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Abstract: Hyperspectral cathodoluminescence imaging provides spectrally and spatially resolved information
on luminescent materials within a single dataset. Pushing the technique toward its ultimate nanoscale spatial
limit, while at the same time spectrally dispersing the collected light before detection, increases the challenge of
generating low-noise images. This article describes aspects of the instrumentation, and in particular data
treatment methods, which address this problem. The methods are demonstrated by applying them to the
analysis of nanoscale defect features and fabricated nanostructures in III-nitride-based materials.
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INTRODUCTION

The analysis of cathodoluminescence ~CL!, the emission of
light from a material under irradiation with an energetic
electron beam, is well established as a spectroscopic charac-
terization tool in the study of light-emitting semiconduc-
tors. Its primary advantage over the analogous methods of
photoluminescence and electroluminescence spectroscopies
lies in its ability to confine the injection of charge carriers
within a substantially sub-mm-scale volume, allowing the
spatial resolution of the measurement to be well below the
diffraction limit imposed by any far-field collection optics.
Using a scanning electron microscope ~SEM! with a field-
emission source, and limiting the spread of the beam within
the material by selecting a low accelerating voltage, panchro-
matic ~i.e., spectrally unresolved! images with resolutions
down to 20 nm have been demonstrated ~Norman, 2000!.

A major challenge in using low accelerating voltages—
particularly when coupled with the low beam current re-
quired for a small spot size—is in detecting the much-
reduced light intensity. This is compounded by the fact that
a near-surface region of the sample is being probed in such
cases, with the result that the light output is further reduced
by the nonradiative loss of carriers though surface recombi-
nation. The task is made more difficult still if the light is
also to be spectrally dispersed into multiple channels, as
required in CL hyperspectral imaging.

The extension of CL to the hyperspectral imaging ~or
spectral mapping! mode has greatly enhanced the power of
the technique by allowing the full set of spectroscopic and
microscopic information to be recorded together ~Christen
et al., 1991!. By acquiring a spectrum at each pixel in a

two-dimensional ~2D! scan, a multidimensional dataset can
be assembled that is both spatially and spectrally resolved.
Subsets of these data can then be extracted, such as images
showing wavelength shifts or variations in peak width,
which would not have been possible using conventional
monochromatic or panchromatic CL imaging modes.

In recent work ~Liu et al., 2009; Bruckbauer et al., 2011;
Edwards et al., 2011!, we presented CL hyperspectral imag-
ing results in which variations over length scales approach-
ing 20 nm were observed. In this article, we more fully
describe the steps we have taken to overcome the high noise
level inherent in nanoscale CL hyperspectral images, includ-
ing aspects of both instrumentation and data treatment. We
illustrate these with results acquired by applying CL hyper-
spectral imaging to the analysis of GaN-based nanostructures.

MATERIALS AND METHODS

Samples

InGaN/GaN Multiple Quantum Wells

InGaN/GaN multiple quantum wells ~MQWs!were grown
on c-sapphire substrates by metal-organic chemical vapor
deposition ~MOCVD!. The growth of a high-temperature
AlN buffer layer and a 1-mm-thick GaN layer was followed
by ten periods of InxGa1�xN/GaN layers and finally a GaN
capping layer. Such structures form the basis of the active
region in most GaN-based light-emitting devices.

Nanopyramids

Arrays of quantum-well-containing nanopyramids were fab-
ricated by selective area growth ~SAG! of GaN. The SAG
template consisted of an SiO2 layer on c-plane GaN, grown
on a c-sapphire substrate. An hexagonal array of circular
holes was patterned into the SiO2 using nanoimprint lithog-
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raphy and CHF3 plasma etching, with a pitch of 450 nm.
Subsequent growth of Si-doped GaN ~including a single
QW of InxGa1�xN/GaN! using MOCVD resulted in the
formation of hexagonal nanopyramids. Such structures of-
fer a promising route to the fabrication of high-efficiency
light-emitting devices, through the use of active layers grown
on lattice planes other than the strongly polar and piezoelec-
tric ~0001! basal plane ~Liu et al., 2009!. Examples of two
such samples are used in this study, using different growth
times and temperatures.

CL Detection
This work was carried out in a modified FEI Sirion 200 ~FEI
Company, Hillsboro, OR, USA! field emission gun SEM at
room temperature. This section describes aspects of the
instrument design and relates these to the specific chal-
lenges encountered in high-resolution CL hyperspectral
imaging.

The optical arrangement most commonly used for CL
collection is a 908 off-axis semiparaboloidal mirror placed
between the sample and the microscope pole piece. While
this allows emitted rays to be intercepted over almost the
whole hemisphere, there are a number of drawbacks inher-
ent to this geometry.

