out by Felsenstein for

investigating potential shortcomings and inconsistencies of maximum parsimony

(Felsenstein, 1978b). We varied the parameters d2 and d3, defined in Figure 2.1,

over a large range that included the so-called Felsenstein zone, in which maxi-

mum parsimony systematically fails. The data thus generated were used for the

studies reported in Figures 2.4, 2.5, 2.6, and 2.8. All sequence alignments were

1000 nucleotides long.

2.6.2 DNA sequence alignment with mosaic structure

A mosaic structure is a DNA sequence alignment subject to recombination and/or

rate heterogeneity, where a segment in the DNA sequence alignment was gener-

ated from a tree with a different tree topology, or with different branch lengths.

We generated DNA sequence alignments from the 4-taxa tree shown in Figure 2.1.

The alignments were 1500 nucleotides long. They contained a central segment

of 500 nucleotides, which was generated from a tree with the same topology as

for the flanking regions, but with a different branch length configuration. The

objective of our study was to investigate if spurious tree topology changes were

inferred with the recombination detection methods described in Section 2.1 if the

branch length configurations for the central and flanking regions were on different
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Figure 2.1: Phylogenetic tree of four taxa

The figure shows a phylogenetic tree of four taxa, which was used for generating

the synthetic DNA sequence alignments, as described in Section 3.3. The tree

contains two types of branch lengths, denoted by d2 and d3, as in Felsenstein

(1978b). For configurations with large branch lengths d3 and small branch lengths

d2, the method of maximum parsimony is known to systematically infer the wrong

tree topology.

sides of the Felsenstein boundary. The alignments thus generated were used in

the study described in the caption of Figure 2.9.

2.7 Bayesian model selection

As discussed in Section 2.5, the integration over the branch lengths, on which

the three methods MCP, DCMP and PFHMM rely, is based on the choice of

independent site-specific branch lengths, that is, the vector of branch lengths

is allowed to be different at each site. Since separate branch length vectors wt

are associated with different positions t in the alignment, there is no longer a

mechanism in place to over-rule a posteriori the prior independence assumption

of equation (2.9). We suspect that MCP, DCMP and PFHMM might therefore

be susceptible to the same inconsistency problems as the method of maximum

parsimony, which could result in the prediction of spurious topology changes.

Before investigating this conjecture in direct simulation studies, to be discussed

in Section 2.12.2, we carried out systematic Bayesian model selection along the

Felsenstein zone (introduced in Felsenstein (1978b)). To this end, we generated

data synthetically from the four-taxa tree of Figure 2.1 with two types of branches,

d2 and d3, as described in Section 3.3.

For the different d2/d3 ratios, we estimated the marginal likelihood P(D|S,Hi)

for each of the three possible tree topologies, S ∈ {Ψ1,Ψ2,Ψ3} , under the two hy-

potheses or modelling approaches: independent site-specific branch length vectors
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wt (H0), and a common vector of branch lengths w for the whole alignment (H1).

Under the assumption of a uniform prior on the tree topologies, we estimated the

posterior probability for the correct tree topology

P(S = true|D,Hi) =
P(D|S = true,Hi)

∑
3
k=1 P(D|S = Ψk,Hi)

(2.18)

We investigated the behaviour of P(S = true|D,Hi) in d2/d3 space, especially

around the Felsenstein zone. For estimating the marginal likelihood, we pursued

two approaches: an inter-model approach, using MCMC, and an intra-model

approach, using the method of annealed importance sampling (AIS), as proposed

in Neal (2001). Below, in Sections 2.8 and 2.9, we will first define the exact form of

the probabilistic models associated with H0 and H1. We will then, in Sections 2.10

and 2.11, briefly describe the way we computed the marginal likelihoods. Finally,

we will present the results and investigate the behaviour of the two modelling

frameworks around the Felsenstein zone.

2.8 Independent site-specific branch-length model

H0

To investigate whether there are potential inconsistency problems inherent in

the recombination detection methods MCP, DMCP and PFHMM, we considered

the standard phylogenetic model (A reminder that the standard model assumes

a single topology along the sequence alignment without recombination) subject

to the same independence assumptions of equations (2.9) and (2.16) on which

MCP, DMCP and PFHMM are based. We refer to this modelling concept as

H0. The corresponding graphical model is shown in Figure 2.2. The right panel

depicts the site-independence of the branch lengths, inherent in equation (2.16).

As a consequence of the analytic integration over the branch lengths, discussed

in Section 2.5, the model simplifies. The resulting probabilistic graphical model

is shown in Figure 2.2a, which defines the following factorisation:

P(D,S,ρ,α) = P(D|S,ρ)P(S)P(ρ|α) (2.19)

Here, D is the DNA sequence alignment, S is the tree topology, ρ (defined in

equation (2.9)) represents the average mutational divergence, and α is a hyper

parameter that defines the prior distribution of ρ:

P(ρ|α) =
1
α

e−
ρ

α (2.20)
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The prior distribution over tree topologies, P(S), is chosen to be uniform. The

objective of Bayesian model selection for learning the best tree topology S is to

estimate the marginal likelihood

P(D|S,α) =
Z

P(D|S,ρ)P(ρ|α)dρ, (2.21)

which is the numerator in the model selection equation (2.18). The term P(D|S,ρ)

is given in (2.17), where the explicit reference to H0 and the nucleotide substitu-

tion parameters θ has been left out to reduce the notational complexity.2

2.9 Standard phylogenetic model H1

For comparison with H0, we consider the standard phylogenetic model, in which

a common vector of branch lengths w is used for the whole DNA sequence align-

ment, as depicted in Figure 2.3b. We refer to this modelling concept as H1.

The essential difference from H0 is that the independence assumption of equa-

tion (2.16), on which MCP, DMCP and PFHMM are based, is no longer valid.

The consequence is that the elimination of the branch lengths, as described in

Section 2.5 and represented in Figure 2.2a, is no longer feasible, resulting in the

more complex probabilistic dependence model of Figure 2.3a. The structure of the

model incorporates the average mutational divergence ρ, and the branch length

vector w, and the joint probability factorizes as follows:

P(D,S,w,ρ,α) = P(D|S,w)P(w|ρ)P(S)P(ρ|α) (2.22)

P(S) is the prior distribution over tree topologies, which we keep uniform. The

prior distribution over branch lengths, P(w|ρ), is defined in equation (2.9). This

distribution depends on the hyper parameter ρ, which is given the prior distribu-

tion of equation (2.20). The objective of Bayesian model selection is to estimate

the marginal likelihood

P(D|S,α) =
Z

P(D|S,w)P(w|ρ)P(ρ|α)dρdw (2.23)

2Recall that the free nucleotide substitution parameters θ of the HKY model are the equilib-
rium frequencies and the transition-transversion ratio. In our simulations, we chose a uniform
distribution for the equilibrium frequencies, and a fixed transition-transversion ratio of 2. Also,
note that in (2.17) the explicit reference to the hyperparameter ρ has been dropped for nota-
tional convenience.
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a) b)

Figure 2.2: Graphical model for hypothesis H0

Hypothesis H0 is based on the independence assumption of equation (2.16), which

is depicted in Panel b). Here, the yt represent the columns in the DNA sequence

alignment, the wt ’s are separate independent vectors of branch lengths, associated

with the sites t in the alignment, and ρ is a hyper parameter determining the prior

distribution over the branch lengths, via equation (2.9). As a consequence of the

independence assumptions inherent in this model, the branch lengths can be

integrated out, as described in Section 2.5. The resulting probabilistic graphical

model is shown in Panel a). Here D (which is equal to D in the text) is the

DNA sequence alignment, S is the tree topology, ρ (defined in equation (2.9))

represents the average mutational divergence, and α is a hyper parameter that

defines the prior distribution of ρ; see equation (2.20). Further details are given

in Section 2.8.

Here, P(D|S,w) is the (non-marginal) likelihood, which is obtained from P(yt |S,w)

defined in equation (2.7) as follows:

P(D|S,w) =
N

∏
t=1

P(yt |S,w) (2.24)

Note that in order to simplify the notation and the graphical presentation, we have

not made the dependence on the nucleotide substitution parameters θ explicit in

equation (2.24) and Figures 2.2-2.3.
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a) b)

Figure 2.3: Graphical model for hypothesis H1

The symbols are the same as those defined in Figure 2.2. Panel b) shows that a

common vector of branch lengths w is used to describe the whole DNA sequence

alignment, rather than independent site-specific vectors, as in Figure 2.2b. The

consequence is that the elimination of the branch lengths, as described in Sec-

tion 2.5 and represented in Figure 2.2a, is no longer feasible, resulting in the more

complex probabilistic dependence model of Panel a). Further details are given in

Section 2.9.

2.10 Inter-model approach: Markov chain Monte

Carlo (MCMC)

The objective of the inter-model approach is to sample tree topologies from the

posterior distribution of equation (2.18).

2.10.1 MCMC framework for hypothesis H0

Recall that for a DNA sequence alignment with four sequences, there are three

different unrooted tree topologies. Our proposal distribution for proposing a new

tree topology S∗ from the current topology S is just the uniform distribution over

the tree topology space. For proposing a new rate3 ρ∗, we sample a value ρ] from

the uniform interval of length W centred on the current value ρ, using reflection

to ensure the proposed value is positive: ρ∗ = ρ] if ρ] ≥ 0; otherwise ρ∗ = −ρ].

3In a slight abuse of terminology, we henceforth refer to the hyper parameter ρ as the “rate”.
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This proposal distribution depends on a tuning parameter W , which is adjusted

during the burn-in period to achieve a target acceptance rate between 30% and

70%. The Metropolis-Hastings acceptance probability for this move is:

a(S∗,ρ∗|S,ρ) = min
{

1,
Q(ρ|ρ∗)P(ρ∗|α)Q(S|S∗)P(S∗)P(D|S∗,ρ∗)

Q(ρ∗|ρ)P(ρ|α)Q(S∗|S)P(S)P(D|S,ρ)

}
(2.25)

where P(D|S,ρ) is the likelihood, defined in equation (2.17), P(S) and P(ρ|α) are

the prior distributions for the tree topology and the rate, defined in Section 2.8,

and Q(S∗|S) and Q(ρ∗|ρ) are the proposal distributions, as discussed above. It

is straightforward to show that the latter distributions are symmetric and thus

cancel out. The prior distribution in tree topology space, P(S), is uniform. Equa-

tion (2.25) thus simplifies as follows:

a(S∗,ρ∗|S,ρ) = min
{

1,
P(ρ∗|α)P(D|S∗,ρ∗)

P(ρ|α)P(D|S,ρ)

}
(2.26)

To increase the acceptance probabilities, we de-couple the proposal step into

two separate steps for proposing a new tree topology and a new rate, with the

following acceptance probabilities:

a(S∗|S) = min
{

1,
P(D|S∗,ρ)
P(D|S,ρ)

}
, (2.27)

a(ρ∗|ρ) = min
{

1,
P(ρ∗|α)P(D|S,ρ∗)
P(ρ|α)P(D|S,ρ)

}
. (2.28)

2.10.2 MCMC framework for hypothesis H1

Recall that for Hypothesis H1 the analytic integration over the branch lengths w is

no longer tractable; hence, the sampling of a new vector of branch lengths w∗ from

the existing branch lengths w has to be incorporated into the MCMC scheme.

We elected to propose new values w]
i independently from a Cauchy distribution

centred on the current value wi

Q(w]
i |wi,γ) =

1

πγ

(
1+
(

w]
i−wi
γ

)2
) (2.29)

subject to the constraint that the proposed new branch length w∗i must be non-

negative. Again, this constraint is achieved by reflection: w∗i = w]
i if w]

i ≥ 0;

otherwise w∗i =−w]
i .
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The technique used to draw samples from the Cauchy distribution is by gen-

erating random numbers on the interval [0,1] and mapping these to the values on

the CDF of the Cauchy,

1
π
arctan

(
w]

i −wi

γ

)
+

1
2
. (2.30)

The spread of the proposal distribution is defined by the tuning parameter γ,

which is adjusted during the burn-in phase to achieve an average acceptance rate

between 30% and 70%. The Cauchy distribution is chosen for the thick tails that

it has. To avoid local optima a series of sequential samples can be used to traverse

the space, but samples very distant from the present point can also be generated

occasionally to propose alternative high likelihood points with this distribution.

These occasional distant points being proposed assisted convergence to the true

posterior distribution.

The proposal distributions for the tree topology S and the rate ρ are the same

as discussed in the previous subsection. The Metropolis-Hastings acceptance

probability is given by

a(S∗,ρ∗,w∗|S,ρ,w) = min{1,r} (2.31)

r =
Q(ρ|ρ∗)P(ρ∗|α)

(
∏

K
i=1 Q(wi|w∗i )P(w∗i |ρ)

)
Q(S|S∗)P(S∗)P(D|S∗,w∗)

Q(ρ∗|ρ)P(ρ|α)
(
∏

K
i=1 Q(w∗i |wi)P(wi|ρ)

)
Q(S∗|S)P(S)P(D|S,w)

where K = dim{w}, Q(w∗i |wi) is the proposal distribution for a new branch length,

which is straightforward to compute from equation (2.29) and the condition of

reflection, P(w∗i |ρ) is the prior distribution of the branch lengths, defined in equa-

tion (2.9). P(D|S,w) is defined in equation (2.24). The other expressions are the

same as defined below equation (2.25) in the previous subsection.

It is straightforward to show that the proposal distribution for the branch

lengths, Q(w∗i |wi), is symmetric and thus cancels out. Together with the simplifi-

cations discussed below equation (2.25) we get the following simplified expression:

a(S∗,ρ∗|S,ρ) = min
{

1,
P(ρ∗|α)∏

K
i=1 P(w∗i |ρ)P(D|S∗,w∗)

P(ρ|α)∏
K
i=1 P(wi|ρ)P(D|S,w)

}
(2.32)

As with the model discussed in the previous subsection, we de-couple the indi-

vidual update steps so as to increase the acceptance probability:

a(w∗|w) = min
{

1,
∏

K
i=1 P(w∗i |ρ)P(D|S,w∗i )

∏
K
i=1 P(wi|ρ)P(D|S,wi)

}
(2.33)
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a(ρ∗|ρ) = min
{

1,
P(ρ∗|α)∏

K
i=1 P(wi|ρ∗)

P(ρ|α)∏
K
i=1 P(wi|ρ)

}
(2.34)

a(S∗|S) = min
{

1,
P(D|w,S∗)
P(D|w,S)

}
(2.35)

2.10.3 Convergence diagnostics

The Gelman and Rubin diagnostic test (Gelman and Rubin, 1992) was used in

the simulations for both models to investigate whether the chains have converged.

The tests output a (set of) so-called potential scale reduction factor(s) (PSRF),

where a value close to 1 provides a strong indication of convergence. We computed

the PSRF from the branch lengths and the rate hyper parameter ρ, and chose

burn-in and simulation lengths that led to PSRFs below 1.1. This was effected

with the following settings. For H0, we carried out 2K burn-in and 5K sampling

steps. For H1, these values had to be slightly increased (owing to the larger

dimension of the parameter space), to 5K burn-in and 10K sampling steps.

2.11 Intra-model approach: Annealed importance

sampling (AIS)

As an alternative to the inter-model MCMC sampling scheme discussed in the

previous section, we consider an intra-model approach, where the objective is a

direct (approximate) computation of the marginal likelihood

P(D|S) =
Z

P(D|φ,S)P(φ|S)dφ (2.36)

where φ is the vector of all parameters associated with the respective hypothesis:

φ = ρ under the site-independent branch length hypothesis H0, and φ = (w,ρ) for

H1. In principle one could approximate the marginal likelihood by

P(D|S) ≈ 1
N

N

∑
t=1

P(D|φt ,S) (2.37)

where {φt} is a sample from the prior distribution P(φ|S). However, the conver-

gence of this estimator is known to be poor unless the prior and posterior dis-

tributions are very similar (Raftery, 1996). Alternatively, one could exploit the
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Bayesian identity P(D|φ,S)P(φ|S) = P(φ|D,S)P(D|S) and compute the marginal

likelihood from the so-called harmonic mean estimator (Raftery, 1996)

1
P(D|S)

≈ 1
N

N

∑
t=1

1
P(D|φt ,S)

(2.38)

using a sample {φt} from the posterior distribution P(φ|D,S). This estimator is

known to be numerically unstable, since for modestly informative priors the main

contributions to the sum on the right-hand side of equation (2.38) come from the

tail rather than the bulk of the posterior distribution. The standard approach to

deal with these problems is to use importance sampling. Define some (possibly

unnormalized) distribution Q(φ), and rewrite equation (2.36) in the form:

P(D|S)
ZQ

=
Z P(D|φ,S)P(φ|S)

Q(φ)
Q(φ)
ZQ

dφ (2.39)

where ZQ =
R

Q(φ)dφ. Provided Q(φ) 6= 0 whenever P(D|φ,S)P(φ|S) 6= 0, we get

the following unbiased and consistent estimator of the marginal likelihood (Neal,

2001):

P(D|S)
ZQ

←− 1
N

N

∑
t=1

ct (2.40)

where {φt} is a sample drawn from
Q(φ)

ZQ
, and the weights ct are defined as ct =

P(D |φt ,S)P(φt |S)
Q(φt)

. Rather than using some fixed distribution Q(φ) as a compromise

between the prior and the posterior distribution, as in Raftery (1996), we follow

the annealed importance sampling (AIS) scheme proposed in Neal (2001), where

the idea is to propose new values {φt} by gradually transforming the prior into

the posterior distribution. Define

Qm(φ) = P(φ|S)[1−βm]P(φ|D,S)βm (2.41)

where 1 = β0 > β1 > .. . > βM = 0. That is, QM is equal to the prior, and Q0 is

equal to the posterior distribution. AIS produces a sample of parameter vectors

{φt} and associated weights {ct} according to the following procedure. Consider

a Markov chain transition defined by Tm(x′|x) giving the probability of moving

from the current state x to the new state x′. The choice of Tm is decided by

the requirement that it must leave the corresponding probability distribution Qm

in equation (2.41) invariant, e.g. by satisfying the equation of detailed balance:

Tm(x′|x)Qm(x) = Tm(x|x′)Qm(x′). Next, a sequence of points is generated as fol-
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lows:

Generate xM−1 from QM

Generate xM−2 from xM−1 using TM−1

. . .

Generate x1 from x2 using T2

Generate x0 from x1 using T1

(2.42)

The proposed parameter vector of the tth iteration is set to φt = x0, and the

associated weight is set to

ct =
QM−1(xM−1)
QM(xM−1)

QM−2(xM−2)
QM−1(xM−2)

. . .
Q1(x1)
Q2(x1)

Q0(x0)
Q1(x0)

(2.43)

The scheme is continued to generate a sample of weights {ct}. It can be shown

that for the sample of weights thus obtained, equation (2.40) provides a consistent

and unbiased estimator of the marginal likelihood (Neal, 2001). The individual

steps of (2.42) can be constructed by applying the Metropolis-Hastings algorithm

(Metropolis et al., 1953) to the respective transition probability Tm, as in MCMC.

Note that as opposed to MCMC, the respective Markov chains do not need to be

run to convergence, though.

In our simulations, we carried out for each step in (2.42) 10 Metropolis-

Hastings steps according to the description in Section 2.10.1, for H0, and Sec-

tion 2.10.2, for H1. A “temperature” ladder of M = 10 equidistant βm values for

defining the intermediate distributions Qm in (2.41) was selected, and we chose a

total sample size of N = 400 for computing the marginal likelihood according to

(2.37). We experimented with a polynomial rather than an equidistant cooling

scheme for β, but did not find any noticeable differences in the results.

As a heuristic indicator of how accurate the estimation with AIS is, we fol-

lowed Neal (2001) and computed the variance of c∗t = ct/
1
N ∑

N
t=1 ct . The term

ψ = 1/[1 +Var(c∗t )] gives a rough indication of the factor by which the sam-

ple size is effectively reduced when drawing samples according to the procedure

(2.42) rather than from the correct posterior distribution. In our simulations, we

typically found values of ψ≤ 1.3, indicating a sufficient degree of convergence.
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2.12 Results

2.12.1 Investigating the behaviour around the Felsenstein

zone

We generated synthetic DNA sequence alignments from 4-taxa trees with different

branch lengths. In the vein of Felsenstein’s seminal study for demonstrating

the inconsistency of maximum parsimony (Felsenstein, 1978b), we systematically

varied the parameters d2 and d3 in Figure 2.1, and generated DNA sequence

alignments with SEQGEN (Rambaut, 1996), as described in Section 3.3. For

each branch length configuration [d2,d3], we estimated the posterior probabilities

for the three possible tree topologies under the two different models discussed

above: the site-specific branch length model H0, described in Section 2.8, and

the standard phylogenetic model H1, described in Section 2.9. We repeated the

estimation of the posterior probabilities with two different methods: MCMC, as

described in Section 2.10, and annealed importance sampling, as described in

Section 2.11. The results are shown in Figures 2.4 and 2.5. In both figures,

subfigure a) shows the results for the site-specific branch length model H0, while

subfigure b) shows the results for the standard phylogenetic model H1. The axes

represent the values of the parameters d2 and d3; hence each grid location defines

a phylogenetic tree with a specific branch length configuration. The estimated

posterior probabilities are indicated with a grey shading ranging from 0 (black) to

1 (white) and the values in between are indicated by the legend in subfigure c). It

is clearly seen that the independent branch length model H0 leads to a systematic

failure in the Felsenstein zone (characterized by a small value of d2 and a large

value of d3) in that the posterior probability of the correct tree is consistently

close to zero. In fact, the tree topology with the highest posterior probability was

found to be the one in which the two longer branches were grouped together. This

suggests that the independent branch length model H0 has the same problem with

long-branch attraction as maximum parsimony. This failure was avoided with the

standard phylogenetic model H1, whose posterior probability of the correct tree

topology was consistently above 0.5 (and mostly close to 1) for the whole branch

length configurations space. The results obtained with MCMC and AIS were

largely consistent, although the difference between the posterior probabilities for

H0 and H1 in the Felsenstein zone was slightly larger with MCMC than with
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AIS. In terms of performance between the inter and intra model approaches,

simulations with AIS required less CPU time for convergence but more frequently

missed the posterior distribution. From carefully monitoring simulations done by

both methods it appears that AIS was more sensitive to the samples proposed

by the proposal distribution than MCMC. The short MCMC simulations at the

intermediate temperatures of the annealing procedure did not explore the space

as much as the inter model approach did especially at low temperatures. This

assisted in convergence once a posterior was found, but in the case where this

was not the desired poster it was rare for it to change modes.

2.12.2 Evaluation of the performance of DMCP and PFHMM

The previous section has shown that for the model of independent, site-specific

branch lengths (H0), there is a systematic failure in the Felsenstein zone, which

is avoided with the standard phylogenetic model of common branch lengths, H1.

Since the recombination detection methods PFHMM and DMCP are based on

H0, we suspect that they are susceptible to the same systematic failure. We

tested this conjecture by applying both methods, DMCP and PFHMM, to the

same synthetic DNA sequence alignments as used in the previous section. For

comparison, we also applied the phylogenetic hidden Markov model (PHMM) of

Husmeier and McGuire (2003). Note that the latter model is based on H1 and

should therefore not be susceptible to inferring wrong tree topologies in the Felsen-

stein zone.4 We used the authors’ own programs, available from the webpages

referenced in Minin et al. (2005) (for DMCP), Husmeier (2005) (for PFHMM)

and Husmeier and McGuire (2003) (for PHMM). All three methods sample pa-

rameters and hidden states from the posterior distribution with MCMC. To test

for convergence of these simulations, we computed the potential scale reduction

factor from different quantities, as in Gelman and Rubin (1992), taking val-

ues below 1.1 as an indication of sufficient convergence5. From the sampling

phase of the MCMC simulations, we computed for each site t in the alignment

4Note that as opposed to DMCP and PFHMM, PHMM cannot distinguish between recom-
bination and rate heterogeneity, though.

5This was achieved with the following burn-in and sampling lengths. Burn-in: 1000 steps
for DMPC, 250 steps for PFHMM, and 10K steps for PHMM. Sampling phase: 200 subsample
steps (in intervals of 50 steps) for DMPC, 250 steps for PFHMM, and 1000 subsample steps (in
intervals of 10 steps) for PHMM. PFHMM needs as input a set of fixed nucleotide substitution
rates, corresponding to the hyperparameter ρ in eq 2.9. These values were selected as ρ ∈
{0.05,0.1,0.5,1,2,4,6,8}.
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Figure 2.4: Posterior probabilities estimated with MCMC.

The two figures show the posterior probability of the correct tree topology for

different branch length configurations. These configurations are determined by

the values of d2 and d3, as defined in Figure 2.1. In each subfigure, the horizontal

axis refers to d2, and the vertical axis refers to d3. The grey shading indicates

the value of the inferred posterior probability, as indicated in the legend on the

right, ranging from 0 (black) to 1 (white). Subfigure a) shows the results obtained

for Model H0, represented in Figure 2.2. Subfigure b) shows the results obtained

for Model H1, represented in Figure 2.3. The results shown are those obtained

from a specific set of DNA sequence alignments generated from trees with the

indicated [d2,d3] configurations, as described in Section 2.6.1. Repeating the

simulations for different sequences generated from the same trees was found to

give nearly identical results. It is clearly observed that Model H0, which is shown

in Subfigure a), leads to the systematic prediction of the wrong tree topology in

the Felsenstein zone.
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Figure 2.5: Posterior probabilities estimated with AIS

As in Figure 2.4, Subfigures a) and b) show the posterior probability of the

correct tree topology for different branch length configurations. The results were

obtained with annealed importance sampling rather than MCMC and show an

average over five DNA sequence alignments independently generated for each

branch length configuration. These configurations are determined by the values

of d2 and d3, as defined in Figure 2.1. In each subfigure, the horizontal axis

refers to d2, and the vertical axis refers to d3. The grey shading indicates the

value of the inferred posterior probability, as indicated in the legend on the right,

ranging from 0 (black) to 1 (white). Subfigure a) shows the results obtained for

Model H0, represented in Figure 2.2. Subfigure b) shows the results obtained for

Model H1, represented in Figure 2.3. Like in Figure 2.4, it is clearly observed

that Model H0, which is shown in Subfigure a), leads to the systematic prediction

of the wrong tree topology in the Felsenstein zone.
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the marginal posterior probabilities P(St |D) of the three possible tree topologies

St ∈ {Ψ1,Ψ2,Ψ3}6. The results were similar to those discussed in the previous

section, with a clear systematic failure of PFHMM and DMCP in the Felsen-

stein zone. This failure was avoided when using PHMM. A specific example is

presented in Figure 2.6, which shows the posterior probabilities P(St |D) for a

DNA sequence alignment D generated from the tree in Figure 2.1 with a branch

length configuration d2 = 0.15,d3 = 0.85. A comparison with Figures 2.4 and 2.5

shows that this branch length configuration lies clearly in the Felsenstein zone.

In support of our conjecture, both PFHMM and DMCP systematically show high

posterior probabilities P(St |D) close to 1 for a wrong tree topology throughout

the whole DNA sequence alignment. Incidentally, in the high-scoring tree topol-

ogy the two long non adjacent branches d3 in Figure 2.1 are grouped together,

suggesting that PFHMM and DMCP suffer from the same long branch attraction

as the method of maximum parsimony (Felsenstein, 1978b). There are no prob-

lems with PHMM, which consistently scored high posterior probabilities P(St |D)

close to 1 for the correct tree topology throughout the whole alignment.

2.12.3 Improving the phylogenetic factorial HMM

Our study described in the previous sections has revealed that the phylogenetic

factorial HMM (PFHMM) of Husmeier (2005) is susceptible to systematically

predicting spurious topology changes in the Felsenstein zone. The objective of

the present section is to describe a modification of the PFHMM that avoids

this shortcoming. A probabilistic graphical model representation of the PFHMM

of Husmeier (2005) is shown in Figure 2.7 a. The model is essentially based on

Model H0 of Figure 2.2 in that separate branch length vectors are associated with

different sites of the alignment. This allows the branch lengths to be integrated

out analytically, as described in Section 2.5, resulting in the simplified model

depicted in Figure 2.7 b. The modified PFHMM is shown in Figure 2.7 c. Akin

to Model H1 of Figure 2.3, a common vector of branch lengths is shared by all

sites in the alignment7. The rate states Rt ∈ {ρ1, . . . ,ρk′}, which in the original

PFHMM of Husmeier (2005) are associated with the hyperparameter ρ of the

6 These tree topologies are Ψ1 = (1,2,(3,4)),Ψ2 = (1,3,(2,4)), and Ψ3 = (1,4,(2,3)), where
the numbers refer to the four taxa.

