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Abstract

Orbital motion about irregular bodies is highly nonlinear due to inhomo-

geneities in the gravitational field. Classical theories of motion close to

spheroidal bodies cannot be applied as for inhomogeneous bodies the Ke-

plerian forces do not provide a good approximation of the system dynamics.

In this paper a closed form, analytical method for developing the motion of

a spacecraft around small bodies is presented, for the so called fast rotat-

ing case, which generalize previous results to second order, arbitrary degree,

gravitational fields. Through the application of two different Lie transforma-

tions, suitable changes of coordinates are found, which reduce the initial non

integrable Hamiltonian of the system into an integrable one plus a negligible,

perturbative remainder of higher degree. In addition, an explicit analyti-

cal formulation for the relegated, first and second order, arbitrary degree

Hamiltonian for relatively high altitude motion in any inhomogeneous gravi-

Preprint submitted to Icarus January 8, 2013



tational field is derived in closed-form. Applications of this algorithm include

a method for determining initial conditions for frozen orbits around any ir-

regular body by simply prescribing the desired inclination and eccentricity of

the orbit. This method essentially reduces the problem of computing frozen

orbits to a problem of solving a 2-D algebraic equation. Results are shown

for the asteroid 433-Eros.

Keywords: Asteroids, dynamics, Orbit determination, Asteroids, Celestial

mechanics, Irregular satellites

1. Introduction1

The motion of bodies subject to non-Keplerian gravitational fields is a2

classical subject of research in the context of celestial mechanics. In recent3

years this type of research has become important to future planned missions4

of spacecraft to the moon and asteroids in addition to asteroid deflection mis-5

sions such as the European Space Agency’s “Don Quijote” concept Carnelli6

and Gálvez (2006). Research undertaken in this area has studied the effect of7

the Earth’s inhomogeneous gravitational field on the motion of natural and8

artificial satellites, that is, artificial satellite theory for small and moderate9

eccentricities Deprit (1970). More recent studies have researched the effects10

on motion of the inhomogeneous gravitational field of other solar system11

bodies, including the Moon Abad et al. (2009) and asteroids San-Juan et al.12

(2004). The analysis of spacecraft motion about these bodies is particularly13

challenging as they typically feature shapes and density distributions more14

irregular than those of planets. Such irregularities break symmetries and15

require more complicated analytical expressions for their description which16
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increases the complexity involved in such studies.17

Numerical methods are today widely used to study the trajectories of ob-18

jects orbiting specific irregular bodies Fahnestock and Scheeres (2008) or for19

finding stability criteria (Lara and Scheeres (2002)). Disadvantages of these20

methods are that they can be highly computational and require a complete21

re-design for each different body. Analytical methods, by contrast, have the22

potential to rapidly identify useful natural motions for general bodies with23

inhomogeneous gravitational fields. Furthermore, they can provide a full dy-24

namical picture of the motion around irregular bodies that can be used to25

search and study particular classes of useful orbits. However, current ana-26

lytical methods are only used in a limited and semi-numerical way (meaning27

that analytical expansions constitute the first step in such studies, which are28

then typically carried out from a numerical standpoint Scheeres et al. (1998)).29

The main drawbacks of these methods is that their application in the case30

of highly inhomogeneous bodies requires extensive symbolic computations31

involving algebraic manipulations, and that they are usually restricted to a32

certain range of eccentricities due to series convergence. Analytical studies33

on inhomogeneous gravitational fields have been, so far, limited to low degree34

gravity fields Palacián (2002), San-Juan et al. (2002), San-Juan et al. (2004),35

thus restricting the results to a class of bodies for which the dynamics is36

dominated by a few coefficients (e.g. oblateness or ellipticity).37

In this paper a closed form (i.e. without using series expansion in the ec-38

centricity), analytical, perturbative theory of motion around inhomogeneous39

bodies is presented, generalized to second order, arbitrary degree gravity40

fields.41
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Using Deprit and Palacián’s relegation algorithm (Palacián (1992)) and a42

Delaunay normalization, suitable canonical action-angle variables are found,43

which reduce the initial non-integrable Hamiltonian into an integrable one44

plus a negligible, perturbative remainder.45

The method can be used to find useful orbits for space mission applications46

such as frozen orbits. Moreover, frozen orbits are orbits with no secular47

perturbations in the inclination, argument of pericenter, and eccentricity48

(Brouwer (1959)). These orbits are periodic orbits, except for the orbital49

plane of precession, and are therefore called frozen. In particular, this paper50

extends previous work by:51

52

• Formulating the inhomogeneous gravitational potential generated by53

any inhomogeneous body in polar-nodal coordinates54

• Including arbitrary degree gravitational coefficients, instead of limiting55

the study to 2nd degree coefficients56

• Stating the explicit analytical formulation for the closed-form averaged57

with respect to the argument of node, second order, arbitrary degree58

Hamiltonian of any inhomogeneous gravitational field.59

• Obtaining a resulting Hamiltonian which accounts for the presence of60

the angular momentum, in contrast to the trivially integrable Hamil-61

tonian of San-Juan et al. (2002) which only accounts for the argument62

of node. Again, this previous result was only possible by considering a63

Hamiltonian with 2nd degree coefficients.64
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• Providing a method for determining initial conditions for frozen orbits65

around any irregular body by simply prescribing the inclination and66

eccentricity of the desired orbit.67

• Applying the method to the asteroids 433-Eros, which is the main68

example studied in.69

Therefore, the proposed perturbative theory presents a method to derive70

more accurate descriptions of a spacecraft’s high altitude motion about an71

asteroid, which enables, for example, one to find precise initial conditions72

that yield frozen orbits.73

2. Method74

Assuming that the planetary body is in uniform rotation around its axis of75

greatest inertia the potential generated by the inhomogeneous gravitational76

field can be derived in the rotating polar nodal variables (Whittaker (1917))77

convenient for the successive transformation to Delaunay coordinates. This78

potential takes into account an arbitrary number of spherical harmonic co-79

efficients, all considered to have the same order, thus providing a dynamical80

model based on an arbitrarily accurate model of the inhomogeneous body.81

Restricting the analysis to the fast rotation case, i.e. when the angular veloc-82

ity of rotation the asteroid is higher than the mean motion of the spacecraft,83

the methodology is then based on the following steps:84

• Relegation of the polar component of the angular momentum N to85

obtain the relegated nodal variables where the argument of nodes con-86

jugate momenta is constant along the Hamiltonian flow.87
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• Transformation to Delaunay variables to yield a constant total angular88

momentum in the z-direction89

• Normalization of the Delaunay variables which yields a reduced ordi-90

nary differential equation in two coordinates; the total angular momen-91

tum and the argument of pericentre92

• The frozen orbits are identified with the equilibrium points of these93

equations i.e. where the total angular momentum about the z-axis and94

the argument of pericentre are constant, therefore the final stage is95

undertaken by solving a 2-D algebraic equation.96

The methodology comprises of two different Lie transformations, relega-97

tion and normalisation, constructed following Deprit and Palacián’s algo-98

rithm (Palacián (1992)) and Deprit’s method for Lie transformations (Deprit99

(1969)). The Delaunay normalization (Deprit (1982)), cannot be directly ap-100

plied to a high-order model due to the presence of the argument of node that101

appears in the Coriolis term. The addition of this term in the Lie derivative102

prevents the conventional computation of the Lie transform generator (San-103

Juan et al. (2002)). However, Deprit and Palacián’s closed form relegation104

algorithm (Deprit et al. (2001)) can be applied, which “relegates” the action105

of the argument of node to a negligible remainder. It is shown that, for this106

model, both relegation and normalization results are equivalent to averaging107

over the fast angles.108
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3. The dynamical system109