1. The increased working distance required and the pres-
ence of a large obscuring optical element compromise
the imaging performance of the microscope.

2. The minimal clearance between sample and mirror gen-
erally prevents the sample from being tilted to different
angles during the CL measurement. This restriction to
the plan-view geometry is a particular problem when
analyzing three-dimensional structures.

3. The optical invariant étendue imposes a trade-off be-
tween the optical magnification and the collection solid
angle when the emitted light is being imaged to the
entrance slit of a spectrometer. In practice, this results in
either a loss of spectral resolution or very restricted field
of view if attempts are made to focus the full 2p steradi-
ans to an f-matched image at the spectrometer ~Edwards
& Martin, 2011!.

Light collection using an objective with its axis perpendicu-
lar to the electron beam overcomes the first two of these
limitations. By placing the optics remote from the sample,
an arbitrarily short working distance can be used, keeping
the electron spot small even when using low accelerating
voltages. The sample needs to be tilted when this geometry
is used, and this tilt angle can be varied. Line-of-sight is
maintained for all detectors above and to the tilt side of the
sample; this includes annular backscattered electron and
both through-the-lens and off-axis secondary electron de-
tectors, and potentially also electron backscattered diffrac-
tion and energy-dispersive X-ray detectors. CL images are
obtained by scanning the electron beam over the stationary
sample, resulting in a field of view that will be limited by
the optical magnification and the spectrograph slit width. If
a reasonable field of view and spectral resolution are re-

quired, then the system étendue will already be limiting the
effective collection solid angle, so the small numerical aper-
ture of the optics will not cause significant additional signal
loss. While a 25-mm-wide slit is used at the entrance of the
spectrometer ~to match the pixel size of the detector!, the
imaged light spot is smaller than this; inserting the slit
therefore does not decrease the signal throughput, but rather
only acts to block any indirectly scattered light. Figure 1
shows a schematic layout of this CL system.

Spectrally dispersing the collected luminescence into
multiple channels before detection inevitably increases sig-
nal noise when compared with a single detector ~e.g., a photo-
multiplier tube!. The use of a cooled electron-multiplying
charge-coupled device allows the recording of lower noise
spectra than a conventional camera array. This is a particu-
lar advantage when working at high magnifications, when
the intolerance to even a few nanometers of image drift
necessitates the recording of the individual spectra as quickly
as possible.

Data Analysis
The optimum microscope parameters for acquiring high-
resolution CL include a low electron energy ~to restrict the
beam/sample interaction volume!, a low beam current ~to
keep the spot size small!, and a short spectral acquisition
time ~to avoid any sample/image drift!. With all but the
brightest samples, these factors combine to limit the signal-
to-noise ratio of any given spectral channel, and this needs
to be considered when extracting 2D images from the data
cube. For example, while the simplest way to extract maps
of a peak’s height and position is to plot the number of
counts of the most intense pixel and the wavelength of the
corresponding channel respectively, this will produce im-
ages dominated by noise. For this reason, the most effective
methods of extracting subsets of the multidimensional data-
set are those that take multiple channels into consideration
at the same time; such methods include calculating statisti-
cal moments, least-squares peak fitting, and multivariate
statistical analysis.

Statistical Moments

One set of techniques for extracting spectral peak character-
istics is one that is used to quantify discrete statistical
distributions generally: moments. If a given range of a

Figure 1. Schematic layout of the high-resolution CL hyperspec-
tral imaging system.
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spectrum has n channels with corresponding energies ei and
intensities Ii , then the mean or centroid value ~first mo-
ment! m will be given by the expectation calculation:

m � ^e& �

(
i�1

n

Ii ei

(
i�1

n

Ii

, ~1!

where the denominator term is the total integrated intensity
across this range. Higher order ~k’th! moments are generally
given as central moments, or moments about the mean:

mk � ^~e � m!k & �

(
i�1

n

Ii ~ei � m!k

(
i�1

n

Ii

. ~2!

The second central moment, or variance, describes the
width of the peak and provides a statistical alternative for
quantifying a peak width instead of calculating, for exam-
ple, the raw full-width at half-maximum ~FWHM!. It is also
possible—although less common—to apply the same prin-
ciple to extract higher order central moments. Skewness, the
third central moment, provides a statistical measure of the
asymmetry of a distribution, which for a spectrum can
result, for example, from the presence of longitudinal opti-
cal phonon replicas on the long wavelength side of an
emission peak. Kurtosis, the fourth central moment, is re-
lated to the “peakedness” of a distribution; mapping this
parameter could be used to show variations in the degree of
inhomogeneous broadening, the calculated kurtosis value
approaching zero as a peak gets closer to a Gaussian profile.
Press et al. ~2002! describe in more detail the concept of
moments of distributions and their calculation.