7More accurately, there are three vectors of branch lengths wk, k ∈ {1,2,3}, associated with
the three different tree topologies. This can be modelled as a common vector composed of three
sub-vectors, where the state variable St indicates which of these subvectors applies to site t.
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Figure 2.6: Failure of PFHMM and DMCP in the Felsenstein zone

Each figure shows a plot of the marginal posterior probability P(St |D) (vertical

axes) of the three possible tree topologies St ∈ {Ψ1,Ψ2,Ψ3} for the 4-taxa tree

of Figure 2.1, plotted against the position t in the DNA sequence alignment

(horizontal axes). Each subfigure consists of three panels, where the top panel

corresponds to the true tree topology, from which the data were generated. The

middle panel corresponds to a wrong tree topology, in which the two long branches

d3 in Figure 2.1 are grouped together (long branch attraction). The bottom

panel corresponds to another wrong tree topology. The three subfigures show

the results obtained for the three recombination detection methods investigated:

DCMP (Subfigure a), PFHMM (Subfigure b), and PHMM (Subfigure c). PHMM

predicts high posterior probabilities P(St |D) close to 1 for the true tree topology

throughout the whole sequence alignment. However, both PFHMM and DMCP

systematically show high posterior probabilities P(St |D) close to 1 for the wrong

tree topology in which the two long non-adjacent branches are joined.
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prior distribution on the branch lengths, equation (2.9), are now associated with

a global scaling factor by which the vector of branch lengths is multiplied. The

hidden state sequences, S and R, and the model parameters are sampled from

the posterior distribution with a Gibbs sampling procedure:

S(i+1) ∼ P
(
·|R(i),ν

(i)
S ,ν

(i)
R ,w(i),D

)
(2.44)

R(i+1) ∼ P
(
·|S(i+1),ν

(i)
S ,ν

(i)
R ,w(i),D

)
(2.45)

ν
(i+1)
S ∼ P

(
·|S(i+1),R(i+1),ν

(i)
R ,w(i),D

)
(2.46)

ν
(i+1)
R ∼ P

(
·|S(i+1),R(i+1),ν

(i+1)
S ,w(i),D

)
(2.47)

w(i+1) ∼ P
(
·|S(i+1),R(i+1),ν

(i+1)
S ,ν

(i+1)
R ,D

)
(2.48)

where the superscript i denotes the iteration number. The first four steps are

identical to those in Husmeier (2005): The hidden state sequences S and R are

sampled with the stochastic forward-backward algorithm of Boys et al. (2000);

the transition probabilities νS and νR, are sampled from beta distributions whose

sufficient statistics are determined by S and R. The new aspect of our algorithm

is the sampling of the branch length vector w. Since there is no closed-form

expression for the distribution on the right-hand side of equation (2.48), we resort

to a Metropolis-Hastings-within-Gibbs procedure. Note that w = (w1,w2,w3) is

composed of three subvectors wk, k ∈ {1,2,3}, associated with the three tree

topologies represented by the hidden state St ∈ {Ψ1,Ψ2,Ψ3}. To ensure that the

model is identifiable, we constrain the L1-norm of the branch length vectors to

be equal to one: ||wk||1 = 1, k ∈ {1,2,3}; recall that the scaling of the branch

lengths is effected by multiplication with a factor defined by the hidden states,

Rt ∈ {ρ1, . . . ,ρK′}. This constraint, as well as the positivity constraint wki ≥ 0, is

automatically guaranteed when proposing new branch length vectors w∗k from a

Dirichlet distribution:

Q(w∗k |wk) ∝ ∏
i

[w∗ki]
αwki−1 (2.49)

whose mean and variance are given by

E[w∗ki|wki] = wki; Var[w∗ki|wki] =
wki(1−wki)

α+1
(2.50)

Hence, the mean of the proposal distribution is equal to the current branch length,

while the variance depends on a scaling parameter α. In our simulations, α was

automatically adjusted in the burn-in phase to achieve an average acceptance
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probability between 30% and 70%. The proposed vector of branch lengths w∗

was accepted or rejected according to the standard Metropolis-Hastings criterion

(Hastings, 1970), with the following acceptance probability:

A = min
{

1,
L(w∗k)P(w∗k)Q(wk|w∗k)
L(wk)P(wk)Q(w∗k |wk)

}
(2.51)

where the proposal distribution Q(w∗k |wk) is defined in equation (3.2.1), the prior

distribution P(wk) was chosen as defined in equation (2.9), with a fixed hyperpa-

rameter ρ = 1, and the likelihood L(wk) depends on the hidden state sequences S
and R as follows:

L(wk) = ∏
t|St=Ψk

P(yt |Rtwk,Ψk,θ) (2.52)

where the expression in the argument of the product is given by equation (2.7).

The details of the Gibbs sampling scheme used in our simulations are summarized

in the appendix in section A.11.

2.12.4 Simulation details

We tested the improved PFHMM on the two types of synthetic DNA sequence

alignments described in Section 3.3. The homogeneous DNA sequence alignments

were the same as those used in the previous studies. The DNA sequence align-

ment with the mosaic structure was generated as described in Section 3.3, setting

d2 = d3 = 0.25 for the flanking segments, and d2 = 0.15,d3 = 0.85 for the central

segment. Hence, the branch length configuration corresponding to the central

segment lies clearly in the Felsenstein zone; compare with Figures 2.4 and 2.5.

Note that the DNA sequence alignment does not contain any change of the tree

topology, though. For both the original PFHMM of Husmeier (2005) and the im-

proved PFHMM we sampled the state sequences S from the posterior distribution

with MCMC, monitoring convergence with the diagnostic test based on potential

scale reduction factors (Gelman and Rubin, 1992); the details were given in Sec-

tion 2.10.3. Note that both the original and the improved PFHMM need as input

a set of fixed nucleotide substitution rates, corresponding to the hyperparameter

ρ in equation (2.9). These values, which are associated with the rate states R,

were selected as follows: ρ ∈ {0.05,0.1,0.5,1,2,4,6,8}.
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a) b)

c)

Figure 2.7: Graphical model of the PFHMM and the improved PFHMM

Subfigure a) shows the probabilistic graphical model representation of the phylo-

genetic factorial HMM of Husmeier (2005). The yt ’s represent the columns in the

DNA sequence alignment, where the subscript t = 1, . . . ,N indicates the site in the

alignment. Each site t is associated with a hidden state St that defines the tree

topology, a vector of branch lengths wt , and a second hidden state Rt that defines

the hyperparameter of the prior distribution on the branch lengths, as defined in

equation (2.9). Both hidden states St and Rt have a Markovian dependence struc-

ture. The chosen form of the model allows the branch lengths to be integrated

out analytically, as described in Section 2.5. This results in the simplified model

depicted in Subfigure b). Note that this model is a phylogenetic factorial HMM,

where one type of hidden states (S1, . . . ,SN) defines the tree topology, and the

other type of hidden states (R1, . . . ,RN) defines the average amount of mutational

divergence. Hence, the model presented here is a generalization of the model

shown in Figure 2.2 so as to allow for recombination and rate heterogeneity. Sub-

figure c) shows the probabilistic graphical model representation of the improved

phylogenetic factorial HMM proposed in the present article. The model is similar

to the one presented in the previous subfigures with the difference that a common

branch length vector w is shared among all sites. This is a generalization of the

standard phylogenetic model of Figure 2.3 that allows for recombination and rate

heterogeneity.
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Figure 2.8: Results of the improved PFHMM

The figure shows, for different branch length configurations [d2,d3], as defined in

Figure 2.1, the posterior probability P(S = Ψtrue|D), defined in equation (2.53).

The horizontal axis represents d2, and the vertical axis represents d3. Probabil-

ities are represented by a grey shading, ranging from white (1) to black (0), as

indicated by the legend on the right. The figure shows that as a consequence

of the modification of the PFHMM, described in Section 2.12.3, the systematic

failure in the Felsenstein zone, which was found in Subfigure a) of Figures 2.4 and

2.5, is avoided. These results are the averaging over 2 independent simulations.

2.12.5 Simulation results

Figure 2.8 shows the results obtained with the improved PFHMM on the homo-

geneous DNA sequence alignment. The figure shows, for different branch length

configurations [d2,d3], the average posterior probability of the correct tree topol-

ogy Ψtrue, averaged over all positions in the alignment:

P(S = Ψtrue|D) =
1
N

N

∑
t=1

P(St = Ψtrue|D) (2.53)

It is clearly seen that the failure in the Felsenstein zone is avoided, and that

P(S = Ψtrue|D) is consistently greater than 0.5 (and close to 1 in most cases).

Figure 2.9 shows the results obtained on the DNA sequence alignment with the

mosaic structure. Both subfigures show a plot of the predicted marginal poste-

rior probabilities P(St = Ψi|D), for the three possible tree topologies i ∈ {1,2,3},



2.13. Discussion 89

plotted against the position t in the alignment. The left subfigure shows the

prediction obtained with the original PFHMM of Husmeier (2005). There is a

clear transition into a different tree topology in the central region, where the

branch length configuration [d2,d3] lies in the Felsenstein zone. This confirms

our conjecture that PFHMM is susceptible to the prediction of spurious topology

changes. The right panel shows the prediction made with the improved PFHMM

averaged over 5 independent simulations. The posterior probability for the cor-

rect tree topology, P(St = Ψtrue|D), is consistently close to 1, indicating that the

prediction of spurious topology changes is avoided.

2.13 Discussion

In this chapter we have investigated a possible shortcoming of three recent

Bayesian methods for detecting recombination in DNA sequence alignments: the

multiple change-point (MCP) model of Suchard et al. (2003), the dual multiple

change-point (DMCP) model of Minin et al. (2005), and the phylogenetic factorial

hidden Markov model (PFHMM) of Husmeier (2005). All three models assume

separate branch lengths for different sites, which allows the branch lengths to be

integrated out analytically. This reduces the computational complexity of the

Bayesian inference scheme, which can now be formulated in terms of posterior

distributions of the tree topologies and the nucleotide substitution parameters

only. This makes the approach quite popular, and it has been applied in more

recent works; see Lehrach (2008) and Lehrach and Husmeier (2009).

Note that the model of site-independent branch lengths, as expressed in

eq. (2.16), was first introduced by Tuffley and Steel (1997), where it was called

the ‘̀no-common-mechanismm̈odel. In combination with the prior independence

of the branch length components, expressed in eq. (2.9), the vector of branch

lengths can be integrated out in the likelihood, as shown by Suchard et al. (2003),

and discussed in Section 2.5. However, in the no-common-mechanism model, the

branch lengths are incidental rather than structural parameters. As discussed in

Goldman (1990), this implies that maximum likelihood is no longer guaranteed to

provide a consistent estimator. In fact, Tuffley and Steel (1997) showed that under

certain regularity conditions, maximum parsimony and maximum likelihood with

no common mechanisms are equivalent. This suggests that maximum likelihood

with no common mechanisms will be susceptible to the prediction of wrong tree
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Figure 2.9: Mosaic DNA sequence alignment

The figure shows the predictions obtained with the original PFHMM of Husmeier

(2005) versus the improved PFHMM proposed in this chapter. Both models were

applied to a synthetic DNA sequence alignment with mosaic structure, where

the branch length configuration in the central segment lies in the Felsenstein

zone; see the description in Section 3.3. Each panel shows a plot of the predicted

marginal posterior probabilities P(St = Ψi|D) for the three possible tree topologies

i ∈ {1,2,3}, where the true topology corresponds to the panel in the top. The

vertical axes show the marginal posterior probabilities, while the horizontal axes

represent the site t in the alignment. The original PFHMM, shown in Subfigure

a), predicts a spurious topology change in the central segment, which is avoided

with the improved PFHMM, shown in Subfigure b). Subfigure b) is an average

over 5 independent simulations showing that the spurious topology change is

avoided consistently.
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topologies for certain branch length configurations (long branch attraction). To

confirm this hypothesis, we have generated synthetic DNA sequence alignments

with the HKY nucleotide substitution model (Hasegawa et al., 1985) in the vein of

Felsenstein’s seminal study for demonstrating the inconsistency of maximum par-

simony Felsenstein (1978b), and we have estimated the marginal posterior proba-

bility for the tree topology in two different ways: using an inter-model approach,

in which tree topologies are sampled from the posterior distribution with MCMC;

and applying an intra-model approach, in which the marginal likelihood is esti-

mated with annealed importance sampling. Both studies consistently reveal that

as a consequence of the separate site-dependent branch lengths, the mode of the

posterior distribution is systematically shifted to a wrong tree topology whenever

the branch length configuration of the data-generating tree falls into the Felsen-

stein zone. The inferred tree topology with the highest posterior probability is

the one in which the long branches are grouped together. This finding suggests

that as a consequence of the aforementioned independence assumption (i.e., the

“no-common-mechanism” model of separate site-dependent branch lengths), the

resulting model suffers from the same inconsistency (long-branch attraction) as

the method of maximum parsimony. We have further confirmed this conjecture

by applying the recombination detection methods DMCP and PFHMM to the

DNA sequence alignments generated in our study, using the authors’ programs.

Again, we found a systematic failure in the Felsenstein zone, where consistently

the wrong tree topology was inferred. This suggests that these recombination

detection methods are susceptible to predicting spurious recombination events

whenever branch-length configurations happen to fall near the boundary of the

Felsenstein zone.

We have concluded our study with a demonstration of how the PFHMM can be

improved to avoid this shortcoming. In principle this can be achieved by removing

the site-independence assumption for the branch lengths. As a consequence,

however, the analytic integration over the branch lengths is no longer tractable,

which requires them to be sampled approximately from the posterior distribution

with MCMC. To avoid an identifiability problem resulting from the fact that the

global scaling of the branch lengths (defined by one of the two types of hidden

states) is an additional independent parameter of the model, we have imposed a

normalization constraint on the branch lengths, which can easily be effected by the

choice of a suitable proposal distribution in the MCMC scheme. We have tested
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the proposed method on the same DNA sequence alignments as for the other

models, and found that it succeeded in avoiding the failure in the Felsenstein

zone.

Note that in the proposed phylogenetic PFHMM, each hidden state is as-

sociated with a distinct tree topology. The number of tree topologies increases

super-exponentially with the number of taxa; for this reason, we have applied our

model to DNA sequence alignments of four sequences only, as in Husmeier and

McGuire (2003). There are various heuristic simplifications one could adopt in

order to apply the method to sequence alignments with more than four taxa. One

method would be to apply a preliminary phylogenetic analysis to consecutive sub-

sets of the DNA sequence alignment, effected for instance in the way described in

Husmeier et al. (2005b). The phylogenetic FHMM would then include only those

topology states that match one of the tree topologies inferred in the preliminary

analysis. Another method would be to proceed in the way described in Minin

et al. (2005). Here, the assumption is that we are given a sequence alignment

composed of N-1 nonrecombinant and 1 putative recombinant strain. Addition-

ally, it is assumed that the tree of the N-1 nonrecombinant sequences is known or

that it can easily be inferred. The states of the phylogenetic FHMM are restricted

to the set of those tree topologies that are obtained by adding a new leaf node

to any branch in the fixed parental tree with N−1 nonrecombinant taxa. Both

of these heuristic simplifications substantially restrict the set of permissible tree

topologies, thereby rendering the application of the phylogenetic FHMM to larger

alignments viable. Note, though, that in principle these restrictions are not nec-

essary. Our method could in principle be implemented with a transdimensional

MCMC scheme using reversible jumps associated with the birth and death of

topology states, where each birth creates a new tree topology derived from the

adjacent topology by some local modification, e.g. using nearest neighbour inter-

change. However, the computational costs of such an approach would be huge,

and it would pose a challenging problem for novel high-performance distributed

computing techniques.

It has been pointed out by one of the referees that our work is closely related

to the work of Huelsenbeck et al. (2008). Like in our chapter, the authors inves-

tigate a Bayesian implementation of the no-common-mechanism model, and they

empirically demonstrate that this model is not consistent and shows a system-

atic failure in the Felsenstein zone. There are various ways in which our study
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complements this work. Firstly, Huelsenbeck et al. (2008) use a fully symmetric

nucleotide substitution model that makes no distinction between any character

states (the Jukes-Cantor model). For this model, Tuffley and Steel (1997) showed

that maximum parsimony and maximum likelihood with no common mechanism

are equivalent in the sense that both choose the same tree. Hence, the work of

Huelsenbeck et al. (2008) can be seen as an empirical corroboration of the the-

oretical findings in Tuffley and Steel (1997). Our study complements this work

by using the HKY model (Hasegawa et al., 1985) as a more general and more

widely applied nucleotide substitution model, for which no theoretical proof was

given in Tuffley and Steel (1997). Secondly, Huelsenbeck et al. (2008) use fixed

parameters for the prior distribution on the branch lengths and find that these

parameters ‘̀play an inordinately strong role in determining the probabilities of

the trees̈. In our work on the homogeneous DNA sequence alignment, we use a

hierarchical Bayesian model with an extra layer (a hyperprior) – see Figures 2.2

and 2.3 – and infer the parameters of the prior from the data. In our work on the

DNA sequence alignment with mosaic structure, we use a phylogenetic FHMM,

in which the parameters of the prior distribution are associated with different

hidden states. The assignment of these hidden states to sites is inferred from

the data. Thirdly, one has to appreciate that there is no sufficient criterion to

prove that an MCMC simulation has converged. For this reason computing the

posterior probabilities of tree topologies with an alternative paradigm, as we do

in our intra-model approach based on annealed importance sampling, offers an

independent corroboration of the findings. Fourthly and most importantly, how-

ever, there has been a completely different focus of our work. The motivation

for the work of Huelsenbeck et al. (2008) has been the development of a new

Bayesian MCMC scheme for learning tree topologies from sequence alignments

that are adequately described by a single tree. The focus of our study is the pre-

diction of recombination and mosaic structures in DNA sequence alignments, and

it has been motivated by three recent detection methods that are based on the

no-common-mechanism model. These models are more flexible than the single-

tree model investigated by Huelsenbeck et al. (2008). In particular, they allow

for breakpoints in the DNA sequence alignment at which the tree topology may

change. While this mechanism provides the extra flexibility required for dealing

with recombination, we have shown that in combination with site-independent

branch lengths (the no-common-mechanism of Tuffley and Steel (1997)), the re-
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sulting model becomes susceptible to predicting spurious topology changes and

recombination breakpoints.

2.14 Future work

The phylogenetic FHMM proposed in Section 2.12.3 of the chapter provides a

trade-off between two extreme scenarios: the homogeneous model, which employs

the same branch lengths for the whole alignment, and the no-common-mechanism

model. The first approach is too restrictive. In the second approach, the branch

lengths are incidental rather than structural parameters, resulting in the incon-

sistency problems discussed in the present chapter. The proposed phylogenetic

FHMM contains a hidden factor by which the branch lengths are rescaled. This

scaling factor is site dependent via its association with a hidden state of the

FHMM. Since the number of hidden states is finite, and each hidden state can

be revisited repeatedly when traversing along the alignment, all parameters of

the model are structural (rather than incidental). In this way, the consistency of

our model is guaranteed. However, while our model is appropriate to incorporate

the effects of rate heterogeneity, it is too restrictive when dealing with certain

recombination events that do not induce a tree topology change. This can hap-

pen when, in the coalescence tree, recombinant lineages coalesce before merging

with any other lineage (Wiuf et al., 2001). In certain scenarios, discussed in Wiuf

et al. (2001), this can result in a more complex change of the branch lengths

than can be modelled by a global rescaling. One way to proceed would be the

following modification of our model. Rather than associating the second hidden

state with a global scaling factor, we could associate it with a separate vector of

branch lengths. In this model there would no longer be a common branch length

vector, but the branch lengths would be site-dependent, as in the no-common-

mechanism model. The substantial difference from the no-common-mechanism

model would be that in the new model the site dependence is effected indirectly

via a hidden state. Since the number of hidden states is finite, and the hidden

states can be revisited (at least as long as all transition probabilities are non-

zero), the new model contains structural rather than incidental parameters. In

this way, its consistency is guaranteed. Note, however, that this model is more

complex than the one proposed in this chapter. In particular, it will require the

number of hidden states and their associated parameters to be properly inferred
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from the data rather than chosen in advance. This calls for the development of

a trans-dimensional MCMC scheme with RJMCMC (Green, 1995), as applied in

the studies by Suchard et al. (2003), Minin et al. (2005), Lehrach (2008) and

Lehrach and Husmeier (2009). We believe that this would be an important and

stimulating topic for future research.

When extending the phylogenetic FHMM along the line discussed in the previ-

ous paragraph, one has to decide on the appropriate form of the prior distribution

on tree topologies. It is a common approach in Bayesian analysis to use a uni-

form prior distribution. The intention is to reflect our prior level of ignorance, as

especially promoted by the school of öbjective Bayesianism.̈ The question, then,

is what exactly it is that we are ignorant about. A prior distribution that is

uniform over tree topologies is not uniform over labelled histories or clade forma-

tions, where the latter inconsistency has been used to (erroneously!) question the

validity of the Bayesian approach per se (Pickett and Randle, 2005). As pointed

out by Velasco (2008), the ignorance should be expressed in terms of the physical

processes that generate the entities of interest. A phylogenetic tree is the re-

sult of the biological process of common ancestry and descent with modification,

which can be modelled by a Yule random branching process (forward in time)

or a coalescence process (backward in time). Kingman (1982) and Thompson

(1975) showed that under certain regularity conditions, the Yule birth process,

the Yule birth-death process and the coalescence process lead to the same dis-

tribution. This distribution is uniform over labelled histories (Edwards, 1970),

which induces a prior distribution on tree topologies that is no longer uniform. In

particular, Velasco (2008) showed that a tree topology that is more balanced (as

opposed to pectinate) is consistent with more labelled histories and, consequently,

has a higher prior probability. An early application of this approach can be found

in Yang and Rannala (1997). However, the computational costs were found to be

huge – about two orders of magnitude larger than those of the competing method

of Larget and Simon (1999). It therefore will pose a substantial computational

challenge for future work to render the approach based on labelled histories viable

in the context of the model proposed in the present chapter.





Chapter 3

An improved model to distinguish

between global and within-codon

rate variation

This chapter follows chapter 2 as an improvement. An intrinsic failure in the

model of chapter 2 to correctly distinguish between the short range rate hetero-

geneity on the codon level and long range rate heterogeneity is investigated. The

model is improved to fit both features of the data.

3.1 Introduction

DNA sequence alignments are usually not homogeneous. Mosaic structures may

result as a consequence of recombination or rate heterogeneity. Interspecific re-

combination, in which DNA subsequences are transferred between different (typ-

ically viral or bacterial) species may result in a change of the topology of the

underlying phylogenetic tree. Rate heterogeneity corresponds to a change of the

nucleotide substitution rate. Two Bayesian methods for simultaneously detecting

recombination and rate heterogeneity in DNA sequence alignments are the dual

multiple change-point model (DMCP) of Minin et al. (2005), and the phyloge-

netic factorial hidden Markov model (PFHMM) of Husmeier (2005) and Lehrach

and Husmeier (2009). The idea underlying the DMCP is to segment the DNA

sequence alignment by the insertion of change-points, and to infer different phy-

logenetic trees and nucleotide substitution rates for the separate segments thus

obtained. Two separate change-point processes associated with the tree topology

97
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and the nucleotide substitution rate are employed. Inference is carried out in a

Bayesian way with reversible jump (RJ) Markov chain Monte Carlo (MCMC). Of

particular interest are the number and locations of the change-points, which mark

putative recombination break-points and regions putatively under different selec-

tive pressures. A related modelling paradigm is provided by the PFHMM, where

two a priori independent hidden Markov chains are introduced, whose states rep-

resent the tree topology and nucleotide substitution rate, respectively. While the

earlier work of Husmeier (2005) kept the number of hidden states fixed, Lehrach

and Husmeier (2009) generalised the inference procedure with RJMCMC and

showed that this framework subsumes the DMCP as a special case. This model

has recently been extended to larger numbers of species Webb et al. (2009).

Common to all these models are two simplifications. First, the no-common

mechanism model of Tuffley and Steel (1997) is introduced, which assumes sepa-

rate branch lengths for each site in the DNA sequence alignment. Second, there

is no distinction between regional and within-codon rate heterogeneity. Following

Suchard et al. (2003), the first assumption was introduced with the objective to

reduce the computational complexity of the inference scheme. The no-common-

mechanism model allows the branch lengths to be integrated out analytically.

This is convenient, as the marginal likelihood of the tree topology, the nucleotide

substitution rate, and further parameters of the nucleotide substitution model

(like the transition- transversion ratio) can be computed in closed from. In this

way, the computational complexity of sampling break-points (DMCP) or hid-

den state sequences (PFHMM) from the posterior distribution with MCMC is

substantially reduced. However, in the no-common-mechanism model the branch

lengths are incidental rather than structural parameters. As we discussed in chap-

ter 2 and presented in Husmeier and Mantzaris (2008), this implies that maxi-

mum likelihood no longer provides a consistent estimator, and that the method

systematically infers the wrong tree topology in the Felsenstein zone defined in

Felsenstein (1978b). The second simplification does not distinguish between two

different types of rate heterogeneity: (1) a regional effect, where larger consecu-

tive segments of the DNA sequence alignment might be differently evolved, e.g. as

a consequence of changes of the selective pressure; (2) and a codon effect, where

the third codon position shows more variation than the first or the second. Not

allowing for this difference and treating both sources of rate heterogeneity on an

equal footing implies the risk that subtle regional effects might be obscured by
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the short-range codon effect, as discussed in Lehrach and Husmeier (2009). The

latter effect is of no biological interest, though, as it only represents the signature

of the genetic code.

In the present work, we address this issue and develop a model that properly

distinguishes between these two effects. Our work is based on the model we

introduced in chapter 2 and presented in Husmeier and Mantzaris (2008). We

modify this approach so as to explicitly take the signature of the genetic code into

account. In this way, the within-codon effect of rate heterogeneity is imposed on

the model a priori, which makes it easier to learn the biologically more interesting

effect of regional rate heterogeneity a posteriori. The work of this chapter has

already been published in Mantzaris and Husmeier (2009).

3.2 Methodology

3.2.1 Modelling recombination and rate heterogeneity with a

phylogenetic FHMM

Consider an alignment D of m DNA sequences, N nucleotides long. Let each

column in the alignment be represented by yt , where the subscript t represents

the site, 1 ≤ t ≤ N. Hence yt is an m-dimensional column vector containing the

nucleotides at the tth site of the alignment, and D = (y1, . . . ,yN). Given a proba-

bilistic model of nucleotide substitutions based on a homogeneous Markov chain

with instantaneous rate matrix Q, a phylogenetic tree topology S, and a vec-

tor of branch lengths w, the probability of each column yt , P(yt |S,w,θ), can be

computed, as e.g. discussed in Felsenstein (1981). Here, θ denotes a (vector)

of free nucleotide substitution parameters extracted from Q. For instance, for

the HKY85 model of Hasegawa et al. (1985), we have π = (πA,πC,πG,πT ), with

πi ∈ [0,1] and ∑i πi = 1, is a vector of nucleotide equilibrium frequencies, and

α,β ≥ 0 are separate nucleotide substitution rates for transitions and transver-

sions. For identifiability between w and Q, the constraint ∑i Qiiπi = −1 is com-

monly introduced, which allows the branch lengths to be interpreted as expected

numbers of mutations per site (see, e.g., Minin et al. (2005)). The normalisation

constraint on π further reduces the number of free parameters by one, so that

without loss of generality we have θ = (πA,πC,πG,ζ), where ζ = α/(2β)≥ 0 is the

transition-transversion ratio. In what follows, we do not make the dependence
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on θ explicit in our notation.

We simultaneously model recombination and rate heterogeneity with a phylo-

genetic FHMM, as originally proposed in Husmeier (2005), with the modification

discussed in chapter 2 (presented in Husmeier and Mantzaris (2008)). A hidden

variable St ∈ {τ1, . . . ,τK} is introduced, which represents one out of K possible tree

topologies τi at site t. To allow for correlations between nearby sites – while keep-

ing the computational complexity limited – a Markovian dependence structure

is introduced: P(S) = P(S1, . . . ,SN) = ∏
N
t=2 P(St |St−1)P(S1). Following Felsenstein

and Churchill (1996), the transition probabilities are defined as

P(St |St−1,νS) = ν
δ(St ,St−1)
S

(
1−νS

K−1

)[1−δ(St ,St−1)]

(3.1)

where δ(St ,St−1) denotes the Kronecker delta symbol, which is 1 when St = St−1,

and 0 otherwise. The parameter νS denotes the probability of not changing the

tree topology between adjacent sites. Associated with each tree topology τi is a

vector of branch lengths, wτi , which defines the probability of a column of nu-

cleotides, P(yt |St ,wSt ). The practical computation follows standard methodology

based on the pruning algorithm Felsenstein (1981). For notational convenience

we rewrite these emission probabilities as P(yt |St ,w), where St ∈ {τ1, . . . ,τk} de-

termines which of the subvectors w = (w1, . . . ,wK) is selected. To model rate

heterogeneity, a second type of hidden states Rt is introduced. Correlations be-

tween adjacent sites are modelled again by a Markovian dependence structure:

P(R) = P(R1, . . . ,RN) = ∏
N
t=2 P(Rt |Rt−1)P(R1). The transition probabilities are

defined as in (3.1):

P(Rt |Rt−1,νR) = ν
δ(Rt ,Rt−1)
R

(
1−νR

K̃−1

)[1−δ(Rt ,Rt−1)]

(3.2)

where K̃ is the total number of different rate states. Each rate state is associated

with a scaling parameter Rt ∈ ρ = {ρ1, . . . ,ρK′} by which the branch lengths are

rescaled: P(yt |St ,w)→ P(yt |St ,Rtw). To ensure that the model is identifiable, we

constrain the L1-norm of the branch length vectors to be equal to one: ||wk||1 = 1

for k = 1, . . . ,K. To complete the specification of the probabilistic model, we

introduce prior probabilities on the transition parameters νS and νR, which are

given conjugate beta distributions (which subsume the uniform distribution for

the uninformative case). The initial state probabilities P(S1) and P(R1) are set

to the uniform distribution, as in Husmeier and McGuire (2003). The prediction
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of recombination break-points and rate heterogeneity is based on the marginal

posterior probabilities

P(St |D) = ∑
S1

. . . ∑
St−1

∑
St+1

. . .∑
SN

P(S|D) (3.3)

P(Rt |D) = ∑
R1

. . . ∑
Rt−1

∑
Rt+1

. . .∑
RN

P(R|D) (3.4)

The distributions P(S|D) and P(R|D) are obtained by the marginalisation

P(S|D) = ∑
R

Z
P(S,R,νS,νR,w|D)dνSdνRdw (3.5)

P(R|D) = ∑
S

Z
P(R,S,νS,νR,w|D)dνSdνRdw (3.6)

where P(S,R,νS,νR,w|D) ∝ P(D,S,R,νS,νR,w) = P(S1)P(R1)P(νS)P(νR)

∏
N
t=1 P(yt |St ,Rtw)∏

N
t=2 P(St |St−1,νS)∏

N
t=2 P(Rt |Rt−1,νR). The respective integra-

tions and summations are intractable and have to be numerically approximated

with Markov chain Monte Carlo (MCMC): we sample from the joint posterior

distribution P(S,R,νS,νR,w|D) and then marginalise with respect to the entities

of interest. Sampling from the joint posterior distribution follows a Gibbs

sampling procedure Casella and George (1992), where each parameter group is

iteratively sampled separately conditional on the others. So if the superscript (i)

denotes the ith sample of the Markov chain, we obtain the (i + 1)th sample as

follows:

S(i+1) ∼ P(·|R(i),ν
(i)
S ,ν

(i)
R ,w(i),D) (3.7)

R(i+1) ∼ P(·|S(i+1),ν
(i)
S ,ν

(i)
R ,w(i),D) (3.8)

ν
(i+1)
S ∼ P(·|S(i+1),R(i+1),ν

(i)
R ,w(i),D) (3.9)

ν
(i+1)
R ∼ P(·|S(i+1),R(i+1),ν

(i+1)
S ,w(i),D) (3.10)

w(i+1) ∼ P(·|S(i+1),R(i+1),ν
(i+1)
S ,ν

(i+1)
R ,D) (3.11)

The order of these sampling steps is arbitrary. Note that, in principle, the nu-

cleotide substitution parameters θ should be included in the Gibbs scheme, as

described in Husmeier and McGuire (2003). In practice, a fixation of θ at a

priori estimated values makes little difference to the prediction of P(St |D) and

P(Rt |D) and has the advantage of reduced computational costs. Changing the

value of the parameters for the evolutionary model does not incur changes to

the mosaic structure (changes in the break points) inferred for the ratestates or
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the topologies along the sites of the alignment. A wrongly assigned parameter θ

would alter the ratefactor values inferred for all sites, rather than segments, and

since this applies to all the sites it does not remove the information needed to

infer the break points which is the primary purpose of this chapter.

