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Strong convergence and stability of implicit

numerical methods for stochastic differential

equations with non-globally Lipschitz continuous

coefficients.

Xuerong Mao∗ Lukasz Szpruch†

Abstract

We are interested in the strong convergence and almost sure stability of Euler-Maruyama (EM) type

approximations to the solutions of stochastic differential equations (SDEs) with non-linear and non-

Lipschitzian coefficients. Motivation comes from finance and biology where many widely applied models

do not satisfy the standard assumptions required for the strong convergence. In addition we examine the

globally almost surely asymptotic stability in this non-linear setting for EM type schemes. In particular, we

present a stochastic counterpart of the discrete LaSalle principle from which we deduce stability properties

for numerical methods.

Key words: Dissipative model, super-linear growth, stochastic differential equation, strong conver-

gence, backward Euler-Maruyama scheme, implicit method, LaSalle principle, non-linear stability, almost

sure stability.
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1 Introduction

Throughout this paper, let (Ω,F , {Ft}t≥0,P) be a complete probability space with a filtration {Ft}t≥0

satisfying the usual conditions (that is to say, it is right continuous and increasing while F0 contains all P-
null sets). Let w(t) = (w1(t), ..., wd(t))

T be a d-dimensional Brownian motion defined on the probability
space, where T denotes the transpose of a vector or a matrix. In this paper we study the numerical
approximation of the stochastic differential equations (SDEs)

dx(t) = f(x(t))dt + g(x(t))dw(t). (1.1)

Here x(t) ∈ R
n for each t ≥ 0 and f : Rn → R

n and g : Rn → R
n×d. For simplicity we assume that

x0 ∈ R
n is a deterministic vector. Although the method of Lyapunov functions allows us to show that

there are solutions to a very wide family of SDEs (see e.g. [24, 34]), in general, both the explicit solutions
and the probability distributions of the solutions are not known. We therefore consider computable
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discrete approximations that, for example, could be used in Monte Carlo simulations. Convergence and
stability of these methods are well understood for SDEs with Lipschitz continuous coefficients: see [26]
for example. Our primary objective is to study classical strong convergence and stability questions for
numerical approximations in the case where f and g are not globally Lipschitz continuous. A good
motivation for our work is an instructive conditional result of Higham et al. [18]. Under the local
Lipschitz condition, they proved that uniform boundedness of moments of both the solution to (1.1)
and its approximation are sufficient for strong convergence. That immediately raises the question of
what type of conditions can guarantee such a uniform boundedness of moments. It is well known that
the classical linear growth condition is sufficient to bound the moments for both the true solutions and
their EM approximation [26, 34]. It is also known that when we try to bound the moment of the true
solutions, a useful way to relax the linear growth condition is to apply the Lyapunov-function technique,
with V (x) = ‖x‖2. This leads us to the monotone condition [34]. More precisely, if there exist constants
α, β > 0 such that the coefficients of equation (1.1) satisfy

〈x, f(x)〉 + 1

2
‖g(x)‖2 ≤ α+ β‖x‖2 for all x ∈ R

n, (1.2)

then
sup

0≤t≤T
E‖x(t)‖2 < ∞ ∀T > 0. (1.3)

Here, and throughout, ‖x‖ denotes both the Euclidean vector norm and the Frobenius matrix norm and
〈x, y〉 denotes the scalar product of vectors x, y ∈ R

n. However, to the best of our knowledge there is no
result on the moment bound for the numerical solutions of SDEs under the monotone condition (1.2).
Additionally, Hutzenthaler et al. [23] proved that in the case of super-linearly growing coefficients, the
EM approximation may not converge in the strong Lp-sense nor in the weak sense to the exact solution.
For example, let us consider a non-linear SDE

dx(t) = (µ− αx(t)3)dt+ βx(t)2dw(t), (1.4)

where µ, α, β ≥ 0 and α > 1
2β

2. In order to approximate SDE (1.4) numerically, for any ∆t, we define
the partition P∆t := {tk = k∆t : k = 0, 1, 2, . . . , N} of the time interval [0, T ], where N∆t = T and
T > 0. Then we define the EM approximation Ytk ≈ x(tk) of (1.4) by

Ytk+1
= Ytk + (µ− αY 3

tk
)∆t+ βY 2

tk
∆wtk , (1.5)

where ∆wtk = w(tk+1)− w(tk). It was shown in [23] that

lim
∆t→0

E‖YtN‖2 = ∞.

On the other hand, the coefficients of (1.4) satisfy the monotone condition (1.2) so (1.3) holds. Hence,
Hutzenthaler et al. [23] concluded that

lim
∆t→0

E‖x(T )− YtN ‖2 = ∞.

It is now clear that to prove the strong convergence theorem under condition (1.2) it is necessary to
modify the EM scheme. Motivated by the existing works [18] and [21] we consider implicit schemes.
These authors have demonstrated that a backward Euler-Maruyama (BEM) method strongly converges
to the solution of the SDE with one-sided Lipschitz drift and linearly growing diffusion coefficients. So
far, to the best of our knowledge, most of the existing results on the strong convergence for numerical
schemes only cover SDEs where the diffusion coefficients have at most linear growth [5, 39, 17, 22, 26].
However, the problem remains essentially unsolved for the important class of SDEs with super-linearly
growing diffusion coefficients. We are interested in relaxing the conditions for the diffusion coefficients
to justify Monte Carlo simulations for highly non-linear systems that arise in financial mathematics,
[1, 8, 2, 9, 14, 29], for example

dx(t) = (µ− αxr(t))dt + βxρ(t)dw(t), r, ρ > 1, (1.6)
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where µ, α, β > 0, or in stochastic population dynamics [35, 3, 36, 41, 11], for example

dx(t) = diag(x1(t), x2(t), ..., xn(t))[(b +Ax2(t))dt + x(t)dw(t)], (1.7)

where b = (b1, . . . , bn)
T , x2(t) = (x2

1(t), . . . , x
2(t)n)

T and matrix A = [aij ]1≤i,j≤n is such that λmax(A+
AT ) < 0, where λmax(A) = supx∈Rn,‖x‖=1 x

TAx. The only results we know, where the strong convergence
of the numerical approximations was considered for super-linear diffusion, is Szpruch et al. [43] and Mao
and Szpruch [37]. In [43] authors have considered the BEM approximation for the following scalar SDE
which arises in finance [2],

dx(t) = (α−1x(t)
−1 − α0 + α1x(t)− α2x(t)

r)dt+ σx(t)ρdw(t) r, ρ > 1.

