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Motivated by influential work on complete stochastic volatility models, such as Hobson and
Rogers (1998), we introduce a model driven by a delay geometric Brownian motion (DGBM)
which is described by the stochastic delay differential equation dS(t) = µ(S(t − τ))S(t)dt +
V (S(t − τ))S(t)dW (t). We show that the equation has a unique positive solution under a
very general condition, namely that the volatility function V is a continuous mapping from
R+ to itself. Moreover, we show that the delay effect is not too sensitive to time lag changes.
The desirable robustness of the delay effect is demonstrated on several important financial
derivatives as well as on the value process of the underlying asset. Finally, we introduce an
Euler–Maruyama numerical scheme for our proposed model and show that this numerical
method approximates option prices very well. All these features show that the proposed
DGBM serves as a rich alternative in modelling financial instruments in a complete–market
framework.

Keywords: Stochastic delay differential equations, derivative pricing, Euler–Maruyama,
local Lipschitz condition, strong convergence

AMS Subject Classification: 60G44; 91G20; 91G80

1. Introduction

In the continuous time market model of Black and Scholes [4, 23], the price of a
risky asset is supposed to be a geometric Brownian motion (GBM). This classical
model assumes that continuously compounded returns are normally distributed.
The central limit theorem is often invoked as a primary motivation for this as-
sumption. However, it is well documented (see e.g. [9]) and widely accepted that
the assumed normality of the returns distribution is violated in both the historical
asset price data and the market option prices. As a result, many different types of
models such as stochastic volatility [10, 12, 15, 26], jump-diffusion [24], pure jump
Lévy processes [2, 17], and various combinations of the aforementioned [5, 6] were
created in order to explain results from empirical studies more adequately. However,
many of these models often require the presence of a large number of parameters,
which makes their calibration computationally expensive, for more details see Carr
et al. [6] and the references therein. Moreover, some of these models introduce an
additional source of randomness that results in an incomplete market framework,
where the uniqueness of preference independent prices for contingent claims is lost.
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All the above models share a common characteristic, they adopt a typical Marko-
vian setting similar to the one employed by Black and Scholes [4]. The rediscovery,
in the 1950s, of Bachelier’s work and the emergence of eminent scholars like Eugene
Fama and Paul Samuelson, who advocated the two closely related hypotheses for
assets prices, i.e. efficient markets and random walks have influenced many schol-
ars to adopt such a setting. However, market crashes and well-known phenomena
called “market anomalies”, e.g. momentum effects which are based on the rate on
which investors absorb large volumes of information (e.g. annual accounts for large
corporations), have raised serious questions about the accuracy of the statement
which claims that “all publicly available information is fully reflected in current
asset prices”. One then could consider models with past dependency which are
Markovian on a higher-dimension, for example see Hobson and Rogers [13].
Furthermore, an important characteristic that any proposed model should have

is the reproduction of ‘smiles’ and ‘skews’ that are present in options markets.
Hobson and Rogers [13] achieved this by proposing a class of volatility models
where the instantaneous volatility is expressed in terms of exponentially weighted
moments of historic log-prices. Kind, Liptser and Runggaldier [14] also proposed
that the instantaneous volatility is expressed in terms of the sample variance of
the log-prices over a past interval of fixed length. From a practitioners point of
view, it seems more natural to declare this dependency on past data through a
similar approach to the one appearing in the latter article since past data are
always available in discrete-time setting (e.g., daily, hourly etc).
It seems natural then to consider an approach where volatility can be regarded

as a function of the past states S(t− τ1), S(t− τ2), · · · , S(t− τn), whence the asset
price S(t) may obey a stochastic delay differential equation (SDDE)

dS(t) = µ(S(t− τ1), · · · , S(t− τn))S(t)dt+ V (S(t− τ1), · · · , S(t− τn))S(t)dW (t).
(1.1)

As this SDDE evolves also from the classical geometric Brownian motion, we call
it the delay geometric Brownian motion (DGBM). More carefully, noting that the
past states S(t − τ1), S(t − τ2), · · · , S(t − τn) are a sample of the whole segment
St := {S(u) : u ∈ [t − τ, t]}, where τ = maxi τi, the asset price could (in general)
obey a stochastic functional differential equation (SFDE)

dS(t) = µ(St)S(t)dt+ V (St)S(t)dW (t), (1.2)

with µ and V being functionals from C([−τ, T − τ ]; (0,∞)) to (0,∞), where T
represents the termination date for our economy. However, given that the SDDE
(1.1) could provide a good approximation to the SFDE (1.2) while the former is
also much simpler and closer to practitioners’ views than the latter, we concentrate
our study on the SDDE (1.1).
A recent paper by Arriojas et al. [3], where a delay Black–Scholes formula is

established through the existence of a unique equivalent martingale measure, also
uses an SDDE to model asset price processes. One further observes that there exists
a link between the way the risk-neutral measure is obtained in both papers, [3] &
[13], that results in a complete and arbitrage market with the correct smiles and
skews.
As an example, we present Figures 1 & 2 1 of simulated implied volatility curves,

which are expressed as functions of their exercise prices. Figure 1 presents the case
for 3-month European call options which are considered under a model with 1-week