An inhomogeneous body is considered, which rotates uniformly around110

its axes of greatest inertia with constant angular velocity ω̂ = [0, 0, ω].111

The total mass of the body is M while G is the universal gravitational con-112

stant and it is set µ = MG . The dynamics are formulated into a reference113

frame centered in the center of mass of the body and oriented with the “z-114

axis” parallel to the rotational axes of the asteroid. The frame of reference is115

rotating with the same velocity of rotation of the asteroid; in such rotating116

coordinates the Hamiltonian describing the system is:117

H(x,X) = 1
2
(X ·X)− ω̂(x×X) + Ū(x) (1)

where x, X ∈ R3 are respectively the position coordinates and conjugate118

momenta of the spacecraft, while Ū(x) is the perturbing gravitational poten-119

tial generated by the inhomogeneous rotating body. The equations of motion120

are:121  ẋ = ∂

∂XH(x,X)

Ẋ = − ∂
∂xH(x,X)

(2)

It is convenient to express the Hamiltonian and the perturbing potential122

using the so called nodal-polar variables so that it may easily be transformed123

to the Delaunay coordinates in the later stage of the methodology. The124

six nodal-polar coordinates are r, θ, and ν (respectively the distance of the125

spacecraft from the body, its angular distance from the line of the ascending126

node and the argument of node) and their corresponding conjugate momenta127

R, Θ, and N . The transformation required is given in Palacián (2002),128
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setting x = [x, y, z]T and X = [X, Y, Z]T :129

x = r(cos θ cos ν − sin θ cos I sin ν)

y = r(cos θ sin ν + sin θ cos I cos ν)

z = r sin θ sin I

X = (R cos θ − Θ
r

sin θ) cos ν − (R sin θ + Θ
r

cos θ) cos I sin ν

Y = (R cos θ − Θ
r

sin θ) sin ν + (R sin θ + Θ
r

cos θ) cos I cos ν

Z = (R sin θ + Θ
r

cos θ) sin I

(3)

with N = |Θ| cos I.130

In these coordinates the Hamiltonian takes the form:131

H(r, θ, ν, R,Θ, N) = 1
2
(R2 + Θ2

r2 )− ωN + Ū(r, θ, ν, ,Θ, N) (4)

where the perturbing potential, found using Wigner’s rotation theorem (Wigner,132

1959) and the addition formula for non scaled spherical harmonics (Hofmann-133

Wellenhof et al., 1967), is:134

Ū(r, θ, ν, ,Θ, N) = −
∞∑
n=0

n∑
m=0

n∑
j=−n

min{n+m,n+j}∑
t=max{0,j+m}

ci2n+m+j−2tsi2t−m−j·

· 1
rn+1 (An,m,j,t cos (mν − jθ) + Bn,m,j,t sin (mν − jθ)) ,

(5)

where135

ci := ci(N,Θ) = cos ( I
2
) =

√
1+cos I

2
=

√
1+ N

Θ

2

si := si(N,Θ) = sin ( I
2
) =

√
1−cos I

2
=

√
1−N

Θ

2

(6)

with136

An,m,j,t = Ḡn,m,j,t
(
Cn,m cos (π

2
(j +m))− Sn,m sin (π

2
(j +m))

)
Bn,m,j,t = Ḡn,m,j,t

(
Cn,m sin (π

2
(j +m)) + Sn,m cos (π

2
(j +m))

)
,

(7)
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and137

Ḡn,m,j,t = (−1)m+3t−j+1µαn (n+m)!(n−j)!
t!(n+j−t)!(n+m−t)!(t−m−j)!(−1)

n+j
2

1
2n

(n+j)!

(n+j
2 )!(n−j

2 )!
·

·((n+ j)mod2 − 1).

(8)

In these α is a conventionally chosen reference radius, usually taken as the138

radius of the circumscribing sphere of the small body and xmody stands for139

the value of x modulus y, i.e. the integer remainder of the division of x by y.140

The Cn,m and Sn,m in (17) are called spherical harmonic coefficients, defined141

as, ∀0 ≤ m ≤ n:142

Cn,m = (2−δm,0)

M
(n−m)!
(n+m)!

∫
V

(
r′

α

)n
Pn,m(sin δ′) cos (mλ′)ρ(r′, δ′, λ′)dV

Sn,m = (2−δm,0)

M
(n−m)!
(n+m)!

∫
V

(
r′

α

)n
Pn,m(sin δ′) sin (mλ′)ρ(r′, δ′, λ′)dV

(9)

Where δ0,m is the Kronecker delta that gives 1 if m = 0, and 0 elsewhere,143

Pm
n (x) is the associated Legendre function of degree n and order m.144

Moreover r′ ∈ (0;∞), θ′ ∈ [−π; π) and λ′ ∈ [0; 2π) are respectively the po-145

sition, latitude and longitude of the infinitesimal volume element dV in a146

cartesian frame of reference Ox,y,z, ρ(r′, θ′, λ′) is the density of the infinitesi-147

mal element of volume and V is the volume of the body.148

Note that, in order to obtain formula (16) the gravitational potential149

U(r) = −G
r

∫
V

ρ(r′)√
1− 2 r

′

r
cosψ +

(
r′

r

)2
dV (10)

where cosψ = sin δ sin δ′ + cos δ cos δ′ cos (λ− λ′), has been developed in150

terms of Legendre Polynomials using (1−2WZ+Z2)−1/2 =
∑∞

n=0 Z
nPn(W ).151
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Thus it has been obtained that152

U(r) = −G
r

∫
V

∞∑
n=0

(
r′

r

)n
Pn(cosψ)ρ(r′)dV, (11)

which converges only if the condition r′

r
< 1 is satisfied, which implies that153

the model is valid only outside the reference sphere.154

A full explanation of the spherical harmonic coefficients can be found in155

Hofmann-Wellenhof et al. (1967). However it is important to highlight that156

equations in (9) imply:157

C0,0 = 1

Cn,0 = 1
M

∫
V

(
r′

α

)n
Pn(sin δ′)ρ(r′, δ′, λ′)dV ∀n > 0

Sn,0 = 0 ∀n ≥ 0

(12)