In [37], this analysis was extended to the multidimensional case under specific conditions for the drift and
diffusion coefficients. In the present paper, we aim to prove strong convergence under general monotone
condition (1.2) in a multidimensional setting. We believe that this condition is optimal for boundedness
of moments of the implicit schemes. The reasons that we are interested in the strong convergence are:
a) the efficient variance reduction techniques, for example, the multi-level Monte Carlo simulations [12],
rely on the strong convergence properties; b) both weak convergence [26] and pathwise convergence [25]
follow automatically.

Having established the strong convergence result we will proceed to the stability analysis of the under-
lying numerical scheme for the non-linear SDEs (1.1) under the monotone-type condition. The main
problem concerns the propagation of an error during the simulation of an approximate path. If the
numerical scheme is not stable, then the simulated path may diverge substantially from the exact solu-
tion in practical simulations. Similarly, the expectation of the functional estimated by a Monte Carlo
simulation may be significantly different from that of the expected functional of the underlying SDEs
due to numerical instability. Our aim here is to investigate almost surely asymptotic properties of the
numerical schemes for SDEs (1.1) via a stochastic version of the LaSalle principle. LaSalle, [27], improved
significantly the Lyapunov stability method for ordinary differential equations. Namely, he developed
methods for locating limit sets of nonautonomous systems [13, 27]. The first stochastic counterpart of
his great achievement was established by Mao [33] under the local Lipschitz and linear growth condi-
tions. Recently, this stochastic version was generalized by Shen et al. [42] to cover stochastic functional
differential equations with locally Lipschitz continuous coefficients. Furthermore, it is well known that
there exists a counterpart of the invariance principle for discrete dynamical systems [28]. However, there
is no discrete stochastic counterpart of Mao’s version of the LaSalle theorem. In this work we investigate
a special case, with the Lyapunov function V (x) = ‖x‖2, of the LaSalle theorem. We shall show that
the almost sure global stability can be easily deduced from our results. The primary objectives in our
stability analysis are:

• Ability to cover highly nonlinear SDEs;

• Mild assumption on the time step - A(α)-stability concept [15].

Results which investigate stability analysis for numerical methods can be found in Higham [16, 15] for
the scalar linear case, Baker et al. [4] for the global Lipschitz and Higham et al. [19] for one-sided
Lipschitz and the linear growth condition.
At this point, it is worth mentioning how our work compares with that of Higham et al. [18]. Theorem
3.3 in their paper is a very important contribution to the numerical SDE theory. The authors proved
strong convergence results for one-sided Lipschitz and the linear growth condition on drift and diffusion
coefficients, respectively. What differentiates our work from [18] are: a) We significantly relax the
linear growth constraint on the diffusion coefficient and we only ask for very general monotone type
growth; b) Our analysis is based on a more widely applied BEM scheme in contrast to the split-step
scheme introduced in their paper. An interesting alternative to the implicit schemes for numerical
approximations of SDEs with non-globally Lipschitz drift coefficient recently appeared in [22]. However
the stability properties of this method are not analysed.

In what follows, for notational simplicity, we use the convention that C represent a generic positive
constant independent of ∆t, the value of which may be different for different appearances.
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The rest of the paper is arranged as follows. In section 2, we introduce the monotone condition under
which we prove the existence of a unique solution to equation (1.1), along with appropriate bounds that
will be needed in further analysis. In Section 3 we propose the θ-EM scheme, which is known as the BEM
when θ = 1, to approximate the solution of equation (1.1). We show that the 2nd moment of the θ-EM,
can be bounded under the monotone condition plus some mild assumptions on f and g. In Section 4 we
introduce a new numerical method, which we call the forward-backward Euler-Maruyama (FBEM). The
FBEM scheme enables us to overcome some measurability difficulties and avoid using Malliavin calculus.
We demonstrate that both the FBEM and the θ-EM do not differ much in the Lp-sense. Then we prove
a strong convergence theorem on a compact domain that is later extended to the whole domain. We also
perform a numerical experiment that confirms our theoretical results. Section 5 contains the stability
analysis, where we prove a special case of the stochastic LaSalle theorem for discrete time processes.

2 Existence and Uniqueness of Solution

We require the coefficients f and g in (1.1) to be locally Lipschitz continuous and to satisfy the monotone
condition, that is

Assumption 2.1. Both coefficients f and g in (1.1) satisfy the following conditions:

Local Lipschitz condition. For each integer m ≥ 1, there is a positive constant C(m) such that

‖f(x)− f(y)‖+ ‖g(x)− g(y)‖ ≤ C(m)‖x− y‖

for those x, y ∈ R
n with ‖x‖ ∨ ‖y‖ ≤ m.

Monotone condition. There exist constants α and β such that

〈x, f(x)〉 + 1

2
‖g(x)‖2 ≤ α+ β‖x‖2 (2.1)

for all x ∈ R
n.

It is a classical result that under Assumption 2.1, there exists a unique solution to (1.1) for any given
initial value x(0) = x0 ∈ R

n, [10, 34]. The reason why we present the following theorem with a proof here
is that it reveals the upper bound for the probability that the process x(t) stays on a compact domain
for finite time T > 0. The bound will be used to derive the main convergence theorem of this paper.

Theorem 2.2. Let Assumption 2.1 hold. Then for any given initial value x(0) = x0 ∈ R
n, there exists

a unique, global solution {x(t)}t≥0 to equation (1.1). Moreover, the solution has the properties that for

any T > 0,

E‖x(T )‖2 < (‖x0‖2 + 2αT ) exp(2βT ), (2.2)

and

P(τm ≤ T ) ≤ (‖x0‖2 + 2αT ) exp(2βT )

m2
, (2.3)

where m is any positive integer and

τm = inf{t ≥ 0 : ‖x(t)‖ > m}. (2.4)

Proof. It is well known that under Assumption 2.1, for any given initial value x0 ∈ R
n there exists a

unique solution x(t) to the SDE (1.1), [?, 34]. Therefore we only need to prove that (2.2) and (2.3) hold.
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Applying the Itô formula to the function V (x, t) = ‖x‖2, we compute the diffusion operator

LV (x, t) = 2
(

〈x, f(x)〉 + 1

2
‖g(x)‖2

)

.

By Assumption 2.1

LV (x, t) ≤ 2α+ 2β‖x‖2. (2.5)

Therefore

E‖x(t ∧ τm)‖2 ≤ ‖x0‖2 + 2αT +

∫ t

0

2βE‖x(s ∧ τm)‖2ds.

The Gronwall inequality gives

E‖x(T ∧ τm)‖2 ≤ (‖x0‖2 + 2αT ) exp(2βT ). (2.6)

Hence

P(τm ≤ T )m2 ≤ [‖x0‖2 + 2αT ] exp(2βT ).