1These figures are courtesy of Nairn McWilliams
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fixed delay for Tesco, Barclays, Lloyds and Vodafone share prices with nonlinear
expressions describing V (x). The strike is quoted as a percentage of the initial
value, using closing prices up to the end of Friday 1st July 2011 (with initial values
of 401.15, 265.55, 50.81 and 164.5 respectively).
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Figure 1. Implied volatility curves of a 1-week fixed delay and 3 months to maturity.

In Figure 2, 1-month European call options are considered under a model with
1-day fixed delay for Tesco, Barclays, Lloyds and Vodafone share prices under the
same conditions as before (initial value, strike prices and nonlinear V (x)).
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Figure 2. Implied volatility curves of a 1-day fixed delay and a month to maturity.
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One then could compare these figures with well-known results about implied
volatility shapes so as to verify that the right shape has been achieved in all cases.
Note also that different companies (i.e. shares), delay parameters and times to
maturity have been used in the above simulations producing similar/comparable
results which, in the opinion of the authors, demonstrate the robustness of the
delay approach. Moreover, one could claim that these findings reinforce the point
that such a modelling approach is in agreement with empirical data.
Moreover, very recent theoretical findings by Liang et al [16] demonstrate that

backward stochastic differential equations (BSDEs) can be reformulated as ordi-
nary functional differential equations (OFDEs) on certain path spaces. This will
certainly have a significant impact on the use of OFDEs, or more general SFDEs,
in financial modelling, especially when one considers the extensive use of BSDEs
in this area since the publication of the seminal paper by Pardoux and Peng [25].
The main aim of this paper is to call for further attention into the possibility of

modelling asset prices via SDDEs or SFDEs. In order to persuade the reader, we
show here that the SDDE (1.1) has many important properties which are desired
when modelling a financial quantity. In this paper we will show:

• The proposed SDDE (called DGBM) has a unique nonnegative (or even strictly
positive) solution under relatively weak conditions imposed on its volatility func-
tion.

• The aforementioned solution has finite probability expectation (at any time
t ≥ 0) which is essential for pricing various contingent claims in a well defined
framework.

• This pricing is done under a unique equivalent martingale measure which guar-
antees an arbitrage-free and complete market.

• Smiles and skews are present and in agreement with empirical evidence.

• The delay effect is not too sensitive to time lag changes. Small changes for the
time lag τ have an analogous small impact on the values of the underlying asset
S(t) and its associated options.

• The pricing of contingent claims under the DGBM approach is computable nu-
merically if not analytically.

However, we would not occupy ourselves here with the task of showing which type
of volatility functions V (·) may be appropriate for modelling purposes. Nonetheless,
we will highlight the fact that the conditions imposed on it are very weak so that
a wide class of volatility functions may be used to fit a wide range of financial
quantities.
Finally, for reasons of notational simplicity and elegance, the following simpler

SDDE

dS(t) = µ(S(t− τ))S(t)dt+ V (S(t− τ))S(t)dW (t),

is considered here, although all the results presented henceforth can be obtained
for the case where equation (1.1) holds.

2. The Delay Geometric Brownian Motion

Throughout this paper, unless otherwise specified, we will employ the following
notation. Let (Ω,F , {Ft}t≥0,P) be a complete probability space with a filtration
{Ft}t≥0 satisfying the usual conditions (i.e., it is increasing and right continuous
while F0 contains all P-null sets). Let W (t), t ≥ 0, be a scalar Brownian motion
defined on the above probability space. If x, y are real numbers, then x∨y denotes
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the maximum of x and y, and x ∧ y denotes the minimum of x and y. For τ >
0, C([−τ, 0]; (0,∞)) denotes the space of all continuous functions ξ : [−τ, 0] →
(0,∞) with the norm ∥ξ∥ = sup−τ≤u≤0 ξ(u). Also, R+ = [0,∞) and C(R+;R+)
denotes the space of all nonnegative continuous functions defined on R+. Moreover,
∅ denotes the empty set and we set inf ∅ = ∞. For a set A, its indication function
is denoted by IA.