Moreover, centering the origin of the system of reference at the center of158

mass it can be demonstrated that the term C1,0 = 0.159

The coefficients C2,0 and C2,2 express the “ellipticity” and “oblateness” of160

the body.161

4. The relegation of the polar component of the angular momen-162

tum N163

In the context of artificial satellite theory, in general, one needs to order164

the terms of the Hamiltonian H according to an asymptotic expansion in165

order to build a perturbation theory. The usual way to arrange the Hamil-166

tonian for the cases in which the angular velocity of the asteroid is higher167

than the mean motion of the spacecraft (which holds, for example, for fast168
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rotating bodies or for relatively high altitudes) is here followed (see Segerman169

and Coffey (2000)). It consists in placing the full unperturbed part at ze-170

roth order and distribute the perturbation at first and second orders. The171

dominant (unperturbed) part of the Hamilton function is set to be the sum172

of the two-body Hamiltonian HK and the Coriolis term HC . The perturbing173

potential takes into account an arbitrary number of spherical harmonic coef-174

ficients, distributed as first or second orders perturbations, depending on the175

harmonics of the specific asteroid studied, thus providing a dynamical model176

based on an arbitrarily accurate model of the inhomogeneous body.177

The flows associated to the two components of the unperturbed Hamiltonian178

are used to relegate the whole system first and then to put it into normal179

form by means of symplectic transformations.180

The Hamiltonian in (4) is therefore rearranged as:181

H = H0 + εH1 +
ε2

2
H2 +O(ε3), (13)

where ε is merely an ordering dimensionless parameter, which will be decided182

later on for the applications, and183

H0 = HK +HC

H1 = U (1)(r, θ, ν, ,Θ, N)

H2 = U (2)(r, θ, ν, ,Θ, N)

(14)

where:184

HK := 1
2
(R2 + Θ2

r2 )− µ
r

HC = −ωN,
(15)
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and, for s = 1, 2185

U (s)(r, θ, ν, ,Θ, N) = − s!
εs

∞∑
n=1

n∑
m=0

n∑
j=−n

min{n+m,n+j}∑
t=max{0,j+m}

ci2n+m+j−2tsi2t−m−j·

· 1
rn+1

(
A(s)
n,m,j,t cos (mν − jθ) + B(s)

n,m,j,t sin (mν − jθ)
)
,

(16)

with:186

A(s)
n,m,j,t = Ḡn,m,j,t

(
C

(s)
n,m cos (π

2
(j +m))− S(s)

n,m sin (π
2
(j +m))

)

B(s)
n,m,j,t = Ḡn,m,j,t

(
C

(s)
n,m sin (π

2
(j +m)) + S

(s)
n,m cos (π

2
(j +m))

)
,

(17)

with:187

C
(s)
n,m =

 Cn,m if the term containing Cn,m is ∼ O(εq)

0 otherwise

S
(s)
n,m =

 Sn,m if the term containing Sn,m is of ∼ O(εq)

0 otherwise

(18)

Again ci and si as in (6) and Ḡn,m,j,t as in (8).188

189

Now, considering the case |HK | < |HC |, two different Lie transforma-190

tions are performed: the relegation of the polar component of the angular191

momentum N first and the Delaunay normalisation.192

Definition 1. A Lie transformation φ is a one-parameter family of map-

pings φ : (y, Y ; ε)→ (x,X), defined by the solution x(y, Y ; ε) and X(y, Y ; ε)

of the Hamiltonian system  dx
dε

= ∂W
∂X

dX
dε

= −∂W
∂x

12



with initial conditions x(y, Y ; 0) = y and X(y, Y ; 0) = Y , and where the

function

W (x,X; ε) =
∑
s≥0

εs

s!
Ws+1(x,X)

is the generator of the transformation.193

Due to the properties of the Hamiltonian systems, the Lie transformation φ

is a completely canonical transformation that maps a Hamiltonian

H(x,X; ε) =
∑
s≥0

εs

s!
Hs(x,X)

onto an equivalent Hamiltonian K of the form

K(y, Y ; ε) =
∑
s≥0

εs

s!
Ks(y, Y ; 0).

found by solving a series of homological equations:194

[H0;Ws] + H̃s = Ks ∀s ≥ 1 (19)

where the symbol [ ; ] stands for the Poisson Brackets. In equation (19) the195

element H̃s collects the terms from the previous orders (see Deprit (1969)196

and Palacián (2002)). The relegation and the normalization algorithms (see197

Deprit et al. (2001) and Deprit (1982) respectively) are two different methods198

of solving such homological equations. In particular, the relegation maps the199

Hamiltonian (13) into an equivalent one of the form:200

K = K0 +
∑
s≥1

εs

s!
Ks =

∑
s≥0

εs

s!

(
p∑
j=0

Ks,p +Rs

)
(20)

with K0 = H0(y, Y ) and the coefficients Ks,p ∈ ker(LHC
), where LHC

is the201
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Lie derivative with respect to the Coriolis term1.202

In contrast with normalization, the term Ks may not belong to ker(LHC
)203

due to the presence of the residual Rs. In this resulting Hamiltonian the204

terms containing the variable ν will only appear in the remainder Rs. More-205

over, for every order s of the Hamiltonian, the algorithm iterated p(s) times206

(depending on the choice of the small parameter ε), progressively diminish-207

ing the importance of the remainder Rs, such that after p(s) times it results208

Rs ∼ O(ε3).209

As a result the truncated system210

K =
∑
s≥0

εs

s!

p∑
j=0

Ks,p, (21)

is obtained, which represents an approximation of the starting Hamiltonian211

independent from ν and admits HC as an integral.212

In this section, in order to keep the generality of the analysis, the relegation213

is performed to the second order, arbitrary number of iterations p(s). In214

the applications section, once the parameter ε will be fixed, the number of215

iterations necessary to relegate the terms of the Hamiltonian containing ν to216

orders ∼ O(ε3) will therefore be estimated.217

1Let LW be the Lie derivative induced by the function W , then LW which maps any

function f(X,x) into its Poisson Bracket with W , namely f(X,x) :→ [f ;W ].

It must be noted that LHC
HK = 0 and that LHC

is semi-simple over a Poisson algebra of

functions P .
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4.1. Algorithm218

The general relegation algorithm is briefly described here before the ap-219

plication to the problem. For each homological equation (∀s ≥ 1):220

[H0;Ws] + H̃s = Ks (22)

considering that, as LHC
is semi-simple, there ∃Ks,0,Ws,0 ∈ P s.t.221  H̃s = Ks,0 + [Ws,0;HC ]

Ks,0 ∈ Ker(LHC
).