Next, letting m → ∞ in (2.6) and applying Fatou’s lemma, we obtain

E‖x(T )‖2 ≤ [‖x0‖2 + 2αT ] exp(2βT ),

which gives the other assertion (2.2) and completes the proof.

3 The θ-Euler-Maruyama Scheme

As indicated in the introduction, in order to approximate the solution of (1.1) we will use the θ-EM
scheme. Given any step size ∆t, we define a partition P∆t := {tk = k∆t : k = 0, 1, 2, ...} of the half line
[0,∞), and define

Xtk+1
= Xtk + θf(Xtk+1

)∆t+ (1− θ)f(Xtk)∆t+ g(Xtk)∆wtk , (3.1)

where ∆wtk = wtk+1
− wtk and Xt0 = x0. The additional parameter θ ∈ [0, 1] allows us to control the

implicitness of the numerical scheme, that may lead to various asymptotic behaviours of equation (3.1).
For technical reasons we always require θ ≥ 0.5.

Since we are dealing with an implicit scheme we need to make sure that equation (3.1) has a unique
solution Xtk+1

given Xtk . To prove this, in addition to Assumption 2.1, we ask that function f satisfies
the one-sided Lipschitz condition.

Assumption 3.1. One-sided Lipschitz condition. There exists a constant L > 0 such that

〈x− y, f(x)− f(y)〉 ≤ L‖x− y‖2 ∀x, y ∈ R
n.

It follows from the fixed point theorem that a unique solution Xtk+1
to equation (3.1) exists given Xtk ,

provided ∆t < 1
θL , (see [37] for more details). From now on we always assume that ∆t < 1

θL . In order
to implement numerical scheme (3.1) we define a function F : Rn → R

n as

F (x) = x− θf(x)∆t. (3.2)

Due to Assumption 3.1, there exists an inverse function F−1 and the solution to (3.1) can be represented

5



in the following form

Xtk+1
= F−1(Xtk + (1− θ)f(Xtk)∆t+ g(Xtk)∆wtk).

Clearly, Xtk is Ftk -measurable. In many applications, the drift coefficient of the SDEs has a cubic or
quadratic form, whence the inverse function can be found explicitly. For more complicated SDEs we can
find the inverse function F−1 using root-finding algorithms, such as Newton’s method.

3.1 Moment Properties of θ-EM

In this section we show that the second moment of the θ-EM (3.1) is bounded (Theorem 3.6). To achieve
the bound we employ the stopping time technique, in a similar way as in the proof of Theorem 2.2.
However, in discrete time approximations for a stochastic process, the problem of overshooting the level
where we would like to stop the process appears, [7, 6, 32].

Due to the implicitness of scheme (3.1), an additional but mild restriction on the time step appears.
That is, from now on, we require ∆t ≤ ∆t∗, where ∆t∗ ∈ (0, (max{L, 2β}θ)−1) with β and L defined in
Assumptions 2.1 and 3.1, respectively.

The following lemma shows that in order to guarantee the boundedness of moments for Xtk defined by
(3.1) it is enough to bound the moments of F (Xtk), where F is defined by (3.2).

Lemma 3.2. Let Assumption 2.1 hold. Then for F (x) = x− θf(x)∆t we have

‖x‖2 ≤ (1− 2βθ∆t)−1
[

‖F (x)‖2 + 2θα∆t
]

∀x ∈ R
n.

Proof. Writing ‖F (x)‖2 = 〈F (x), F (x)〉 and using Assumption 2.1 we arrive at

‖F (x)‖2 =‖x‖2 − 2θ〈x, f(x)〉∆t + θ2‖f(x)‖2∆t2

≥(1 − 2βθ∆t)‖x‖2 − 2θα∆t,

and the assertion follows.

We define the stopping time λm by

λm = inf{k : ‖Xtk‖ > m}. (3.3)

We observe that when k ∈ [0, λm(ω)], ‖Xtk−1
(ω)‖ ≤ m, but we may have ‖Xtk(ω)‖ > m, so the following

lemma is not trivial.

Lemma 3.3. Let Assumptions 2.1, 3.1 hold, and θ ≥ 0, 5. Then for p ≥ 2 and sufficiently large integer

m, there exists a constant C(p,m), such that

E
[

‖Xtk‖p1[0,λm](k)
]

< C(p,m) for any k ≥ 0.

Proof. The proof is given in the Appendix.

For completeness of the exposition we recall the discrete Gronwall inequality, that we will use in the
proof of Theorem 3.6.
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Lemma 3.4 (The Discrete Gronwall Inequality). Let M be a positive integer. Let uk and vk be non-

negative numbers for k=0,1,...,M. If

uk ≤ u0 +

k−1
∑

j=0

vjuj, ∀k = 1, 2, ...,M,

then

uk ≤ u0 exp





k−1
∑

j=0

vj



 , ∀k = 1, 2, ...,M.

The proof can be found in Mao et al. [38]. To prove the boundedness of the second moment for the
θ-EM (3.1), we need an additional but mild assumption on the coefficients f and g.

Assumption 3.5. The coefficients of equation (1.1) satisfy the polynomial growth condition. That is,

there exists a pair of constants h ≥ 1 and C(h) > 0 such that

‖f(x)‖ ∨ ‖g(x)‖ ≤ C(h)(1 + ‖x‖h), ∀x ∈ R
n. (3.4)

Let us begin to establish the fundamental result of this paper that reveals the boundedness of the second
moments for SDEs (1.1) under Assumptions 2.1 and 3.5.

Theorem 3.6. Let Assumptions 2.1, 3.1, 3.5 hold, and θ ≥ 0.5. Then, for any T > 0, there exists a

constant C(T ) > 0, such that the θ-EM scheme (3.1) has the following property

sup
∆t≤∆t∗

sup
0≤tk≤T

E‖Xtk‖2 < C(T ).

Proof. By definition (3.2) of function F , we can represent the θ-EM scheme (3.1) as

F (Xtk+1
) = F (Xtk) + f(Xtk)∆t+ g(Xtk)∆wtk .