Peak Fitting

One limitation of the use of these statistical functions is
that they rely on peaks being spectrally separated. Peak
fitting, on the other hand, allows overlapping peaks to be
deconvolved. Line profile functions can be chosen that are
appropriate to the underlying physical mechanism involved
~e.g., Gaussian, Lorentzian, Voigt, Pekarian, etc.!, which are
then fitted in turn to each spectrum in the dataset using a
nonlinear least-squares ~NLLS! optimization routine. The
resultant arrays of fit parameters are then plotted to pro-
duce maps showing variations in the peak characteristics.

Principal Component Analysis

One further approach for extracting information from hy-
perspectral images is provided by the set of techniques
referred to as multivariate statistical analysis. One of the
simplest of these is principal component analysis ~PCA!, a
method for identifying correlations in multidimensional
data that is widely used across the experimental and social
sciences. Its use in simplifying hyperspectral images in the
field of remote sensing is well established, and in micros-
copy variations on this technique have been used effectively

to identify and quantify the contribution of peaks in X-ray
fluorescence hyperspectral images ~Kotula et al., 2003!, and
also combined hyperspectral CL/X-ray datasets ~Edwards
et al., 2007!.

The fundamental principle of PCA lies in the identifi-
cation of correlations in the variation of the data along each
of its different dimensions, and using these to re-express the
data in terms of a new set of directions in which the
variations are now separated. In the context of hyperspec-
tral images, these dimensions can be considered to be the
spectral channels: in other words, each spectrum consisting
of n channels can equivalently be described as a point in
n-dimensional space. Initially, each of the m spatial pixels in
the hyperspectral image is described by a linear combina-
tion of n monochromatic wavelengths; together these data
are then a set of m points within the n-dimensional space of
the values for each of the spectral channels. After PCA, the
same data will be described as coordinates with respect to a
new set of n orthonormal axes ~principal basis vectors!.
These span the same space as the original spectral channels
but are chosen such that each successive axis ~component!
accounts for the maximum possible variance remaining in
the data.

Conceptually, the first step in calculating these princi-
pal components is the construction of a variance-covariance
matrix. As with any variance calculations, this first requires
calculation of the data mean for each dimension ~spectral
channel! i :

m i �

(
k�1

n

xik

m
. ~3!

The n � n elements cij of the covariance matrix C are then
constructed using:

cij �

(
k�1

m

~xik � m i !~xjk � m j !

m
, ~4!

where C is symmetric ~cij � cj, i ! and the diagonal values cii

are the variances of xik. Subsequent eigen decomposition of
this covariance matrix results in a matrix of eigenvectors
V@n, n# :

V T CV � L, ~5!

which can now be used as a new set of n basis vectors with
which to describe the mean-adjusted data, and which are
conventionally referred to as the principal component load-
ings. The elements l ii of the diagonal matrix L@n, n# are the
associated eigenvalues, which quantify the fraction of the
total dataset variance that is now accounted for by the i ’th
component. Inspection of these eigenvalues allows us to
determine the number of components r to retain in sub-
sequent analysis: we retain a subset of V@n, n# as W@n, r#
and discard the remaining ~n � r! components. Since the
raw spectra in W can be hard to interpret, it is often
beneficial to carry out further orthogonal rotations of this
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subset of eigenvectors; we employ the commonly used vari-
max rotation, which has the effect of minimizing overlap
between the spectra.

In addition to the benefit of allowing rapid visualiza-
tion of the dominant spectral features within these large
datasets, PCA also provides the opportunity to compress, or
noise-filter, the data. This is achieved by reconstructing an
approximation X' to the original data using only our re-
duced rank of r principal components:

X' � WH � m, ~6!

where m is a matrix in which each column contains the
mean spectrum m. In this equation, H@r, m# is the array of
principal component scores; these describe how much each
of the new basis vectors contributes to a given data point
and are calculated by projecting the original mean-adjusted
data onto the loadings:

H � WT ~X � m!. ~7!

In practice, since it is not necessary to evaluate all n eigen-
vectors, iterative algorithms can be used to significantly
shorten the calculation time. In this work we have used the
NIPALS ~nonlinear iterative partial least-squares! approach,
which calculates each eigenvector-eigenvalue pair in order
but otherwise yields identical results to the full eigen decom-
position of the covariance matrix.

