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a b s t r a c t

We synthesize and study the properties of praseodymium doped fluoroindate glasses. Glass compositions
with praseodymium molar concentrations up to 5% were obtained with good optical quality. Thermal,
optical, and luminescence properties are investigated. Judd–Ofelt analysis is used to determine radiative
lifetime and emission cross-section of the orange transition originating from the 3P0 level. We find that
these glasses are good candidates for the realization of blue diode laser pumped orange lasers for quan-
tum information processing applications.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Rare-earth (RE) doped glasses capable of efficient frequency
conversion have received great attention due to the possibilities
of using these materials to build solid-state lasers operating in
the green–red region, as well as for developing infrared devices
such as optical fiber amplifiers usable for telecommunications.
Several investigations have been conducted towards the use of
RE-doped fluoride glasses to serve these purposes, in particular
view of their optical and structural characteristics. They can indeed
sustain high concentrations of RE ions, have a low multiphonon
absorption and a wide transparency window in the visible to infra-
red region up to 7 lm. ZBLAN is the most important glass of this
class of materials [1]. However, difficulties such as poor mechani-
cal and chemical stability are commonly encountered when one
uses ZBLAN optical fibers. In 1993, Messaddeq, Poulain, and
coworkers reported a new InF3-based glass that exhibits improved
chemical and mechanical stability with respect to ZBLAN glass [2],
and can also be fabricated as optical fibers and planar waveguides
[3,4]. Furthermore, owing to the small multiphonon emission rate
in this glass, the non-radiative relaxation rate between close levels
is reduced and some RE fluorescence transitions, which are not ob-
served in ZBLAN glass, can be active in this host [5]. Among RE ions,
praseodymium ion (Pr3+) has many possible applications owing to
its large number of absorption bands in the UV, visible and near
infrared, that provide the possibility for simultaneous emission in

the blue, green, orange, red, and infrared regions [6]. Pr3+-doped
glasses and crystals are presently developed for applications to
optical amplifiers, up-converters, and opto-electronic devices
[7–10], in particular for fiber-based optical communication sys-
tems operating with 1.3 lm radiation [11]. More generally, fluoro-
indate glasses are promising materials for various photonics
applications in the visible and near-infrared domains. There is an
increasing interest in the determination of the optical properties
of heavy metal fluoride glasses doped with rare-earth ions. Some
devices with excellent optical characteristics have been reported
by using ZrF4 [12] and InF3-based glasses [13,14]. Therefore, our
aim here is to report the results of an investigation of the optical
and fluorescence properties of Pr3+-doped InF3–ZnF2–BaF2–SrF2

glasses. In particular, we put special emphasis on the question to
know whether such glasses are good candidates for the realization
of orange lasers using the same transition as recently demon-
strated lasers based on Pr3+ doped fluoride crystals [15,16]. Among
other applications, such lasers could be used for the coherent driv-
ing of rare-earth ions used for quantum information processing
[17,18].

2. Experimental

2.1. Glass synthesis

The glass samples were synthesized using the conventional
melt-casting method. The starting powdered materials were
indium fluoride InF3, zinc fluoride ZnF2 (3 N), strontium fluoride
SrF2 (3 N), barium fluoride BaF2 (3 N), and praseodymium fluoride
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PrF3. In a first step, the powders were weighed in order to obtain a
6 g glass bulk whose molar composition is (100 � x)[40InF3–
20ZnF2–20SrF2–20BaF2]: xPrF3 (x = 0.05, 0.1, 0.2, 0.5, 1.0, and 5.0).
The powders were then thoroughly mixed and loaded in a plati-
num crucible. An excess of ammonium bifluoride, NH4HF2, was
added in all compositions to reduce the amount of species pro-
duced from oxidation reaction with environmental water adsorbed
in precursor powders. The mixture was heated at 350 �C during 1 h
for fluorination reaction and then melted at 920 �C for 30 min in an
electrical furnace. This ensured the complete elimination of NH3

and HF from the decomposition of ammonium bifluoride and a
good homogenization and fining. Finally, the melt was cooled
down in a stainless mold pre-heated at 20 �C below the glass
transition temperature, annealed at this temperature for 2 h and
slowly cooled down to room temperature to minimize residual
internal stress. In the following, for the sake of readability, the host
glass is labeled IZSB and the samples studied in this work are
presented in Table 1. The Pr3+-doped IZSB glass samples of
30 � 20 � 2 mm3 dimensions (length, width and thickness, respec-
tively) of very good optical quality were finally polished for optical
measurements.

2.2. Thermal properties

The glass transition temperature, Tg, and the thermal stability
parameter against devitrification (DT = Tx � Tg), where Tx is the
crystallization temperature, are commonly used to estimate the
thermal stability of the glasses [19]. We measured them using dif-
ferential scanning calorimetry in the 200–600 �C temperature
range under N2 atmosphere at a heating rate of 10 �C/min, using
a TA Instruments DSC 2910 calorimeter, with a maximum error
of ±2 �C for Tg and Tx. The corresponding results are summarized
in Table 2.