Consequently writing 〈F (Xtk+1
), F (Xtk+1

)〉 = ‖F (Xtk+1
)‖2 and utilizing Assumption 2.1 we obtain

‖F (Xtk+1
)‖2 =‖F (Xtk)‖2 + ‖f(Xtk)‖2∆t2 + ‖g(Xtk)‖2∆t (3.5)

+ 2〈F (Xtk), f(Xtk)〉∆t+∆Mtk+1

=‖F (Xtk)‖2

+
(

2〈Xtk , f(Xtk)〉 + ‖g(Xtk)‖2
)

∆t

+ (1 − 2θ)‖f(Xtk)‖2∆t2 +∆Mtk+1
,

where

∆Mtk+1
= ‖g(Xtk)∆wtk+1

‖2 − ‖g(Xtk)‖2∆t+ 2〈F (Xtk), g(Xtk)∆wtk+1
〉

+ 2〈f(Xtk)∆t, g(Xtk)∆wtk+1
〉,

is a local martingale. By Assumption 2.1 and the fact that θ ≥ 0.5,

‖F (Xtk+1
)‖2 ≤‖F (Xtk)‖2 + 2α∆t+ 2β‖Xtk‖2∆t+∆Mtk+1

. (3.6)
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Let N be any nonnegative integer such that N∆t ≤ T . Summing up both sides of inequality (3.6) from

k = 0 to N ∧ λm, we get

‖F (XtN∧λm+1
)‖2 ≤ ‖F (Xt0)‖2 + 2αT + 2β

N∧λm
∑

k=0

‖Xtk‖2∆t+

N∧λm
∑

k=0

∆Mtk+1

≤ ‖F (Xt0)‖2 + 2αT + 2β

N
∑

k=0

‖Xtk∧λm
‖2∆t+

N
∑

k=0

∆Mtk+1
1[0,λm](k). (3.7)

Applying Lemma 3.3, Assumption 3.5 and noting that Xtk and 1[0,λm](k) are Ftk -measurable while ∆wtk

is independent of Ftk , we can take expectations on both sides of (3.7) to get

E‖F (XtN∧λm+1
)‖2 ≤ ‖F (Xt0)‖2 + 2αT + 2β E

[

N
∑

k=0

‖Xt
k∧λm

‖2∆t

]

.

By Lemma 3.2

E‖F (XtN∧λm+1
)‖2 ≤‖F (Xt0)‖2 + (2α+ 2β(1 − 2βθ∆t)−1 2θα∆t)(T +∆t)

+ 2β (1 − 2βθ∆t)−1
E

[

N
∑

k=0

‖F (X(t
k∧λm

))‖2∆t

]

.

By the discrete Gronwall inequality

E‖F (XtN∧λm+1
)‖2 ≤

[

‖F (Xt0)‖2 + (2α+ 2β(1− 2βθ∆t)−1 2θα∆t)(T +∆t)
]

exp
(

2β (1− 2βθ∆t)−1(T +∆t)
)

,

(3.8)

where we use the fact that N∆t ≤ T . Thus, letting m → ∞ in (3.8) and applying Fatou’s lemma, we

get

E‖F (XtN+1
)‖2 ≤

[

‖F (Xt0)‖2 + (2α+ 2β(1 − 2βθ∆t)−1 2θα∆t)(T +∆t)
]

exp
(

2β (1− 2βθ∆t)−1(T +∆t)
)

.

By Lemma 3.2, the proof is complete.

4 Forward-Backward Euler-Maruyama Scheme

We find in our analysis that it is convenient to work with a continuous extension of a numerical method.
This continuous extension enables us to use the powerful continuous-time stochastic analysis in order
to formulate theorems on numerical approximations. We find it particularly useful in the proof of
forthcoming Theorem 4.2. Let us define

η(t) := tk, for t ∈ [tk, tk+1), k ≥ 0,

η+(t) := tk+1, for t ∈ [tk, tk+1), k ≥ 0.

One possible continuous version of the θ-EM is given by

X(t) = Xt0 + θ

∫ t

0

f(Xη+(s))ds+ (1− θ)

∫ t

0

f(Xη(s))ds+

∫ t

0

g(Xη(s))dw(s), t ≥ 0. (4.1)

8



Unfortunately, this X(t) is not Ft-adapted whence it does not meet the fundamental requirement in the
classical stochastic analysis. To avoid using Malliavin calculus, we introduce a new numerical scheme,
which we call the Forward-Backward Euler-Maruyama (FBEM) scheme: Once we compute the discrete
values Xtk from the θ-EM, that is

Xtk = Xtk−1
+ θf(Xtk)∆t+ (1− θ)f(Xtk−1

)∆t+ g(Xtk−1
)∆wtk−1

,

we define the discrete FBEM by

X̂tk+1
= X̂tk + f(Xtk)∆t+ g(Xtk)∆wtk , (4.2)

where X̂t0 = Xt0 = x0, and the continuous FBEM by

X̂(t) = X̂t0 +

∫ t

0

f(Xη(s))ds+

∫ t

0

g(Xη(s))dw(s), t ≥ 0. (4.3)

Note that the continuous and discrete BFEM schemes coincide at the gridpoints; that is, X̂(tk) = X̂tk .

4.1 Strong Convergence on the Compact Domain

It this section we prove the strong convergence theorem. We begin by showing that both schemes of the
FBEM (4.2) and the θ-EM (3.1) stay close to each other on a compact domain. Then we estimate the
probability that both continuous FBEM (4.3) and θ-EM (3.1) will not explode on a finite time interval.

Lemma 4.1. Let Assumptions 2.1, 3.1, 3.5 hold, and θ ≥ 0.5. Then for any integer p ≥ 2 and m ≥ ‖x0‖,
there exists a constant C(m, p) such that

E

[

‖X̂tk −Xtk‖p1[0,λm](k)
]

≤ C(m, p)∆tp, ∀k ∈ N,

and for F (x) = x− θf(x)∆t we have

‖X̂tk‖2 ≥ 1

2
‖F (Xtk)‖2 − ‖θf(x0)∆t‖2 ∀k ∈ N.

Proof. Summing up both schemes of the FBEM (4.2) and the θ-EM (3.1), respectively, we obtain

X̂tN −XtN = θ(f(Xt0)− f(XtN ))∆t.

By Hölder’s inequality, Lemma 3.3 and Assumption 3.5, we then see easily that there exists a constant

C(m, p) > 0, such that

E

[

‖X̂tN −XtN‖p1[0,λm](N)
]

= θE
[

‖f(Xt0)∆t− f(XtN )∆t‖p1[0,λm](N)
]

≤ C(m, p)∆tp, (4.4)

as required. Next, using inequality 2|a||b| ≤ ε|a|2 + ε−1|b|2 with ε = 0.5 we arrive at

‖X̂tN‖2 =‖XtN − θf(XtN )∆t+ θf(Xt0)∆t‖2 ≥ (‖F (XtN )‖ − ‖θf(Xt0)∆t‖)2

≥1

2
‖F (XtN )‖2 − ‖θf(Xt0)∆t‖2.

9



The following Theorem provides us with a similar estimate for the distribution of the first passage time
for the continuous FBEM (4.3) and θ-EM (3.1) as we have obtained for the SDEs (1.1) in Theorem 2.2.
We will use this estimate in the proof of forthcoming Theorem 4.4.