Due to our choice of matrix in equation ~4!, in which
the covariance in only spectral dimensions is considered
and the m hyperspectral image pixels are treated as spatially
uncorrelated data points, this analysis will be limited to
looking only at spectral correlations in the hyperspectral
images. This results in the PCA loadings and scores being
spectra and images, respectively. However, Keenan ~2009!
has extended such techniques to include the analysis of
correlations in the spatial domain, and this method has
recently been applied to electron energy loss spectroscopy
hyperspectral images by Guiton et al. ~2011!.

RESULTS AND DISCUSSION

Surface Defects in MQW Samples
Figure 2 shows a spectrum and images extracted from a CL
hyperspectral image obtained from the surface of a GaN
layer containing multiple InxGa1�xN/GaN quantum wells.
Figure 2b shows a secondary electron image of the sample
surface ~acquired before the CL map!, which shows the
presence of inverted pyramidal holes, or “V-pits”. For the
CL, a 5-keV, ;130-pA electron beam was used, with 10-nm
scan steps and an acquisition time of 40 ms/pixel. The
images are extracted by fitting a Gaussian function to each
spectrum in the scan, and plotting the resultant fit param-
eters as 2D maps. An example of a typical spectrum and the
fitted peak are shown in Figure 2a. Despite the challenging
signal-to-noise ratio, clear variations in the data are seen on
sub-mm length scale. Dark spots in the emission intensity
map ~Fig. 2c! are seen to correlate with the presence of
inverted pyramidal holes ~“V-pits”! in the surface; these pits

are mainly due to threading dislocations that propagate
from the lowest InGaN QWs and that act as centers for
nonradiative carrier recombination. The corresponding peak
energy map ~Fig. 2d! shows that the emission from the pits
is blue shifted with respect to the surrounding areas, which
may result from QWs on the pyramidal facets being thinner
or having a lower InN fraction than those grown on the
planar material, as well as a contribution from the reduc-
tion in the electric field ~Bruckbauer et al., 2011!. The
energy map also shows longer-range shifts in the emission
wavelength over the field of view, suggesting a variation in
the elastic strain resulting from the presence of these
dislocations.

Figure 3 shows profiles extracted from the intensity and
energy maps, along the same line ~labeled A to B in Fig. 2c!,
which intersects two V-pits. While the FWHM of these
features is around 50 nm, this corresponds approximately to
the actual feature sizes as measured in the secondary elec-
tron image and so only provides an upper limit for the CL
resolution.

Nanopyramids
Figure 4 shows a secondary electron image of an array of
InGaN-QW-containing GaN nanopyramids grown on a SAG
template. A CL hyperspectral image was acquired from the
central 1.5 � 1.5 mm square of this image using a 5-keV,
;2-nA beam. The spectra showed three peaks: GaN near-
band-edge emission at 3.4 eV, the QW peak at 2.9 eV, and a
defect-related yellow band at 2.2 eV. Figure 5 shows a
comparison of maps extracted from the 2.9-eV QW peak
using different methods. Figure 5a shows the integrated
intensity over the 2.6–3.2-eV range, comparable to a conven-
tional monochromatic CL image. Figure 5b plots the raw
energy value of the highest intensity spectral channel over
this range; it can be seen that this is dominated by noise.
Two alternative methods of plotting the emission energy are
shown in Figure 5d, which shows the result of fitting a
Gaussian peak with phonon satellites to the data, and Fig-
ure 5c, which shows the centroid energy calculated over the
same spectral range. By making use of multiple spectral
channels, both of these maps show a marked improvement
in the signal-to-noise ratio, such that it is now possible to
clearly distinguish emission energy shifts of only a few meV
over length scales of ,100 nm. ~The small energy offset
between these two images is due to the asymmetry of the
QW peak: the map from the peak fitting is showing the
energy of the zero-phonon emission line, while the centroid
map shows a mean that is calculated from this peak and all
phonon replicas.! This simultaneous combination of spec-
tral and spatial resolution is invaluable for characterizing
such nanostructured materials during their development
for applications in light-emitting devices ~Liu et al., 2009!.

The final example is a higher magnification CL hyper-
spectral image from another nanopyramid sample that in-
corporates an additional 110-nm-thick p-GaN capping layer.
Following Monte Carlo simulations of the beam/sample
interaction ~Drouin et al., 2007!, the energy of the beam has
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been increased to 6 keV so that it just penetrates through to
the QW region. The spectra again feature three dominant
peaks from the GaN band edge, InGaN QW, and yellow
band, and in this case we demonstrate the use of principal
component analysis to deconvolve these contributions.