(23)

222

223

Therefore (22) becomes:224

[H0;Ws] + [Ws,0;HC ] = Ks −Ks,0. (24)

Thus, setting Ws = W ∗
s,0 +Ws,0, (24) yields:225

[H0;W ∗
s ] + [H0 −HC ;Ws,0] = Ks −Ks,0. (25)

The algorithm continues re-invoking p(s)-times the semi-simplicity of LHC
,226

and finding ∀1 ≤ p ≤ p(s) Ks,p,Ws,p ∈ P s.t.227  [H0 −HC ;Ws,p−1] = Ks,p + [Ws,p;HC ]

Ks,p ∈ Ker(LHC
)

(26)

228

and setting p(s)-times ∀1 ≤ p ≤ p(s) Ws,p−1 = W ∗
s,p +Ws,p.229

230
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Finally the algorithm ends at a certain iteration p(s) setting W ∗
s,p(s) = 0 and231

obtaining (25) to become:232

Ks =

p(s)∑
p=0

(Ks,p) +Rs (27)

with Rs := [H0 −HC ;Ws,p(s) ].233

234

Although the procedure is general, in view of the applications, only the235

first two homological equations will here be considered and explicitly solved.236

4.2. Results237

Following the procedure just described and Deprit (1969), for the first order238

s = 1 of the Hamiltonian (13), we have that:239

H̃1,0 = H1 (28)

therefore, after the first iteration p = 1, it results:240

K1,0 = −1
ε

∞∑
n=1

n∑
j=−n

min{n,n+j}∑
t=max{0,j}

ci2n+j−2tsi2t−j 1

rn+1

(
A(1)

n,0,j,t cos (−jθ)

+B(1)
n,0,j,t sin (−jθ)

)
.

(29)

Moreover241

W1,0 = − 1
ω

∫
(H1 −K1,0)dν

= −

1
ε

∞∑
n=1

n∑
m=1

n∑
j=−n

min{n+m,n+j}∑
t=max{0,j+m}

ci2n+m+j−2tsi2t−m−j

(
− 1

mω

)
1

rn+1
·

·
(
A(1)
n,m,j,t sin (mν − jθ) + B(1)

n,m,j,t(− cos (mν − jθ))
))

,

(30)
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and242

[HK ,W1,0] = R∂W1,0

∂r
+ Θ

r2

∂W1,0

∂θ
− (Θ2

r3 − MG
r2 )∂W1,0

∂R

= −1
ε

∞∑
n=1

n∑
m=1

n∑
j=−n

min{n+m,n+j}∑
t=max{0,j+m}

ci2n+m+j−2tsi2t−m−j

(
− 1

mω

)(
−R

r

)
·

·(−(n+ 1)) 1
rn+1

(
A(1)
n,m,j,t sin (mν − jθ) + B(1)

n,m,j,t(− cos (mν − jθ))
)

−1
ε

∞∑
n=1

n∑
m=1

n∑
j=−n

min{n+m,n+j}∑
t=max{0,j+m}

ci2n+m+j−2tsi2t−m−j

(
− 1

mω

)(
jΘ

r2

)
1

rn+1
·

·
(
A(1)
n,m,j,t cos (mν − jθ) + B(1)

n,m,j,t sin (mν − jθ)
)
,

(31)

Then the algorithm is iterated ∀1 < p ≤ p(s), where at each iteration it243

results:244

K1,p = 0 (32)

Calling pOmax = 2bp−1
2
c+ 1, pEmax = 2bp

2
c, and:245

S(k̂, k∗) =
k∗∑
k=k̂

ak

SE(k̂, k∗) =
k∗∑

k = k̂,

k even

ak, S ′E(k̂, k∗) =
k∗∑

k = k̂,

k even

a′k, S ′′E(k̂, k∗) =
k∗∑

k = k̂,

k even

a′′k

SO(k̂, k∗) =
k∗∑

k = k̂,

k odd

ak, S ′O(k̂, k∗) =
k∗∑

k = k̂,

k odd

a′k, S ′′O(k̂, k∗) =
k∗∑

k = k̂,

k odd

a′′k

(33)

Also, calling:246

D := (−1)p−S(1,p)

(
p− S(2, p)

p− S(1, p)

)
(n+ p− S(1, p))!

(n+ a1)!
(34)

and ∀k odd247
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Ok :=

((apOmax
a′pOmax

)
...
(
a5

a′5

)(
a3

a′3

))((apOmax
−a′pOmax

a′′pOmax

)
...
(
a5−a′5
a′′5

)(
a3−a′3
a′′3

))
(

(a1+n+p+2SE(2,k−1)−S(k,p)+ak−a′′k+S′O(3,k−2)−S′′O(3,k−2))!

(a1+n+p+2SE(2,k−1)−S(k,p)+a′k+S′O(3,k−2)−S′′O(3,k−2))!

)
(

(a1+n+p+SE(2,k−1)−S(k,p)+ak+SO(3,k−2)−S′′O(3,k−2))!

(a1+n+p+SE(2,k−1)−S(k,p)+ak−a′′k+SO(3,k−2)−S′′O(3,k−2))!

) (35)

while ∀k even248

E2 :=
(

(p−S(1,p))!
(p−S(1,p)−a2)!

)
Ek :=

(
(p−a1−2SE(2,k−2)−S(k,p)−S′O(3,k−1)+ak+1)!

(p−a1−2SE(2,k−2)−S(k,p)−S′O(3,k−1)−1)!

)
∀k ≥ 4, k even

(36)
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it results:249

W1,p = −1
ε

∞∑
n=1

n∑
m=1

n∑
j=−n

min{n+m,n+j}∑
t=max{0,j+m}

ci2n+m+j−2tsi2t−m−j

(
− 1

mω

)p+1

1∑
ap=0

max{p−(p−2),0}∑
ap−1=1−δap,0

...

max{p−S(4,p)−2,0}∑
a3=1−δa4,0

max{p−S(3,p)−1,0}∑
a2=1−δa3,0

max{p−S(2,p),0}∑
a1=0

D

 apOmax∑
a′pOmax

=0

...

a5∑
a′5

a3∑
a′3

apOmax
−a′pOmax∑

a′′pOmax
=0

...

a5−a′5∑
a′′5 =0

a3−a′3∑
a′′3 =0

(
OpOmax

· ... · O5 · O3

) (
EpEmax

· ... · E4E2

) (
1
r

)3(SO(3,pOmax )−S′O(3,pOmax ))

(
−1
r

)p−a1−SE(2,pEmax )−S′O(3,pOmax )
Rp−a1−2SE(2,pEmax )−S′O(3,pOmax )

(
jΘ
r2

)a1+S′O(3,pOmax )
(
−Θ2+rµ

r3

)SE(2,pEmax )−SO(3,pOmax )+S′O(3,pOmax )

Θ2(SO(3,pOmax )−S′O(3,pOmax )−S′′O(3,pOmax ))(−rµ)S
′′
O(3,pOmax ) 1

rn+1(
A(1)
n,m,j,t

(
cos (mν − jθ) cos (π

2
(−(p+ 1) + a1 + S ′O(3, pOmax)))