Theorem 4.2. Let Assumptions 2.1, 3.1, 3.5 hold, and θ ≥ 0.5. Then, for any given ǫ > 0, there exists

a positive integer N0 such that for every m ≥ N0, we can find a positive number ∆t0 = ∆t0(m) so that

whenever ∆t ≤ ∆t0,

P(ϑm < T ) ≤ ǫ, for T > 0,

where ϑm = inf{t > 0 : ‖X̂(t)‖ ≥ m or ‖Xη(t)‖ > m}.

Proof. The proof is given in the Appendix.

4.2 Strong Convergence on the Whole Domain

In this section we present the main theorem of this paper, the strong convergence of the θ-EM (3.1) to
the solution of (1.1). First, we will show that the continuous FBEM (4.3) converges to the true solution
on the compact domain. This, together with Theorem 4.2, will enable us to extend convergence to the
whole domain. Let us define the stopping time

θm = τm ∧ ϑm,

where τm and ϑm are defined in Theorems 2.2 and 4.2, respectively.

Lemma 4.3. Let Assumptions 2.1, 3.1, 3.5 hold, and θ ≥ 0.5. For sufficiently large m, there exists a

positive constant C(T,m), such that

E

[

sup
0≤t≤T

‖X̂(t ∧ θm)− x(t ∧ θm)‖2
]

≤ C(T,m)∆t. (4.5)

Proof. The proof is given in the Appendix.

We are now ready to prove the strong convergence of the θ-EM (3.1) to the true solution of (1.1).

Theorem 4.4. Let Assumptions 2.1, 3.1, 3.5 hold, and θ ≥ 0.5. For any given T = N ∆t > 0 and

s ∈ [1, 2), θ-EM scheme (3.1) has the property

lim
∆t→0

E‖XT − x(T )‖s = 0. (4.6)

Proof. Let

e(T ) = XT − x(T ).

Applying Young’s inequality

xsy ≤ δs

2
x2 +

2− s

2δ
s

2−s

y
2

2−s , ∀x, y, δ > 0,
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leads us to

E‖e(T )‖s = E
[

‖e(T )‖s1{τm>T,ϑm>T}

]

+ E
[

‖e(T )‖s1{τm≤T or ϑm≤T}

]

≤ 2s−1
[

E[‖X̂(T )− x(T )‖s1{τm>T,ϑm>T}] + E[‖XT − X̂(T )‖s1{τm>T,ϑm>T}]
]

+
δs

2
E
[

‖e(T )‖2
]

+
2− s

2δ
s

2−s

P(τm ≤ T or ϑm ≤ T ).

First, let us observe that by Lemma 4.1 we obtain

E[‖XT − X̂(T )‖s1{τm>T,ϑm>T}] ≤ C(m, s)∆ts.

Given an ǫ > 0, by Hölder’s inequality and Theorems 2.2 and 3.6 , we choose δ such that

δs

2
E
[

‖e(T )‖2
]

≤ δsE
[

‖x(T )‖2 + ‖XT ‖2
]

≤ ǫ

3
.

Now by (2.3) there exists N0 such that for m ≥ N0

2− s

2δ
s

2−s

P(τm ≤ T ) ≤ ǫ

3
,

and finally by Lemmas 4.1, 4.3 and Theorem 4.2 we choose ∆t sufficiently small, such that

2s−1
[

E[‖X̂(T )− x(T )‖s1{τm>T,ϑm>T}] + E[‖XT − X̂(T )‖s1{τm>T,ϑm>T}]
]

+
2− s

2δ
s

2−s

P(ϑm ≤ T ) ≤ ǫ

3
,

which completes the proof.

Theorem 4.4 covers many highly non-linear SDEs, though it might be computationally expensive to find
the inverse F−1 of the function F (x) = x − θf(x)∆t. For example, lets consider equation (1.4) with
µ(x) = a+ sin(x)2, a > 0, that is

dx(t) = (a+ sin(x)2 − αx(t)3)dt+ βx(t)2dw(t), (4.7)

where α, β > 0. This type of SDE could be used to model electricity prices where we need to account for
a seasonality pattern, [31]. In this situation, it is useful to split the drift coefficient in two parts, that is

f(x) = f1(x) + f2(x). (4.8)

This allows us to introduce partial implicitness in the numerical scheme. In the case of (4.7) we would
take f1(x) = −αx(t)3 and f2(x) = a + sin(x)2. Then a new partially implicit θ-EM scheme has the
following form

Ytk+1
= Ytk + θf1(Ytk+1

)∆t+ (1 − θ)f1(Ytk)∆t+ f2(Ytk)∆t+ g(Ytk)∆wtk . (4.9)

It is enough that f1 satisfies Assumption 3.1 in order for scheme (4.9) to be well defined. Its solution
can be represented as

Ytk+1
= H−1 (Ytk + (1 − θ)f1(Ytk)∆t+ f2(Ytk)∆t+ g(Ytk)∆wtk ) ,

where
H(x) = x− θf1(x)∆t, (4.10)

All results from Sections 3 and 4 hold, once we replace condition (2.1) in Assumption 2.1 and Assumption
3.1 by (4.11) (4.12)), respectively.
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Theorem 4.5. Let Assumption 3.5 hold and ∆t ∈ [0, (max{L, 2β}θ)−1). In addition we assume that

for x, y ∈ R
n, there exist constants L, α, β > 0 such that

〈x− y, f1(x) − f1(y)〉 ≤ L‖x− y‖2, (4.11)

and

〈x, f(x)〉 + 1

2
‖g(x)‖2 +

[

(1− θ)〈f1(x), f2(x)〉 +
1

2
‖f2(x)‖2 +

1

2
(1− 2θ)‖f1(x)‖2

]

∆t ≤ α+ β‖x‖2.

(4.12)

Then for any given T > 0 and s ∈ [1, 2), θ-EM scheme (4.9) has the following property

lim
∆t→0

E‖YT − x(T )‖s = 0. (4.13)

Proof. In order to prove Theorem 4.5 we need to show that results from sections 3 and 4, proved for (3.1),

hold for (4.9) under modified assumptions. The only significant difference is in the proof of Theorem

3.6 for (4.9). Due to condition (4.11) we can show that Lemma 3.2 holds for function H . Then by the

definition of function H in (4.10), we can represent the θ-EM scheme (4.9) as

H(Ytk+1
) = H(Ytk) + f(Ytk)∆t+ g(Ytk)∆wtk .