Figure 6 shows the mean spectrum and the scores of
the first three principal components calculated from this
data using the approach described in the Principal Compo-
nent Analysis section, followed by a varimax rotation. Since
we note that the mean spectrum itself can in this case be
well described by a combination of the retained PCA scores,
we have chosen to project the full non-mean-adjusted data
onto these basis spectra @i.e., we disregard m in equation
~7!# . This amounts to an offset in the resultant images and
thus avoids negative values and simplifies qualitative inter-
pretation. These resultant spatial distributions of the spec-
tral components are shown in the correspondingly labeled
images in Figure 7. The three spectra are each clearly
dominated by one of the expected luminescence peaks, with
the QW emission originating primarily from the pyramid

Figure 2. ~a! Typical spectrum from a CL hyperspectral image of
a MQW sample, with a Gaussian fit; ~b! secondary electron image;
and fitted parameters of ~c! peak height and ~d! energy from the
same data. The crosshair on image c shows the position from
which spectrum ~a! was extracted, and the line labeled A to B
shows the position from which the linescans in Figure 3 were
extracted.

Figure 3. Linescans extracted from the maps of fitted emission
intensity and energy in Figures 2c and 2d, respectively. The labels
A and B correspond to the points marked on Figure 2c.

Figure 4. Secondary electron image of an array of GaN nanopyra-
mids containing an InGaN/GaN quantum well.
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facets and the GaN band edge and yellow band from the
area between the nanostructures. However, closer inspec-
tion of the spectra reveals that the component with the
2.2-eV yellow band also has a feature coinciding with the
3.4-eV near-band-edge peak. This feature is positive on
the low energy side of the 3.4-eV peak and negative on the
high energy side; adding this contribution to the peak will

therefore have the effect of shifting it to a lower energy.
Similarly, the emission from the InGaN/GaN QW is also
associated with a feature near the main GaN peak, this time
being negative on either side of the peak position and

Figure 5. Subsets of a single CL
hyperspectral image from the cen-
tral region of the nanopyramid
array in Figure 4, showing ~a! the
integrated intensity of the 2.6–
3.2-eV QW emission band; ~b! the
raw peak energy value of this
band; ~c! the energy obtained by
NLLS peak fitting; and ~d! the
centroid position calculated for
this range. The nonluminescent
regions of the energy maps have
been masked in black for im-
proved clarity.

Figure 6. The first three principal component loadings calcu-
lated from the CL hyperspectral image of an InGaN/GaN QW
nanopyramid. Figure 7. Images of scores corresponding to the first three princi-

pal component loadings shown in Figure 6. ~a–c! Images are
dominated by the 3.4-eV GaN near-band-edge, 2.8-eV InGaN QW
peak, and 2.2-eV yellow band, respectively.
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positive near the peak. This will have the effect of narrowing
the peak width. From this analysis, therefore, we can note
that the GaN band-edge peak is narrower in those areas
where the QW peak is more intense and is red-shifted in
those areas where more yellow band is emitted.

Similar ~although less pronounced! effects can be ob-
served in the 2.5–3.0-eV region of the spectrum. While the
QW emission is mostly accounted for by one PCA compo-
nent, there are small positive and negative contributions from
the other two that describe a subtle shift in the emission. If a
centroid energy is now calculated over this spectral range

using only the mean spectrum and first three principal com-
ponents rather than the whole dataset, a low-noise map of
the emission energy of the QW peak can be produced, as
seen in Figure 8a. This was calculated using equation ~1!, in
which the raw CL intensities Ii are now substituted with
values approximated using equation ~6! ~and with scores H
now calculated from the mean-adjusted data!.

As observed for the previous nanopyramid structures,
this shows a small blue shift in the emission as the apex is
approached. This shift can be seen quantitatively in the
associated linescan in Figure 8b and can be confirmed by
plotting out the full spectrum extracted from original data
along this same line, as in Figure 8c.

SUMMARY

The simultaneously high spectral and spatial resolution of
CL hyperspectral imaging is proving invaluable in the
characterization of nanoscale light-emitting semiconductor
structures. However, the increased noise that comes from
spectrally dispersing the luminescence, while at the same
time keeping acquisition parameters that are consistent
with high spatial resolution, leads to a decreased signal-to-
noise ratio. Effective extraction of images showing varia-
tions in aspects of the emission such as peak energy
therefore favors data analysis methods that make full use of
the many spectral channels available, including statistical
moments, peak fitting, and multivariate statistical analysis.
By continuing to investigate and develop these methods as
much as the instrumentation, we aim to further extend the
capabilities of this technique as applied to the study of
nanoscale semiconductor defects and devices.
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