− sin (mν − jθ) sin (π
2
(−(p+ 1) + a1 + S ′O(3, pOmax)))

)
+B(1)

n,m,j,t

(
sin (mν − jθ) cos (π

2
(−(p+ 1) + a1 + S ′O(3, pOmax)))

+ cos (mν − jθ) sin (π
2
(−(p+ 1) + a1 + S ′O(3, pOmax)))

))))))
(37)
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and

[HK ,W1,p] = −1
ε

∞∑
n=1

n∑
m=1

n∑
j=−n

min{n+m,n+j}∑
t=max{0,j+m}

ci2n+m+j−2tsi2t−m−j

1∑
ap+1=0

max{p+1−(p−1),0}∑
ap=1−δap+1,0

...

max{p+1−S(4,p+1)−2,0}∑
a3=1−δa4,0

max{p+1−S(3,p+1)−1,0}∑
a2=1−δa3,0

max{p+1−S(2,p+1),0}∑
a1=0

D∗

 apOmax
+1∑

a′pOmax
+1=0

...

a5∑
a′5

a3∑
a′3

(
− 1

mω

)p+1

apOmax
+1−a′pOmax

+1∑
a′′pOmax

+1=0

...

a5−a′5∑
a′′5 =0

a3−a′3∑
a′′3 =0

(
O∗pOmax+1 · ... · O∗5 · O∗3

)(
E∗pEmax+1 · ... · E∗4E∗2

)
(

1
r

)3(SO(3,pOmax+1)−S′O(3,pOmax+1))

(
−1
r

)p+1−a1−SE(2,pEmax+1)−S′O(3,pOmax+1)

Rp+1−a1−2SE(2,pEmax+1)−S′O(3,pOmax+1)

(
jΘ
r2

)a1+S′O(3,pOmax+1)
(
−Θ2+rµ

r3

)SE(2,pEmax+1)−SO(3,pOmax+1)+S′O(3,pOmax+1)

Θ2(SO(3,pOmax+1)−S′O(3,pOmax+1)−S′′O(3,pOmax+1))(−rµ)S
′′
O(3,pOmax+1) 1

rn+1

20



(
A(1)
n,m,j,t

(
cos (mν − jθ) cos (π

2
(−(p+ 1) + a1 + S ′O(3, pOmax)))

− sin (mν − jθ) sin (π
2
(−(p+ 1) + a1 + S ′O(3, pOmax)))

)
+B(1)

n,m,j,t

(
sin (mν − jθ) cos (π

2
(−(p+ 1) + a1 + S ′O(3, pOmax)))

+ cos (mν − jθ) sin (π
2
(−(p+ 1) + a1 + S ′O(3, pOmax)))

))))))
(38)

where D∗, O∗t and E∗t are like the one in (34), (35) and (36) respectively with250

p+ 1 instead of p.251

As252

[HK ; · ] = [1
2
(R2 + Θ2

r2 )− µ
r
; · ] = R ∂·

∂r
+ Θ

r2
∂·
∂θ
− (Θ2

r3 − µ
r2 ) ∂·

∂R
(39)

at each step p the term [HK ,W1,p] is the sum functions that have the same253

order of the preceding [HK ,W1,p−1] but multiplied by R
ωr

, Θ
ωr2 or Θ2+r

ωRr3 . Fol-254

lowing Segerman and Coffey (2000), as R ∼ Θ
r

and as, at order zero, for the255

two-body problem, Θ ∼ r2θ̇, for a satellite period greater than the rotational256

period of the asteroid (i.e. θ̇ < ω), and therefore these coefficients are less257

than unity over an orbit ∼ θ̇
ω
< 1. Therefore, at each step of the relegation,258

the transformation process reduces the magnitude of the terms of the per-259

turbing potential which contain the angle ν. Thus, after fixing the parameter260

ε, the number of iteration p(1) is fixed such that [HK ,W1,p(1) ] ∼ O(ε3).261

The relegation of the first order is ended setting:262

W1 :=
∑p(1)

p=0W1,p

R1 := [HK ,W1,p(1) ]

K1 :=
∑p(1)

p=0 K1,p +R1 = K1,0 +R1

(40)

To pass to the second order s = 2, the evaluation of H̃2,0 = H2 +263

2[H1,W1] + [[H0,W1],W1] is first required, from which the expression for264

21



K2,0 is derived (see the Electronic Supplementary Material). In analogy with265

the first order, it results K2,p = 0 ∀p ≥ 1.266

The relegation of the second order is ended setting:267

W2 :=
∑p(2)

p=0W2,p

R2 := [HK ,W2,p(2) ]

K2 :=
∑p(2)

p=0 K2,p +R2 = K2,0 +R2

(41)

where p(2) is chosen such that [HK ,W2,p(2) ] ∼ O(ε3) which is p(2) = bp(1)+1
2
c.268

269

The resulting Hamiltonian K = K0 +εK1 + ε2

2
K2 is completely equivalent270

to the one in (13). However, as the terms Rs, s = 1, 2 are of order ∼ ε3,271

a truncated system is considered in which such terms have been neglected.272

Setting:273

K̃0 := K0

K̃1 :=
∑p(1)

p=0K1,p = K1,0

K̃2 :=
∑p(2)

p=0K2,p = K2,0

(42)

the truncated system is described by the Hamiltonian:274

K̃ = K̃0 + εK̃1 +
ε2

2
K̃2 (43)

where, to simplify notation, the˜will be ignored. This Hamiltonian is equiv-275

alent to the one in the main problem of the artificial satellite, in which the276

argument of node ν is cyclic, which implies that the coriolis term −ωN is277

constant and can therefore be dropped from the Hamiltonian. A closed form278

Delaunay normalization can now be performed, for a further reduction of the279

degrees of freedom, thus yielding an integrable Hamiltonian.280

281
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It must be noted that, in complete analogy with the procedure adopted so282

far, the explicit formulation for every higher order s ≥ 2 could be obtained.283

5. Delaunay Normalization284

In order to perform the Delaunay normalisation the Hamiltonian is trans-285

formed from the relegated Whittaker variables to the Delaunay coordinates.286

The Delaunay coordinates are symplectic action-angle variables287

(L,G,H, `, g, h), where the angles `, g and h are conjugate to the actions288

L, G and H respectively. Among the angle variables ` is the mean anomaly289

measured from the pericenter, g is the argument of the pericenter while h is290

the argument of the node. For the actions instead L is related to the major291

semi-axis, a, by L =
√
µa, G is the total angular momentum of the spacecraft292

with respect to the Asteroid (in the inertial frame), related to the eccentricity293

and the variable L by e =
√

1− G2

L2 , and H is the z-component of the total294

angular momentum, i.e. H = G cos I.295

The relation between the True anomaly and the Eccentric anomaly u is de-296

fined as tan (f
2
) =

√
1+e
1−e tan (u

2
), which, in particular, implies r = a(1 −297

e cosu) = a 1−e2
1+e cos f

.298

Moreover, by Section 3, we know that N = G cos I => H = G cos I and299

R = µe sin f
G

.300

301

The relegated Hamiltonian (43) in the Delaunay coordinates takes the302

form:303

J = J0 + εJ1 +
ε2

2
J2 (44)

23



with:304

J0 = − (GM)2

2L2

J1 = −1
ε

∞∑
n=1

n∑
j=−n

min{n,n+j}∑
t=max{0,j}

ci2n+j−2tsi2t−j

(
(1 + e cos f)

(a(1− e2))

)n+1

(
A(1)
n,0,j,t cos (−j(f + g)) + B(1)

n,0,j,t sin (−j(f + g))
)
.