Sampling the hidden state sequences S and R in (3.7) and (3.8) is effected

with the stochastic forward-backward algorithm of Boys et al. (2000). Sampling

the transition probabilities νS and νR in (3.9) and (3.10) is straightforward due

to the conjugacy of the beta distribution. Sampling the branch lengths in (3.11)

cannot be effected from a closed-form distribution, and we have to resort to a

Metropolis-Hastings-within-Gibbs scheme. Note that the branch lengths have to

satisfy the constraint ||wk||1 = 1, k = 1, . . . ,K, as well as the positivity constraint

wki ≥ 0. This is automatically guaranteed when proposing new branch length

vectors w∗k from a Dirichlet distribution: Q(w∗k |wk) ∝ ∏i[w∗ki]
αwki−1, where α

is a tuning parameter that can be adapted during burn-in to improve mixing.

The acceptance probability for the proposed branch lengths is then given by the

standard Metropolis-Hastings criterion Hastings (1970).

3.2.2 Distinguishing regional from within-codon rate hetero-

geneity

We improve the model described in the previous subsection, which is shown in

chapter 2 (proposed in Husmeier and Mantzaris (2008)), in two respects. First,

we adapt ρ and sample it along with w from the posterior distribution. The sam-

pling procedure mirrors that for the branch lengths. It is done with MCMC as

defined in eq.. The priors here are chosen to be uniform as all penalisations made

it difficult for rates to be accepted which were large enough to compensate for

the normalised codon vector applied to the model. To make the ratefactor nota-

tion explicit in the notation, we slightly change the definition of the rate state as

Rt ∈ {1, . . . ,K′} and rewrite: P(yt |St ,Rtw)→ P(yt |St ,ρRt w). Second, we explicitly

model codon-position-specific rate heterogeneity in a way similar to Felsenstein

and Churchill (1996). This work applied an HMM to infer rate heterogeneity

break points along sequence alignments. To this end, we introduce the indicator

variable It ∈ {0,1,2,3}, where It = 0 indicates that the tth position of the align-

ment does not code for protein, and It = i ∈ {1,2,3} indicates that site t is the ith

position of a codon. Each of the four categories is associated with a positive factor



3.2. Methodology 103

a)

b)

Figure 3.1: Illustration of regional versus within-codon rate heterogeneity. Each circle

corresponds to a nucleotide in a DNA sequence, and the circle diameter symbolises

the average nucleotide substitution rate at the respective position. The top panel

(a) shows a “homogeneous” DNA sequence composed of six codons, where each

third position is more diverged as a consequence of the nature of the genetic code.

The bottom panel (b) shows a hypothetical DNA sequence subject to regional rate

heterogeneity, where the second half on the right of the dashed vertical line constitutes

a region that is more evolved. The sequences used in our simulation study were similar,

but longer (1.5Kbp).

taken from λ = (λ0,λ1,λ2,λ3), by which the branch lengths are modulated. The

emission probabilities are thus given by P̃(yt |St ,Rt , It ,ρ,λ,w) := P(yt |St ,ρRt λIt w),

where P(.) was defined below equation (3.1), and P̃(.) makes the dependence on

ρ and λ explicit. Note that as opposed to Felsenstein and Churchill (1996),

we do not keep λ fixed, but sample it from the posterior distribution with

MCMC. For identifiability we introduce the same constraint as for the branch

lengths: ||λ||1 = 1, which is automatically guaranteed when proposing λ from a

Dirichlet distribution. Hence, to sample ρ and λ from the posterior distribution

P(S,R,νS,νR,ρ,λ,w|D), we have to add two Metropolis-Hastings-within-Gibbs

steps akin to equation (3.11) to the Gibbs sampling procedure (3.7-3.11):

[ρ(i+1),λ(i+1)] ∼ P(·|S(i+1),R(i+1),ν
(i+1)
S ,ν

(i+1)
R ,w(i+1),D) (3.12)

With all other parameters and hidden states fixed, we propose new values for ρ

and λ, and accept or reject according to the Metropolis-Hastings criterion. As

discussed above, we propose new values for λ from a Dirichlet distribution. New

values for ρ are proposed from a uniform distribution (on the log scale), centred

on the current values. The dispersal parameters of the proposal distributions can

be adjusted during the burn-in phase using standard criteria.
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3.3 Data

To assess the performance of the method, we tested it on synthetic DNA

sequence alignments; this has the advantage that we have a known gold-

standard. For a realistic simulation, we generated sequence alignments with

Seq-Gen, developed by Rambaut and Grassly. This software package is

widely used for Monte Carlo simulations of molecular sequence evolution along

phylogenetic trees; see e.g. http://bioweb2.pasteur.fr/docs/seq-gen/ or

http://tree.bio.ed.ac.uk/software/seqgen/ for details. We generated a

DNA sequence alignment from a phylogenetic tree of four hypothetical taxa with

equal branch lengths, using the HKY model of nucleotide substitution Hasegawa

et al. (1985) with a uniform nucleotide equilibrium distribution, πA = πC = πG =

πT = 0.25, and a transition-transversion ratio of ζ = 2. We generated two types of

alignments. In the first alignment, the normalised branch lengths associated with

the three codon positions were set to wi = [0.5− c
2 ,0.5− c

2 ,0.5+c]/1.5, where the

codon offset parameter 0≤ c≤ 0.99 was varied in increments of 0.1. All codons

had the same structure, as illustrated in Figure 3.1a. We refer to these sequence

alignments as “homogeneous”. The second type of alignment, which we refer to

as “heterogeneous” or “subject to regional rate heterogeneity”, is illustrated in

Figure 3.1b. The codons have a similar structure as before. The second half of

the alignment is more evolved, though, and the branch lengths are expanded by a

factor of ς = 2. In all simulations, the total length of the alignment was 1.5 Kbp.

3.4 Simulations

Our objective is to sample topology and rate state sequences S,R, their as-

sociated transition probabilities νS,νR and rate vectors ρ, the branch lengths

w and (for the new model) the within-codon rate vector λ from the posterior

distribution P(S,R,νS,νR,ρ,λ,w|D). To this end, we apply the Gibbs sam-

pling scheme of (3.7–3.12), which we have described in Sections 3.2.1 and 3.2.2.

Our current software has not yet been optimised for speed. Hence, to im-

prove the convergence of the Markov chain and to focus on the aspect of in-

terest for the present study (rate heterogeneity), we have set all states in S
to the same tree topology without allowing for recombination: νS = 1. We

also set K′ = 2 fixed. The model was initialised with the maximum likelihood
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tree obtained with DNAML from Felsentein’s PHYLIP package, available from

http://evolution.genetics.washington.edu/phylip/. We tested the conver-

gence of the MCMC simulations by computing the potential scale reduction factor

of Gelman and Rubin Gelman and Rubin (1992) from the within and between

trajectory variances of various monitoring quantities (e.g. w, P(Rt |D), etc.), and

took a value of 1.2 as an indication of sufficient convergence.

The main objective of our study is to evaluate the performance of the proposed

model that allows for within-codon rate heterogeneity; we refer to this as the“new”

model. We compare its performance with a model that does not include within-

codon rate heterogeneity, that is, where λ = 1 is constant. We refer to this as the

“old”model. Note that the latter model is equivalent to the one in chapter 2 (and

presented in Husmeier and Mantzaris (2008)), but with the improvement that ρ

is sampled from the posterior distribution, rather than kept fixed.

In order to evaluate the performance of the methods, we want to compute the

marginal posterior probability of the average effective branch length scaling for

the three codon positions. The effective branch lengths are given by w̃t = ρRt λIt wt ,

where wt are the normalised branch lengths. The entity of interest is

ϒt =
||w̃t ||1
||wt ||1

= ρRt λIt (3.13)

which is the scaling factor by which the branch length vector w̃t associated with

position t deviates from the normalised branch lengths wt . Note that ϒt is com-

posed of two terms, associated with a region (ρRt ) and a codon (λIt ) effect. We are

interested in the marginal posterior distribution of this factor, P(ϒ|D, I = k), for

the three codon positions I ∈ {1,2,3}. In practice, this distribution is estimated

from the MCMC sample by the appropriate marginalisation with respect to all

other quantities:

P(ϒ|D, I = k) ≈
∑

M
i=1 ∑

N
t=1 δIt ,kδ(ϒ−ρi

Ri
t
λi

It )

M ∑
N
t=1 δIt ,k

(3.14)

where the subscript t refers to positions in the alignment (of total length N), the

superscript i refers to MCMC samples (sample size M), δ(.) is the delta function,

the quantities on the right of its argument, ρi
Ri

t
,λi

It , are obtained from the MCMC

sample, and δi,k is the Kronecker delta. For the conventional model without

explicit codon effect, we set λIt = 1/3∀t.
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Figure 3.2: Posterior distribution of νR (vertical axis) for different codon offsets c

(horizontal axis), where the offset indicates to what extent the nucleotide substitution

rate associated with the third codon position is increased over that of the first two

positions. The left panel (a) shows the results obtained with the old model, the centre

panel (b) shows the results obtained with the new model. The grey levels represent

probabilities, as indicated by the legend in the panel on the right (c). The distributions

were obtained from a “homogeneous” DNA sequence alignment, corresponding to

Figure 3.1a.

a) 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

b) 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

c) 0 0.2 0.4 0.6 0.8 1
0

5

10

15

d) 0 0.2 0.4 0.6 0.8 1
0

2000

4000

6000

e) 0 0.2 0.4 0.6 0.8 1
0

2000

4000

6000

f) 0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

Figure 3.3: Posterior distribution (vertical axes) of the combined rate ϒt (horizontal

axes), defined in equation (3.13), for a “homogeneous” DNA sequence alignment,

corresponding to Figure 3.1a, with codon offset parameter c = 0.8. The three columns

correspond to the three codon positions. The top row shows the distribution obtained

with the old model. The bottom row shows the distribution obtained with the new

model. The distributions were obtained from the MCMC samples with a kernel density

estimator, where the delta function in (3.14) was replaced by a Gaussian (standard

deviation: a tenth of the total range).
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Figure 3.4: Posterior distribution (vertical axes) of the rate ρRt (horizontal axes) for a

“heterogeneous”DNA sequence alignment, corresponding to Figure 3.1b, with codon

offset parameter c = 0.8 and regional factor ς = 2. The three columns correspond

to the three codon positions. The top row shows the distribution obtained with the

old model. The bottom row shows the distribution obtained with new model. The

distributions were obtained from the MCMC samples with a kernel density estimator,

where the delta function in (3.15) was replaced by a Gaussian (standard deviation: a

tenth of the total range).

3.5 Results

Figure 3.2 shows the posterior distribution of the (complementary) transition

probability νR. The two models were applied to the“homogeneous”DNA sequence

alignment that corresponds to the top panel in Figure 3.1. The left panel shows

the results obtained with the old model, which does not explicitly include the

codon effect. For small values of the offset parameter c, the posterior distribution

of νR is concentrated on νR = 1, which corresponds to a homogeneous sequence

alignment. As the offset increases, the posterior distribution of νR gets shifted to

smaller values, with a mode at νR = 0.5. Note that νR is related to the average

segment length l via the relation l = (1− νR)∑l lνl−1
R = (1− νR) d

dνR
∑l νl

R = (1−
νR) d

dνR
1

1−νR
= 1

1−νR
. For νR = 0.5 we get l = 2. The model has thus learned

the within-codon rate heterogeneity intrinsic to the genetic code; compare with

Figure 3.1. The right panel of Figure 3.2 shows the posterior distribution of νR

obtained with the new model. Irrespective of the codon offset c, the distribution

is always concentrated on νR = 1. This correctly indicates that there is no regional

rate heterogeneity in the DNA sequence alignment. Recall that the within-codon

rate heterogeneity has been explicitly incorporated into the new model and, hence,

need not be learned separately via νR and transitions between rate states Rt .
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Figure 3.5: Alternative representation of the posterior distribution (vertical axes)

of the rate ρRt (horizontal axes) for the “heterogeneous” DNA sequence alignment.

The figure corresponds to Figure 3.4, but shows a separation of the distributions with

respect to regions rather than codon positions. The distribution of ρRt is defined in

(3.16). The two columns correspond to the two differently diverged segments in the

DNA sequence alignments, with the left column representing the first 750 positions,

and the right column representing the last 750 positions; the latter were evolved at

double the nucleotide substitution rate. The two rows correspond to the two models.

The top row shows the distribution obtained with the old model. The bottom row

shows the distribution obtained with new model. The distributions were obtained

from the MCMC samples with a kernel density estimator, where the delta function in

(3.16) was replaced by a Gaussian (standard deviation: a tenth of the total range).
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Figure 3.3 shows the posterior distribution of the scaling factor ϒt , defined

in (3.13), for the “homogeneous” DNA sequence alignment corresponding to Fig-

ure 3.1a. The columns in Figure 3.3 correspond to the three codon positions. The

posterior distribution was obtained from the MCMC samples via (3.14). For the

new model (bottom row of Figure 3.3), the distributions of ϒt are unimodal and

sharply peaked. This is consistent with the fact that we have no regional rate het-

erogeneity, and the shift in the peak locations for the third codon position clearly

indicates the within-codon rate heterogeneity. For the old model (top panel of

Figure 3.3), the posterior distribution is always bimodal. This is a consequence

of the fact that the within-codon rate heterogeneity has to be learned via the

assignment of rate states Rt to the respective codon positions. The bimodality

and increased width of the distribution stem from a misassignment of rate states.

Note that for an alignment of N = 1500 sites, 500 state transitions have to be

learned to model the within-codon rate heterogeneity correctly.

Figure 3.4 is similar to Figure 3.3, but was obtained for the heterogeneous

DNA sequence alignment corresponding to Figure 3.1b. For better clarity we

have shown the codon site-specific posterior distributions of the rate ρRt rather

than the scale factor ϒt , that is, in equation (3.14) we have ignored the factor λi
It :

P(ρ|D, I = k) ≈
∑

M
i=1 ∑

N
t=1 δIt ,kδ(ρ−ρi

Ri
t
)

M ∑
N
t=1 δIt ,k

(3.15)

The bottom row shows the distributions obtained with the new model. They have

a symmetric bimodal form. The bimodality reflects the regional rate heterogene-

ity. The symmetry reflects the nature of the DNA sequence alignment, which

contains two differently diverged regions of equal size (see Figure 3.1b). The top

panel shows the distributions obtained with the old model. The distributions

are still bimodal, but the symmetry has been destroyed. This distortion results

from the fact that two effects – regional and within-codon rate heterogeneity –

are modelled via the same mechanism: the rate states Rt . Consequently, these

two forms of rate heterogeneity are not clearly separated.

To illustrate this effect from a different perspective, Figure 3.5 shows the

posterior distributions of the rate ρRt not separated according to codon positions,

but according to differently diverged regions. That is, from the MCMC sample

we compute the following distribution:

P(ρ|D, t ∈ r) ≈
∑

M
i=1 ∑

N
t=1 I (t ∈ r)δ(ρ−ρi

Ri
t
)

M ∑
N
t=1 I (t ∈ r)

(3.16)
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where r represents the two regions: r = 1 for 1≤ t ≤ 750, and r = 2 for 751≤ t ≤
1500, I (t ∈ r) is the indicator function, which is one if the argument is true, and

zero otherwise, and the remaining symbols are as defined below equation (3.14).

The bottom panel shows the distributions obtained with the new model, where the

two columns represent the two regions. The distributions are unimodal and clearly

separated, which indicates that modelling regional rate heterogeneity is properly

disentangled from the within-codon rate variation. The top panel shows the

distributions obtained with the old model. Here, the distributions are bimodal,

which results from a lack of separation between regional and within-codon rate

heterogeneity, and a tangling-up of these two effects.

3.6 Discussion

We have generalised the phylogenetic FHMM of chapter 2 (also presented in

Husmeier and Mantzaris (2008)) in two respects. First, by sampling the rate

vector ρ from the posterior distribution with MCMC (rather than keeping it

fixed) we have made the modelling of regional rate heterogeneity more flexible.

Second, we explicitly model within-codon rate heterogeneity via a separate rate

modification vector λ. In this way, the within-codon effect of rate heterogeneity

is imposed on the model a priori, which should facilitate the learning of the

biologically more interesting effect of regional rate heterogeneity a posteriori. We

have carried out simulations on synthetic DNA sequence alignments, which have

borne out our conjecture. The old model, which does not explicitly include the

within-codon rate variation, has to model both effects with the same mechanism:

the rate states Rt with associated rate factors ρRt . As expected, it was found to

fail to disentangle these two effects. On the contrary, the new model was found

to clearly separate within-codon from regional rate heterogeneity, resulting in a

more accurate prediction.

We emphasise that our paper describes work in progress, and we have not yet

applied our method to real DNA sequence alignments. This is partly a conse-

quence of the fact that our software has not been optimised for computational

efficiency yet, resulting in long MCMC simulation runs. Note that the compu-

tational complexity of our algorithm is larger than for the model described in

Lehrach and Husmeier (2009). The latter approach is based on the no-common-

mechanism model of Tuffley and Steel (1997), which leads to a substantial model
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simplification, though at the price of potential inconsistency problems (as dis-

cussed in chapter 2 and Husmeier and Mantzaris (2008)). The increased compu-

tational complexity of the method proposed in the present article might require

the application of more sophisticated MCMC schemes, e.g. population MCMC,

which will be the objective of our future work.

As a final remark, we note that a conceptually superior approach would be

the modelling of substitution processes at the codon rather than nucleotide level.

However, the application of this approach to standard Bayesian analysis of single

phylogenetic trees has turned out to be computationally exorbitant. A generalisa-

tion to phylogenetic FHMMs for modelling DNA mosaic structures, as described

in the present article, is unlikely to be computationally feasible in the near fu-

ture. We therefore believe that the method we have proposed, which is based on

individual nucleotide substitution processes while taking the codon structure into

account, promises a better compromise between model accuracy and practical

viability.





Chapter 4

Including Reversible Jump Markov

Chain Monte Carlo to adapt the

number of rate factors

In this chapter the methodology for inferring the number of ratefactors to be

allocated along a sequence alignment with the PFHMM is developed and tested.

This is done by sampling the ratefactors from the posterior distribution, using

reversible jump MCMC (RJMCMC, Green (1995)). This is an improvement from

chapters 3 and 2 in which a fixed number of rate states is used to fit the rate

heterogeneity of the DNA sequence alignment. This restriction is removed in

Lehrach and Husmeier (2009) without including the improvements made in this

thesis. The chapters 2 and 3 present the improvements not found in Lehrach and

Husmeier (2009). These 2 chapters made improvements by altering the model to

include a branch length vector and a vector for the relative codon rate hetero-

geneity.

With the extra flexibility introduced to fit more features of the data, it is

possible that the complexity of the model is too great for correct inference to be

performed. In this chapter the model is tested on synthetic data to assess its

ability to correctly infer the parameters. A failure could occur due to a lack of

convergence or a vague posterior. What follows is a short introduction to the

progression of the work leading to this improvement.

Husmeier (2005) introduces the FHMM for detecting recombination which

this thesis makes improvements on. This is an improvement on the earlier model

of Husmeier and Wright (2001) where rate heterogeneity was not taken into con-

113
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sideration, and correct results could be gathered under conditions where the rate

heterogeneity was moderate. Incorrect inference on the topology structure of

the sequence alignment could be made from a large change in the levels of rate

heterogeneity. Addressing this failure is the motivation behind the FHMM of

Husmeier (2005) which introduces a state at every site in an independent HMM

to scale the branch lengths. A short-coming of Husmeier (2005) is that it adopts

the no-common-mechanism model of Tuffley and Steel (1997) allowing the branch

lengths to be neglected from the inference procedure which saves on the compu-

tational expenses. The no-common-mechanism (NCM) model was then found (in

chapter 2) to fail in a similar manner to parsimonious models of phylogenetics in

the Felsenstein zone presented in Felsenstein (1978b). To correct for the failure,

the standard model (subsection 1.2) of phylogenetics is introduced which does

not allow for the branch lengths to be omitted.

The FHMM with a pre-defined size of a rate factor vector, ρ, contains the

ratefactor values, ρi, that are allocated along the sequence alignment via the

stochastic forward-backward algorithm. Here we extend the work to now include

a reversible jump step for the sampling of the number of ratefactors as well as

having their values sampled via MCMC. Having an RJMCMC scheme has many

benefits considering that the number of ratefactors is usually not known a priori

and the number of ratefactors inferred is dependent on the data. This addition

along with the previous improvements avoids the pitfalls explored in chapter 2

and chapter 3 (presented in Husmeier and Mantzaris (2008) and Mantzaris and

Husmeier (2009)).

4.1 Background methodology for the reversible

jump MCMC scheme

Here is given a brief overview of the methodology leading to the development of

the reversible jump MCMC scheme described in subsection 4.2. The background

necessary for this chapter can be found in previous sections 1.3.1 (nucleotide sub-

stitution model used), 1.9 and 1.9.1 (HMM theory), 1.9.4 (FHMM theory), 1.9.5

(stochastic forward backward algorithm), 1.10.1 (Markov chain Monte Carlo),

and 1.10.2 (Gibbs sampling theory). At the end of this section, the Gibbs sam-

pling scheme with the new sampling step is presented (in eq 4.44). RJMCMC is
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introduced in subsection 1.10.3.

The factorial hidden Markov model (FHMM of Husmeier (2005)) applies break

points for the topologies and ratefactors along the sequence alignment. There are

two a priori independent hidden Markov model chains for the topology states and

the rate states. At each site in the sequence alignment, the column of nucleotides

is denoted as yt . A topology state is denoted with S, and at each site t a topology

is applied. An HMM is used to model the state sequence of topologies, and the

probability of the state sequence along the alignment is given by:

P(S) = P(S1, . . . ,SN) =
N

∏
t=1

P(St |St−1)P(S1). (4.1)

Here S is the vector of the topology state allocations at the sites along the align-

ment. The topology transition probability P(St |St−1) is dependent on the param-

eter νS, which denotes the probability of not changing state values between sites

and is defined as,

P(St |St−1,νS) = ν
δ(St ,St−1)
S

(
1−νS

K−1

)[1−δ(S,St−1)]

, (4.2)

where δ represents the Kronecker delta symbol which is 1 when the topologies

are equal and 0 otherwise.

The modelling of the ratestates is analogous to that of the topology states.

An HMM with the hidden states representing a ratefactor value is applied to each

site on the alignment. The value of each ratefactor is denoted by ρ. The vector

for all of the available ratefactors that can be applied along the alignment is ρ.

To denote the ratestate allocation along the sequence alignment, R, is used and

t as a subscript addresses the ratefactor at that site in the alignment, Rt . The

factorisation of the joint probability for the state transitions in the HMM for the

rates is analogous to eq 4.1, P(R) = P(R1, . . . ,RN) = ∏
N
t=1 P(Rt |Rt−1)P(R1). The

transition probability for the ratestates is given by νR. The transition probability

definition is the same as eq 4.2 with the substitution for νR made:

P(Rt |Rt−1,νR) = ν
δ(Rt ,Rt−1)
R

(
1−νR

K̃−1

)[1−δ(Rt ,Rt−1)]

. (4.3)

The new symbol included here is K̃ and denotes the number of ratefactors in

ρ. Each site in the alignment, t, has a ratefactor applied to it for scaling the

branch lengths, Rt ∈ ρ1, . . . ,ρK̃ . Both of the FHMM state transition parameters

νS and νR have a beta distribution as a prior that is set to be non-informative
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(uniform distribution). The prior distribution is discussed in detail in Husmeier

and McGuire (2003) and in section 1.9.3.

The vector of branch lengths is denoted by w and the emission probabilities

for the sites of the sequence alignment, yt , are

P(yt |St ,w). (4.4)

How this is computed is described in section 1.5. An unidentifiability problem

between the ratefactors and the branch lengths can occur and the solution applied

in chapter 2 is used here. The vector of branch lengths is sampled from a Dirichlet

distribution producing normalised vectors, |ẇ|= 1, where all the lengths are not

negative. With the normalisation constraint on the branch lengths the ratefactor,

ρ, is the only parameter taking on the role of scaling the expected number of

mutations. The new vector of branch lengths, w∗k proposed from a Dirichlet

distribution is conditional on the current vector,

Q(w∗k |wk) ∝ ∏
i

[w∗ki]
αwki−1 . (4.5)

The variable α controls the variance of the distribution conditional on the original

branch length vector. This is tuned in the burnin phase of the simulation to

achieve the desired average acceptance percentage of values between 30 and 70

percent. These percentages are found in many of the referenced papers.

The codon rate heterogeneity vector λ is a vector with 3 values for each po-

sition of the amino acid encoding. Each position corresponds to a ratefactor in

the codon triplet. As with the branch lengths the relative rates for the codons

are expressed as a normalised vector, |λ| = 1, resulting in identifiable solutions.

A site t corresponds to one of the three positions in the vector, It = i ∈ 1,2,3.

The proposal mechanism for the values of this vector is analogous to that for the

branch lengths shown in eq 4.5. The emission probability of the model discussed

in chapter 3 which includes λ is,

P(yt |St ,ρwλ). (4.6)

From the study done in chapter 3 and presented in Mantzaris and Husmeier

(2009), it is seen that the exponential prior excessively penalises higher ratefac-

tor values. The higher values for the ratefactors are needed to compensate the

normalised vector of codon lengths. The solution replaces the exponential prior
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with a uniform prior. The prior on the ratefactors will be discussed later in this

chapter when the model developed here is introduced.

Inference with the HMM delivers the marginal posterior distribution of each

topology along sites of the alignment (equivalently for the ratefactors allocated),

P(St |D) = ∑
St

. . . ∑
St−1

∑
St+1

. . .∑
SN

P(S|D) (4.7)

P(Rt |D) = ∑
R1

. . . ∑
Rt−1

∑
Rt+1

. . .∑
RN

P(R|D) (4.8)

The distribution for the sequence of topologies, S, and for the sequence of rate

states is obtained by marginalising over the remaining parameters:

P(S|D) = ∑
R

Z
P(S,R,νS,νR,w,λ1,2,3|D)dνSdνRdwdλ1,2,3 (4.9)

P(R|D) = ∑
S

Z
P(S,S,νS,νR,w,λ1,2,3|D)dνSdνRdwdλ1,2,3. (4.10)

The posterior is proportional to the likelihood:

P(S,R,νS,νR,w,λ|D) ∝ P(D,S,R,νS,νR,w,λ) (4.11)

and is equal to,

P(S1)P(R1)P(νS)P(νR)P(λ)×
N

∏
t=1

P(yt |St ,Rtwλ)
N

∏
t=2

P(St |St−1,νS)
N

∏
t=2

P(Rt |Rt−1,νR).
(4.12)

The state transition terms for the rate state and topology states are defined in

eq 4.1, eq 4.2 and eq 4.3.

These summations and integrations of eq 4.9 are not analytically tractable.