2.3. Optical and luminescence measurements

The absorption spectra measurements were performed on the
polished IZSB: Pr glasses of about 2 mm thickness by using a Cary
500 spectrophotometer (Varian) at room-temperature from 200 to
3000 nm. Emission spectra were recorded by using a Horiba Jobin
Yvon fluorimeter equipped with a photomultiplier tube (PMT) sen-
sitive from 250 to 800 nm and a Xe lamp (450 W) operating at
480 nm with continuous excitation was utilized as the excitation
source. The emission was measured at 30� from the excitation
beam. Slits were adjusted to lead to a resolution of 2 and 4 nm
for excitation and emission, respectively. All measurements have
been performed at room temperature and corrected by the instru-
ment response.

The refractive indices of some of the glasses were determined
by measuring the critical angle for the sample/prism interface
(accuracy 0.0001), using three laser beam wavelengths, 532, 633,
and 1550 nm (Metricon-2010 instrument).

Lifetime measurements of 3P0 praseodymium excited level were
carried out using a pulsed EKSPLA optical parametric oscillator
(model #NT342B) to excite the glasses. Excitation was carried
out at 480 nm along the 3H4 ? 3P0. Fluorescence from the 3P0 level
to the 3H6 ground state was detected at 604 nm with a Jobin–Yvon
HR250 monochromator and a Princeton Instrument intensified
CCD or a photomultiplier tube.

3. Results and discussion

Homogenous and slightly greenish glasses samples up to 2 mm
thick were obtained in the pseudo-quaternary system InF3–ZnF2–
(SrF2–BaF2) doped with 0.05, 0.1, 0.2, 0.5, 1.0, and 5.0 mol.% of

Table 1
Prepared Pr3+-doped ISZB glass samples.

Pr3+ concentration
(mol.%)

Glass composition (mol.%) Sample
label

0.05 40 InF3–20 ZnF2–20 SrF2–20 BaF2 IZSB005
0.1 IZSB01
0.2 IZSB02
0.5 IZSB05
1.0 IZSB1
5.0 IZSB5

Table 2
Glass samples characteristic temperatures and refractive indices in the visible range.

Glasses Tg (�C) Tx (�C) DT (�C) Refractive index

532.4 nm 632.8 nm

IZSB0 287 368 81 1.4951 1.4923
IZSB01 1.4958 1.4930
IZSB02 1.4967 1.4937
IZSB05 1.4976 1.4946
ZBLAN [20] 262 352 90 1.5 1.5

Fig. 1. UV and visible absorption spectra of some of the Pr3+-doped IZSB glass
samples. Black line: IZSB01, red line: IZSB02, blue line: IZSB05. Inset: zoom on the
absorption transitions from the ground state of Pr3+ ion for IZSB05 (sample
thickness is 2 mm). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 2. Emission spectra of the Pr3+-doped IZSB glasses pumped at 480 nm with a Xe
lamp of power of 450 mW.
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Pr3+ ions. No bubbles or crystals were observed in the glass bulk,
which is very important when the objective is to use these glasses
in optical devices that cannot bear large scattering losses. The
typical amorphous halo was observed by X-ray diffraction for all
compositions. Table 2 displays the characteristic temperatures,
the thermal stability parameter (DT = Tx � Tg) and the refractive
indices in the visible range (532.4 and 632.8 nm) measured for
some of the compositions.

When the doping concentration of Pr3+ ions varies, the glass
transition temperature and thermal stability parameter remain
unchanged. The value of the thermal stability parameter against

devitrification is comparable with the ones of the most common
ZBLAN glasses [20], making the InF3-based glasses good potential
candidates for optical fiber production.

Contrary to the behavior of the characteristic temperatures, a
slight increase of the value of the linear refractive index n0 with
the praseodymium ion concentration was observed. This index
ranged from 1.4951 to 1.4976 at 532.4 nm, and 1.4923 to 1.4946
at 632.8 nm, for Pr3+ ion concentration ranging from 0% to 0.5%
(see Table 2). The increase of n0 can be easily understood by the
high polarizability of Pr3+ ions owing to their extended electron
cloud, which is a favorable point for the use of these doped glasses
as the core composition in optical fiber production.

3.1. Absorption and fluorescence spectra

Fig. 1 presents the UV and visible absorption spectra recorded
on 0.1%, 0.2% and 0.5% Pr3+-doped IZSB glasses samples. The visible
absorption bands originating from praseodymium electronic tran-
sitions from the fundamental level to the excited ones are high-
lighted in the inset of Fig. 1. One can notice that the orange
emission band under study in this work located at 604 nm is quite
close to the absorption band centered at 588 nm that corresponds
to the electronic transition from the ground state (3H4) to excited
level 1D2.