(45)

with305

ci =

√
1+ H

G

2

si =

√
1−H

G

2

(46)

For brevity of exposition the expression for J2 will not be explicit written in306

this paper.307

308

5.1. The Normalization algorithm309

The closed form normalization algorithm (Deprit (1982)) is here adopted,310

which, instead of using the expansions of r and f in powers of the eccentric-311

ity, changes the independent variable from time to the true anomaly f .312

313

Definition 2.314

A formal series K ′(y, Y, ε) =
∞∑
s=0

εs

s!
K ′s(y, Y ) is said to be in Delaunay normal315

form if the Lie derivative LK′0K
′ is zero, that is [K ′s, K

′
0] = 0 ∀s ≥ 0.316

317

318

In our case, as K ′0 = J0 = − (GM)2

2L2 , the Lie derivative

LK′0(·) =
(GM)2

L3

∂(·)
∂`

24



therefore the new Hamiltonian (44) will be in normal form if and only if

∂K ′1
∂`

= 0 and
∂K ′2
∂`

= 0

319

Note that, as for the relegation for the angle ν, the normalization degenerates320

into an average over the mean anomaly `. Moreover it will be used that:321

df

d`
=
a2
√

1− e2

r2
. (47)

322

323

5.2. Results324

The explicit formula for the normalized J1 is:325

K ′1 = −1
ε

∞∑
n=1

min{n,n+j}∑
t=max{0,j}

ci2n+j−2tsi2t−j

√
1−e2

an+1(1−e2)n

(
n−1∑
k=0

(
n− 1

k

)
ekA(1)

n,0,j,t

(k − 1)!!

k!!
(k + 1)mod2+

+2(n+ 1)mod2

n∑
j=1

n−1∑
k=0

b j
2
c∑

q=0

q∑
v=0

(
n− 1

k

)(
j

2q

)(
q

v

)
(−1)q+v ek A(1)

n,0,j,t·

· cos (gj) ((j−2q+k+2v)−1)!!
(j−2q+k+2v)!!

((j − 2q + k + 2v) + 1)mod2

−2(n)mod2

n∑
j=1

n−1∑
k=0

b j
2
c∑

q=0

q∑
v=0

(
n− 1

k

)(
j

2q

)(
q

v

)
(−1)q+v ek B(1)

n,0,j,t·

· sin (gj) ((j−2q+k+2v)−1)!!
(j−2q+k+2v)!!

((j − 2q + k + 2v) + 1)mod2

)
(48)

obtained using that, ∀1 ≤ j ≤ n:326

if n even A(1)
n,0,j = A(1)

n,0,−j

if n odd A(1)
n,0,j = −A(1)

n,0,−j

(49)
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and327

if n even B(1)
n,0,j = B(1)

n,0,−j

if n odd B(1)
n,0,j = −B(1)

n,0,−j

(50)

The first order generating function is obtained by:328

W ′
1 =

∫
L3

(µ)2

(
J1 −

1

2π

∫ 2π

0

J1d`

)
d` (51)

Finally the normalised J2, namely329

K ′2 =
1

2π

∫ 2π

0

(J2 + 2[J1,W
′
1] + [[J0,W

′
1],W ′

1])d` (52)

and its corresponding generating function330

W ′
2 =

∫
L3

(µ)2
(J2 −K ′2)d` (53)

have been evaluated, using integration by parts, with the aid the software331

Mathematica.332

As a result K ′ = K ′0 + εK ′1 + ε2

2
K ′2 is obtained which is the analytical for-333

mulation for the closed-form averaged (with respect to both the argument334

of node and the mean anomaly), second order, arbitrary degree Hamilto-335

nian of any inhomogeneous gravitational field of a body uniformly rotating336

around its main axes of inertia for the case |HK | < |HC |. This two degree337

of freedom, integrable Hamiltonian approximates the initial system, and can338

now be applied to every inhomogeneous body in order to determine possible339

orbits useful for scientific observation missions such as frozen orbits.340

341
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6. Applications342

The Hamiltonian obtained is of the form: K ′(L,G,H, , g, ) thus the343

equations of motion are:344

`′(t) = ∂K′

∂L

g′(t) = ∂K′

∂G

h′(t) = ∂K′

∂H

L′(t) = 0

G′(t) = −∂K′

∂g

H ′(t) = 0,

(54)

which can be derived by (48) and (52) where L and H are constants and all345

the other motions will only depend on G(t) and g(t).346

347

Definition 3. (Frozen orbit)348

A frozen orbit is an orbit in which the Inclination, the Eccentricity and the349

Argument of pericenter remains constant during the motion.350

This in particular implies that such an orbit is then perfectly periodic except351

for the orbital plane precession.352

A frozen orbit it thus described by the system:353

ė = d
dt

√
L2−G2

L
= 0

İ = d
dt

arccos H
G

= 0

ġ = 0.

(55)

For the properties of the Lie transformations, the “normalized” eccentricity,354

inclination and argument of pericenter are related to their relative “real”355

equivalents by the generator of the transformation (see Deprit (1969)), and356
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can thus be interpreted as a perturbed version of their real correspondents.357

In the normalized variables (54), the system (55) is equivalent to:358

Ġ = 0

ġ = 0.
(56)

Thus fixing normalized eccentricity e and inclination I for the desired nor-359

malized frozen orbit, and solving the system gives:360

Ġ = 0

ġ = 0

e =
√
L2−G2

L

I = arccos H
G
,

(57)

and the initial conditions (L0, G0, H0, g0) for normalized frozen orbits can361

be found.362

Moreover, as this all procedure is valid for the case |HK | < |HC | such initial363

conditions must satisfy:364

ωH0 >
µ2

2L2
0

(58)

and also365

0 < |H0| < G0 < L0 (59)