The summations over the state space of the rates and topologies are done within

the HMM using the stochastic forward backward algorithm described in sec-

tion 1.9.5. The parameters are sampled from the posterior distribution using

MCMC. The Gibbs sampling scheme described in subsection 1.10.2 is,

S(i+1) ∼ P(·|R(i),ν
(i)
S ,ν

(1)
R ,w(i),λ(i),ρ(i),D) (4.13)

R(i+1) ∼ P(·|S(i+1),ν
(i)
S ,ν

(1)
R ,w(i),λ(i),ρ(i),D) (4.14)

ν
(i+1)
S ∼ P(·|R(i+1),S(i+1),ν

(1)
R ,w(i),λ(i),ρ(i),D) (4.15)

ν
(i+1)
R ∼ P(·|R(i+1),S(i),ν

(i+1)
S ,w(i),λ(i),ρ(i),D) (4.16)

(w(i+1),λ(i+1)) ∼ P(·|R(i+1),S(i+1),ν
(i+1)
S ,ν

(i+1)
R ,ρ(i),D) (4.17)

ρ
(i+1) ∼ P(·|R(i+1),S(i),ν

(i+1)
S ,w(i+1),λ(i+1),D). (4.18)
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The variable, i, denotes the iteration number in which the simulation is running

in. The first equation and the second one are sampled via the stochastic forward-

backward algorithm. The 3rd and 4th are sampled as in eq 1.79 from the beta

distribution. The vectors w and λ are sampled using Metropolis-Hastings. In

the last equation shown, eq 4.44, the ratefactors are sampled as in the previous

chapter 3 with Metropolis-Hastings, and the model is improved by utilising RJM-

CMC. Table 4.1 shows the symbols used in the rest of this chapter and is useful

as a quick reference.

4.2 Application of the RJMCMC scheme

The introduction to reversible jump Markov chain Monte Carlo (RJMCMC) is

given in subsection 1.10.3. The model described here changes the use of the prior.

The choice of the prior probability on the ratefactors in eq 4.27 is different to the

prior used in Lehrach (2008) where the exponential prior on the values is used.

The exponential prior (informative prior) is not used here because of the strong

penalisation it introduces for moderately large ratefactor values. The exponential

prior was suitable when the model was not taking into account the codon rate

variation, modelled with a normalised rate vector for the positions, λ. The values

of the ratefactors are required to be larger to overcome the effect of multiplying

them with the values of the vector of the codon rate heterogeneity. The uniform

prior (non-informative prior) is chosen for the ratefactors. The bounds for the

ratefactors used here are on the log scale of -3 to 2 (since these provide an adequate

range for the ratefactor values), and distribution of the prior on the ratefactors

is;

u = logρ (4.19)

P(u) = P(logρ) (4.20)

P(u) =
1

∆K̃
Π

K̃
k=1I(logρmin ≤ uk ≤ logρmax) (4.21)

logρmin =−3, logρmax = 2 (4.22)

∆ = ρmax−ρmin. (4.23)

A ratefactor value of zero is given for values outside the boundary and which is

produce by using the indicator function I. Lehrach (2008) explored the use of

three different priors: the uniform distribution, a normal distribution and the
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symbols

used

description

D The DNA sequence alignment which is the data and

considered as an array of nucleotides from 1 . . .N and

each column is indexed by t.

yt The vector of nucleotides at site t in the alignment.

S Vector of the selected hidden topology states at each site

in the alignment, sampled in the Gibbs simulation.

R Vector of rate states allocated to each site in the align-

ment. Each rate state is an index to the rate factor

vector ρ.

w The vector of branch lengths as a normalised vector for

each length in the phylogenetic tree.

ρ The vector of ratefactor values.

ρi An individual ratefactor value, that scales uniformly all

the branch lengths.

λ Normalised vector of relative rates between the 3 codon

positions.

νS The transition probability for a topology state to not

change between the sites of the sequence alignment.

νR The transition probability for a rate state value to not

change between the sites of the sequence alignment.

Figure 4.1: The symbols used in the reversible jump MCMC scheme

The symbols listed in the first column will be used in the RJMCMC sampling

scheme. A brief description of the quantities is given in the second column.
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even-numbered order statistic. All three of these priors showed similar results

and the simplest one (being the uniform distribution) is chosen here.

The ratefactors proposed are between the intervals shown in eq 4.22. The

boundaries for this interval, on the log scale, are chosen so that the range of

reasonable ratefactors are only available and undefined values as well as redun-

dant values are excluded. Undefined ratefactors are those with negative values

and redundant values are those beyond the value close enough to the stationary

distribution for the nucleotide distribution.

The distribution on the ratefactors is uniform on the log scale, P(logρ) and

is defined in eq 4.19-4.23. A birth move will take this form:(
P(D|θ,ρK̃′)
P(D|θ,ρK̃)

× P(ρK̃′)
P(ρK̃)

× P(death)P(K̃′→ K̃)
P(birth)Q(ρ′)P(K̃→ K̃′)

×Jacobian

)
. (4.24)

Here we have used θ to represent all the model parameters except that of the

rates to focus on the change of the number of rate factors (from 1 to 2 ratefactors

in the ratefactor vector; K̃′ = 2, K̃ = 1). The death move is the inverted case

of the birth move as each of the fractional components have the nominator and

denominator swapped.

The acceptance probability for the RJMCMC scheme is as follows. The terms

for the LR, PR and IPPR are shown and the Jacobian value is omitted as it takes

on the value of 1 in every case (and is explained after eq 4.30). The ratefactor

state sequence R′ denotes the new sampled state allocations of the ratefactors

along the FHMM, which is done via the stochastic forward backward algorithm

which is presented in subsection 1.9.5. The state allocations for the topology, S,

at a site are not changed in this stage of the Gibbs sampling scheme. Variables

with an apostrophe are the proposed new values.

LR =
P(R′,D|θ, K̃ +1,S,ρ′)

P(R,D|θ, K̃,S,ρ)

=
P(R′|S,D, K̃ +1,θ,ρ′)

P(R|D, K̃,θ,S,ρ)
× P(D|S, K̃ +1,θ,ρ′)

P(D|S, K̃,θ,ρ)

(4.25)

The terms are separated in this way so that they can cancel out with the analogous

term in the IPPR of eq 4.30; the posterior distribution of the ratestate sequence.

For the prior, we have the probability on the number of components and the

probability for the given ratefactor vector. The probability on the number of
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ratefactors is given by the Poisson distribution, Poiss(K̃). The distribution on the

ratefactor vector, ρ, is defined in equations 4.19- 4.23. The substitution for the

number of ratefactors on the uniform scale is,

P(K̃, logρ) = P(K̃)P(logρ|K̃) = P(K̃)P(logρ)K̃ = Poiss(K̃)
(

1
∆

)K̃

. (4.26)

The prior ratio of a birth step of K̃ to K̃+1 number of components in the ratefactor

vector ρ is,

PR =
Poiss(K̃ +1)P(logρ)K̃+1

Poiss(K̃)P(logρ)K̃

=
Poiss(K̃ +1)P(logρ)

Poiss(K̃)

=
Poiss(K̃ +1) 1

∆

Poiss(K̃)
. (4.27)

The proposal distribution is made in such a way as to cancel out with the prior.

The canceling of terms is motivated by simplicity and for there to be a higher

acceptance ratio in the simulation to assist convergence.

Assume there are K̃ rate states, i.e. dim(ρ) = K̃. A birth move consists of

the following steps. First, we select a birth move with probability bK̃ . Next,

sampling a new ratefactor from the proposal distribution, which is selected to be

the same as the prior distribution P(logρ), defined in eq 4.19- 4.23. There are

(K̃ +1)! ways of assigning K̃ +1 rate factors to K̃ +1 states. These assignments of

ratefactors are all equivalent in that both the likelihood and the prior distribution

are invariant with respect to label switching (described in subsection 4.2.1). One

particular assignment with probability 1/(K̃+1)! can be chosen. Finally, a sample

for new rate states from the posterior distribution P(R|D, K̃,θ,S,ρ) with the

dynamic programming scheme is done as described in subsection 1.9.5. The

overall probability of a birth move from K̃ components to K̃ +1 components is,

Qbirth =
bK̃P(logρ)
(K̃ +1)!

P(R′|D, K̃ +1,θ,S,ρ′). (4.28)

Now considering the complementary death move. Given that there are (K̃ +1)

states, a death move is selected with probability dK̃+1. Next, randomly selecting

one of the (K̃ + 1) components to be killed, with probability 1/(K̃ + 1). In the

resulting configuration with a K̃ number of states, there are K̃! possibilities of

assigning the K̃ rate factors to the K̃ states. The invariance with respect to label
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switching (described in subsection 4.2.1) does not affect the likelihood or the prior

distribution and a random assignment with probability 1/K̃! is chosen. New rate

state values are sampled from the posterior distribution P(R|D, K̃,θ,S,ρ) using

the stochastic forward backward algorithm described in section 1.9.5. The overall

probability of the complementary death move from (K̃ + 1) components to K̃

components is,

Qdeath =
dK̃+1

(K̃ +1)K̃!
P(R|D, K̃,θ,S,ρ) =

dK̃+1

(K̃ +1)!
P(R|D, K̃,θ,S,ρ). (4.29)

Combining equations (4.28) and (4.29), for the inverse proposal probability ratio

IPPR:

IPPR =
Qdeath

Qbirth
=

dK̃+1(K̃ +1)!
bK̃P(logρ)(K̃ +1)!

P(R|D, K̃,θ,S,ρ)
P(R′|D, K̃ +1,θ,S,ρ′)

=
dK̃+1

bK̃P(logρ)
P(R|D, K̃,θ,S,ρ)

P(R′|D, K̃ +1,θ,S,ρ′)
. (4.30)

The final factor to be derived is the Jacobian. For the birth and death moves

performed, the absolute value of Jacobian’s determinant is taken, and it equals

1 at all times (the absolute value ensures that negative numbers are rejected).

Merge and split moves would result in the Jacobian taking on other values, but

these are not performed. The work of Boys and Henderson (2002) shows that

in their RJMCMC scheme applied to DNA, the birth and death moves are ac-

cepted more often than merge and split moves are. They are conceptually more

simple, require less computational effort, show better mixing, and work well in

the application to DNA (single sequences) where the application is similar. In

the birth and death moves the new components proposed are independent of all

the other values within the current vector, and in the death moves as well. The

terms in the Jacobian for a ratefactor has a zero valued partial derivative when

not differentiated with itself and a value of 1 when differentiated with itself. The

non-diagonal elements of the matrix are 0 by definition of their independence.

The diagonal values of the Jacobian are all 1, since the partial differential with

respect to itself equals 1, and the determinant of the identity matrix that results

equals 1. The elements in the matrix are,

∂ρi
∂ρ j

= lδi j (4.31)

where for i 6= j the entry is 0 since the delta is the Kronecker delta and where for

i = j the entry is l = 1. The Jacobian in every case is the identity matrix whose
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determinant is 1,

detJ = 1. (4.32)

The appendix in section A.16 and section A.12 demonstrate in more detail these

concepts.

The RJMCMC algorithm can perform 3 different operations; the birth move

bK̃ , death move dK̃+1 , and the relocation step mK̃ . The probabilities for choosing

between these operations is given by the following 3 equations,

bK̃ = c×min{1,Poiss(K̃ +1)/Poiss(K̃)} (4.33)

dK̃ = c×min{1,Poiss(K̃−1)/Poiss(K̃)} (4.34)

mK̃ = 1−bK̃−dK̃. (4.35)

These equations apply a probability to the three possible moves of the RJMCMC

sampler scheme. The value of c is chosen to be 0.4 following the choice made in

Suchard et al. (2003). With these three probabilities that add to 1, a random

selection proportional to these probabilities is made for which step is chosen. In

this way, the ratio dK+1
bK

= P(K)
P(K+1) cancels out against the prior probability ratio.

Combining equations 4.25(for the likelihood), 4.27 (for the prior), 4.30 (for

the Hastings factor), and 4.32(for the Jacobian), we have the product of terms,

LR×PR× IPPR×|J|= P(D|S, K̃ +1,θ,ρ′)
P(D|S, K̃,θ,ρ)

. (4.36)

This convenient form left for the acceptance probability is,

Ab = Min{1,
P(D|S, K̃ +1,θ,ρ′)

P(D|S, K̃,θ,ρ)
}. (4.37)

The derivation for a death move is analogous to the one above. Given K̃

components and a death move is selected with probability dK̃ , and a birth move

is selected with probability bK̃−1 a similar derivation is made. The death LR ratio

is:

LR =
P(R′|S,D, K̃−1,θ,ρ′)

P(R|D, K̃,θ,S,ρ)
× P(D|S, K̃−1,θ,ρ′)

P(D|S, K̃,θ,ρ)
(4.38)

and the PR ratio is:

PR =
Poiss(K̃−1)

Poiss(K̃)P(logρ)
. (4.39)
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The overall probability of a birth move from K̃−1 components to K̃ components

is:

Qbirth =
bK̃−1P(logρ)

(K̃)!
P(R|D, K̃,θ,S,ρ), (4.40)

and the probability of the death move of K̃ to K̃−1 is,

Qdeath =
dK̃

(K̃)!
P(R′|D, K̃−1,θ,S,ρ′). (4.41)

Lastly for the IPPR of the death move,

IPPR =
Qbirth

Qdeath
=

bK̃−1P(logρ)
dK̃

P(R|D, K̃,θ,S,ρ)
P(R′|D, K̃−1,θ,S,ρ′)

, (4.42)

and finally the equation for the acceptance of a death move from K̃ to K̃−1 is,

Ad = Min{1,
P(D|S, K̃−1,θ,ρ′)

P(D|S, K̃,θ,ρ)
}. (4.43)

The relocation step performs an MCMC simulation for the rate state values

in the Gibbs sequence in eq 4.44. The pseudocode in the appendix A.15 shows

the steps for the MCMC simulation of the ratefactor vector. Since the dimen-

sionality of the ratefactor vector varies during the Gibbs simulation, the number

of ratefactors is indicated in the subscript of ρK̃ . The equation is,

ρ
(i+1)
K̃(i+1) = P(·|R(i),S(i),ν

(i+1)
S ,w(i+1),λ(i+1),D). (4.44)

4.2.1 Background on label switching in the RJMCMC sampler

The ratefactor vector, ρ, with its K̃ number of ratefactors, can have K̃! permu-

tations of these values. Each permutation has the same value in the likelihood

function and prior. These are multiple modes based on the permutations of the

elements in the ratefactor vector. This is because the prior and likelihood are

invariant towards the switching of the labels of the ratefactor vector components.

Considering a scenario where there are two ratefactors in the ratefactor vector

with values of 1 and 2; ρ = [1,2]. If subsequently the rate factor of value 2 is

removed in a death move, and then later on in the simulation the same value

is proposed in a birth move and accepted to be placed as the first ratefactor

element. The result is then ρ = [2,1]. The ratefactor vector has effectively the

same contribution as before in the model but the labelling of the components has

changed.
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The identifiability problem due to label switching in models where the prior

and likelihood functions are invariant towards the permutations of the labels is

explored in Jasra et al. (2005), Green (1995), Lehrach (2008), and chapter 6 of

Marin and Robert (2007). One approach to address this issue is by introduc-

ing an artificial identifiability constraint (AIC) on the parameters of the model,

restricting the sampler to a single mode:

P(ρ|K̃) = I(ρ1 < ρ2... < ρN)(K̃!)ΠN
i=1Q(ρi). (4.45)

Here the indicator function is used, I(·), which equals 1 when the arguments are

true and 0 otherwise.

This is a naive approach because there are consequences on the inference im-

posed by the AIC. Exploration of better posterior configurations can be prevented

as the sampling procedure is more difficult with the AIC. Where it would be de-

sirable to have a single mode which the sampler is restricted to, the constraints

may include parts of other modes and the high density posterior regions may oc-

cur at boundaries between parameters. The AIC may also hinder the information

contained in the prior. In distributions of more than one variable the distance

between parameters in corresponding distributions may not be the same for each

variable. For instance, the means of two normal distributions may be close but

have variances that differ greatly in value. Chapter 6 of Marin and Robert (2007)

discusses these topics in more depth.

An alternative approach to the AIC is that the constraint is applied after the

simulations have finished, and the relabelling is done on the sampled parameters

which were not restricted. The posterior reordering can be done by selecting the

maximum a posteriori (MAP) as a reference point (a pivot where most samples

will be taken from the region around this mode). This reordering and switching

to one mode is not ideal, and is discussed in Jasra et al. (2005) and Celeux et al.

(2000).

The proposed solution is to take the values from the sampling scheme as

being label independent. By having the labels not influence conclusions from

the sampled values the inference procedure is invariant towards label switching.

Here the ratefactors considered are independent of labels as only the actual values

associated to the components are considered. At each site in the alignment the

values allocated to that site over the duration of the simulation is averaged over

and this average value is used. Figure 4.2 depicts this approach taken, and eq 4.48
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H L

ρ ρ*|site
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Figure 4.2: Ratefactor relabelling

The figure shows the effect of relabelling from the RJMCMC sampler. The left

two hypothetical charts show the value of the ratefactor vector positions that can

have high (H) and low (L) value labels. The three circles between them show

a later stage in the Gibbs sampling scheme where a death move has occurred

from there being two ratefactors in the ratefactor vector to only one ratefactor

to one after a death move. A death move forces the remaining ratefactor to

take on a value to satisfy both the high and low value regions resulting in an

’average’ value over all the positions. The arrow shows a pictorial result from the

completed simulation where the ratefactor values along the sites in the alignment

are presented. Since only the values of the allocated ratefactors are taken for each

position during the simulation, the labellings do not affect the inferred ratefactor

value at each position. The RJMCMC scheme would only cause a problem with

labelling if a certain ratefactor with a label were associated with a set of the sites

in the data. Eq 4.48 displays the equation used to achieve this.

defines how this is computed. From the values of the ratefactors, the mean, the

standard deviation and the percentiles are computed. These do not depend on the

labels, and the approach is therefore invariant with respect to the label switching.

4.3 Data

The purpose of the synthetic data study is to test that the RJMCMC inference

scheme is working properly. A range of problems in terms of difficulty are ex-

amined. The MATLAB programs used in Mantzaris and Husmeier (2009) were

extended to incorporate the transdimensional sampling of the ratefactor values.

In the work of Mantzaris and Husmeier (2009) (chapter 3) and Husmeier and

Mantzaris (2008) (chapter 2) synthetic sequence alignments were generated using
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taxa-1

taxa-4

taxa-3

taxa-2

Figure 4.3: Codon Model

A phylogenetic tree of 4 taxa with taxa 1 and 2 being adjacent. Here the branch

lengths are all of equal lengths.

the program SEQGEN, Rambaut (1996), available online as a web service:

htt p : //bioweb2.pasteur. f r/docs/seq−gen/, (4.46)

and the stand alone application supplied by the author,

htt p : //tree.bio.ed.ac.uk/so f tware/seqgen/. (4.47)

The alignments generated for this study were created using SEQGEN and also

from MATLAB programs the authors wrote for generating sequence alignments

according to a phylogenetic tree. Both programs were set to use the HKY

model of nucleotide substitution (Hasegawa et al. (1985)) set with the transi-

tion/transversion value of 2 as presented in subsection A.3. The equilibrium dis-

tribution for the nucleotides was set to uniform πA = πC = πG = πT = 0.25 which

results in a model identical to the Kimura model described in subsection 1.3.3.

Fig 4.3 shows a phylogenetic tree from 4 taxa, with taxa 1 and 2 being adjacent.

4.4 Synthetic Sequence Alignments

The various synthetic alignments are produced for testing the operation of the

new model’s capability at inferring the rate parameters and topologies along the

alignment. The relative rates of mutation at the codon level is uniform across

the alignment λ1,2,3 = 1
3 , and the branch lengths are kept uniform for the 5 values

w1,...,5 = 1
5 . The synthetic alignments produced are varied to test the ability of

the model to fit topology changes along the alignment as well as changes in the

rate of mutation.
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4.4.1 Alignment 1

A sequence alignment of 1.5Kbp is generated with 3 sections. Each section is a

continuous strand of 500bp each having the same topology as Fig 4.3 where taxa

1 and 2 are adjacent. In the first 500bp, y1...500 the rate of mutation is 1 which

creates a branch length vector of w1,...,5 = 1
5 . The columns y500...1000 are scaled by

2 with the ratefactor creating a branch length vector of w1,...,5 = 2
5 . The last base

pairs of the alignment y500...1500 are scaled by 0.5 (the ratefactor value) creating

a branch length vector of w1,...,5 = 1
10 .

4.4.2 Alignment 2

This synthetic DNA sequence alignment generated is similar to the alignment

in the previous subsection 4.4.1. The length of the alignment is the same and

the structure of rate heterogeneity is the same as well. The difference is that a

recombination event is included (change in the topology along the alignment).

The topology break point is at site 500 of the alignment. The topology bringing

taxa 1 and taxa 3 to be adjacent is used for generating the first 500bp and the

rest of the alignment with the topology grouping taxa 1 and 2 to be adjacent.

The branch length vectors for each topology is still uniform along all the lengths.

With the ratefactors the lengths are scaled to values w1,...,5 = 1
5 , w1,...,5 = 2

5 , and

w1,...,5 = 1
10 in the 3 respective regions. The relative codon rate vector λ is also

uniform along the whole alignment λ1...3 = 1
3 as was for the Alignment 1 in the

previous subsection 4.4.1. This alignment is used to further reinforce that the

model is capable of learning the right number of rate states.

4.4.3 Alignment 3

The previous two synthetic sequence alignments (subsection 4.4.1 and subsec-

tion 4.4.2) were used to test the model’s ability sample the number of rate states

which reflects the data generating process of the data. Alignment 2 in subsec-

tion 4.4.2 tests the model’s ability to sample the correct number of rate states, as

well as allow a change in the topology along the alignment. The topology change

happens at site 500, where a ratefactor state change also occurs. This alignment

number 3 is a variation to test the model’s ability to fit to data where the rate

state and topology state change are not occurring at the same site on the align-

ment. The only difference here is that the topology structure of the alignment
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is the grouping of taxa 1 and 3 for the sites 1 . . .750, and the topology grouping

taxa 1 and 2 for the sites 751 . . .1500. The ratefactors along the alignment have

break points at sites 500, 1000, and 1500 with rate factors values 1, 2, and 0.5

respectively.

4.5 Simulations

A histogram of the discrete number of ratefactors sampled from the RJMCMC

scheme, K̃i is made. The marginal posterior distributions for the topology at each

site, P(St |D), is plotted along the N sites of the alignment for each of the 3 possible

topologies. The posterior probabilities of the HMM transition parameters νR,S are

plotted along the number of Gibbs iterations as well as the log likelihood. The

individual ratefactors, ρi where i∈ 1 . . . K̃, are not plotted individually. The mean

of the sampled ratefactor values for each Gibbs iteration is plotted as the mean

of the posterior probabilities at each site on the alignment with the 50 and 95

percent credibility intervals plotted as well.

P(ρt |D) =
∑

N
i=1 ∑

K̃
j=1 ρ jδ(Ri

t , j)
N

(4.48)

is the equation used for finding the ratefactor value at each site where δ is the

Kronecker delta, and N is the number of Gibbs iterations. The Bayesian credi-

bility intervals are obtained by measuring the standard deviation in the samples

of the ratefactors at each site in the alignment. This is done using the standard

formula:

x̄± c×σx√
n

. (4.49)

Here x∼ P(ρt |D), n is the number of samples and c takes the values [0.6745,1.96]

for the 50 and 95 percent credibility intervals respectively.

To monitor the convergence of the sampling procedure, Gelman and Rubin

(1992), the potential scale reduction factors (PSRF) are measured for the pa-

rameters after the burnin phase which had values less than 1.2. The quantities

measured are from the trajectory of samples of the branch lengths for each topol-

ogy as well as the relative rates for the codon structure, the number of rate states,

and the values of the rate states. The simulations are all done with random initial

configurations.
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4.6 Results

In this section the results of the improved model used on synthetic DNA sequence

alignments are presented. The model performs correct inference with short se-

quences, topology changes (recombination events), and ratestate changes.

4.6.1 Alignment 1

Subsection4.4.1 describes the alignment examined under the extended FHMM

with trans dimensional sampling for the number of ratefactors. Fig 4.4 sum-

marises the results. In subfigure a) the posterior probabilities of the topologies

are shown along the sites in the alignment. The first subplot represents the

topology where the taxa labelled 1 and 2 are adjacent to each other which is

the topology used to create the data sequence alignment. The other topologies

contribute a negligible posterior probability. The subfigure b) shows the mean

ratefactor values during the simulation along the sites of the sequence alignment

with the 50 and 95 percent credibility intervals plotted (eq 4.48). The two break

points separating the three regions of different values of rate heterogeneity are

clearly distinct. The credibility intervals do not diverge from the mean at the

sites around the break point either. The correct values of 1, 2, and 0.5 are clearly

seen. Subfigure c) shows the histogram of the number of ratefactors, K̃ that the

RJMCMC sampler allocated to the ratefactor vector ρ during the simulation.

The correct number of ratefactors is 3 and has the majority of the density. There

is also a substantial proportion for there being 4 or 5 ratefactors. This shows

how the model can explore different numbers of ratefactors and still return to

provide correct inference. A large number of samples for less than two ratefactors

in the vector would result in significantly poorer results. Redundant values will

not alter the mosaic structure inferred. Subfigure d) presents three subplots the

following: the trajectory along the simulation for the log likelihood, the posterior

probability of νS and the posterior probability of νR. All three parameters show

that they are stable and have not altered much during the exploration of the

RJMCMC sampling stage.

The branch length vector w for the correct topology has the posterior mean (to

two significant figures) [0.22, 0.16, 0.21, 0.20, 0.20] and for the relative codon rate

vector λ (to two significant figures) [0.34, 0.31, 0.34], which are both very close

to the data generating processes values. For the Metropolis Hastings simulations,
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200 burnin steps followed with 900 sampling steps were given.

4.6.2 Alignment 2

Subsection 4.4.2 describes the sequence alignment used here as synthetically gen-

erated data. The alignment has 1500bp with a topology change at site 500, from

the tree having taxa 1 and 3 adjacent to having 1 and 2 adjacent. The ratefactor

break points are at sites 500, 1000, and 1500, with values 1, 2, and 0.5 in the

three sections. Fig 4.5 shows results of simulations in 4 subfigures.

In subfigure a) the posterior probabilities of the topologies are shown along

the sites in the alignment. The first subplot represents the topology where the

taxa labelled 1 and 2 are adjacent to each other which is the topology used to

create the sites in the data sequence alignment from 500 to 1500. The second

subplot represents the topology grouping taxa 1 and 3 together and was used as

the topology for sites 1 to 500. From the posterior probabilities shown there is

a clear break point at site 500 indicating a recombination event. The subfigure

b) shows the mean ratefactor values during the simulation along the sites of

the sequence alignment with the 50 and 95 percent credibility intervals plotted

(eq 4.48). The credibility intervals do not diverge from the mean at the sites

around the break points either. The correct values of 1, 2, and 0.5 are clearly

seen in the correct regions. Subfigure c) shows the histogram of the number

of ratefactors, K̃ that the RJMCMC sampler allocated to the ratefactor vector ρ

during the Gibbs simulation. The correct number of ratefactors 3 has the majority

of the density and there being a noticeable proportion for the numbers 4 and 5

shows how the model can explore different regions and still return to provide

correct inference. Significant number of samples for less than three states would

cause the model to infer mistaken results for this alignment. Subfigure d) shows

in the three subplots the trajectory along the simulation of the log likelihood, the

posterior probability of νS and the posterior probability of νR. These trajectories

indicate convergence.

The branch length vector w for the topology with taxa 1 and 2 being adjacent

is to two significant figures [0.21, 0.16, 0.25, 0.17, 0.19] and for the relative codon

rate vector λ to two significant figures [0.28, 0.42, 0.29]. For the topology grouping

taxa 1 and 3 the branch length vector sampled was w = [0.13,0.27,0.26,0.18,0.17]

and for the relative rates between the codon positions [0.45, 0.25, 0.3]. Both are
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Figure 4.4: Results of the synthetic alignment 1.

Subsection 4.4.1 describes the alignment used as data to produce the results

above. Using the phylogenetic tree topology of Fig 4.3 1500bp were generated

having three sections of rate heterogeneity. The rate heterogeneity break points

are at 500bp and 1000bp. Subfigure a) shows the marginal posterior probabilities

of the topologies at each column in the alignment. The topology having taxa 1 and

2 adjacent is represented in the first subplot showing that along the alignment the

model allocated close to all the sampled topology states to the correct topology.

Subfigure b) shows the sampled posterior mean of the rate factor values allocated

along the alignment. The three sections are clearly indicated with values of ρ

taking 1, 2, and 0.5 which are what was used to generate the data. The 50

and 95 percent credibility intervals are very close to the mean. Subfigure c) is

a histogram of the number of rate factor values that the ratefactor vector, ρ

contained during the Gibbs simulation. The majority shows that the correct

number of 3 contains the majority of the density. Subfigure d) shows in the three

subplots the trajectory of the log likelihood, topology transition parameter νS,

and rate state transition parameter νR which all have stable increasing values.
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close to the supplied vectors to the data generating processes. For the Gibbs

simulation 200 burnin steps followed by 200 sampling steps were given. For the

Metropolis Hastings simulations, step 200 burnin steps followed with 900 sampling

steps were given.