2.1 A Complete Market Model with a Smile

Let the asset price process S be governed by the following delay geometric Brownian
motion

dS(t) = µ(S(t− τ))S(t)dt+ V (S(t− τ))S(t)dW (t) (2.1)

on t ≥ 0 with initial data S(u) = ξ(u) on u ∈ [−τ, 0]. Here τ is a positive constant,
r > 0 is the risk-free interest rate and W (t) is a scalar Brownian motion, and the
initial data ξ := {ξ(u) : u ∈ [−τ, 0]} ∈ C([−τ, 0]; (0,∞)) while the functions µ and
V are in C(R+;R+).
Furthermore, let

Z(t) := ln(e−rtS(t)), for every t ≥ 0,

denote the log-price of the discounted asset. One immediately observes that

dZ(t) = [µ(S(t− τ))− r − 1

2
V 2(S(t− τ))]dt+ V (S(t− τ))dW (t), (2.2)

for every t ≥ 0. Therefore, changing the measure to achieve no-arbitrage leads to
the choice

θ(x) =
1

2
V (x) +

µ(x)− r − 1
2V

2(x)

V (x)
=

µ(x)− r

V (x)

It is here where one can observe a link between Arriojas et al. [3] and Hobson &
Rogers [13] since both approaches require the same structure for the unique (in
each case) equivalent martingale measure

dP̃
dP

:= exp
(
− 1

2

∫ T

0
θ2(X(u))du−

∫ T

0
θ(X(u))dW (u)

)
Then, under P̃, the asset is given by

dS(t) = rS(t)dt+ V (S(t− τ))S(t)dW̃ (t)

where W̃ (t), t ≥ 0, which is defined through W̃ (t) := W (t) +
∫ t
0 θ(X(s))ds, is a

scalar Brownian motion in (Ω,F , {Ft}t≥0, P̃). As a result, the discounted asset price
process e−rtS(t) is a martingale and the model is arbitrage-free. The uniqueness
of the equivalent martingale measure guarantees that the market is complete and
therefore appropriate hedging strategies can also be obtain, for more details see
Arriojas et al. [3]. Hobson & Rogers [13] also observed that their model produces
the right smiles and skews in the resulting implied volatility plots as in Figure 1.
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Again for reasons of notational simplicity, we will drop the explicit dependence
on the risk-neutral measure P̃ for all relevant calculations in all subsequent sec-
tions. Therefore, although we will work with the ‘risk-neutral’ probability space
(Ω,F , {Ft}t≥0, P̃), we will avoid the use of the˜notation.

2.2 Properties of the Delay Geometric Brownian Motion

Consider the delay geometric Brownian motion (DGBM) described by a stochastic
delay differential equation (SDDE)

dS(t) = rS(t)dt+ V (S(t− τ))S(t)dW (t) (2.3)

In general, for a stochastic delay differential equation to have a unique global
solution, both of its shift and diffusion coefficient are required to be locally Lipschitz
continuous and to obey the linear growth condition (see e.g. [18, 19, 22]). If we
would apply this general theory to the DGBM (2.3), we could have been forced
to assume that the volatility function V is locally Lipschitz continuous and is
bounded. However, the following theorem shows that the SDDE (2.3) has a unique
global positive solution without any additional condition.

Theorem 2.1 : The SDDE (2.3) has a unique global positive solution x(t) on
t ≥ 0, which can be computed step by step as follows: for k = 0, 1, 2, · · · and
t ∈ [kτ, (k + 1)τ ],

S(t) = S(kτ)er(t−kτ)− 1

2

∫ t

kτ
V 2(S(u−τ))du+

∫ t

kτ
V (S(u−τ))dW (u). (2.4)

Moreover,

ES(t) = ξ(0)ert, (2.5)

for every t ≥ 0.

Proof : If it is restricted on t ∈ [0, τ ], the SDDE (2.3) becomes the following linear
SDE

dS(t) = rS(t)dt+ V (ξ(t− τ))S(t)dW (t).

It is well known that this SDE has the unique explicit solution

S(t) = ξ(0) exp
(
rt− 1

2

∫ t

0
V 2(ξ(u− τ))du+

∫ t

0
V (ξ(u− τ))dW (u)

)
.