These resulting initial conditions can transformed back to the initial system366

describing the full dynamics (see (13)) by the inverse of the generating func-367

tions (Deprit (1969)), to generate an initial guess for frozen orbits around368

any inhomogeneous body.369

7. Conclusions370

Setting the desired eccentricity and inclination it is thus possible to deter-371

mine initial conditions which lead to frozen orbits in the truncated system.372
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Such initial conditions are used to approximate the solutions for the secular373

motion of the satellite in the real system thus showing a good agreement374

between the approximated and the real dynamics.375

An example of the application of the method is shown for the asteroid 433-376

Eros, a highly irregular, elongated, Near Earth Asteroid, which is the main377

example used in the literature, for which the spherical harmonic coefficients378

up to the 15th order and degree (i.e.272 coefficients) are listed in the Ap-379

pendix A.380

The physical properties of this asteroid are summarized in the table (1).381

382

Mass Rotational velocity Reference Radius

Kg rad/s Km

433-Eros 6.6904× 1015 3.31182× 10−4 16

Table 1: Physical properties of 433-Eros

In inverse analogy with Palacián (2002) we would like to take ε ∼ µ2

ωL3
0
.383

Considering the resulting frozen orbits to be at an altitude high enough to384

satisfy the condition |HK | > |HC |, and trying to include an high number385

of spherical harmonic coefficients in the model, in the example shown the386

ordering parameter ε is set to be ε = 10−2 (i.e. semimajor axes ∼ 300km,387

p(1) = 2, p(2) = 2 s.t. R1 ∼
(
θ̇
ω

)p(1)+1

∼ 10−6).388

For this example the numerical estimation of the terms containing 433-Eros’389

spherical Harmonics up to order and degree 15, leads to the distribution of390

the Cn,m, Sn,m between the C
(1)
n,m, C

(2)
n,m and the S

(1)
n,m, S

(2)
n,m respectively.391
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For the result shown below it will thus be fixed that:392

C
(1)
n,m =

 Cn,m if (n,m) ∈ {(0, 0), (2, 0), (2, 2)}

0 otherwise

C
(2)
n,m =


Cn,m if (n,m) ∈ {(3, 1), (3, 3), (4, 0), (4, 2), (4, 4), (5, 1),

(5, 3), (5, 5), (6, 2), (6, 6)}

0 otherwise

S
(1)
n,m =

 Sn,m if (n,m) ∈ {(2, 2)}

0 otherwise

S
(2)
n,m =

 Sn,m if (n,m) ∈ {(3, 1), (3, 3), (4, 2), (4, 4), (5, 3), (5, 5)}

0 otherwise

(60)

For illustration purposes the initial eccentricity has been set to E0 =393

0.5, the inclination to I0 = 1.1 and argument of pericenter to g0 = −π
2
,394

yielding to the initial conditions f0, h0, L0, G0, and H0 for the (relegated395

and normalized) frozen orbit collected in Table (2) for 433-Eros. In the last396

row of the table, the initial semimajor axes a0 of the resulting orbits has also397

been recorded.398
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I0(rad) 1.1

E0 0.5

g0
π
2

h0 π

f0 π

G0 315633

L0 364462

H0 143170

a0(km) 297.493

Table 2: 433-Eros: initial conditions for frozen orbits

The initial conditions found with this method are transformed back by399

canonic transformations inverse to the relegating and normalizing transfor-400

mations of coordinates found in the paper, leading to approximated initial401

conditions for frozen orbits in the full model. The integration of such sys-402

tem shows a good agreement of the dynamics between the approximated403

and the full system, namely the resulting orbits for the full system result404

to be good approximations of frozen orbits. The resulting orbit for 433-405

Eros, for the example in Table (2), is shown below, in the cartesian inertial406

frame of reference centered in the center of mass of the inhomogeneous body407

(unit of measure km). The order of magnitude of the oscillation of inclina-408

tion and eccentricity around their initial value is ∆eccentricity ∼ O(10−6),409

∆eccentricity ∼ O(10−2)deg for at least 20 years.410

411
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Figure 1: The resulting frozen orbit for E0 = 0.5, I0 = 1.1 and g0 = −π2 for 5 years
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Appendix A: 433-Eros spherical harmonics492

The un-normalized spherical harmonic coefficients of 433-Eros are here listed.493

This coefficients are the harmonic coefficients gravity solution NEAR15A, a494

15th degree and order model obtained from radiometric tracking (Doppler495

and range data) and landmark tracking of the NEAR spacecraft in orbit496

about Eros. The gravity model includes data from the entire mission begin-497

ning with orbit insertion on Feb. 14, 2000 and ending with the first descent498

maneuver for landing on Feb. 12, 2001499
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C0,0 1