4.6.3 Alignment 3

Subsection 4.4.3 describes the sequence alignment parameters used to generate

the synthetic data used to test the model’s ability of fitting topology break points

which do not align with ratefactor break points. The alignment has 1500bp with

a topology change at site yt = 750, from the tree having taxa 1 and 3 adjacent

to having taxa 1 and 2 adjacent. The ratefactor break points are at sites 500,

1000, and 1500, with values 1, 2, and 0.5 in the three sections. Fig 4.6 shows the

results of simulation in 4 subfigures.

In subfigure a) the posterior probabilities of the topologies are shown along

the sites in the alignment. The 3 subplots show for each topology the posterior

probability along the sites in the alignment. The first subplot represents the

topology where the taxa labelled 1 and 2 are adjacent to each other which is the

topology used to create the sites in the data sequence alignment from 750 to 1000.

The second subplot represents the topology grouping taxa 1 and 3 together and

was used as the topology for sites 1 to 750. From the posterior probabilities shown

there is a topology change around the site 750 indicating a recombination event.

The subfigure b) shows the mean ratefactor values during the simulation along

the sites of the sequence alignment with the 50 and 95 percent credibility intervals

plotted (eq 4.48). The two break points separating the three regions of different

values of rate heterogeneity are clearly distinct. The credibility intervals do not

diverge from the mean at the sites around the break points either. The correct

values of 1, 2, and 0.5 are clearly observed. Subfigure c) shows the histogram of the

number of ratefactors, K̃ that the RJMCMC sampler allocated to the ratefactor

vector ρ during the Gibbs simulation. The correct number of ratefactors 3 has the

majority of the density and there being a noticeable proportion for the numbers 4

and 5 shows how the model can explore different regions and still return to provide

correct inference. A significant number of samples for less than two states would

cause the model to infer mistaken results for this alignment. Subfigure d) shows

in the three subplots the trajectory along the simulation of the log likelihood,



134Chapter 4. Including Reversible Jump Markov Chain Monte Carlo to adapt the number of rate factors

a)

200 400 600 800 1000 1200 1400
0

0.5

1

200 400 600 800 1000 1200 1400
0

0.5

1

200 400 600 800 1000 1200 1400
0

0.5

1

b)
0 500 1000 1500

0.5

1

1.5

2

c)
3 4 5 6

0

20

40

60

80

100

120

140

d)

0 50 100 150 200 250 300 350 400 450 500
−8000

−7000

−6000

lo
g 

Lh
oo

d

50 100 150 200 250 300 350 400 450 500
0

0.5

1

nu
 to

po
s

50 100 150 200 250 300 350 400 450 500
0

0.5

1

nu
 ra

te
s

Figure 4.5: Results of the synthetic alignment 2.

Subsection 4.4.2 describes the alignment used as data to produce the results

above. Subfigure a) shows the marginal posterior probabilities of the topologies

at each column in the alignment. The topology having taxa 1 and 2 adjacent

in the phylogenetic tree is represented with the first subplot, the second the tree

with taxa 1 and 3 being adjacent. The posterior probabilities along the sites is

represented along the alignment. There is a clear topology change at site 500 from

the topology of having taxa 1 and 3 adjacent, to the topology having taxa 1 and 2

adjacent. Subfigure b) shows the sampled posterior mean of the rate factor values

allocated along the alignment (eq 4.48). The three sections are clearly indicated

with values of 1, 2, and 0.5 which are what was used to generate the data. The

50 and 95 percent credibility intervals are very close to the mean. Subfigure c)

is a histogram of the number of rate factor values that the ratefactor vector, ρ

contained during the Gibbs simulation. The correct number of 3 contains the

majority of the density. Subfigure d) shows in the three subplots the trajectory

of the log likelihood, topology transition parameter νS, and rate state transition

parameter νR which all indicate convergence.
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the posterior probability of νS and the posterior probability of νR. All three

parameters show that they are stable and have not altered much during the

exploration of the RJMCMC sampling stage.

The branch length vector w posterior mean for the topology with taxa 1

and 2 being adjacent is to two significant figures [0.20, 0.23, 0.15, 0.20, 0.21]

and for the relative codon rate vector λ to two significant figures [0.34, 0.38,

0.28]. For the topology grouping taxa 1 and 3 the branch length vector sampled

was w = [0.14,0.25,0.22,0.20,0.19] and for the relative rates between the codon

positions [0.36, 0.30, 0.34]. Both are close to the supplied vectors to the data

generating processes. For the Gibbs simulation 200 burnin steps followed by 200

sampling steps were given. For the Metropolis Hastings simulations, step 200

burnin steps followed with 900 sampling steps were given.

4.6.4 Short alignments

In this section simulations with alignments of fewer base pairs are examined. All

the simulations of this section had for the Gibbs simulation 250 burnin steps and

250 sample phase steps. Other simulation lengths were also tested but minor

differences to convergence were made by giving an increase in iterations. Degra-

dation of the quality of the results occurs most commonly when the burnin phase

is less than 150 iteration for the burnin and the sample phase.

Figure 4.7 shows the results from the model run on an alignment of 300bp. The

alignment was produced with 2 recombination events and three different regions

of rate heterogeneity whose changepoints occur at sites 100 and 200. Subfigure

d) is a diagram showing the structure of these features along the alignment. We

expect to see topology changes at these points from topology 1 to 2 and then

to 3. Subfigure a) shows the posterior probabilities along the sites for the three

topologies. The signal is not very stable along any of the topologies which is due

to the lack of sufficient data for there to be less uncertainty. However, there is

a clear indication that the model is being affected by the change in the topol-

ogy along the alignment. Subfigure b) shows the ratefactors with the credibility

intervals of 50 and 95% (according to eq 4.48). The 3 rate states are clearly dis-

tinguishable and have the changepoints close to the sites of 100 and 200. Around

those site the credibility intervals are wide as the allocation of the rate states

can shift sites placing different rate factor values there different from previous
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Figure 4.6: Results of the synthetic alignment 3.

Subsection 4.4.3 describes the alignment used as data to produce the results

above. The phylogenetic tree topology grouping taxa 1 and 3 is used for producing

the first 750bp of the alignment, and the rest of the 1500bp from the topology

grouping taxa 1 and 2. There are three generated sections of rate heterogeneity.

The rate heterogeneity break points are at 500bp and 1000bp, with rate factors

of 1, 2 and 0.5. Subfigure a) shows the posterior probabilities of the topologies

at each column in the alignment for each topology in a subplot. The topology

having taxa 1 and 2 adjacent in the phylogenetic tree is represented with the first

subplot, the second the tree with taxa 1 and 3 being adjacent. There is a topology

change across the corresponding subplots around the site 750 is correct. Subfigure

b) shows the sampled posterior mean of the rate factor values allocated along the

alignment (eq 4.48). The three sections clearly indicated with values of 1, 2,

and 0.5 which are the values used to generate the data. The 50 and 95 percent

credibility intervals are very close to the mean. Subfigure c) is a histogram of the

number of rate factor values that the ratefactor vector, ρ contained during the

Gibbs simulation. It shows that the correct number of 3 contains the majority

of the density. Subfigure d) shows in the three subplots the trajectory of the log

likelihood, topology transition parameter νS, and rate state transition parameter

νR along the iterations of the simulations have stable increasing values.
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samples. Subfigure c) shows the histogram of the number of ratefactors the RJM-

CMC sampler produced during the simulation. For the 3 topologies the branch

length vectors uncovered were: [0.17;0.03;0.40;0.29;0.11],[0.24;0.05;0.23;0.30;0.17]

and [0.41;0.07;0.11;0.2;0.2]. The relative codon rate vectors for the topologies

sampled were: [0.11;0.81;0.08], [0.43;0.39;0.18] and [0.24;0.10;0.66].

Figure 4.8 shows the results from the model run on an alignment of 300bp.

The alignment was produced with a recombination event at site 150 and three

different regions of rate heterogeneity whose changepoints occur at sites 100 and

200. The difference from figure 4.7 is that the changepoints for topology changes

do not lie on the same sites as the change points for the ratefactors. Subfigure

d) is a diagram showing the structure of these features along the alignment. We

expect to see topology changes at these points from topology 1 to 2 in the center

of the alignment. Subfigure a) shows the posterior probabilities along the sites

for the three topologies. The signal is stable enough to clearly determine the

correct topologies along the alignment and the change point at site 150 is clearly

seen. Subfigure b) shows the ratefactors with the credibility intervals of 50 and

95% (according to eq 4.48). The 3 rate states are not all clearly distinguishable

as the second changepoint expected at site 200 is not strong enough to indicate

a new state. This can be due to the fact that the topology changes can assist

the model to find stronger incentive for the creation of a new ratefactor state.

Subfigure c) shows the histogram of the number of ratefactors the ratefactor

vector contained during the simulation. It is evident that the model does not hold

often more than 2 ratefactors. Longer simulations were run to examine whether

this lack of a changepoint at site 200 is due to convergence or lack of data, and

differences were not noted with a Gibbs burnin and sampling phase of 400 and

700 respectively. For the 3 topologies the branch length vectors uncovered were:

[0.22;0.09;0.38;0.05;0.26], [0.18;0.10;0.30;0.10;0.31] and [0.17;0.18;0.07;0.15;0.43].

The relative codon rate vectors for the topologies sampled were: [0.27;0.40;0.33],

[0.30;0.40;0.30], and [0.22;0.43;0.35].

Figure 4.9 shows the results from the model run on an alignment of 750bp.

The alignment was produced with recombination events at sites 250, and 500.

There are 3 different regions of rate heterogeneity whose changepoints occur at

sites 250 and 500. The purpose is to examine the effect of having an alignment of

the same format as figure 4.7 when it is longer. Subfigure d) is a diagram showing

the structure of these features along the alignment. We expect to see topology
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Figure 4.7: 300bp alignment with 3 regions of rate heterogeneity and 2 recombination

events.

A synthetically produced sequence alignment 300bp long is generated. There

are 3 recombination events and three regions of rate heterogeneity with change

points at sites 100 and 200. Subfigure d) shows a diagram of the structure of

the alignment. Subfigure a) shows the marginal posterior probabilities of the

topologies along the sites of the alignment where the topology structure of the

data generating process can be seen with the addition of noise. Subfigure b)

shows the mean of the posterior samples of the ratefactors with the 50 and 95

percentile credibility intervals. There is large uncertainty around the sites of the

changepoints but the structure of the rates is uncovered. Subfigure c) shows the

histogram of the number of ratefactors allocated from the RJMCMC scheme.
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Figure 4.8: 300bp alignment with 1 recombination event and 3 regions of rate het-

erogeneity.

A synthetically produced sequence alignment 300bp long is generated. There is

a recombination event at site 150 and three regions of rate heterogeneity with

change points at sites 100 and 200. Subfigure d) shows a diagram of the structure

of the alignment. Subfigure a) shows the marginal posterior probabilities of the

topologies along the sites of the alignment where the topology structure of the

alignment shows the break point in the middle of the alignment. Subfigure b)

shows the mean of the posterior samples of the ratefactors with the 50 and 95

percentile credibility intervals (dashed and dotted lines respectively). It can be

seen that the changepoint at site 200 is not present. Other simulations show a

noticeable gradient towards the end of the alignment but none show clear dis-

tinguishable change point. Subfigure c) shows the histogram of the number of

ratefactors allocated from the RJMCMC scheme. The model’s prior outweighs

the likelihood of greater number of ratefactors to apply another changepoint to

the alignment.
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changes at these points from topology 1 to 2 at site 250 and from 2 to 3 at site

500. Subfigure a) shows the posterior probabilities along the sites for the three

topologies. The signal is stable enough to clearly determine the correct topologies

within the expected regions. Subfigure b) shows the ratefactors with the credibil-

ity intervals of 50 and 95% (according to eq 4.48). The 3 rate states are all clearly

distinguishable. Subfigure c) shows the histogram of the number of ratefactors

the RJMCMC sampler produced for the ratefactor vector during the simulation.

The quality of the results reveals the limit to how much data is needed for correct

inference in such a situation. For the 3 topologies the branch length vector poste-

rior means uncovered were: [0.19;0.18;0.16;0.28;0.19], [0.23;0.22;0.1;0.29;0.17] and

[0.23;0.26;0.12;0.23;0.16]. The relative codon rate vector posterior means for the

topologies sampled were: [0.38;0.31;0.31], [0.38;0.29;0.33], and [0.22;0.51;0.27].

Figure 4.10 shows the results from the model run on an alignment of 750bp.

The alignment was produced with a recombination events at site 375. There are

3 different regions of rate heterogeneity whose changepoints occur at sites 250

and 500. The purpose is to examine the effect of having an alignment of the same

format as figure 4.8 when it is longer, and see whether the model still has the

inability in not finding the third region of rate heterogeneity. Subfigure d) is a

diagram showing the structure of these features along the alignment. We expect

to see a topology change at site 375, from topology 1 to 2, and changepoints

in the ratefactor allocation states at sites 250 and 500. Subfigure a) shows the

posterior probabilities along the sites for the three topologies. The signal is stable

enough to clearly determine the correct topologies within the expected regions.

There is a presence of noise but not strong enough to infer an incorrect topology

and multiple runs of the simulation did not remove this problem. Subfigure b)

shows the ratefactors with the credibility intervals of 50 and 95% (according to

eq 4.48). The 3 rate states are all clearly distinguishable. There is a spike in

the value at the 500bp changepoint site. The credibility intervals are wide as

well. This is an improvement over the analogous alignment of 300bp which did

not produce a clear changepoint in the rate state. For limited data not having a

crisp breakpoint is anticipated. Subfigure c) shows the histogram of the number

of ratefactors the RJMCMC sampler produced during the simulation.

For the 3 topologies the branch length vectors uncovered were:

[0.22;0.14;0.25;0.20;0.18], [0.24;0.12;0.23;0.21;0.20] and [0.19;0.11;0.10;0.36;0.25].

The relative codon rate vectors for the topologies sampled were: [0.34;0.31;0.34],



4.6. Results 141

a)

100 200 300 400 500 600 700

0

0.5

1

100 200 300 400 500 600 700

0

0.5

1

100 200 300 400 500 600 700

0

0.5

1

b)
0 100 200 300 400 500 600 700 800

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

c)
3 4 5 6 7 8

0

10

20

30

40

50

60

70

80

90

d)
ρ =2 ρ =0.5 ρ =1

1
1

1

4
3

2

3
2

3

24
4

250bp 250bp

Figure 4.9: 750bp alignment with 2 recombination events and 3 regions of different

rate heterogeneity.

A synthetically produced sequence alignment 750bp long is generated. There

are recombination events at sites 250 and 500, and the three regions of rate

heterogeneity have change points occurring at the same sites. Subfigure d) shows

a diagram of the structure of the alignment. Subfigure a) shows the marginal

posterior probabilities of the topologies along the sites of the alignment where

the topology structure of the alignment shows the break points at sites 250 and

500 clearly. The topologies in the respective regions have stable majorities of

the posterior distributions along the sites. Subfigure b) shows the mean of the

posterior samples of the ratefactors with the 50 and 95 percentile credibility

intervals. The changepoints are clear and at the correct sites. The ratefactor

values are also correct with tight credibility intervals. Subfigure c) shows the

histogram of the number of ratefactors allocated from the RJMCMC scheme.
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[0.33;0.34;0.33], and [0.27;0.30;0.44].

4.6.5 Note about the results of the ratefactors along the sites

From the figures of the results of the simulations presented in this section there is a

feature commonly observed which is not explained by the data generating process.

This feature is in the subfigures b) of the figures and requires an explanation. In

these subfigures the mean of the ratestate values sampled along the sites of the

alignment is plotted as calculated in eq 4.48. In the figures 4.4 to 4.8 it can be

seen that there is a change in the mean plotted value shortly before the last sites

in the alignment. In the case of figure 4.7 this aligns with a topology change, but

in the rest of the simulations a small increase can be observed.

There is a geometric prior on the length of a segment given the way that the

state transitions are modelled. The probability for a segment length N is (1−
ν)N−1ν. Shorter segment lengths have greater support in the absence of enough

data. Ratestate changes into an inaccurate ratefactor value will not create a large

penalisation when applied to a small number of sites (ie. towards the end of the

alignment). As the sampling procedure proposes moves into alternative rate state

values, incorrect ones can more likely be accepted in this region. The increase

rather than decrease is because in these simulations the alternative ratefactor

values available are all of a greater value. An average of the occasionally greater

ratefactor values and the correct value creates a slight increase.

4.7 Discussion

The generalised FHMM of Mantzaris and Husmeier (2009) was extended to in-

clude the transdimensional sampling for the rate factors along the alignment.

The work of this chapter addressed the limitation in that the number of rate fac-

tors had to be defined beforehand (the size of the rate factor vector ρ was fixed

during the simulations). The improved phylogenetic FHMM developed in this

chapter includes the sampling of the branch lengths w, the relative vector for the

codon level of rate heterogeneity λ, and now the RJMCMC scheme introduced

to sample the number of number of ratefactors K̃ for the ratefactor vector ρ.

As shown with the synthetic sequence alignments the model is able to find the

regions of rate heterogeneity along the sequence alignment applying appropriate
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Figure 4.10: 750bp alignment with 1 recombination event and 3 regions of different

rate heterogeneity.

A synthetically produced sequence alignment 750bp long is generated. There is

a recombination event at site 375, and three regions of rate heterogeneity change

points occur at the same sites. Subfigure d) shows a diagram of the structure of

the alignment. Subfigure a) shows the posterior probabilities of the topologies

along the sites and the expected change point for the correct topologies is seen

in the center about site 375. There is some noise in the signal and running the

program for longer or reproduced synthetic data does not remove sporadic dis-

turbances in the signal. Subfigure b) shows the mean of the posterior samples of

the ratefactors with the 50 and 95 percentile credibility intervals. The change-

points are crisp and at the right sites. The ratefactor values are correct with tight

credibility intervals. The changepoint at site 500 has a large sporadic spike and a

wide credibility interval. This does not always appear but is a feature that is not

uncommon at the changepoints when there is a lack of data. This is one more

example of how the structure of this alignment where the topology changes are

not inline with the different regions of rate heterogeneity creates difficulty for the

model. Subfigure c) shows the histogram of the number of ratefactors allocated

from the RJMCMC scheme.
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break points and sampling the correct number of ratefactors. The credibility in-

tervals for the sampled parameter values are close to the sampled means in the

simulations. Convergence was obtained for the sampled parameters according to

the Gelman and Rubin potential scale reduction factors with values below 1.2.

The synthetic DNA sequence alignments had their underlying parameters used in

the data generating process found with the break points along the sites as well.

Topology changes were able to be inferred independently of the ratefactors.

The model with the extension copes with the increased complexity in the pres-

ence of a sufficient amount data. Without sufficient data the uncertainty in the

estimates produces results with many oscillations between topology estimates and

an inaccurate number of inferred ratefactors. With sufficient data the alignments

with many features did not display excessive uncertainty. Therefore it can be

concluded that the method copes with the improvement made in the presence of

sufficient data supplied for the break points of either the topologies or ratefactors.



Chapter 5

Application to Neisseria

This chapter deals with the analysis of a real world DNA sequence alignment of

Neisseria and the presence of inter species recombination. This data set (the Neis-

seria alignment) was extracted and initially analysed in Zhou and Spratt (1992).

The genes extracted from the genome are the argF, fbp, and recA genes. The

sequences can be found in the EMBL database with pubmed id number 140654.

The work of Husmeier (2005), which introduces the phylogenetic FHMM, uses a

subset of this Neisseria data set by choosing 4 sequences in creating an alignment.

(The phylogenetic FHMM is discussed in this thesis in subsection 1.9.4.)

The 4 sequences chosen in Husmeier (2005) were based on the work done in

Zhou and Spratt (1992) whose findings revealed that there is recombination in

the argF gene. In both these works the authors use a simpler inference process to

determine the recombination break points compared to the method discussed in

this chapter. Because of the limitations of the earlier models, it is possible that

there are other recombination break points between other strains which can be

found via the improved PFHMM developed in this thesis. The improved phylo-

genetic FHMM (PFHMM or phylo-FHMM) is too computationally demanding to

analyse directly all of the sequences submitted by Zhou and Spratt (1992). The

number of sequences must be reduced to restrict the size of the topology search

space. Other methods are employed to assist in the process of choosing align-

ments of 4 sequences to be analysed. These methods help ’prune’ unnecessary

sequences from the alignment. A brief overview of the process of pruning the

alignment is given here, and the different methodologies applied are mentioned

here as a primer.

The first method applied to the sequence alignment is that of phylogenetic net-

145
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works described in section 5.1.2. It constructs a phylogenetic network from the

complete submitted data set of Neisseria sequences. The phylogenetic network

has similarities to a phylogenetic tree with the difference that it displays indi-

cations of evolutionary events which disagree with a single tree topology (events

such as recombination), and that cycles are introduced. The method delivers

a very coarse indication of which strains in the given data set contain possible

recombination break points and which strains are closely related. Later in this

chapter it is demonstrated how using the network constructed from the sequences

a simplification is made to reduce the number of strains of meningitidis used.

In the following subsection 5.1.2 phylogenetic networks are then applied to the

reduced set of strains. All possible phylogenetic networks of 4 DNA sequences

are generated and presented. The set of alignments which indicated the largest

presence of possible recombination between them are identified.

The DSS statistic is then introduced in section 5.2 and is applied in sub-

section 5.2.2. This method produces more detailed information about possible

recombination break points along alignments. Guided by the results of applying

DSS to the reduced set of alignments, the number of alignments of 4 sequences

is further reduced. With the same motivation BARCE is then discussed in sec-

tion 5.3 and applied in subsection 5.3.2 to the alignments highlighted from DSS.

The improved analysis offered by BARCE will then be compared to the simulation

results produced by the improved PFHMM subsequently.

For completeness, on the Neisseria data set the DSS and BARCE highlighted

alignments are also used with the different alignments chosen in Husmeier (2005)

and Zhou and Spratt (1992). These results are presented in subsection 5.4.1. This

gives a comparison of the recombination break points that arise from each of the

methods of analysis. Calculating PFHMM results is computationally expensive,

so to demonstrate the use of the improved PFHMM a selection of alignments are

chosen from the BARCE simulations and are then processed with the improved

PFHMM, shown in section 5.4.2.

Finally, a conclusion section discusses the work done in this chapter. The

methodological and biological conclusions that can be derived from the simula-

tions are given. An overall conclusion about the investigation is made and an

avenue for future work is proposed.
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5.1 Phylogenetic Networks

From the available phylogenetic network methods, in this work SplitsTree4, from

Huson and Bryant (2006), is chosen to produce phylogenetic networks. This

method is chosen because it is well established, easily tractable and well supported

in software. This choice is not significant to the findings of this work. The

paper, Huson and Bryant (2006) provides a detailed introduction to the method

and the underlying theory. The authors discuss the use of these networks as a

preliminary step to tree-based analysis which is how the method is used in this

thesis for selecting sequence alignments. To summarise the process, alignments

are produced from the publicly available Neisseria sequences with ClustalW, and

then phylogenetic networks are produced from the alignments using SplitsTree4.

5.1.1 Definition

Phylogenetic networks attempt to model evolutionary events which cannot be

described by a single tree. A tree topology is appropriate when the sequences

have evolved via point mutations alone, but inappropriate for expressing features

such as a recombination event. These networks display the set of possible tree

topologies which there is evidence for in the data. This is done by examining each

column of the alignment independently and producing a phylogenetic tree for the

column, with a non-probabilistic method. These trees are then combined into a

single network in an additive manner. In combining trees into a network, edges

which overlap between 2 trees are mutually reinforcing and so have their lengths

increased in a cumulative manner. In cases where edges do not overlap between

trees, both possibilities must be represented in the phylogenetic network. This is

achieved by introducing 2 auxiliary nodes with 2 pairs of parallel branches equal

in size to the conflicting branches (conflicting in that they do not support a single

bifurcating tree). This introduction creates a trapezoid from where there was

originally a single line. Phylogenetic networks may be simplified by collapsing

conflicted nodes, which if continued will ultimately collapse to a tree structure.

When collapsing conflicted nodes, removing a pair of edges and their auxiliary

nodes simply restores one of the original network topologies used to produce the

split. In these networks, as in phylogenetic trees, the lengths of all the edges are

proportional to the expected number of substitutions between the taxa. There

are frequently many splits in a phylogenetic network. Visualisation of a phylo-
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genetic network lends itself easily to interpretation, any splits are represented as

trapezoidal areas and the magnitude of the conflicts between network topologies

is seen from the sizes of the trapezoidal regions.

A phylogenetic network of a sequence alignment gives indications of recombi-

nation events (horizontal transfer of genetic material), gene duplication or loss,

and hybridisation that may have occurred in the genetic history of the taxa. All

these events are non-linear, but in this work the focus is on recombination be-

cause it is the natural point for continuation of earlier published work. There is

much scope for improvements of the SplitsTree4’s method of discovering recombi-

nation as phylogenetic networks do not find the sites for the break points of these

non-linear evolutionary events. In general not only is the location of these events

not represented by phylogenetic networks, these networks also do not explicitly

provide indications for which of the possible non-linear evolutionary events might

have occurred.

Figure 5.1 shows an image of a phylogenetic network produced from the set

of DNA sequences containing the argF, fbp, and recA genes of Neisseria. This

was published by Zhou and Spratt, and the sequences can be found in the EMBL

database with pubmed id number 140654. The publication, Zhou and Spratt

(1992), identifies a possible recombination event in the argF gene. This can be

seen in the splits between the sequences with large trapezoids indicating large

conflicting signals between sequences in regions on the network. The naming

on the phylogenetic network (from the scheme in EMBL) is simplified by us-

ing an abbreviation. The corresponding accession numbers of the sequences are

replaced by the first letter of the strain’s name and the last 2 digits of the iden-

tification number. The groups are ’G’ for Gonorrhoeae, ’M’ for Meningitidis, ’C’

for Cinerea, ’P’ for Polysaccharea, ’L’ for Lactamica, ’F’ for Flavescens and ’Mu’

for Mucosa. From the network it can be seen that there is a substantial amount

of area in the trapezoidal netting involving the strains ’G’, ’P’, and ’L’. Recombi-

nation detection will then likely involve these strains. The ’M’ strains have very

small distances between them, which is reasonable given that they are from the

same family of strains. They can then be considered identical for the purpose of

detecting recombination and have a representative strain used in place of the set

of strains. This simplification will greatly reduce the set of possible alignments

of 4 sequences needed for using BARCE and the improved PFHMM.
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Figure 5.1: Figure of phylogenetic network produced from sequence of Neisseria with

possible recombination in the argF gene

The phylogenetic network produced from the sequence alignment of Neisseria

containing the argF, fbp and recA genes. The phylogenetic network has ab-

breviated labels. . In the diagram G stands for Neisseria Gonorrhoeae, M for

N.meningitidis, C for N.cinerea, P for N.polysaccharea, L for N.lactamica, F for

N.flavescens and Mu for N.Mucosa. Strains G, P, and L produce large conflicting

signals for a single topology (indicated by large trapezoidal regions). This high-

lights them as candidates for detecting recombination. The group of M strains

can be reduced to a single representative strain. There is little indication for

recombination (conflicting signals for a single topology) between the family of M

strains.
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5.1.2 Application of Phylogenetic Networks

The next step in the analysis is to use phylogenetic networks to analyse the Neis-

seria alignment by producing alignments of 4 sequences. The results will provide

evidence as to which alignments have the largest indication of recombination.

These alignments will then be used with a more complex method for identifying

recombination. There are 7 families of strains (as given by the results of fig-

ure 5.1) to be grouped into alignments of 4 sequences, and a full search of the

possibilities requires
(7

4
)

= 35 networks to investigate.

Figure 5.2 shows the results of this investigation with phylogenetic networks

of four sequences. Conflicting signals in the networks can be seen as trapezoidal

regions. The size of the trapezoidal regions indicates the degree to which there

is evidence of a lack of support for a single phylogenetic tree. The images of

the networks are not rescaled so their sizes can be interpreted by the reader for

obtaining an indication of the expected number of mutations along the branch

lengths. It can be seen that the networks with the largest enclosed trapezoidal

areas are in subfigures 15, 16, 17, 18, 19 and 20. These subfigures correspond to:

(M,Mu,L,G), (M,Mu,P,G), (M,C,L,P), (M,C,L,G), (M,C,P,G), and (M,L,P,G).

The commonality of the strain M in all these highlighted alignments, in combina-

tion with the absence of such areas in alignments which do not include the strain

M provides strong evidence that a recombination event can be anticipated when

strain M is included in an alignment. Using this evidence to propose strain M as

a reference strain, further analysis shows that the strains G,P and L are sufficient

in combination with strain M to show evidence of recombination under analysis

of the 4 sequence phylogenetic networks. In summary recombinant strains with

respect to M can be detected in any network that also includes strains G, P or L.

Having determined the probable recombinant strains, this reduced set of align-

ments will be used with more complex methods to obtain a more accurate picture

of the possible recombination events in these sequences.