Consequently writing 〈H(Ytk+1
), H(Ytk+1

)〉 = ‖H(Ytk+1
)‖2 we obtain

‖H(Ytk+1
)‖2 = ‖H(Ytk)‖2 + ‖f(Ytk)‖2∆t2 + ‖g(Ytk)‖2∆t (4.14)

+ 2〈H(Ytk), f(Ytk)〉∆t +∆Mtk+1

= ‖H(Ytk)‖2 +
(

2〈Ytk , f(Ytk)〉+ ‖g(Ytk)‖2
)

∆t

+
[

2(1− θ)〈f1(Ytk), f2(Ytk)〉+ ‖f2(Ytk)‖2 + (1 − 2θ)‖f1(Ytk)‖2
]

∆t2 +∆Mtk+1
,

where

∆Mtk+1
= ‖g(Ytk)∆wtk+1

‖2 − ‖g(Ytk)‖2∆t+ 2〈H(Ytk), g(Ytk)∆wtk+1
〉

+ 2〈f(Ytk)∆t, g(Ytk)∆wtk+1
〉.

Due to condition (4.12) we have

‖H(Ytk+1
)‖2 ≤ ‖H(Ytk)‖2 + 2α∆t+ 2β ‖Ytk‖2 +∆Mtk+1

.

The proof can be completed by analogy to the analysis for the θ-EM scheme (3.1). Having boundedness

of moments for (4.9) we can show that (4.13) holds in exactly the same way as for θ-EM scheme (3.1).

4.3 Numerical Example

In this section we perform a numerical experiment that confirms our theoretical results. Since Multilevel
Monte-Carlo simulations provide excellent motivation for our work [12], here we consider the measure
of error (4.13) with s = 2. Although, the case s = 2 is not covered by our analysis, the numerical
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experiment suggests that Theorem 4.4 still holds. In our numerical experiment, we focus on the error at
the endpoint T = 1, so we let

estrong∆t = E‖x(T )−XT ‖2.

We consider the SDE (1.4)
dx(t) = (µ− αx(t)3)dt+ βx2(t)dw(t),

where (µ, α, β) = (0.5, 0.2,
√
0.2). The assumptions of Theorem 4.4 hold. The θ-EM (3.1) with θ = 1,

applied to (1.4) writes as

Xtk+1
= Xtk + (µ− αX3

tk+1
)∆t+ βX2

tk
∆wtk . (4.15)

Since we employ the BEM to approximate (1.4), on each step of the numerical simulation we need to
find the inverse of the function F (x) = αx3∆t+x. In this case we can find the inverse function explicitly
and therefore computational complexity is not increased. Indeed, we observe that it is enough to find
the real root of the cubic equation

αX3
tk+1

∆t+Xtk+1
− (Xtk + µ∆t+ βX2

tk
∆wtk) = 0.

In Figure 1 we plot estrong∆t against ∆t on a log-log scale. Error bars representing 95% confidence intervals
are denoted by circles. Although we do not know the explicit form of the solution to (1.4), Theorem 4.4
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Figure 1: A strong error plot where the dashed line is a reference slope and the continuous line is the
extrapolation of the error estimates for the BEM scheme.

guarantees that the BEM (4.15) strongly converges to the true solution. Therefore, it is reasonable to
take the BEM with the very small time step ∆t = 2−14 as a reference solution. We then compare it to
the BEM evaluated with timesteps (21∆t, 23∆t, 25∆t, 27∆t) in order to estimate the rate of convergence.
Since we are using Monte Carlo method, the sampling error decays with a rate of 1/

√
M , M - is the

number of sample paths. We set M = 10000. From Figure 1 we see that there appears to exist a positive
constant such that

estrong∆t ≤ C∆t for sufficiently small ∆t.

Hence, our results are consistent with a strong order of convergence of one-half.
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5 Stability Analysis

In this section we examine the globally almost surely asymptotic stability of the θ-EM scheme (3.1). The
stability conditions we derive are more related to the mean-square stability, [20, 40]. First, we give some
preliminary analysis for the SDEs (1.1). We give conditions on the coefficients of the SDEs (1.1) that
are sufficient for the globally almost surely asymptotic stability. Later we prove that the θ-EM scheme
(3.1) reproduces this asymptotic behavior very well.

5.1 Continuous Case

Here we present a simplified version of the stochastic LaSalle Theorem as proved in [42], using the
Lyapunov function V (x) = ‖x‖2.

Theorem 5.1 (Mao et al.). Let Assumption 2.1 hold. We assume that there exists a function z ∈
C(Rn;R+), such that

〈x, f(x)〉 + 1

2
‖g(x)‖2 ≤ −z(x) (5.1)

for all x ∈ R
n. We then have the following assertions:

• For any x0 ∈ R
n, the solution x(t) of (1.1) has the properties that

lim sup
t→∞

‖x(t)‖2 < ∞ a.s and

lim
t→∞

z(x(t)) = 0 a.s.

What is more, when z(x) = 0 if and only if x = 0 then

lim
t→∞

x(t) = 0 a.s ∀ x0 ∈ R
n.

5.2 Almost Sure Stability

We begin this section with the following Lemma.

Lemma 5.2. Let Z = {Zn}n∈N be a nonnegative stochastic process with the Doob decomposition Zn =

Z0 + A1
n − A2

n + Mn, where A1 = {A1
n}n∈N and A2 = {A2

n}n∈N are a.s. nondecreasing, predictable

processes with A1
0 = A2

0 = 0, and M = {Mn}n∈N is local {Fn}n∈N-martingale with M0 = 0. Then

{

lim
n→∞

A1
n < ∞

}

⊆
{

lim
n→∞

A2
n < ∞

}

∩
{

lim
n→∞

Zn exists and is finite
}

a.s.

The original lemma can be found in Liptser and Shiryaev [30]. The reader can notice that this lemma
combines the Doob decomposition and the martingales convergence theorem. Since we use the Lyapunov
function V (x) = ‖x‖2, our results extend the mean-square stability for linear systems, Higham [15, 16],
to a highly non-linear setting. The next theorem demonstrates that there exists a discrete counterpart
of Theorem 5.1 for the θ-EM scheme (3.1).