C1,0 0

C1,1 0

C2,0 -1.65899×10−1

C2,1 -2.11454×10−6

C2,2 5.31886×10−2

C3,0 -5.29244×10−3

C3,1 4.38548×10−3

C3,2 6.0659×10−4

C3,3 -1.4525×10−3

C4,0 5.48636×10−2

C4,1 -9.52013×10−5

C4,2 -3.90614×10−3

C4,3 -1.79405×10−5

C4,4 3.68808×10−4

C5,0 3.09067×10−3

C5,1 -2.36787×10−3

C5,2 -1.26781×10−4

C5,3 1.51169×10−4

C5,4 3.86908×10−6

C5,5 -2.51307×10−5

C6,0 -2.53848×10−2

C6,1 -1.91651×10−5

C6,2 8.13891×10−4

C6,3 5.9664×10−6

C6,4 -2.13764×10−5

C6,5 -3.93777×10−7

C6,6 1.18484×10−6

C7,0 -2.50016×10−3

C7,1 1.26047×10−3

C7,2 3.82038×10−5

C7,3 -3.48143×10−5

C7,4 -5.15671×10−7

C7,5 1.33563×10−6

C7,6 2.25518×10−9

C7,7 -1.25528×10−7

C8,0 1.53478×10−2

C8,1 -3.43765×10−5

C8,2 -2.57667×10−4

C8,3 -3.12096×10−6

C8,4 3.61153×10−6

C8,5 8.73471×10−8

C8,6 -7.09764×10−8

C8,7 -9.71194×10−10

C8,8 2.89016×10−9

C9,0 1.12427×10−3

C9,1 -4.97634×10−4

C9,2 -2.57824×10−5

C9,3 1.07011×10−5

C9,4 -4.14388×10−7

C9,5 -1.7556×10−7

C9,6 -3.11553×10−9

C9,7 5.83725×10−9

C9,8 1.43792×10−10

C9,9 -2.52185×10−10

C10,0 -2.23924×10−3

C10,1 -3.65977×10−4

C10,2 8.59725×10−5

C10,3 2.44668×10−6

C10,4 -2.12904×10−8

C10,5 -3.91544×10−8

C10,6 1.06018×10−8

C10,7 6.6781×10−10

C10,8 -1.03388×10−10

C10,9 -2.93031×10−11

C10,10 4.93363×10−12

C11,0 1.04666×10−2

C11,1 3.72982×10−4

C11,2 3.37686×10−6

C11,3 1.80367×10−6

C11,4 -5.5386×10−7

C11,5 7.57115×10−8

C11,6 2.19576×10−9

C11,7 5.19815×10−11

C11,8 3.75133×10−11

C11,9 1.74028×10−11

C11,10 -2.76742×10−13

C11,11 -2.57971×10−13

C12,0 1.71922×10−3

C12,1 3.7954×10−4

C12,2 1.55553×10−4

C12,3 6.86842×10−6

C12,4 2.99064×10−7

C12,5 -8.38626×10−8

38



C12,6 4.07023×10−9

C12,7 -1.60746×10−10

C12,8 1.86662×10−11

C12,9 -4.62122×10−12

C12,10 -5.72445×10−13

C12,11 2.02689×10−14

C12,12 8.12551×10−15

C13,0 2.75545×10−2

C13,1 -2.9199×10−3

C13,2 -2.02593×10−6

C13,3 6.84023×10−6

C13,4 3.23691×10−7

C13,5 -3.54904×10−8

C13,6 2.59498×10−10

C13,7 4.03437×10−11

C13,8 -1.37277×10−11

C13,9 -7.31327×10−13

C13,10 -7.27471×10−14

C13,11 2.30772×10−14

C13,12 2.58196×10−16

C13,13 -2.18667×10−16

C14,0 -1.53377×10−2

C14,1 7.66068×10−4

C14,2 2.96292×10−4

C14,3 5.32869×10−6

C14,4 -5.87731×10−7

C14,5 -5.31799×10−8

C14,6 2.30096×10−9

C14,7 -7.86604×10−11

C14,8 -7.59718×10−12

C14,9 -1.0193×10−13

C14,10 5.29761×10−14

C14,11 7.4175×10−15

C14,12 -9.24318×10−16

C14,13 -2.2948×10−17

C14,14 1.81628×10−17

C15,0 2.06404×10−2

C15,1 -2.65164×10−3

C15,2 9.46812×10−6

C15,3 -3.69445×10−6

C15,4 3.18757×10−7

C15,5 -2.84101×10−8

C15,6 -1.9038×10−10

C15,7 -6.24463×10−11

C15,8 -1.06965×10−11

C15,9 -2.61478×10−13

C15,10 5.55852×10−16

C15,11 -1.64954×10−15

C15,12 4.81127×10−17

C15,13 2.5553×10−17

C15,14 5.60796×10−19

C15,15 -5.49434×10−19
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S0,0 0

S1,0 0

S1,1 0

S2,0 0

S2,1 -1.80744×10−7

S2,2 -1.81446×10−2

S3,0 0

S3,1 3.63836×10−3

S3,2 -2.40395×10−4

S3,3 -1.68328×10−3

S4,0 0

S4,1 1.29913×10−4

S4,2 1.0351×10−3

S4,3 -7.12399×10−6

S4,4 -1.92384×10−4

S5,0 0

S5,1 -1.04273×10−3

S5,2 6.17062×10−5

S5,3 1.16925×10−4

S5,4 -5.43531×10−6

S5,5 -1.43782×10−5

S6,0 0

S6,1 -9.74106×10−5

S6,2 -1.48126×10−4

S6,3 1.56395×10−6

S6,4 1.56395×10−6

S6,5 3.86799×10−8

S6,6 -3.73278×10−7

S7,0 0

S7,1 5.15445×10−4

S7,2 -1.97429×10−5

S7,3 -2.02322×10−5

S7,4 6.94006×10−7

S7,5 6.72634×10−7

S7,6 -3.44172×10−8

S7,7 -4.07766×10−8

S8,0 0

S8,1 -1.24043×10−5

S8,2 2.30047×10−6

S8,3 -3.22691×10−7

S8,4 -6.27617×10−7

S8,5 -1.85513×10−8

S8,6 6.66802×10−10

S8,7 -3.57144×10−10

S8,8 1.74786×10−9

S9,0 0

S9,1 -8.17618×10−5

S9,2 -1.31237×10−5

S9,3 7.54724×10−6

S9,4 -2.35188×10−7

S9,5 -1.00222×10−7

S9,6 1.12056×10−9

S9,7 1.6534×10−9

S9,8 -2.32921×10−11

S9,9 -5.56697×10−11

S10,0 0

S10,1 6.94286×10−4

S10,2 -4.56443×10−5

S10,3 2.62557×10−6

S10,4 -4.14985×10−7

S10,5 -5.74199×10−8

S10,6 6.45742×10−9

S10,7 -7.47668×10−10

S10,8 -4.99191×10−12

S10,9 9.74982×10−13

S10,10 5.59573×10−12

S11,0 0

S11,1 -8.17892×10−4

S11,2 -6.92074×10−5

S11,3 -1.13881×10−6

S11,4 -4.84678×10−7

S11,5 8.37324×10−8

S11,6 -1.09462×10−9

S11,7 -2.46115×10−10

S11,8 -2.79264×10−11

S11,9 9.02775×10−12

S11,10 1.31812×10−13

S11,11 -1.94565×10−13

S12,0 0

S12,1 1.50676×10−3

S12,2 9.64141×10−5

S12,3 2.73675×10−6

S12,4 -2.39721×10−7

S12,5 -3.08972×10−8
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S12,6 9.18684×10−9

S12,7 -5.56246×10−10

S12,8 5.98262×10−12

S12,9 1.23035×10−13

S12,10 -7.24925×10−13

S12,11 1.701×10−14

S12,12 1.63895×10−14

S13,0 0

S13,1 -1.24564×10−3

S13,2 1.54632×10−5

S13,3 -6.74004×10−7

S13,4 -1.19607×10−6

S13,5 6.26074×10−9

S13,6 -1.26688×10−10

S13,7 -7.5178×10−13

S13,8 -1.60844×10−11

S13,9 -9.10394×10−14

S13,10 -7.19669×10−15

S13,11 -5.20369×10−15

S13,12 -1.01803×10−16

S13,13 -4.21829×10−16

S14,0 0

S14,1 8.65044×10−4

S14,2 1.51562×10−4

S14,3 4.31479×10−7

S14,4 1.77234×10−7

S14,5 -1.76094×10−9

S14,6 4.30073×10−9

S14,7 -2.43475×10−10

S14,8 -1.42072×10−11

S14,9 4.1348×10−13

S14,10 8.33334×10−15

S14,11 6.89565×10−16

S14,12 -3.88959×10−16

S14,13 3.71979×10−18

S14,14 2.08219×10−17

S15,0 0

S15,1 -6.5828×10−5

S15,2 9.63909×10−5

S15,3 9.90187×10−7

S15,4 -7.56365×10−7

S15,5 -3.05489×10−8

S15,6 -2.45565×10−10

S15,7 -1.12172×10−11

S15,8 2.66204×10−12

S15,9 -2.21231×10−14

S15,10 -7.67107×10−15

S15,11 -2.08224×10−15

S15,12 4.21957×10−17

S15,13 1.21087×10−17

S15,14 -3.91552×10−19

S15,15 -4.94421×10−19
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