5.2 DSS: Difference of Sums of Squares method

The difference of sums of squares method (DSS statistic eq 5.2) is used to infer

possible recombination events in sequence alignments. The method uses a rolling

window to segment the sequence alignments and then examines the consistency of
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Figure 5.2: The phylogenetic networks of 35 possible alignments of the argF gene of

Neisseria

Phylogenetic networks are produced from alignments of 4 sequences. From the

total set shown here 15, 16, 17, 18, 19 and 20 show the largest rectangular re-

gions (proportional to the conflicting signal for a single tree topology). These

alignments will be used subsequently with a more complex methodology for in-

ferring recombination. These alignments highlighted correspond to: (M,Mu,L,G),

(M,Mu,P,G), (M,C,L,P), (M,C,L,G), (M,C,P,G), and (M,L,P,G). The abbrevia-

tion used here is described in the caption of figure 5.1.
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the scores of candidate phylogenetic trees within the segments. Large differences

within a region indicate increased likelihood of topology break points possibly

caused by recombination events having occurred within that region. In calculating

the DSS statistic the windowed section of the sequence alignments is divided into

2 halves and the first half is used to estimate a reference phylogenetic tree. Using

this reference tree a goodness-of-fit score is then computed for both the first and

the second half of the window. The difference between these scores gives the DSS

statistic which is used to determine whether a recombination event is present

or not. The window sizes can be configured and affect the sensitivity of the

DSS statistic. Much of the background to the method is described in McGuire

and Wright (2000), and is used in the TOPALi software presented in that same

publication. Generally a window size of approximately 200-500 base pairs is used,

and a window size of 400 is recommended by the original authors. In this work,

following preliminary validating experiments we find that the suggested window

size of 400 base pairs is adequate as recommended. Figure 5.3 depicts this method.

Because of the computational cost maximum likelihood is not used for inferring

the reference tree on the first (left) half of the window, instead a distance metric

is used. Subsection 1.4.1 describes distance methods and the shortcomings they

have.

5.2.1 Definition

For the equation below, di is used to denote the set of pairwise distances of the

sequence alignments in the left side of the window. The reference tree is generated

from these pairwise distances using the neighbour joining algorithm. d̃i, is the set

of pairwise distances for the right side of the window. The reference tree has an

associated set of pairwise distances ei, with which the distance to the sets di and

d̃i are compared. From the two halves of the window, 2 goodness-of-fit scores are

obtained; SSl and SSr for the left and right halves respectively. The equation is:

SSl = Σi(di− ei)2,SSr = Σ(d̃i− ei)2 (5.1)

and the DSS statistic is the absolute difference between these scores:

DSS = |SSr−SSl|. (5.2)

Every windowed region consists of two halves and a generated reference tree.

If the reference tree has a similar goodness-of-fit score for both halves then the
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Figure 5.3: The DSS method for detecting regions of recombination

A pictorial description of the DSS method is shown in the figure. The sliding

window is moved across the sequence alignment. At each step a reference tree is

computed from the left side and distances to the reference tree are compared for

the left and right halves. The DSS statistic (eq 5.2) is computed to measure the

difference between these 2 regions. In regions where there is no recombination

the statistic will give a low value and when the window is centered around the

point where there is recombination the statistic will give a high value. Adapted

from figures of Husmeier et al. (2005a).
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reference tree was a good fit over the window and the DSS statistic will be low.

Conversely if the reference tree fails to adequately fit both halves then the DSS

statistic will be high. Thus the method delivers an approximate location for the

presence of recombination events between the first and second half of the window

as inferred by the DSS statistic. When the DSS statistic is large (the absolute

value of the difference is taken) it is an indication that a recombination event has

taken place near the window’s centre. To be acceptable the values of DSS statistics

need to be tested for significance, to do this parametric bootstrapping is used to

compute the distribution of the DSS peaks under the null hypothesis where there

is no recombination. The DSS statistics are compared to the bootstrapped values

to identify significant peaks. The bootstrap method proceeds by calculating the

DSS statistics for perturbed sequence alignments generated by sampling with

replacement the columns of the original sequence alignment data. For all sites

along the sequence alignment the significance of the DSS statistic is calculated for

the original (unperturbed) sequence alignment against the sampled distribution

of the DSS statistics for the perturbed sequence alignments via bootstrapping.

In this work a significance of 95 percent is required to reject the null hypothesis

that no recombination event occurred.

The main drawback of this method is that by using a distance based method

structural information is being lost, as discussed in subsection 1.4.1. The uncer-

tainty in the estimation of a reference tree is also not captured by the method.

Additionally the choice of the size of the window plays a large role in the sen-

sitivity of the method, smaller window sizes will produce more DSS peaks than

larger windows but also a larger values of the bootstrapping confidence interval.

For the intended purpose of obtaining a more refined subset of alignments from

the set found using phylogenetic networks (5.1.2), DSS is a fast and convenient

method.

5.2.2 Application of the DSS statistic

Topali version 1 is used for computing the DSS statistic along the alignments.

For DSS, a window of 400 base pairs is chosen as advised by the original authors

who use this length in the paper presenting the method. The sequence alignment

used in this work is relatively short, and there may not be enough data to support

the use of a complex nucleotide substitution model. The Jukes-Cantor model of
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nucleotide substitution is used by the authors and this model is our chosen model

of nucleotide substitution as well.

The previous analysis shown in figure 5.2 was performed with phylogenetic

networks, and the highlighted alignments (detailed in the caption) are used as

the initial sequence alignment set for this analysis. In addition to the initial set

of 6 alignments, two extra alignments are included; (M,Mu,C,P) and (F,Mu,L,G).

These are included to improve the repertoire; the first additional sequence align-

ment does not include the strain G which is otherwise represented in the selection

almost without variation, and the second one is added to include strain F which

is not present at all in the rest of the alignments.

From the previous analysis shown in figure 5.2 a subset of the alignments

whose results are shown are chosen to be analyzed with DSS. The full set of

alignments chosen to be analysed with DSS is (referring to the subfigures of

figure 5.2): (M,Mu,C,P) 12), (M,Mu,L,G) 15), (M,Mu,P,G) 16), (M,C,L,P) 17),

(M,C,L,G) 18), (M,C,P,G) 19), (M,L,P,G) 20), and (F,Mu,L,G) 23). The numbers

and abbreviations are shown in the caption of figure 5.1.

Figure 5.4 shows in subfigures a) to h) the results of these DSS simula-

tions (using TOPALi) on the alignments (M,Mu,C,P) 12), (M,Mu,L,G) 15),

(M,Mu,P,G) 16), (M,C,L,P) 17), (M,C,L,G) 18), (M,C,P,G) 19), (M,L,P,G) 20),

and (F,Mu,L,G) 23). The subfigures b) and e) look identical at the first glance but

do have small differences. The red dotted line is from the bootstrap 95 percentile

which is a reference point for the null model of no recombination. Values above

the bootstrap value are indications that the DSS statistic (eq 5.2) for the data

shows a sufficiently strong signal for a non-homogeneous region. From the dia-

grams produced by TOPALi, the subfigures a, b, d and e show significantly larger

indications for heterogeneous regions than the other 4. This subset is therefore

the focus of further analysis. The other 4 subfigures do show occasional peaks

above the threshold, but the irregularity of the occurrences do not provide strong

support for recombination. The reason for discarding these sporadic peaks is that

the recombination event would have to be of a significant length to be detectable

using these methods, and the peaks seen on subfigures c,f,g and h are too brief

to be distinguished from sampling noise. Since the 95 percent confidence interval

for the bootstrap is taken, 1 in 20 sites can be expected to pass the threshold,

and alignments showing at least 50 sites above the threshold are taken.
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a) b)

c) d)

e) f)

g) h)

Figure 5.4: Selected subset of argF alignments analysed with DSS

Presented in the subfigures are the results of using DSS with a window size of 400

base pairs on the following alignments: (M,Mu,C,P), (M,Mu,L,G), (M,Mu,P,G),

(M,C,L,P), (M,C,L,G), (M,C,P,G), (M,L,P,G), and (F,Mu,L,G). These align-

ments were chosen according to the results presented in figure 5.2, using phy-

logenetic networks. The horizontal axis represents the sites along the sequence

alignment and the vertical axis the DSS statistic value. The dotted red line corre-

sponds to the 95 percentile for the null hypothesis that there is no recombination.

Sustained peaks above this red line have strong indications of recombination at

these sites. Subfigures a, b, d and e show the greatest indication for heterogeneous

regions (recombination) along the alignments.
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5.3 BARCE

The method, BARCE (phylogenetic HMM or a pHMM described in Husmeier and

McGuire (2002)), is an implementation of a Bayesian model using MCMC to infer

topology changes along DNA sequence alignments. This model is a predecessor to

the PFHMM of Husmeier (2005) which is a predecessor to the improved PFHMM

developed in this thesis (BARCE is similar to the model of Husmeier (2005)

without the modelling of the ratefactors). The BARCE model simulations return

the posterior probability of each phylogenetic tree topology at each of the sites in

the sequence alignment. Subsection 1.9.1 describes the approach of using HMMs

for detecting recombination along alignments which is the theoretical foundation

that applies to BARCE. For the purposes of this chapter, the statesequence of

the topologies inferred by the model, S, is the result of interest.

5.3.1 Definition

The topology state sequence S = (S1, . . . ,SN) is defined as in eq 1.73. The branch

length vector, w, and the nucleotide substitution parameters, θ are included in

the model as in eq 1.71. For the probability of the data at each site t; P(yt |St ,w,θ)

(emission probability) is calculated using the Kimura nucleotide substitution

model described in subsection 1.3.3. The joint distribution is given as in eq 1.87

where νS is replaced with ν. Rate heterogeneity is not modelled in BARCE,

and the PFHMM (described in subsection 1.9.4) has an independent chain for

fitting the ratefactors along the sites of the sequence alignment. The posterior

probability of the state sequence is found by integrating out all the other parame-

ters P(S|D) =
R

P(S,ν,θ,w|D)dνdwdθ. This integral is computed via an MCMC

simulation in a Metropolis-Hastings and Gibbs-within-Gibbs scheme:

S(i+1) ∼ P
(
·|ν(i),w(i),ν(i),D

)
(5.3)

ν
(i+1) ∼ P

(
·|S(i+1),w(i),θ(i),D

)
(5.4)

w(i+1) ∼ P
(
·|S(i+1),ν(i+1),θ(i),D

)
(5.5)

θ
(i+1) ∼ P

(
·|S(i+1),w(i+1),ν(i+1),D

)
(5.6)

This inference scheme is similar to the scheme of the PFHMM as it is presented in

subsection 2.12.3. The inference of the topology state sequences (eq 5.3) was done

via the Gibbs-within-Gibbs scheme described in the section A.9 and presently it
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is done via the stochastic forward-backward algorithm.

Applying BARCE is more computationally demanding than applying the DSS

statistic but less than would be required to calculate the posterior probability for

the topologies with the improved PFHMM. One of the benefits of an analysis

with this model over DSS is that it does not rely on the distance measures which

have the intrinsic failures mentioned. The uncertainty between the choices of

topologies along the sites of the alignment is also captured with BARCE. Using

this method requires that the MCMC simulations converge and this is checked

by running simulations multiple times under different initial configurations and

iteration limits to test whether equivalent results are produced.

5.3.2 Application of BARCE

The work performed with the DSS statistic, presented in figure 5.4, highlighted

certain sequence alignments for further analysis. The alignments shown in subfig-

ures a), b), d) and e) are used in the following analysis using BARCE. These sub-

figures correspond to the groups of strains (M,Mu,C,P), (M,Mu,L,G), (M,C,L,P)

and (M,C,L,G). The full meaning of these abbreviations are given in the cap-

tion of figure 5.1. These alignments are selected because according to the DSS

statistics there is strong support for the existence of break points (recombination

events) in these alignments, shown in figure 5.4.

For the MCMC simulations 1.2M iterations were chosen for the burnin phase

and then 2M sampling iterations were sampled every 100 iterations, resulting in

a set of 20K points from which the posterior probability of the topologies is cal-

culated. The sampling rate is the same as the default of the BARCE TOPALi

application. The recombination break points can be inferred from the posterior

distribution of the topologies along the sites (S). The posterior distribution of the

topologies has a choice between 3 topologies for the alignments of 4 sequences.

The convergence for the simulations was checked by running independent sim-

ulations and similarity was used as an indication of convergence. The default

number of iterations used by TOPALi for the burnin is less than the 1.2M used

in this work. The adjustment was made to use 1.2M iterations for the burnin

because after this point no further improvement in the stability of the converged

results was observed. BARCE was used through TOPALi (described in 5.2.2) to

run these simulations.
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Figure 5.5 shows the sets of 3 plots for the mean posterior distributions of

the topologies at each site on the alignment, sampled as in eq 5.3. In each

sequence alignment where BARCE is run, 3 plots are produced showing posterior

probabilities of the hidden states S. The 3 plots represent the topologies grouping

first and second strains together, the first and third, and then the first and fourth

strains. These topology plots are placed clockwise in the figure. Subfigures a) to

c) represent the 3 topologies of the sequence group (M,Mu,C,P), subfigures d) to

f) the topologies for group (M,Mu,L,G), g) to i) group (M,C,L,P), and j) to l)

(M,C,L,G). Which letters represent which strains is stated in section 5.1 and in

the caption of figure 5.1.

From the results the second and forth alignments show the strongest signals for

topology break points due to recombination events. The first and third alignments

have less consistent support for any particular topology along the sites. In the

first and third alignments the mosaic structure of the topologies is not as easy to

distinguish as in the results of the second and forth alignments. An explanation

for this can be given by looking at the phylogenetic network of figure 5.1. The

first alignment (subfigures a-c) contains sequences C and Mu which are closely

related to each other with a relatively small trapezoid area between them. There

is less information to distinguish between these two sequences. With the third

alignment, it is possible that a recombination event groups both strains L and P

creating an ambiguous signal. When not grouped together the small difference in

2 remaining topologies creates an oscillating signal. If there was more data the

differences in the posterior would grow making a clearer inference possible. The

same reasoning goes for the third alignment.

5.4 Application to Neisseria alignments chosen in

literature

This section uses the sequence alignments of 4 strains as data with the DSS

statistic, BARCE and the improved PFHMM. The alignments used are the pruned

subset of the Neisseria data set in Zhou and Spratt (1992).
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a) b)

c)

d) e)

f)

g) h)

i)

j) k)

l)

Figure 5.5: 4 Neisseria alignments run with BARCE

The choice of alignments is made according to the preliminary DSS analysis pre-

sented in figure 5.4. The vertical axis is the posterior probability of a particular

topology at each site indexed on the horizontal axis. The dashed line is the 95

percent posterior probability. Subfigures a to c show the posterior distribution of

the 3 topologies for the alignment of strains (M,Mu,C,P), subfigures d to f the

group (M,Mu,L,G), g to i group (M,C,L,P), and j to l group (M,C,L,G). The 4

groups of subfigures presented have 3 plots for the different tree topologies. The

second and forth alignments show the strongest indications of recombination with

break points around sites 200 and 540.
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5.4.1 Application of the DSS statistic and BARCE to Neisseria

alignments chosen in literature

This subsection presents the results of using BARCE and DSS on the alignments

of 4 sequences that were used in Zhou and Spratt (1992) and Husmeier (2005).

The work of this thesis is closely based on that of Husmeier (2005) whose model

is extended here. Examining the same Neisseria alignments used in these papers

provides confirmation that this work is performing correctly, since all the strains

discussed in the significant prior work are also present in the simulations in this

work.

The paper of Zhou and Spratt (1992) uses the strains x64860 of N. gonor-

rhoeae, x64861 N. meningitidis, x64866 N. meningitidis, and x64869 of N. cinerea.

Following the naming convention in this chapter we give them an abbreviated

representation G, M1, M2 and C for x64860 of N. gonorrhoeae, x64861 N. menin-

gitidis, x64866 N. meningitidis, and x64869 of N. cinerea respectively.

The results of the DSS and BARCE simulations for the (G,M1,M2,C) align-

ment are shown in figure 5.6. Subfigure a) shows the DSS result which can be

compared to the previous results of figure 5.4. The horizontal axis represents the

sites in the alignment and the vertical axis the DSS statistic. The dashed red

line is the 95 percent threshold for the null hypothesis of there being no recom-

bination. A window of 400 base pairs is used. Subfigures b) and c) show the

BARCE results where the horizontal axis indicates the sites in the alignment and

the vertical axis is the posterior probability of the particular topology at that

site. Subfigure b) groups together strains M and G together as in subfigure l) of

figure 5.5, and subfigure c) groups together both strains of meningitidis together.

The third topology is excluded as it contributes a negligible posterior probability.

The DSS and BARCE results both show a recombination event in the same region

of the alignment; approximately at site 180. For the simulations with BARCE

40K samples were returned, and 1.2M iterations for the burnin stage was given.

The simulations were consistent over multiple runs, indicating the stability of the

result.

The Neisseria sequences used in Husmeier (2005) used strains N. gonorrhoeae

X64860, N. meningitidis X64866, N. cinerea X64869, and N. mucosa X64873 (ab-

breviated as G, M, C and Mu respectively). In the list of sequences analysed with

phylogenetic networks this alignment corresponds to subfigure 13) in figure 5.2.
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a)

b) c)

Figure 5.6: The results of using TOPAL and BARCE on the alignment of Zhou and

Spratt (1992)

The alignment of Zhou and Spratt (1992) with strains G, M1, M2, and C is

analysed with the DSS statistic and BARCE. Subfigure a) shows the DSS analysis

performed with a 400 base pair window. The horizontal axis shows the sites in

the alignment, the vertical axis is the DSS value, and the dashed red line is the

95 percent confidence threshold for no recombination under the null hypothesis.

A DSS peak can be seen around site 200. Subfigures b) and c) show the result

of using BARCE for the topology grouping strains G with M1, and M1 with M2

respectively. The remaining topology grouping M1 with C contained less than

5 percent of the total probability along the sites. A change in the majority of

the posterior probability can be seen around the same region as that indicated at

around site 200.
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Figure 5.7 shows the results of the DSS and BARCE analysis on these selected

sequences (as is done for the alignment of Zhou and Spratt (1992) shown in fig-

ure 5.6). Subfigure a) shows the result of using the DSS statistic. As before the

horizontal axis represents the sites in the alignment and the vertical axis the DSS

statistic. The dashed red line is the 95 percent threshold for the null hypothesis

of there being no recombination. There is a long region where the DSS statistic

is above the 95 percent threshold. This region begins approximately at the same

site as the previous alignment in figure 5.6, site 180. There appears to be a re-

combination point centered around the site 540 which is not included in the Zhou

and Spratt (1992) alignment. A window of 400 base pairs was used with DSS.

Subfigures b, c and d group the strains G with M, G with C, and M with Mu

respectively. The recombination point seen between figures b) and d) is also seen

from the DSS result in the subfigure a) here and with the results of figure 5.6. The

peak around site 540 found with DSS can also be seen in the change of posterior

probabilities between the topologies grouping M with G (in subfigure b) and M

with Mu (in subfigure d). This inferred recombination point was not present in

the analysis done with the alignment of Zhou and Spratt (1992). For the simula-

tions run with BARCE an 80K sample size was used (with 100 iteration interval

between each sample taken), and 1.2M iterations for the burnin stage which was

consistent over multiple runs.

The biological conclusions from these results are discussed fully in the con-

clusion section of this chapter, section 5.5. From a methodological perspective

it is re-assuring that new topology break points were not found in these align-

ments in comparison to the previous analysis. The beakpoint at site 540, seen

with BARCE, is not strong enough with the DSS results shown here, but using

different sequence alignments with DSS does show the 540 breakpoint region (fig-

ure 5.6). The strains of these alignments also overlap with the main choices given

before. These results using DSS and BARCE draw the same mosaic structure of

the topologies as the papers Zhou and Spratt (1992) and Husmeier (2005) which

used different methods.

5.4.2 Application of the improved PFHMM

The phylogenetic factorial hidden Markov model (PFHMM) is introduced in sub-

section 1.9.4. The improved PFHMM that is used here is presented in chap-
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a)

b) c)

d)

Figure 5.7: The DSS and BARCE analysis of the Neisseria alignment used in Husmeier

(2005)

The Neisseria sequences used in Husmeier (2005) G, M, C and Mu are analysed

for recombination break points using the DSS statistic and BARCE. Subfigure

a) presents the results of using the DSS statistic with a window of 400 base

pairs. The horizontal axis shows the sites in the alignment, the vertical axis is

the DSS value, and the dashed red line is the 95 percent confidence threshold for

no recombination under the null hypothesis. A DSS peak can be seen around

site 200 and 540. The BARCE results for the posterior probabilities of each

topology at each site is shown in subfigures b), c), and d). These figures show the

topologies grouping the strains G with M, G with C, and M with Mu respectively.

The recombination events predicted with DSS can be seen in the BARCE results

having changes in the posterior around sites 200 and 540.
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ter 4. There are 2 alignments which are chosen to be analysed with the improved

PFHMM. The first is the alignment containing the sequences (M,Mu,L,G), and

the second is the (M,C,L,G) alignment. The abbreviations of the strains are as

explained in the caption of figure 5.1. The reason for choosing these two align-

ments is because they showed strong signals of recombination when processed

using DSS and BARCE. From the subsection 5.4.1 the alignments (G,M1,M2,C)

and (G,M,C,Mu) were used to compare the alignments used in the published

literature, and from them a clear signal of recombination is produced.

The strains which appear in alignments showing the clearest topology mosaic

structures are (M,Mu,C,L,G), and two alignments are created from this set. The

strains M and G have been essential in all of the alignments which have strong in-

dications for recombination, and are chosen to be present in both alignments. Ex-

amining again the phylogenetic network of figure 5.1, there is a relatively smaller

distance between Mu and C than between other pairs of strains. Two alignments

are made by having either Mu or C present.

The results of running the improved PFHMM with the alignment containing

the strains (M,Mu,L,G) is shown in figure 5.8. There were 450 burnin steps

and 450 sampling steps for the Gibbs sampling scheme. For the sampling of the

ratefactors, branch lengths and the vector of the relative codon substitution rate;

300 burnin steps and 600 sampling steps were given. The PSRF factor (Gelman

and Rubin (1992)) was below 1.3 for the sampling phase for the parameters of the

simulation which includes the branch lengths and ratefactors. The results show

an intricate mosaic structure of the topologies in subfigure a). The 3 subplots are

for the 3 topologies grouping M with Mu, M with L and M with G from the top to

the bottom respectively. The horizontal axis are the sites in the alignment and the

vertical axis the posterior probability of the topology at a site. In subfigure b) the

mean posterior probability of the ratefactors is plotted according to eq 4.48 along

the sites. The 66 and 95 percent credibility intervals are plotted as a dashed and a

dotted line about the mean which are hard to identify as they lay close to the mean

in this simulation. Subfigure c) shows the histogram of the number of ratefactors

allocated from the RJMCMC scheme. The mosaic structure in the topologies

and ratefactors is intricate. The break points for the topologies at site 200 can be

seen as expected from the figures of subsection 5.3.2 and subsection 5.4.1. There

is another topology break point before site 100 indicating that the recombinant

region is smaller than inferred previously. The sharp peak at site 540, for the
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topologies found in figure 5.7 and can also be seen in these results. Roughly

between the sites 300 to 500 there is a topology switch to group strains M with

G which is discussed in the caption of figure 5.9 and the text accompanying the

figure. When examining subfigure b) the positions for the break points around

site 100 and the 300-500 base pairs region are visible here as well. There are 2

ratestates (from subfigure c) of approximate values 0.5 and 1.

The results of using the improved PFHMM with the (M,Mu,L,G) alignment

will now be compared to the results of using DSS and BARCE with the same

alignment. From figure 5.8 the subfigures a) and b) are presented again as the

subfigures a) and b) in figure 5.9. Subfigures c), d), and e) show the BARCE

result for the 3 topologies grouping M with Mu, M with L and M with G. The

horizontal axis represents the sites in the alignment and the vertical axis the pos-

terior probability of the topology at a given site. The DSS analysis is shown in

subfigure f) with the horizontal axis being the sites in the alignment and the DSS

value the vertical axis. The dashed red line is the 95 percent threshold for the null

hypothesis of there being no recombination. The results show that the improved

PFHMM infers a recombination break point in the region of 0-100 which BARCE

and DSS do not detect. The break point at the region 180 to 200 is detected

by each method, as is the abrupt topology change around site 500. The break

points for the region 300-500 indicate a grouping of strains M with G, which is

unexpected as it is not present in the results of other authors. If the simulations

had not converged then this may manifest as a change in the ratefactor values

shown in b) which for this region could create a spurious topology change. To

test whether this was the case the PSRF was computed which showed conver-

gence had occurred, additionally other alignments containing either one of these

strains singly did not show these artifacts. Referring again to the phylogenetic

network reconstruction, strain G would have a favourable grouping with strain M

in the absence of non-linear substitutions (eg. recombination) which is a possible

scenario. The alignment that differs by removing Mu and replacing with it with

C shown later in figure 5.10, and that does not exhibit this effect in the region,

showing that C contains a close relationship to M in this region.

The results of running the PFHMM with alignment (M,C,L,G) is shown in

figure 5.10. This alignment was analysed with BARCE in the figure 5.5 (subfigures

j, k, and l). For the simulation 450 Gibbs burnin steps and 450 Gibbs sampling

steps were given. The sampling of the ratefactors, the branch lengths and the
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a) b)

c)

Figure 5.8: The alignment of (M,Mu,L,G) analysed with the improved PFHMM

The results of running the improved PFHMM with the alignment containing the

strains (M,Mu,L,G). The posterior probabilities of the topologies along the sites

is shown in subfigure a). The 3 subplots are for the 3 topologies grouping M

with Mu, M with L and M with G from the top to the bottom respectively. In

subfigure b) the mean posterior probability of the ratefactors is plotted according

to eq 4.48 along the vertical axis and the horizontal axis are the sites along the

alignment. The 66 and 95 percent credibility intervals are plotted as a dashed

and dotted line about the mean. Subfigure c) shows the histogram of the number

of ratefactors allocated from the RJMCMC scheme. Topology break points can

be seen around sites 100, 200, 300, 500, and 540. There are 2 ratefactors which

take the values approximately of 0.5 and 1. The ratefactor break points coincide

with the topology break points around sites 0-100 and 300-500.
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a) b)

c) d)

e)

f)

Figure 5.9: Layout of the analysis on group (M,Mu,L,G) with the improved PFHMM,

BARCE and TOPAL

The results of using the PFHMM with the (M,Mu,L,G) alignment, shown in

subfigures a) and b), is compared with the BARCE results in c), d) and e) and

with DSS in f). Subfigures c), d), and e) show the topologies grouping M with

Mu, M with L and M with G respectively. The horizontal axis represents the sites

in the alignment and the vertical axis the posterior probability of the topology at

a given site. For subfigure f) the horizontal axis are the sites in the alignment and

the DSS value the vertical axis. The dashed red line is the 95 percent threshold

for the null hypothesis of there being no recombination. From a), a recombination

break point in the region of sites 0-100 can be seen which BARCE and DSS do

not detect, but is seen in b) for the change of value of the ratefactors. The break

point at the region 180 to 200 is picked up in each method. The abrupt topology

change around site 500 is found by the group of methods as well. For the region

300-500 the PFHMM groups strains M with G, and a change in the same region

is seen for the ratefactors in b).
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values for the relative codon vector had 300 burn-in steps and 600 sampling steps.

The PSRF factor was below 1.3 for the sampling of the parameters during the

simulation. Subfigure a) of this same figure shows a set of 3 plots for the posterior

probability of each topology along the sites of the alignment. From the top to

bottom the plots are of the groupings of the strains M with C, M with L, and

M with G. The horizontal axis are the sites in the alignment and the vertical

axis the posterior probability. In subfigure b) the mean posterior probability of

the ratefactors is plotted according to eq 4.48 along the sites. The 66 and 95

percent credibility intervals are plotted as a dashed and a dotted line about the

mean which may be hard to identify as they lay close to the mean. Subfigure c)

shows the histogram of the number of ratefactors allocated from the RJMCMC

scheme. The topologies show a recombination event around site 200 and a peak

approximately at site 540 which is very close to the predicted results that were

given by BARCE. The ratefactors along the alignment share a similar structure

to the simulation results shown in figure 5.8 for strains (M,Mu,L,G) in the regions

0-100 and 300-500 where there are change points. The values that the ratefactors

appear to switch between are approximately 0.5 and 1.0, and are similar to those

in figure 5.8.

The comparison of the improved PFHMM results along with the DSS and

BARCE results for the same alignment containing strains (M,C,L,G), is shown

in figure 5.11. From figure 5.10 subfigures a) and b) are presented as subfigures

a) and b) as well. Subfigures c), d) and e) show the results of the BARCE

simulations with the topologies grouping M with C, M with L, and M with G

respectively. The vertical axis is the posterior probability of the topology at each

site of the alignment on the horizontal axis. Subfigure f) shows the result of using

DSS on the alignment. The vertical axis is the DSS statistic and the horizontal

axis the sites in the alignment. The red dashed line corresponds to the 95 percent

confidence in the null model for there not being recombination. The improved

PFHMM, BARCE and DSS infer a recombination event in the region of the sites

180-200. The narrow recombination region around site 540 is also found. This

artifact at site 540 is inferred as a change in the ratefactor value in Husmeier

(2005). When using the improved PFHMM a different mosaic structure for the

ratefactors is found than in Husmeier (2005). Around this site a topology change

is present as well, as with the alignment (M,Mu,L,G). Here the ratefactors show

a different mosaic structure which was not the case with the previous alignment.
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a) b)

c)

Figure 5.10: Results of using the improved PFHMM with the alignment (M,C,L,G)

Subfigure a) shows a set of 3 plots for the posterior probability of each topology

along the sites of the alignment. The top to bottom of the plots groups the strains

M with C, M with L, and M with G. The horizontal axis represents the sites in

the alignment and the vertical axis the posterior probability of each topology. In

subfigure b) the mean posterior probability of the ratefactors is plotted according

to eq 4.48 along the sites. The 66 and 95 percent credibility intervals are plotted

as a dashed and a dotted line about the mean. Subfigure c) shows the histogram

of the number of ratefactors allocated from the RJMCMC scheme. The topologies

show a recombination event around site 200 and there is a spike topology change

approximately at site 540 which is very close to the predicted results that were

given by BARCE. The ratefactors have change points in the regions 0-100 and

300-500, and appears to switch between are approximately 0.5 and 1.0.
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5.5 Conclusions

This chapter provides evidence for the presence of recombination and rate het-

erogeneity in strains of Neisseria. The set of sequences were taken from the

work of Zhou and Spratt (1992) who submitted a data set of Neisseria strains

and conducted a study to detect recombination amongst them. The improved

PFHMM, described in chapter 4, is applied to investigate the published recom-

bination events of both Zhou and Spratt (1992) and Husmeier (2005) and tests

whether new events can be found. To reduce the computational burden, before

applying the improved PFHMM to the real data set a series of methodologies

are applied in stages to find the best candidate alignments of 4 sequences. The

biological and methodological results will be discussed for each methodological

stage in the order that they appear in this chapter.