Theorem 5.3. Let Assumptions 2.1, 3.1 and 3.5 hold. Assume that there exists a function z ∈
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C(Rn;R+) such that for all x ∈ R
n and for all ∆t ∈ (0, (max{L, 2β}θ)−1),

〈x, f(x)〉 + 1

2
‖g(x)‖2 + (1− 2θ)

2
‖f(x)‖2∆t ≤ −z(x). (5.2)

Then the θ-EM solution defined by (3.1), obeys

lim sup
k→∞

‖Xtk‖2 < ∞ a.s., (5.3)

lim
k→∞

z (Xtk) = 0 a.s. (5.4)

If additionally z(x) = 0 iff x = 0, then

lim
k→∞

Xtk = 0 a.s. (5.5)

Proof. By (3.5) we have

‖F (Xtk+1
)‖2 =‖F (Xtk)‖2 +

(

2〈Xtk , f(Xtk)〉+ ‖g(Xtk)‖2
)

∆t

+ (1− 2θ)‖f(Xtk)‖2∆t2 +∆Mtk+1
,

where

∆Mtk+1
= ‖g(Xtk)∆wtk+1

‖2 − ‖g(Xtk)‖2∆t+ 2〈F (Xtk), g(Xtk)∆wtk+1
〉

+ 2〈f(Xtk)∆t, g(Xtk)∆wtk+1
〉,

so
∑N

k=0 ∆Mtk+1
is a local martingale due to Assumption 3.5 and Lemma 3.3. Hence, we have obtained

the decomposition required to apply Lemma 5.2, that is

‖F (XtN+1
)‖2 = ‖F (Xt0)‖2 −

N
∑

k=0

Atk∆t+

N
∑

k=0

∆Mk.

where

Atk = −
((

2〈Xtk , f(Xtk)〉+ ‖g(Xtk)‖2
)

+ (1− 2θ)‖f(Xtk)‖2∆t
)

. (5.6)

By condition (5.2),
∑N

k=0 Atk∆t is nondecreasing. Hence by Lemma 5.2 we arrive at

lim
k→∞

‖F (Xtk)‖2 < ∞. (5.7)

Consequently, by Lemma 3.2 we arrive at

lim sup
k→∞

‖X(tk)‖2 < ∞ a.s..

By Lemma 5.2,

∞
∑

k=0

z(Xtk)∆t ≤
∞
∑

k=0

Atk∆t < ∞ a.s,

which implies

lim
k→∞

z(Xtk) = 0 a.s.
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This completes the proof of (5.4) and (5.5).

A Proof of Lemma 3.3

Proof. By (3.6) we obtain

‖F (Xtk)‖2 ≤‖F (Xtk−1
)‖2 + 2α∆t+ 2β‖Xtk−1

‖2∆t+∆Mtk ,

where

∆Mtk = ‖g(Xtk−1
)∆wtk‖2 − ‖g(Xtk−1

)‖2∆t+ 2〈F (Xtk−1
), g(Xtk−1

)∆wtk〉
+ 2〈f(Xtk−1

)∆t, g(Xtk−1
)∆wtk 〉.

Using the basic inequality (a1 + a2 + a3 + a4)
p/2 ≤ 4p/2−1(a

p/2
1 + a

p/2
2 + a

p/2
3 + a

p/2
4 ), where ai ≥ 0, we

obtain

‖F (Xtk)‖p ≤4p/2−1
(

‖F (Xtk−1
)‖p + (2α∆t)p/2 + (2β)p/2‖Xtk−1

‖p∆tp/2+ | ∆Mtk |p/2
)

. (A.1)

As a consequence

E
[

‖F (Xtk)‖p1[0,λm](k)
]

≤4p/2−1

(

E
[

‖F (Xtk−1
)‖p1[0,λm](k)

]

+ (2α∆t)p/2 + (2βm2∆t)p/2

+ E

[

| ∆Mtk |p/2 1[0,λm](k)
]

)

.

Due to Assumption 2.1 we can bound ‖F (x)‖p and ‖g(x)‖ for ‖x‖ < m. Whence, there exists a constant

C(m, p), such that

E

[

| ∆Mtk |p/2
]

1[0,λm](k)

≤ 4p/2−1
E

[

‖g(Xtk−1
)∆wk‖p + ‖g(Xtk−1

)‖p∆tp/2 + (2‖F (Xtk−1
)‖‖g(Xtk−1

)∆wtk‖)p/2

+ (2‖f(Xtk−1
)∆t‖‖g(Xtk−1

)∆wtk‖)p/2
]

1[0,λm](k)

≤ C(m, p)E

[

1 + ‖g(X(tk−1))∆wk‖p
]

1[0,λm](k),

By Hölder’s inequality

E

[

| ∆Mtk |p/2
]

1[0,λm](k)

≤ C(m, p)

[

1 +
(

E
[

‖g(Xtk−1
)‖2p1[0,λm](k)

])1/2(
E‖∆wtk−1

‖2p
)1/2

]

.

Hence

E
[

‖F (Xtk)‖p1[0,λm](k)
]

≤ C(m, p)

(

1 +
(

E
[

‖g(Xtk−1
)‖p1[0,λm](k)

]2)1/2(
E‖∆wtk−1

‖2p
)1/2

)
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Since there exists a positive constant C(p), such that E‖∆wtk−1
‖2p < C(p), we obtain

E
[

‖F (Xtk)‖p1[0,λm](k)
]

< C(m, p).

We conclude the assertion by applying Lemma 3.2.

B Proof of Theorem 4.2

Proof. By the Itô formula

‖X̂(T ∧ ϑm)‖2 = ‖x0‖2 +
∫ T∧ϑm

0

(

2〈X̂(s), f(Xη(s))〉+ trace[gT (Xη(s))In×ng(Xη(s))]
)

ds

+ 2

∫ T∧ϑm

0

〈X̂(s), g(Xη(s))〉dw(s)

= ‖x0‖2 +
∫ T∧ϑm

0

(

2〈X̂(s)−Xη(s) +Xη(s), f(Xη(s))〉+ ‖g(Xη(s))‖2
)

ds

+ 2

∫ T∧ϑm

0

〈X̂(s), g(Xη(s))〉dw(s)

≤ ‖x0‖2 +
∫ T∧ϑm

0

(

2〈Xη(s), f(Xη(s))〉+ ‖g(Xη(s))‖2
)

ds

+ 2

∫ T∧ϑm

0

‖X̂(s)−Xη(s)‖‖f(Xη(s))‖ds

+ 2

∫ T∧ϑm

0

〈X̂(s), g(Xη(s))〉dw(s).

By Assumption 2.1, for ‖x‖ ≤ m

‖f(x)‖2 ≤ 2(‖f(x)− f(0)‖2 + ‖f(0)‖2) ≤ 2(C(m)‖x‖2 + ‖f(0)‖2), (B.1)

‖g(x)‖2 ≤ 2(‖g(x)− g(0)‖2 + ‖g(0)‖2) ≤ 2(C(m)‖x‖2 + ‖g(0)‖2), (B.2)

and

E‖X̂(T ∧ ϑm)‖2 ≤ ‖x0‖2 + 2αT + 2β E

∫ T∧ϑm

0

‖Xη(s) − X̂(s) + X̂(s)‖2ds+ C(m)E

∫ T∧ϑm

0

‖Xη(s) − X̂(s)‖ds.