This is why, in order to accurately measure fluorescence spec-
tra, the excitation beam has been focused close to the surface of
the glass samples in order to avoid re-absorption of the emitted
photons by the ground state Pr3+ ions. In these excitation condi-
tions, the fluorescence emission from the 1D2 level was only
observed under resonant pumping [21]. The corresponding fluores-
cence spectra under blue excitation at 480 nm are reproduced in
Fig. 2. One can recognize the strong emission lines from level 3P0

and an emission band from levels 3P1 and 1I6. The typical emission
lines of praseodymium ions in the visible can be observed centered
at 523, 537, 604 and 637 nm. These lines are associated with the
follow transitions: 3P1/1I6 ?

3H5, 3P0 ?
3H5, 3P0 ?

3H6, and
3P0 ?

3F2, respectively [22]. For our application, it is worth noticing
the relatively broad (�15 nm full width at half maximum), quite
intense band around 604 nm in the emission spectrum. This should
allow to reach laser emission at 606 nm, which is the excitation
wavelength of the 3H4 ? 1D2 transition of Pr3+ in Y2SiO5, the most
popular ion/matrix combination for quantum information process-
ing in rare earth doped materials [23,24].

The different transitions are easier to follow on Fig. 3, which
presents the energy level diagram of Pr3+ ions in IZSB glasses with
the radiative electronic transitions corresponding to the emission
bands studied in the present work. The photoluminescence excita-
tion at 480 nm is due to excitation from 3H4 to 3P0 excited state in
the 4f2 configuration of Pr3+. Such excitation transitions in Pr3+

Fig. 3. Energy level diagram of Pr3+ ion in the IZSB glass matrix upon 480 nm Xe
lamp excitation.
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Fig. 4. Evolution of the lifetime of the 3P0 level versus Pr3+ ion concentration,
measured using the fluorescence according to the 3P0 ?

3P6 transition. The red line
is just a guide to the eye. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 5. Absorption spectrum of sample IZSB5 used for the Judd–Ofelt analysis.
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doped fluoride glasses have already been reported in other hosts
[25,12].

3.2. 3P0 Lifetime measurements

An important parameter for potential laser operation of our IZSB
glasses is the lifetime of the upper level of the transition, i.e., of the
3P0 level. We measured the evolution of the lifetime of this level by
recording the fluorescence decay along the 3P0 ?

3H6 transition for
pulsed excitation at 480 nm. The results are summarized in Fig. 4.
One can see that concentration quenching effect remain relatively
modest for concentrations up to 1 mol.%.

3.3. Judd–Ofelt modeling

In order to gain more insight in the spectroscopic properties of
Pr3+ embedded in IZSB glasses, we performed Judd–Ofelt modeling
of the absorption spectrum of sample IZSB5 reproduced in Fig. 5.

Experimental oscillator strengths fexp were deduced from the
absorption spectrum of the IZSB5 sample to get reliable values
on weak transitions like 3H4 ?

1G4. The values are gathered in Ta-
ble 3. Judd–Ofelt (JO) parameters [26,27] X2, X4 and X6 were
determined from them using a normalized method [28,29], which
allows fitting of relative values instead of absolute ones. As a result,
including in the fit the 3H4 ?

3P2 transition, which has a large oscil-
lator strength, does not dramatically perturb the JO parameters
(significant changes, negative values for X2), which is often the
case using the standard method [30,31]. The parameters are given
in Table 3 and are similar to those found in other fluorozirconate
glasses [28]. Thanks to the normalized method, X2 is positive, as
required by theory. It should be however noted that the agreement
between calculated and experimental oscillator strengths is lim-
ited and deviations as large as 50% are observed (Table 3). Assum-
ing an error of ±5% on fexp, we found RMSnorm = 20.3 whereas it was
16 or 18 in other fluorozirconate glasses [28], denoting a less accu-
rate modeling in our case. The 38 ls radiative lifetime of 3P0 level
was calculated from the JO parameters. The experimental value can
be estimated around 50 ls from Fig. 4 and this discrepancy is sim-
ply attributed to the inaccuracy of the JO modeling in this glass. It
suggests however that the lifetimes measured at low Pr3+ concen-
tration are essentially radiative, although further experiments
should be performed to confirm this conclusion. The calculated
oscillator strength of the 3P0 ?

3H6 transition is 8.7 � 10�6, a
rather high value compared to the absorption transition ones. This
should be favorable to orange laser emission.

4. Conclusion

In conclusion, we have synthesized praseodymium doped fluor-
oindate glasses with good optical quality. Strong orange emission
centered at 604 nm with a full width at half maximum of 15 nm
has been observed. Moreover, the characteristics of the measured
absorption spectra show that diode pumping at wavelengths close

to 445 nm is conceivable. At praseodymium concentrations lower
than 0.5%, the 3P0 level was found to exhibit a lifetime longer than
40 ls, which is compatible with efficient laser emission.

Further studies could also consist in elaborating such glasses
under the form of preforms for optical fibers, or in trying surface
ion exchange processes to locally increase the refractive index in
order to build active waveguides [32].
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