The improved PFHMM can handle the computational requirements for

analysing sequence alignments of 4 strains within reasonable time constraints.

As discussed earlier, the number of topologies grows at a super-exponential rate

in the number of strains, so unfortunately calculating results for 5 strains is be-

yond the scope of this work. The set of Neisseria sequences from Zhou and Spratt

(1992) contains more than 4 strains, and therefore requires that a selection be

made. Phylogenetic Networks as described in section 5.1 are applied to the com-

plete set of Neisseria sequences as it is much less computationally demanding and

gives a very coarse analysis which is suitable for an initial simplification step.

The results of using phylogenetic networks are shown in figure 5.1 and the labels

on the leaves of the network are an abbreviation of the names used in the EMBL

database. The network produced provides strong evidence for the simplification

of the set of strains by using only a single N.meningitidis strain to represent the

set of closely placed meningitidis strains. The network surrounding this family

of strains presents little indication of possible recombination events or other non-

linear evolutionary events between the family of meningitidis strains. In their

investigation Zhou and Spratt (1992) applied their approach to different menin-

gitidis strains, but the same features can be found using only a single meningitidis

strain as shown in Husmeier (2005) and the analysis of this chapter in figure 5.6.

The split areas (rectangular areas) created by phylogenetic networks were largest
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a) b)

c) d)

e) f)

Figure 5.11: Comparison of the analysis of the alignment (M,C,L,G) with the im-

proved PFHMM, BARCE and DSS

Subfigures a) and b) are copied to here from figure 5.10. Subfigures c), d) and

e) show the results of the BARCE simulations with the topologies grouping M

with C, M with L and M with G respectively. The vertical axis is the posterior

probability of the topology at each site of the alignment shown on the horizontal

axis. Subfigure f) shows the result of using DSS on the alignment. The vertical

axis is the DSS statistic and the horizontal axis the sites in the alignment. The red

dashed line corresponds to the 95 percent confidence in the null model for there

not being recombination. The improved PFHMM, BARCE and TOPAL infer a

recombination event in the region of the sites 180-200, and a sharp recombination

event around site 540 is also found. The mosaic structure of the topologies is

different to that of the ratefactors.
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for the strains of gonorrhoeae (G), lactamica (L), and polysaccharea (P). In the

analysis that followed, it was found that the inclusion at least 2 of these 3 strains

are essential in order to be able to observe strong indications for recombination

and rate heterogeneity. Producing a phylogenetic network therefore assisted in

a significant simplification of the dataset and reduced the size of the exploration

for the subsequent analysis. This simplification comes with strong evidence that

there is a linear evolutionary relationship between strains of meningitidis. An

insight for which of the strains would be important for detecting recombination

was also found by using this method.

Subsection 5.1.2 constructs phylogenetic networks from the set of possible

alignments of 4 sequences and displays them in figure 5.2. For alignments of only

a few sequences, the magnitude of the conflicting signal for a single phylogenetic

tree construction is easy to evaluate with this method as it is simply the area of

the trapezoid associated with the split. The caption lists the networks displaying

the largest conflicting signals (splits) by the size of the trapezoidal area they con-

tain. The selection of alignments to be further analysed is based on the area of

the trapezoidal region, with larger areas indicating more recombination possibil-

ities. This selection frequently includes strains G, M, and C which are common

between the alignments chosen in Zhou and Spratt (1992) and Husmeier (2005).

The overlap on the choice of strains supports the earlier conclusions based on

phylogenetic networks giving results consistent with the published literature.

After the analysis using phylogenetic networks, the DSS statistic (described

in section 5.2) is then used. Following a similar motivation to the initial filtering

approach using phylogenetic networks, DSS is computationally not as demanding

as the more complex methods subsequently applied and produces a more detailed

analysis for possible recombination than basic phylogenetic networks. This makes

it suitable for use as a computationally efficient second stage in the improvement

of the analysis. DSS provides a measure for comparing the possibility of topology

break points along the sites of an alignment which phylogenetic networks can not

provide and DSS also has a stronger statistical foundation for detecting recom-

bination. DSS is applied to the selection of alignments noted in the caption of

figure 5.2. Two extra alignments of 4 sequences are included to ensure that there is

enough diversity in the sequences. The results are presented in figure 5.4 showing

that there are 4 alignments (subfigures a, b, d, and e) which have long regions of

sites with DSS values above the 95 percent confidence interval for the null model
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of no recombination. These subfigures correspond to the alignments (M,Mu,C,P),

(M,Mu,L,G), (M,C,L,P), and (M,C,L,G). All 4 of the selected DSS value plots

show a similar pattern in the placement of peaks above the 95 percent confidence

interval. Amongst these 4 selected alignments the DSS statistic surpasses the

95 percent confidence interval (dashed horizontal line) approximately at the sites

180-300 and 450-550. The comparison of the plots where strain M (for meningi-

tidis) is present or not shows that strain M is a requirement for observing evidence

of recombination. Also, so are either C or Mu (cinerea or mucosa), and then ei-

ther G/L/P (gonorrhoeae/lactamica/polysaccharea) needed in the alignments for

evidence of recombination to be visible using these methods. A reasonable inter-

pretation (also bearing in mind the phylogenetic network from figure5.1) is that

between meningitidis and cinerea/mucosa there are no (or few/short) recombina-

tion events, and that from the ancestor of gonorrhoeae/lactamica/polysaccharea

there is at least one recombination event.

The method BARCE is introduced in section 5.3, and is used to continue the

refinement process by applying the method to the alignments selected by the DSS

analysis. BARCE uses an HMM to model the topologies as the hidden states and

is the same as the model of Husmeier (2005) but BARCE does not model the

rate heterogeneity along the sequence alignment. DSS is computed from pairwise

distances between sequences and because of this suffers from intrinsic informa-

tion loss. The model of BARCE builds a phylogenetic tree and estimates the

uncertainty in the space of topology choices. This allows the model to assess

candidate topologies and returns the posterior probability of the topologies along

the sites. The inference scheme for this more complicated model is more compu-

tationally demanding and simulations need to be run multiple times to check for

convergence.

The results of using BARCE on the alignments (M,Mu,C,P),

(M,Mu,L,G),(M,C,L,P), and (M,C,L,G) is shown in figure 5.5. Although

the simulations are run multiple times and for an extended number of iterations,

there are significant oscillations in the posterior probabilities for the first and

third alignments. The fourth alignment does not exhibit these oscillations and

the second alignment does but to a lesser extent, thus these alignments are

preferred. Both the second and fourth alignments exhibit topology changes

(plausible recombination events) in the same regions indicated by the DSS

analysis; in the region of sites 180-300 and 450-500. In further BARCE simula-
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tions for the alignments of Zhou and Spratt (1992) and Husmeier (2005) these

oscillations were not present. Examination of the strains used in these studies

suggests the tentative conclusion that oscillations in the topologies may be due to

similar likelihoods when specific strains are included in an alignment, and causes

the topology state transition parameter to have a value too low. Considering

(M,Mu,C,P) it can be seen that the differences between Mu and C are small.

And for the alignment (M,C,L,P) the distances between these strains may not

be large enough in respect to M. This would explain why the oscillations are not

reported in Zhou and Spratt (1992) and Husmeier (2005).

In subsection 5.4.1 BARCE and DSS are applied to the sequence alignments

of Zhou and Spratt (1992) and Husmeier (2005). For Zhou and Spratt (1992) the

strains of the alignment are (G,M1,M2,C) corresponding to gonorrhoeae, menin-

gitidis (1 and 2), and cinerea with the results shown in figure 5.6. For Husmeier

(2005) the alignment uses the strains (G,M,C,Mu) which correspond to gonor-

rhoeae, meningitidis, cinerea, and mucosa with results shown in figure 5.7. The

DSS and BARCE analysis of the alignment (G,M1,M2,C) shows a single possible

recombination event within sites 180-200. This region is consistent with the first

of the two suspected recombination events found in previous results of figure 5.5.

The equivalent analysis is repeated for the alignments of Husmeier (2005) and

shows that both DSS and BARCE predict 2 recombination regions which are

analogous to those independently found in figure 5.5. This supports the previous

hypothesis that meningitidis and gonorrhoeae are a requirement for observing the

recombination event in the 180-200 site region.

Section 5.4.2 applies the improved PFHMM which is discussed in chapter 4.

There is an increased computational demand that comes with the complexity of

the model. Simulations are run with 2 different sequence alignments. The choice

of which alignments of 4 sequences to apply is made on the basis of the previous

results shown in figure 5.5. The first alignment used is (M,Mu,L,G) whose strain

names are meningitidis, mucosa, lactamica, and gonorrhoeae respectively. The

PFHMM results for this alignment are shown in figure 5.8. The topology changes

anticipated after the BARCE simulations, are present at the approximate sites

180-200 and 540 shown in figure 5.8. There are new observed topology changes

as well which indicate that in the evolutionary history of meningitidis there are

other possible recombination events. These are in the site regions of 0-100 and

300-450 which also correspond to break points in the ratefactors. These new
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observations could be due to a lack of convergence of the simulation or a lack

of sufficient data to distinguish between events. In considering this scenario the

results for the same alignment run with the DSS statistic and BARCE is shown for

comparison in figure 5.9 where the 0-100 recombinant region is not observed but

the 300-500 region is. These topology changes are observed by both BARCE and

improved PFHMM. As BARCE does not account for rate heterogeneity whilst

it is possible to conclude from the BARCE findings that these topology changes

may be due to either rate heterogeneity changes or recombination events, the

improved PFHMM observations would not support this conclusion and instead

suggests that the topology changes are in fact due to recombination events.

The improved PFHMM is also applied to the alignment of (M,C,L,G) with

strain names meningitidis, cinerea, lactemica, and gonorrhoeae. The results are

shown in figure 5.10 and the comparison with the use of the DSS statistic and

BARCE is shown in figure 5.11. The structure of the ratefactors mirror the plot

for the (M,Mu,L,G) alignment with the approximate same values for the 2 rat-

estates and break point positions. The anticipated topology break points are

present (site regions 180-200 and 540) but not the new break points found with

(M,Mu,L,G) which are only very weakly supported. This draws possible conclu-

sions about the impact of the choice of strains on the results of both BARCE

and the improved PFHMM. Husmeier (2005) inferred that the event at site 540

is due to ratefactor change being interpreted as a topology change. It should be

noted that in making comparisons between the results of Husmeier (2005) and the

findings presented here that this work uses slightly different alignment sequences

(not all strains are identical in the alignment) and for these sequences the findings

suggest that this is in fact a topology change.

Due to the small size of the alignments and the number of features which may

be contained, it appears that it is the presence of a vague posterior rather than the

methodological developments that is the cause of the limits for drawing further

conclusions. A local optima spreading over a large region of the parameter space

could also create ambiguous results. Another possible scenario is that the model

does not capture additional evolutionary developments contained in these align-

ments. A possible solution would be to test the method with a more informative

prior on the topology state transition parameter. The improved PFHMM find-

ings putatively suggest the existence of a recombinant region in the sites 300-500

and also a new ratefactor structure. For the findings reported here, the degree
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of uncertainty is too high to confirm these observations, and so they remain as

untested hypotheses.

Given the previous discussion in this chapter and the results of the simulations

using the improved PFHMM, some final remarks about the methodology and bio-

logical aspects of the dataset can be made. The results of the improved PFHMM

were well supported by the prior findings but also showed that on certain small

sequences the model did not produce unambiguous results for the topologies. This

failure was unexpected as the synthetic test cases used for development had not

had the same properties as this particular real world DNA sequence alignment.

The cause of the failure in this instance is believed to be due to the vague pos-

terior caused simply by lack of sufficient data. There is less uncertainty in the

results for the ratefactors which indicate a new structure of rate heterogeneity

(which can be compared to the results in Husmeier (2005)). Also reassuring is

that the number of sampled ratefactors is unimodal and has low variance showing

that the model explored various numbers of components and stably focused on

the most optimal number.

Use of the PFHMM appears to require more information between break points

than was contained in some of the sequence alignments used. What may be

concluded is that the recombination event inferred in literature between strains

meningitidis and gonorrhoeae is also supported by the results found here. We

also find that a more complex structure of rate heterogeneity is also very likely.

Clearly this work has made significant progress in incorporating recombination

models and rate heterogeneity into topology inference for phylogenetic trees, but

the area is rich with unmined possibilities; future work would involve studies with

sequences of a greater number of sites and with relatively fewer recombination

events or regions of rate heterogeneity.





Chapter 6

Conclusions

In my thesis, I have investigated a possible shortcoming of three recent Bayesian

methods for detecting recombination in DNA sequence alignments: the multiple

change-point (MCP) model of Suchard et al. (2003), the dual multiple change-

point (DMCP) model of Minin et al. (2005), and the phylogenetic factorial hidden

Markov model (PFHMM) of Husmeier (2005). All three models assume separate

branch lengths for different sites, which allows the branch lengths to be integrated

out analytically. This reduces the computational complexity of the Bayesian in-

ference scheme, which can now be formulated in terms of posterior distributions of

the tree topologies and the nucleotide substitution parameters only. This makes

this approach, which was first introduced by Tuffley and Steel (1997) under the

name “no-common-mechanism” model, quite popular, and it has been applied in

more recent works; see Lehrach (2008), Lehrach and Husmeier (2009), and Webb

et al. (2009). The principle problem with the no-common-mechanism model is

that the branch lengths are incidental rather than structural parameters. In

my thesis, I have shown that a model with the no-common-mechanisms assump-

tion is susceptible to the prediction of wrong tree topologies for certain branch

length configurations (long branch attraction), and that it suffers from the same

inconsistency (long-branch attraction) as the method of maximum parsimony.

In particular, my study has shown that recombination detection methods using

the no-common-mechanism model are susceptible to predicting spurious recom-

bination events whenever branch-length configurations happen to fall near the

boundary of the Felsenstein zone.

To address this difficulty, I have removed the site-independence assumption

for the branch lengths. As a consequence, the analytic integration over the branch

179
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lengths is no longer tractable, and they have to be sampled approximately from

the posterior distribution with MCMC. To avoid an identifiability problem re-

sulting from the fact that the global scaling of the branch lengths (defined by

one of the two types of hidden states) is an additional independent parameter of

the model, I have imposed a normalization constraint on the branch lengths. I

have tested the proposed method on the same DNA sequence alignments as have

been used in testing the other models, and found that it succeeded in avoiding

the failure in the Felsenstein zone.

Further, I have explicitly modelled within-codon rate heterogeneity via a sep-

arate rate modification vector. In this way, the within-codon effect of rate het-

erogeneity is imposed on the model a priori, which facilitates the learning of the

biologically more interesting effect of regional rate heterogeneity a posteriori. I

have carried out simulations on synthetic DNA sequence alignments, which have

borne out my conjecture. The previous model, which did not explicitly include the

within-codon rate variation, has to model both effects with the same modelling

mechanism. As expected, it was found to fail to disentangle these two effects. On

the contrary, I have found that my improved model clearly separates within-codon

from regional rate heterogeneity, resulting in more accurate predictions.

I have finally combined my models with the RJMCMC scheme of Lehrach

and Husmeier (2009) so that the number of rate states is not defined a priori

but sampled from the posterior distribution via RJMCMC. While the model of

Lehrach and Husmeier (2009) is susceptible to long branch attraction and does

not distinguish the within-codon effect of rate heterogeneity from long-range rate

variation, the model proposed in my thesis deals with these effects. My simula-

tions have shown that the model is capable of handling the combined complexity

of the improvements made.
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Appendix

A.1 Number of possible rooted and unrooted

topologies for a given sequence alignment

Given a sequence alignment of m number of DNA sequences a range of possi-

ble candidate topologies exist to explain the ancestral relationship between the

genetic data. These phylogenetic trees can be constructed as ‘rooted’ tree, or

‘unrooted’. Rooted trees provide an ancestor for all of the taxa observed, and

position it in the tree. Unrooted trees are uninformative about the position of

the position of the root.

To determine the number of possible different rooted topologies we consider

the phylogenetic tree built from m sequences, which will have m leaves. Moving up

the tree from a leaf node the edges from the bifurcation coalesce to the common

ancestor to the adjacent taxa is met. This reduces the number of edges by 1, and

continues to reduce the number of edges by one for each step up the tree as the

bifurcations coalesce. Therefore m− 1 nodes as well as the m taxa leaves exist,

and adding these two together gives 2m− 1 nodes in total (2m− 2 edges since

there is no edge above the root node that is considered).

For a phylogenetic tree that is unrooted 2m−2 nodes exist, and 2m−3 edges

(branch lengths). This is because from the unrooted tree a root node can be

added along any of the edges, increasing the number of nodes by 1 (as well as the

number of edges). This then produces the same number of edges and nodes as for

the rooted trees as explained in the previous paragraph. With there being 2m−3

edges to choose from in adding the new node to be the root this will increase the
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previous number of unrooted topologies by a factor of (2m−3).

In determining the number of topologies possible for a sequence alignment

of m taxa, we first consider unrooted trees produced. For m = 3 there is only 1

possible unrooted topology, there are 3 edges, and adding another branch with a

leaf node produces a tree with m+1 leaves. Since there were three edges originally

the tree with m + 1 = 4 leaves has 3 topology configurations having 2m− 3 = 5

edges. The tree with m = 4 now has 5 edges where a branch and leaf node can

be added, and for each of the 3 possible topologies there are 5 edges to add the

new leaf giving a distinct topology as a result; so the number of topologies with

m = 5 is 3× 5 = 15. The number of edges is increasing by 2 for each extra leaf

node added, when a new leaf node with branch is added the number of possible

topologies that existed before are multiplied by the number edges it contains, and

this is generalised by: 3×5×7× . . .× (2m−5) = (2m−3)!!. For rooted trees we

consider that the same relationship holds as for unrooted trees but there 1 more

node for the m sequences than with unrooted trees so in the series the next term

is included with (2m− 3)!!. Tree counting is discussed in detail in Felsenstein

(1978b).

A.2 Branch lengths as the expected distance be-

tween sequences

The working for using the branch lengths to compute the distance between species

in a phylogenetic tree via the branch lengths and the expected number of substi-

tutions is shown. An example is made using the Jukes-Cantor model of nucleotide

substitution described in subsection 1.3.2.

The vector of branch lengths for the phylogenetic tree is denoted with w. The

normalised branch lengths used later in the model is represented as ẇ because

the ratefactors exist as well there to scale the normalised vector to different mag-

nitudes without changing the direction of the vector. Subsection 1.5 defined the

branch lengths in the nucleotide substitution model to be the product of the rate

and the time; w = (ρ)× (t) (where t is for the time here and not positions/sites

in the sequence alignment or in the HMM).

Some of the equations overlap with the section on the Jukes-Cantor model

which are included here as well. The entries for the transition matrix (defined in
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eq 1.3 and in eq 1.25) are

pi, j(t) =

{
1
4 + 3

4e−4αt i = j
1
4 −

1
4e−4αt i 6= j

(A.1)

This is based on the Jukes-Cantor model defined in eq 1.21 where all non-identical

character substitutions happen at the same rate, α. The rate ρ which is general

can be substituted with the substitution rate α for the expression of a branch

length w = α× (t) in the Jukes-Cantor model. The diagonals of the rate matrix

(no change events) are equal to the negative sum of the other entries which have

a total rate of 3α for non-identical substitutions.

The branch lengths are considered as distances between pairs of se-

quences/nodes (extant taxa which are observed) and the ancestral nodes exists

for each pair as a bifurcation. The ancestral node is denoted with i and the child

nodes of i are j and k having diverged after a time t. If the rate of substitution

from i to its 2 children are not identical the probabilities for the independent

substitutions are pi, j(t)pi,k(t), and the probability pi, j(t)2 when the rates are the

same from the time of divergence from node i.

We consider the rate 3α because it is this total rate which affects the observed

distances (ie. substitutions leaving an observable change). Node i is the common

ancestor assumed to be in the middle of the length from node j to node k so

the total time that has passed between the children nodes is 2t. The average

number of substitutions per position is wi = 3α× (2t) = 6αt. All the changes are

equally likely, and the changes to equal nucleotides do affect the branch lengths

unlike parsimonious construction methods which ignore homogeneous substitu-

tions. Even though equal substitutions are not observed, they must be considered

or else the branchlegnths will not be accurate. The probability for a nucleotide

to be the same as the ancestral nucleotide is the no change probability, I used

here to denote the probability there being no change in the entry. Each case of

substitutions resulting in no change is considered to find I,

I = p j→A(t)pk→A(t)+ p j→C(t)pk→C(t)+ p j→G pk→G(t)+ p j→T pk→T (t)

which is simplified assuming that the rate of mutation between the two species

from node i is identical,

I = p j→A(t)2 p j→C(t)2 p j→G(t)2 p j→T (t)2. (A.2)
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The choice of the nucleotide to consider j is allowed for all 4 types and have

those probabilities put into the equation. One of the terms will be the no change

probability. Choosing an arbitrary initial nucleotide, eg. j = A, the probability

for identical substitutions can be found

I =
(

1
4

+
3
4

e−4αt
)2

+3
(

1
4
− 1

4
e−4αt

)2

=
1
4

+
3
4

e−8αt . (A.3)

This last expression is useful for then finding the probability of non-identical

substitutions, p, as p = 1− I;

p = 1− I

= 1− 1
4
− 3

4
e−8αt

=
3
4
− 3

4
e−8αt

=⇒ 8αt =− ln(1− 4
3

p). (A.4)

As said previously the rate of change is 6αt and this result is 4/3 larger, and

therefore this result is scaled appropriately. The probability p is found by the

fraction of changes to number of nucleotides. If n is the number of nucleotides and

q the number of changes, p =q /n. Now the expected distance can be calculated

for the Jukes-Cantor model,

dJC =−3
4

ln(1− 4
3

p). (A.5)

This is the derivation for the Jukes-Cantor model which is a special case

as there are many simplifications in the model which do not take into account

important biological considerations such as the transition-transversion ratio or the

stationary distribution of the nucleotides. Other derivations are more involved

and this one exists to demonstrate the interpretation of the branch lengths as

distances in the expected number of substitutions (identical or not identical).

A.3 Hasegawa-Kishino-Yano (HKY) nucleotide

substitution model

This mode is from 1985 and is found in Hasegawa et al. (1985). It is more complex
than the previous two models of Kimura Kimura (1981) and Jukes and Cantor
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(1969). It is more complex than the Jukes-Cantor model in that it allows different
rates of substitution between transitions and transversions, and is more complex
than the Kimura model in that the restriction on equal base frequencies for the
stationary distribution is relaxed. An unequal base frequency of π is allowed.

Q =


−β(πC +πT )−απG βπC απG βπT

βπA −β(πA +πG)−απT βπG απT

απA βπC −β(πC +πT )−απA βπT

βπA απC βπG −β(πA +πG)−απC

 (A.6)

is the HKY85 rate matrix. This matrix can be simplified slightly by noticing that

two variable can be created to group that stationary probabilities of transversions

for a given nucleotide (πR = πA +πG and πY = πC +πT ),

R =


−β(πY )−απG βπC απG βπT

βπA −β(πR)−απT βπG απT

απA βπC −β(πY )−απA βπT

βπA απC βπG −β(πR)−απC

 . (A.7)

The equation for the probability of the events in the matrix in terms of time t

are given (which are analogous to eq 1.45-eq 1.47 which use the rate matrix in a

Taylor series expansion in eq 1.11):

f̃ j(t) =π j

(
1− e−βt

)
(A.8)

g̃ j(t) =π j +π j

(
1

Π j
−1
)

e−βt +
(

Π j−π j

Π j
−1
)

e−βt (A.9)

d̃ j(t) =π j +π j

(
1

Π j
−1
)

e−βt−
(

π j

Π j
−1
)

e−βt (A.10)

Where f̃ j is for a transversion and g̃ j a transition and d̃ j a nucleotide remains

unchanged. The subscript j in f̃ j, g̃ j, d̃ j and π j denotes the nucleotide which

will substitute the original nucleotide. π j denotes the value of the equilibrium

probability for nucleotide j. In the equations Π j = πA +πG if the nucleotide is a

purine (a nucleotide of C or T), and Π = πC +πT if the nucleotide is a pyrimidine

(a nucleotide of A or G). From inspection it can be seen that these equations

satisfy the boundary conditions at t = 0 and t = ∞. As an example we take

the starting original nucleotide to be A, for a transversion f̃ j(t = 0) = 0 and

f̃ j(t = ∞) = {πC,πT}, for a transition g̃ j(t = 0) = 0 and g̃ j(t = ∞) = πG, and for

the replacement with the same nucleotide d̃ j(t = 0) = 1 and d̃ j(t = ∞) = πA.

On the stationary distribution of the rate matrix the constraint on π from

eq 1.20 allows there to be 3 free parameters for this vector. There are also 2
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free parameters for the value of the transition transversion ratio giving 5 free

parameters minus 1 for a total of 4 free parameters in total in total by fixing

the transversion rate. This is defined in eq 1.29. If the stationary distribution

is chosen to be the uniform one, (P(A) = P(C) = P(G) = P(T ) = 0.25), then the

HKY85 model reduces to the Kimura model. And this is the model used in

most of the simulations to follow. The HKY model reduces to the Felsenstein

model, Felsenstein (1981), when the transition-transversion parameters α and β

are equal, but since this model is not used anywhere in this thesis no more is said

about it.

A.4 Beta Distribution

The beta distribution is a continuous probability distribution with the domain on

the interval [0,1]. There are two parameters α and β which govern the shape of

the distribution in this interval. It is applied to random events such as Bernoulli

trials where there are two possible outcomes. The α and β parameters represent

one of the two possible events. For the modelling of coin tosses the α parameter

can denote the number of times the coin fell on ‘heads’ and β for the number

of times the coin was observed to fall on the ‘tails’ side. The Beta distribution

differs from the binomial distribution where the value of the probability for a

certain event is known. Here the distribution is over the proportion of the two

possible events is evaluated. The distribution of the probability p of an event

occurring makes it useful in Bayesian statistics for estimating the uncertainty.

The posterior probability of p corresponding to α− 1 positive events and β− 1

negative events with 1− p probability is found via the Beta distribution. The pdf

for the Beta distribution is,

f (x;α,β) =
Γ(α+β)
Γ(α)Γ(β)

xα−1(1− x)β−1, (A.11)

where Γ is the gamma function

Γ(x) =

{
(x−1)! x ∈ NR

∞

0 tx−1e−tdt x ∈ R.
(A.12)

The gamma functions in the pdf of the beta distribution are abbreviated with
1/B(α,β),

f (x;α,β) =
1

B(α,β)
xα−1(1− x)β−1. (A.13)



A.5. The effect on the transition probability due to the introduction of an extreme rate state 187

A.5 The effect on the transition probability due to

the introduction of an extreme rate state

With the topology states the set of possible values is discrete. The rate states ρ

can take on a continuous range of values within the valid domain of [0,∞) (negative

rate state values are not defined). Not all of the rate state values will be applicable

to the data and some can be extreme in that they create relatively much lower

emission values for the data. Ratefactors are referred to in the ratefactor vector

with a subscript index and the extreme valued ratefactor is referred to as ρ∞ to

identify it as a ratefactor with an extreme value rather that it taking position ∞

in the ratefactor vector ρ.

There is a set of ratefactors which can take on one of two states,ρi ∈ {ρ1,ρinf},
where one element is an extreme rate state value. It is shown how the introduction

of the extreme valued rate state affects the transition probability, P(Rt |Rt−1. For

a rate state sequence, P(D|νR) = ∑R P(D|R,νR)P(R|ν) the addition of an extreme

rate state will effect the transition probability and the probability of the sequence

(significantly since such transitions are very unlikely). There are two cases to

consider where the emission probability equals 1 and when it equals 0. These two

cases exist since when the ratestate sequence contains only the relevant ratefactor

states, R = (R1 = ρ1, ...,R1 = ρ1), where there are no other relevant ratefactors

the probability of the data given the transition probability is 1. The 0 value

exists in any other ratestate trajectory containing the extreme value rate state

(all sequences containing a transition into the rate state with an extreme value).

The sequence probability is,

P(R = ρ1, ...,R = ρ1|ν) = ν
N−1. (A.14)

The same result is obtained from the emissions in the HMM states with the

transitions where the rate state can take on either of two values in the set, Rt ∈
{ρ1,ρ∞}.