Using the basic inequality (a− b+ c)2 ≤ 2(‖a− b‖2+‖c‖2) and the fact that
∫ T∧ϑm

0 ‖Xη(s)− X̂(s)‖2ds ≤
C(m)

∫ T∧ϑm

0
‖Xη(s) − X̂(s)‖ds, we obtain

E‖X̂(T ∧ ϑm)‖2 ≤‖x0‖2 + 2αT + 4β

∫ T

0

E‖X̂(s ∧ ϑm)‖2ds

+ 4βE

∫ T∧ϑm

0

‖Xη(s) − X̂(s)‖2ds+ C(m)E

∫ T∧ϑm

0

‖Xη(s) − X̂(s)‖ds

≤‖x0‖2 + 2αT + 4β

∫ T

0

E‖X̂(s ∧ ϑm)‖2ds+ C(m)(4β + 1)E

∫ T∧ϑm

0

‖Xη(s) − X̂(s)‖ds.

(B.3)
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Since λm ≥ ϑm a.s., Lemma 4.1 gives the following bound

E

∫ T∧ϑm

0

‖Xη(s) − X̂η(s)‖ds ≤ C(m,T )∆t. (B.4)

To bound the term E
∫ T∧ϑm

0
‖X̂η(s) − X̂(s)‖ds in (B.3), first we observe that

‖X̂η(s) − X̂(s)‖1[tk,tk+1)(s) = ‖
∫ s

tk

f(Xtk)dh+

∫ s

tk

g(Xtk)dw(h)‖1[tk,tk+1)(s).

Then, by (B.1) and (B.2)

E

∫ T∧ϑm

0

‖X̂η(s) − X̂(s)‖ds ≤ C(m,T )∆t
1
2 , (B.5)

where C(m,T ) > 0 is constant. Combining (B.4) and (B.5) leads us to

E

∫ T∧ϑm

0

‖Xη(s) − X̂(s)‖ds ≤ E

∫ T∧ϑm

0

‖X̂η(s) − X̂(s)‖ds

+ E

∫ T∧ϑm

0

‖Xη(s) − X̂η(s)‖ds

≤ C(m,T )∆t
1
2 . (B.6)

Therefore

E‖X̂(T ∧ ϑm)‖2 ≤ ‖x0‖2 + 2αT + C(m,T )∆t
1
2 + 4β

∫ T

0

E‖X̂(s ∧ ϑm)‖2ds.

By Gronwall’s inequality

E‖X̂(T ∧ ϑm)‖2 ≤ [‖x0‖2 + 2αT + C(m,T )∆t
1
2 ] exp(4βT ). (B.7)

Now we will find the lower bound for ‖X̂(ϑm)‖2. From the definition of the stopping time ϑm, if

inf{t > 0 : ‖X̂(t)‖ ≥ m} ≤ inf{t > 0 : ‖Xη(t)‖ > m} then ‖X̂(ϑm)‖2 = m2. In the alternative case,

where inf{t > 0 : ‖X̂(t)‖ ≥ m} > inf{t > 0 : ‖Xη(t)‖ > m}, we have ‖Xϑm
‖2 > m2. From Lemmas 3.2

and 4.1 we arrive at

‖X̂(ϑm)‖2 ≥ 1

2

(

(1− 2βθ∆t)‖Xϑm
‖2 − 2θα∆t

)

− ‖θf(x0)∆t‖2.

Hence there exist positive constants c1 and c2 such that

‖X̂(ϑm)‖2 > c1m
2 − c2∆t.

We have

E‖X̂(T ∧ ϑm)‖2 ≥ E

[

1{ϑm<T}‖X̂(ϑm)‖2
]

≥ P(ϑm < T )(c1m
2 − c2∆t).

which implies that

P(ϑm < T ) ≤ [‖x0‖2 + 2αT + C(m,T )∆t1/2] exp(4βT )

c1m2 − c2∆t
.

Now, for any given ǫ > 0, we choose N0 such that for any m ≥ N0

[‖x0‖2 + 2αT ] exp(4βT )

c1m2 − c2∆t
≤ ǫ

2
.
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Then, we can choose ∆t0 = ∆t0(m), such that for any ∆t ≤ ∆t0

exp(4βT )C(m,T )∆t1/2

c1m2 − c2∆t
≤ ǫ

2
,

whence P(ϑm < T ) ≤ ǫ as required.

C Proof of Lemma 4.3

Proof. It is useful to observe that since the constant C(T,m) in (4.5) depends on m, we can prove the

theorem in a similar way as in the classical case where coefficients f and g in (1.1) obey the global

Lipschitz condition [18, 26]. Nevertheless, for completeness of the exposition we present the sketch of

the proof. For any T1 ∈ [0, T ], by Hölder’s and Burkholder-Davis-Gundy’s inequalities

E

[

sup
0≤t≤T1

‖X̂(t ∧ θm)− x(t ∧ θm)‖2
]

≤ 2

(

TE

∫ T1∧θm

0

‖f(Xη(s))− f(x(s))‖2ds+ 4E

∫ T1∧θm

0

‖g(Xη(s))− g(x(s))‖2ds
)

,

By Assumption 2.1 there exists a constant C(m)

E

[

sup
0≤t≤T1

‖X̂(t ∧ θm)− x(t ∧ θm)‖2
]

≤ 2C(m)

(

T E

∫ T1∧θm

0

‖Xη(s) − x(s)‖2ds+ 4E

∫ T1∧θm

0

‖Xη(s) − x(s)‖2ds
)

≤ 4C(m)

(

TE

∫ T1∧θm

0

[

‖X̂(s)− x(s)‖2 + ‖Xη(s) − X̂(s)‖2
]

ds

+ 4E

∫ T1∧θm

0

[

‖X̂(s)− x(s)‖2 + ‖Xη(s)− X̂(s)‖2
]

ds

)

≤ 4C(m)(T + 4)E

∫ T1

0

‖X̂(s ∧ θm)− x(s ∧ θm)‖2ds

+ 4C(m)(T + 4)E

∫ T1∧θm

0

‖Xη(s)− X̂(s)‖2ds.

By the same reasoning which gave estimate (B.6), we can deduce that

E

∫ T1∧θm

0

‖Xη(s)− X̂(s)‖2ds ≤ C(m,T )∆t.

Hence

E

[

sup
0≤t≤T1

‖X̂(t ∧ θm)− x(t ∧ θm)‖2
]

≤ 4C(m)(T + 4)C(m,T )∆t+ 4C(m)(T + 4)E

[

∫ T1

0

sup
0≤t≤s

‖X̂(t ∧ θm)− x(t ∧ θm)‖2ds
]

.

The statement of the theorem holds by the Gronwall inequality.
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