N−1

∏
t=1

∑
Rt

P(yt |Rt)P(Rt |Rt−1) (A.15)

which equals 0 in any case where Rt = ρinf, and results in νN−1 for the positions

holding the proper ratefactor,

N−1

∏
t=1

(1)P(Rt |Rt−1) = ν
N−1 (A.16)
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In the case where there are now 3 rate states in the set to choose from ρi ∈
{ρ1,ρ2,ρinf}, with only one state being of an extreme value,

∑
R

P(D|R,ν)P(R|ν), (A.17)

is used again where there are two cases; where the sequence equals 1 and when

it equals 0. If ∀N
i=1Ri 6= ρ∞ it is 1 and 0 if ∃Ri = ρ∞. For the case that it is 0 and

there are transitions into the extreme state at some site i,

P(Rt 6=i 6= ρ∞, ...,Rt=i = ρ∞|ν) = ν
N−k

(
1−ν

2

)k−1

, (A.18)

where k is the number of rates states having transitioned into a non-identical

state. In the case where there are no transitions into the extreme value state,

Ri,t 3 ρ∞, there is this expression:

P(R1 6= ρ∞, ...,RN 6= ρ∞|ν) =
(

1−ν

2
+ν

)N−1

=
(

1+ν

2

)N−1

. (A.19)

Here (1− ν)/2 + ν is the total probability of not transitioning into the extreme

valued state among the 3 possibilities. This shows that the amount of data

increases (size of N), ν must also increase more towards the value of 1 to avoid

a low compound probability since the alternative case results in extremely low

emission values.

This working out shows that with the introduction of an extreme rate state,

the transition probability will increase to penalise transitions into the extreme rate

state value which would bring down the likelihood of the complete data sequence.

As a result in the case where there are only 2 ratefactors with 1 being of a extreme

value no consequence on the proper modelling of the data is made. In the case

where there are 3 ratefactors with only 1 ratefactor being of an extreme value,

the transition probability parameter increases with the amount of data hindering

the model to make proper transitions between the 2 applicable ratefactor values

of ρ1 and ρ2.

A.6 Optimising the hidden state variables with the

Viterbi Algorithm

In dynamic programming the Viterbi algorithm is used for finding the most likely

sequence of hidden states (decoding). A distribution is not returned, but a single
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sequence is, which is the result of the optimisation process. The optimised result

returned is called the Viterbi path. This algorithm is used in HMMs and can

be used to find the most likely trajectory (path) of hidden topology states along

the topology state HMM. The algorithm examines all possible paths towards the

most likely one and keeps only the most likely. The result can be seen via a trellis

diagram which is the trajectory from the first hidden state with transitions until

the final hidden state.

The algorithm uses the eq 1.22or the relevant likelihood function, to use as

a criteria in finding an optima. In this case the Viterbi algorithm searches for

the topology state seq, S, which maximises the joint probability of the DNA

sequence alignment with Ŝ as the optimal state sequence. The algorithm uses the

emission probability model eq 1.72 and the transition state probabilities subfigure

b) 1.18(costs) incrementally for finding the lowest penalising path through the

state sequences. For the eq 1.87 the Viterbi algorithm predicts the recombinant

regions and break points with,

Ŝ = argmaxSP(S|D,w,θ,νS) (A.20)

= argmaxS,...,SN P(S1, . . . ,SN |y1, . . . ,yN ,w,θ,νS). (A.21)

The marginal probability of the first state P(S1) is found from the prior distribu-

tion of initial states, and the rest of the parameters (w,θ, and νS) are estimated

as is discussed later but assumed to be constant during the Viterbi algorithm

and other state space optimising algorithms. From the dependency structure of

eq 1.69 a recursion relationship is obtained allowing for the less than exponential

running time of an exhaustive search. For the recursion operation the last state

is considered, SN , from this state the backtracking is done until the first state, S1,

which has no predecessors and there is a prior distribution over the initial states.

The recursive relationship uses the log likelihood of the joint probability of the

data and the intermediate variable γt(St) to store the optimised search path up

to the index t,

γN(SN) = maxS1,...,SN−1 logP(y1, . . . ,yN ,S, . . . ,SN). (A.22)

The site independence assumption made about the columns of DNA allow the log

probability to write the product of the site probabilities in terms of sums (which
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is defined in eq 1.73 and relaxed by the HMM),

γN(SN) = maxS1,...,SN−1

[
Σ

N
t=1 logP(yt |St)+Σ

N
t=2 logP(St |St−1)+ logP(S1))

]
.

(A.23)

From this previous expression the emission probability for the column of the index

t = N we are examining can be extracted from the sum of the logs,

γN(SN) = logP(yN |SN)+maxSN−1

[
logP(SN |SN−1)+

maxS1,...,Sn−2

[
Σ

N−1
t=1 logP(yt |St)+

Σ
N−1
t=2 logP(St |St−1)+ logP(S1))

]]
.

(A.24)

This expression separates the trellis until the present state being considered, so

that an expression containing the previous states 1, . . . ,N−1 can be made.

γN(SN) = logP(yN |SN)+maxSN−1

[
logP(SN |SN−1)+ γN−1(SN−1)

]
(A.25)

where the second term is used to obtain the recursive relationship. Since the

state sequence which maximises the probability conditional on the data is equal

to the same state sequence maximising the joint probability, the above recursion

relationship can be used to find the posterior maximum of the state sequence

given the data;

maxS1,...,SN P(S1, . . . ,SN |y1, . . . ,yN) = maxS1,...,SN

= maxSN γN(SN). (A.26)

The backtracking from the recursive relationship finds P(Ŝ|D) =

P(Ŝ1, . . . , ŜN |y1, . . . ,yN). The algorithm starts with ŜN = argmaxSN γN(SN)

and continues until the first state, with the relationship from eq A.25,

ˆSN−1 = argmaxSN−1

[
logP(ŜN |SN−1)+ γN−1(SN−1)

]
, (A.27)

The exhaustive search of searching through every possible path would be ex-

ponential in terms of the number of states (columns in the sequence alignment).

This recursive relationship (Viterbi algorithm), has a runtime of O(K3), which

comes from the number of state values each state can take and the number of

state transitions between those states which we assume to all be possible (in

some cases not every state can transition to any other possible state). With the

recursive relationship being incremental the algorithm is linear in N.

This algorithm demonstrates how the Markov assumption allows a more ef-

ficient method of inferring the state spaces than what would have arisen from a

naive approach not utilising the structure of the model.
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A.7 The Forward Algorithm

The Viterbi algorithm produces the most likely state sequence and the forward

algorithm is similar, but there are differences. It computes the distribution of the

hidden states given the set of observations from the beginning and ending at the

same state index (filtering). With the states that are hidden represented by St ,

and t is the subscript taking values 1≤ t ≤ N as an index for the states. yt are as

before the observation variables which are not hidden, and y1,...,N is the complete

set of observations. The objective of the forward algorithm is to compute the αt

variables. These store the distribution over the hidden state variables St at site t

for the observations from y1 to yt ;

αt(St) = P(St ,y1, . . . ,yt). (A.28)

These are found recursively from the initial α variable computed for the first site

t = 1, so for α1 we consider the prior over the state variables π because there are

no transitions from hidden states before it;

αt=1 = π × P(y1|S1). (A.29)

For the set of observations from 1 to N, the set of observation variables are

y1, . . . ,yN and the forward algorithm can compute the probability of observing

these observations;

P(y1, . . . ,yt) = Σ
K
i αt(Si), (A.30)

for the arbitrary variable index t and therefore the complete observation sequence

can be found via

P(y1, . . . ,yN) = Σ
K
i=1αN(Si). (A.31)

The iteration t +1 from the previous states t is found by utilising the Bayesian

network properties defined in subsection 1.9. This is where the α values storing

the distribution of the hidden state values for the set of observation seen till that

index are used. With the distribution over the state values the previous hidden

state values and observations are independent given the alpha values. Eq 1.68

defines this independence of the states as is also depicted in the graphical model

of Figure 1.15 (where the nodes represent the state variables and the arrows the

parent/child relationships). With this the alpha values for the state variables in

conjunction with the state transition value P(St+1|S) and the observation proba-

bility P(yt+1|St+1) (as defined in eq 1.69) the present alpha can be computed with
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these 2 terms and the previous alpha value,

αt(Si) = P(yt+1|St+1)ΣK
i=1P(St+1|St = i)αt−1(St = i). (A.32)

This way the complete distribution of alpha values at the site t can be found.

When starting from the complete set of observations the alpha parameters are

found via recursion. The algorithm works backward utilising eq A.32, and the

base case from which the recursion begins to return is eq A.29. Here is shown

the working for the recursion relationship when beginning with the alpha at site

N when none of the previous ones are already known:

P(y1, . . . ,yN) = ΣSN αN(SN) (A.33)

αn(Sn) = P(y1, . . . ,yn,Sn) (A.34)

= ΣS1 . . .ΣSn−1P(y1, . . . ,yn,S1, . . . ,Sn−1,Sn) (A.35)

= ΣS1 . . .ΣSn−1P(St |St−1,νS)
n

∏
t=1

P(yt |St) (A.36)

= P(yn|Sn)ΣSn−1P(Sn|Sn−1)ΣS1 . . .ΣSn−2

n−1

∏
t=1

P(yt |St)P(St |St−1)(A.37)

= P(yn|Sn)ΣSn−1P(Sn|Sn−1)αn−1(Sn−1). (A.38)

At the completion of the N steps of the algorithm (for each observation in the

length of the HMM), the alpha value can be found, αt giving the probability of

state t being observed after the y1, . . . ,yt observations were seen in the sequence.

The forward algorithm is an algorithm of significant importance. An alter-

native approach is the naive exhaustive search. To calculate the probability of

the set of observations P(y1, . . . ,yN), as in eq A.33, we would need to marginalise

over the complete hidden statespace with nested sums. With K being the number

of values the hidden state can take on (we also assume that the possible state

values is homogeneous along the whole alignment), the nested sums create a com-

putational complexity of KN ; ΣN . . .Σ1K. This is exponential in the running time

due to the exponent being proportional to the length of the data set (observation

length). This is not possible to use in realistic scenarios where observation lengths

would result in excessive computational demand. From eq A.32 we can see that in

total there will be N iterations (N recursions to be more accurate since we begin

from eq A.33 at t = N), and there is a sum over the state space of the previous

alpha and the present alpha needs to have this done for each hidden state value

so there are 2 nested sums. This creates a run time proportional to K2N which is
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linear in terms of the amount of observational data. The state space complexity

remains quadratic resulting in a much more optimised inference procedure than

the exhaustive search.

A.8 Forward-backward Algorithm

The Forward algorithm, subsection A.7 calculated the probability of the observa-

tions from the first y1 until the index t which could take on the value N, t = N,

to compute the probability of the dataset with all the observations. The alphas

computed could be used to examine the distribution of the hidden state values

given the set observations before the index t. The alphas give the distribution of

the hidden state values at that index value with all the previous observations and

the previous hidden states marginalised over. It does filtering, and the forward-

backward algorithm does smoothing. This algorithm singles out a single hidden

state at a specified index t as does the forward algorithm utilising the observations

following yt as well which are the complete set until index t = N. This distribution

we are interested in is,

P(St |y1, . . . ,yN). (A.39)

Using Bayes rule we can write this distribution of the posterior of a hidden state

given the data with the 3 terms, likelihood, prior, and marginal likelihood of the

data;

P(St |y1, . . . ,yN) =
P(y1, . . . ,yN |St)P(St)

P(y1, . . . ,yN)
. (A.40)

Given the HMM structure shown in figure 1.15 we can see that conditioning on

a hidden state St can separate P(y1, . . . ,yt |St),

=
P(y1, . . . ,yt |St)P(yt+1, . . . ,yN |St)P(St)

P(y1, . . . ,yN)
.

The prior on the state P(St) is used to cancel out one of the conditional distribu-

tion’s denominator,

=
P(y1, . . . ,yt ,St)P(yt+1, . . . ,yN |St)

P(y1, . . . ,yN)
.

The term on the left is what is computed by the alpha values, eq A.32, and what

is on the right-hand side of the numerator P(yt+1, . . . ,yN |St) is the beta value.

The beta values used in the forward algorithm are computed from the recursive
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relationship similarly to the defined alpha variables in eq A.32,

βt = Σ
K
i=1βt+1(S(i))P(S(i)|St)P(yt+1|S(i)), (A.41)

that computes the distribution

P(yt+1, . . . ,yN |St). (A.42)

The initialisation that this recursion step leads to is the base case of βN which is,

βN = 1. (A.43)

Using the alpha and beta values at index t allow eq A.39 to be computed;

P(St |y1, . . . ,yN) =
αtβt

P(y1, . . . ,yN)
. (A.44)

This distribution is normalised over the complete hidden state space choices

1 = Σ
K
i=1P(St = i|y1, . . . ,yN) =

ΣK
i=1αt(Si)βt(Si)
P(y1, . . . ,yN)

. (A.45)

And as a note this shows that the numerator on the right ΣK
i=1αt(Si)βt(Si) is equal

to the probability of the complete set of observations.

We define now gamma variables γt over the hidden state variables as being

the marginal posterior distribution of the hidden states given the complete set of

observation data,

γt = P(St |y1, . . . ,yN) (A.46)

which is found from product of the alpha and beta values at that site:

γt(Si) = αt(Si)β(Si) (A.47)

This is going to be very important when examining the marginal posterior dis-

tribution across the hidden states for the topologies and ratefactors at each site

in the alignment. Plots will be produced from simulations showing the marginal

posterior distribution along the sites for the hidden state values.

A.9 Nested Gibbs-within-Gibbs for the HMM hid-

den state space sampling

Here is described an alternative method to the forward-backward algorithm de-

scribed in subsection A.8 for finding the hidden state trajectory along the HMM
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by sampling state sequences. The method of nested Gibbs-within-Gibbs infers

the hidden state sequence of the HMM by sampling from the model in a Bayesian

way with the samples being taken from the posterior distribution. This approach

of the nested Gibbs-within-Gibbs scheme is described and implemented in Hus-

meier and McGuire (2003) for the purpose of sampling the state sequence S. The

method is discussed previously in Robert et al. (1993) where the authors suggest

this approach of sampling each state St individually conditioned on the other

states. Each Gibbs step draws a state conditional on the others in the following

scheme (where i is the iteration number of the Gibbs simulation):

S(i+1)
1 ∼ P(·|S(i)

2 , . . . ,S(i)
N ,R(i),ν

(i)
S ,ν

(1)
R ,w(i),ρ(i),D)

S(i+1)
2 ∼ P(·|S(i+1)

1 ,S(i)
3 , . . . ,S(i)

N ,R(i),ν
(i)
S ,ν

(1)
R ,w(i),ρ(i),D)

...

S(i+1)
N ∼ P(·|S(i+1)

1 ,S(i+1)
2 , . . . ,S(i+1)

N−1 ,R(i),ν
(i)
S ,ν

(1)
R ,w(i),ρ(i),D). (A.48)

The computational complexity of sampling each state conditionally on the rest of

the states is greatly reduced by the sparseness of the connectivity in the HMM

structure. The HMM structure for this sampling scheme reduces the sampling to

be conditional on the nodes to the left and right of the hidden state of concern.

This is due to the Markov blanket, comprising of the surrounding nodes being the

parents, children, and coparents as explained in Heckerman (1999). For sampling

on a particular hidden topology state St at site t,

P(St |S1, . . . ,St−1,St+1, . . . ,SN ,R,νS,νR,w,ρ,D), (A.49)

this is simplified to (via the Markov Blanket),

= P(St |St−1,St+1,R,νS,νR,w,ρ,yt) (A.50)

∝ P(St+1|St ,νs)P(St |St−1,νs)P(yt |St ,R,w,ρ,νR) (A.51)

and this last expression can be normalised to give a probability which can be

sampled from easily since the set of topologies is a finite discrete set.

A.10 Importance Sampling

Importance sampling generates independent samples from a target distribution

using a different distribution to propose values to sample points from. It is used
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in cases where the target distribution cannot be used to generate samples from

directly. The ability to generate samples from the distribution can be used to

calculate the volume of a distribution or the expected value of a distribution over

a particular set of dimensions for example.

The samples are iid taken from a distribution different from the target distri-

bution for importance sampling as the target distribution cannot have samples

directly taken. The proposal distribution g(x) is used to generate points from

and can differ from a uniform distribution and the volume does not change the

final outcome but only relative ‘importance’ given to points based on the density

of the distribution. The distribution of concern is f (x), and the integral can be

found by, Z b

a

f (x)
g(x)

g(x)dx.

w = f (x)
g(x) represents the weighting of the target distribution to the distribution

samples are proposed from scaling the number of times this point should have

been proposed from. This continuous distribution is approximated by a discrete

sum of the samples which is average over and to obtain the expected value the

total scaling values must be compensated for:

E =
∑

N
i=1 f (xi)w(xi)
∑

N
j=1 w(x j)

. (A.52)

Where N is the number of samples taken.

The choice of g(x) must be reasonable in that it cannot have a zero density

value where f (x) > 0. Large differences in the values will cause poor convergences,

eg. where g(xi) has a relatively low value samples from f (xi) regardless if they

are large will be rarely sampled and the regions of large mass may be ignored.

Importance sampling is used as part of annealed importance sampling dis-

cussed in chapter 3.

A.11 Details of the Gibbs sampling scheme used for

the improved phylogenetic FHMM

We briefly describe the Gibbs sampling procedure that we used for the improved

phylogenetic FHMM described in Section 2.12.3.

We sampled the hidden state sequences and model parameters according to

the Gibbs sampling scheme described in Sections 2.7 and 2.12. We carried out 200
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Gibbs sampling steps in the burn-in phase, and 200 steps in the sampling phase.

Recall that each Gibbs sampling step includes a set of Metropolis-Hastings (MH)

steps for adapting the branch lengths, according to equations (2.48) and (2.51).

Within each Gibbs step, we carried out 200 MH steps for the MH burn-in phase,

and 1200 MH steps for the MH sampling phase. The final branch length vector

was kept, and constituted the output of the Gibbs sampling step (2.48). During

the MH burn-in phase, the parameter α of the proposal distribution (3.2.1) was

adjusted, as described in Section 2.12.3. We used the MH sampling phase to

compute, for all branch lengths, the potential scale reduction factor of Gelman

and Rubin (1992).

For the simulations thus carried out, we found that the potential scale re-

duction factor was consistently smaller than 1.1, indicating a satisfactory de-

gree of convergence. The marginal posterior probabilities of the topology states,

P(St = Ψk|D), were computed straight from the state sequences {Si} sampled dur-

ing the sampling phase of the Gibbs sampling scheme by application of (2.44);

the results are shown in Figures 2.8 and 2.9.

A.12 Transformation of Random variables

The transformation of random variables for continuous probability distributions

densities is than in the case of discrete distributions. For the univariate case of a

transformation from a density function P(x) to another density function P(y) the

equality is based on this equation,

P(x) = P(y)
dy
dx

. (A.53)

The concept of conserving probability during a transformation is depicted in

Figure A.1. In the multivariate case where the density functions cover more than

one dimension ( f (x,y) to g(r,φ)), the Jacobian is used. We switch from

f (x,y) = g(r,φ) |detJ| , (A.54)

and the modulus of the Jacobian matrix determinant is used to avoid negative

values. To provide a more in depth explanation an example will be used. The

transformation of the function g(r,φ) to the function f (x,y) where r and φ are

continuous independently distributed random variables. The variable φ has a
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uniform distribution over the interval [0,2π], and the variable r is uniformly dis-

tributed over the interval [0,10]. The variables x and y are defined as x = r cos(φ)

and y = r sin(φ). The probability density for the distribution of x and y is given

by the transformation using the Jacobian. This is represented with the partial

derivatives as,

f (x,y) = g(r,φ)
∣∣∣∣∂(r,φ)
∂(x,y)

∣∣∣∣ . (A.55)

For convenience the inverse of the Jacobian can be used and the reciprocal of the

value is taken,

f (x,y) = g(r,φ)
∣∣∣∣∂(x,y)
∂(r,φ)

∣∣∣∣−1

. (A.56)

The expansion of the partial derivatives is,

f (x,y) = g(r,φ)

∣∣∣∣∣ ∂x
∂r

∂x
∂φ

∂y
∂r

∂y
∂φ

∣∣∣∣∣
−1

. (A.57)

Substituting the equations and performing the differentiations,

f (x,y) = g(r,φ)

∣∣∣∣∣ cosφ −r sinφ

sinφ r cosφ

∣∣∣∣∣
−1

= g(r,φ)
1

r
(
cos2 φ+ sin2

φ
) = g(r,φ)

1
r
. (A.58)

The functions are set to equal each other with f (x,y) = g(r,φ)× r−1. This value

of r can be expressed in terms of x and y as r =
√

x2 + y2, and for φ it is given

by φ = arctan y
x . The distribution for g(r,φ) is the product of the independent

uniform distributions over their intervals,

g(r,φ) =
1
10
× 1

2π
× I(0≤ r ≤ 10)× I(0≤ φ≤ 2π), (A.59)

where I is the indicator function which is 1 when the arguments are true and 0

otherwise. This gives the formula for f (x,y) as,

f (x,y) =
g(
√

x2 + y2,arctan( y
x))

r
=

1
10
× 1

2π
× 1

r
=

1
20πr

. (A.60)

To demonstrate the use we chose the values of x = 2 and y = 0 and find the

probability of P(x,y) which is,

P(x = 2,y = 0) =
1

20π×
√

22 +02
=

1
40π

. (A.61)

To do the same, with the previous example, over the discrete domain there is

no use of the Jacobian as each value in the domain is a probability rather than a
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x

P(x)

y

P(y)

P(x)dx P(y)dy

Figure A.1: Transformation of random variables

During transformations of random variables the probability has to be conserved.

Probability for an infinitesimal area P(x) = P(y)dy
dx must be equal in the trans-

formation, which is shown in the shaded area in the graph above. The infinites-

imal probability is the infinitesimal area under the probability density function

P(x)dx and the conservation of probability implies that P(y)dy = P(x)dx, leading

to P(y) = P(x)
[

dx
dy

]
. In the multivariate case

[
dx
dy

]
becomes the modulus of the

determinant of the Jacobian.
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density. Assume the distributions for r and φ are uniform over the same interval,

equally separated, with a cardinality of 10 each. There are then 100 possible

pairings which are uniformly distributed as well for P(x,y),

P(x,y) =
1

100
× I(0≤ r ≤ 10)× I(0≤ φ≤ 2π). (A.62)

This is over the valid set of x = r cosφ and y = r sinφ and 0 otherwise. For the

variables taking on the same values as the example previously, x = 2 and y = 0

(these values appear in the support of the distribution), the result is P(x = 2,y =

0) = 1
100 .

A.13 Algorithm for the rate factor RJMCMC

scheme

In the table 1, is given the pseudocode for RJMCMC scheme for the ratefactors.

A.14 Algorithm for the MCMC of the branch

lengths and Codon relative rate vector

In the table 2, is given the pseudocode for the sampling of the branch lengths

and vector of relative codon rate heterogeneity.

A.15 Ratefactor MCMC algorithm

In the table 3, is given the pseudocode for the Metropolis-Hastings sampling of

the ratefactors.

A.16 The Jacobian for RJMCMC

Consider the simple case of a birth-death move, in which a component is added

to the existing ones. Assume, for simplicity of exposition, that we only have one

component, with parameter ρ ∈ I, where I is some interval of real numbers. In

the birth move, we add a new component, u ∈ I, sampled from some distribution
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Algorithm 1 RJMCMC for the rate states

function = FHMM−RJMCMC(Sinit ,Rinit ,Rinit ,winit ,θθ,λinit)

for i = 1 to Gibbs iteration end do

[S,R,loglik] ← FHMM(S,R,ρ,w,θ,λ) {Sampling the hidden state values of

the topology and rates factors for the sites via the FHMM.}
[w,λ] ← wandλMCMC(S,R,ρ,w,λ)

bk = c×minA{1, q(k+1)
q(k) }

dk = c×minA{1, q(k−1)
q(k) }

mk = 1 - bk - dk

r1 = rand()

if r1 ≤ bk then

log[ρ′] ← sampleUniform[min(−3),max(2)]

ρ(1,k+1)’ = ρ′

θνR ’ = ReconfigνR[θνR

[R’,loglik’] ← FHMM(S,R,ρ’,w,θ’,λ)

accept = minA{1, loglik′
loglik }

r2=rand()

if accept ≥ r2 then

ρ= ρ’

R= ρ’

θ = θ’

end if

else if bk ≤ r1≤ dk then

ρ’ (delete random selected state)

θνR ’ = ReconfigνR[θνR

[R’,loglik’] ← FHMM(S,R,ρ’,w,θ’,λ)

accept = minA{1, loglik′
loglik }

r2=rand()

if accept ≥ r2 then

ρ= ρ’

θ = θ’

R= ρ’

end if

else

[ρ] ← ρMCMC(S,R,ρ,w,λ)

end if

save the number of rate states and the values

θ’ ← sample θ

end for

return (S,R,ρ,w,θ,λ)



202 Appendix A. Appendix

Algorithm 2 MCMC for the nucleotide branch lengths and codon vector pa-

rameters λ,w
function(D,winit ,Lw,λinit ,Lλ,burninN,sampleN,S,ρ,R)

αw = 3

αλ = 1

for topo in TopologylNumber do

lik = SequenceProbability(topo,w,D,S,ρ,λ,R)

priorw = exponentialDist(w,αw)

priorλ = exponentialDist(λ,αλ) {the likelihood of the DNA sequence align-

ment given all theparameters for the nucleotide substitution matrix and the

rate states for the parameters}
i=0

while i < burninN+sampleN do

i++

[w′,Pw←w′,Pw′←w] = DirichletSample(w,Lw)

[w′,Pλ←λ′,Pλ′←λ] = DirichletSample(λ,Lλ) { priors for the new and old sets

of the branch lengths and codon rate factor vectors}
prior′w = exponentialDist(w′,α′w)

prior′
λ

= exponentialDist(λ′,α′
λ
)

lik’ = SequenceProbability(topo,w′,D,S,ρ,λ′,R)

Accept = min{1 ,
prior′

λ
×prior′w×lik′×Pw←w′×P

λ←λ′
priorλ×priorw×lik×Pw′←w×P

λ′←λ

}
r2 = rand()

if Accept ≥ r2 then

λ = λ′

w = w′

lik = lik’

end if

if i ≤ burninN then

if acceptance ≤ 0.30 then

Lλ = Lλ

2

Lw = Lw
2

else if acceptance ≥ 0.70 then

Lλ = Lλ×2

Lw = Lw×2

end if

end if

end while

end for

return (w,Lw,λ,Lλ)
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Algorithm 3 MCMC for the ρ

function(D,w,λ,burninN,sampleN,S,ρ,R)

for topo in Topologies do

for ρi in ρ do

likρi = SequenceProbabilityR(topo,w,D,S,ρi,λ,R) {this function calcu-

lates the likelihood of the subsequences for which the ratestates have allo-

cated this particular rate value}
end for

i=0

while i < burninN+sampleN do

i++

for ρi in ρ do

ρ′i = ρi± (rand[0,1]−0.5)×Lρ,i {with reflection}
likρ′i = SequenceProbabilityR(topo,w,D,S,ρ′i,λ,R)

Accept = min{1,
likρ′i
likρi
}

r2 = rand()

if Accept ≥ r2 then

Lρ,i = L′ρ,i

end if

if i ≤ burninN then

if acceptance ≤ 0.30 then

Lρ,i =
Lρ,i

2

else if acceptance ≥ 0.70 then

Lρ,i = Lρ,i×2

end if

end if

end for

end while

end for

return (ρ1,N ,Lρ,i)
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over I. In the death move, we discard one of the components. This gives us the

bijection

(ρ,u) = (ρ1,ρ2) (A.63)

and the Jacobian is: ∣∣∣∣∣∣
∂ρ

∂ρ1

∂ρ

∂ρ2
∂u
∂ρ1

∂u
∂ρ2

∣∣∣∣∣∣=
∣∣∣∣∣ 1 0

0 1

∣∣∣∣∣= 1. (A.64)

As an alternative to the birth/death move, consider a merge/split move. Given

the vector (ρ1,ρ2), rather than just discarding a component, we merge them:

ρ = (ρ1 +ρ2)/2. In order to get a bijection, we introduce the following auxiliary

variable: u = (ρ1−ρ2)/2 This leads to the following bijection:

(ρ,u) =
(

ρ1 +ρ2

2
,
ρ1−ρ2

2

)
(A.65)

Expressing (ρ1,ρ2) as a function of ρ and u gives:

(ρ1,ρ2) = (ρ+u,ρ−u) (A.66)

This leads to the following Jacobian:∣∣∣∣∣∣
∂ρ1
∂ρ

∂ρ1
∂u

∂ρ2
∂ρ

∂ρ2
∂u

∣∣∣∣∣∣=
∣∣∣∣∣ 1 1

1 −1

∣∣∣∣∣= |−2|= 2. (A.67)

The conclusion is that simple birth/death moves have a Jacobian that is the unit

matrix; hence, the determinant is 1 and does not make any contribution to the

RJMCMC acceptance probabilities. For a merge/split move, the Jacobian us

usually different from the unit matrix, and its determinant cannot be neglected

in the RJMCMC acceptance ratio. While, at the face of it, merge/split moves

might appear as more sophisticated than birth/death moves, a study by Boys

and Henderson (2002) has shown that they do not lead to any improved mix-

ing/convergence than the simpler birth/death moves. The latter were therefore

chosen in the work of my PhD thesis.
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