That is, (2.4) holds for k = 0. Given that S(t) is now known on t ∈ [0, τ ], we may
restrict the SDDE (2.3) on t ∈ [τ, 2τ ] so that it becomes the linear SDE

dS(t) = rS(t)dt+ V (S(t− τ))S(t)dW (t).

It has the explicit solution

S(t) = S(τ) exp
(
r(t− τ)− 1

2

∫ t

τ
V 2(S(u− τ))du+

∫ t

τ
V (S(u− τ))dW (u)

)
,
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where both integrals are well defined as S(t) is a continuous stochastic process on
t ∈ [0, τ ]. This shows that (2.4) holds for k = 1. Repeating this procedure we see
that (2.4) holds for all k ≥ 0.
Furthermore, let us consider the discounted asset price process M := {M(t)}t≥0,

where M(t) := e−rtS(t) for all t ≥ 0. As a result

M(t) = M(kτ) exp
(
− 1

2

∫ t

kτ
V 2(M(u− τ))du+

∫ t

kτ
V (M(u− τ))dW (u)

)
(2.6)

which satisfies the following SDDE

dM(t) = V (M(t− τ))M(t)dW (t) (2.7)

on t ≥ 0 with initial data M(u) = e−ruξ(u) on u ∈ [−τ, 0]. In other words,

M(t) = M(0) +

∫ t

0
V (M(u− τ))M(u)dW (u)

and due to the continuity of paths for S (and consequently for M), we obtain that∫ t

0
V 2(M(u− τ))M2(u)du < ∞ (a.s.) for every t ≥ 0,

which implies of course that L := {L(t)}t≥0, where

L(t) :=

∫ t

0
V (M(u− τ))M(u)dW (u),

is a (positive) local martingale and thus a supermartingale.
One, then, further observes that M is a (true) martingale since for every t ≥ 0

there exists a positive integer k = k(t) such that t ∈ [kτ, (k + 1)τ ],

E|M(t)| =E
(
M(kτ) exp

(
− 1

2

∫ t

kτ
V 2(M(u− τ))du+

∫ t

kτ
V (M(u− τ))dW (u)

))
=E

(
M(kτ)E

(
exp

(
− 1

2

∫ t

kτ
V 2(M(u− τ))du

+

∫ t

kτ
V (M(u− τ))dW (u)

)
|Fkτ

))
=EM(kτ) = E(E(. . .E(M(kτ)|F(k−1)τ ) . . . |Fτ )) = M(0) = ξ(0) < ∞

and

E(Mt|Fs) = Ms (by using again nested conditional expectations)

for every 0 ≤ s ≤ t < ∞. As a result L is also a (true) martingale, and thus

E
(∫ t

0
V (S(u− τ))S(u)dW (u)

)
= 0, for every t ≥ 0.

Assertion (2.5) follows from above and equation (2.3).
�
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Remark 2.2 The above theorem shows that the local Lipschitz condition on V
is unnecessary. This idea was developed in [20] and used recently by [3]. However,
we will need the local Lipschitz condition in the next sections when we study the
sensitivity of the time lag. We still do not know if the results in the next section
hold without the local Lipschitz condition.

Assertion (2.5) guarantees that, under the DGBM approach, the price functions
of various options are well-defined. A typical example is the price of a European
call option (at t = 0 with exercise price E and expiry date T ) which is given by

C = e−rTE(S(T )− E)+

and which is well-defined. However, for some more complicated options and their
associated mathematical analysis, it is useful for the solution of equation (2.3) to
obey, for example

E
(

sup
0≤t≤T

S(t)
)
< ∞ ∀T > 0.

A sufficient condition for this is the following assumption.

Assumption 2.3 The volatility function V is bounded by a positive constant K,
namely

V (x) ≤ K ∀x ≥ 0. (2.8)

In this case, it is known (see e.g. [20, Theorem 4.1 on page 158]) that for any p ≥ 1,

E
(

sup
0≤t≤T

Sp(t)
)
< ∞ ∀T > 0. (2.9)

But the following theorem gives more precise estimations.

Theorem 2.4 : Let Assumption 2.3 hold and p ≥ 1. Then

ESp(t) ≤ ξ(0)ep[r+0.5(p−1)K2]t (2.10)

for any t ≥ 0 and

E
(

sup
0≤t≤T

Sp(t)
)
≤ ξp(0)

(
2 +

9p2K2

p[r + 0.5(p− 1)K2]

)
ep[r+0.5(p−1)K2]T (2.11)

for any T ≥ 0.

Proof : Let λ = p[r + 0.5(p− 1)K2]. By the Itô formula,

d[e−λtSp(t)] = e−λt
(
− λSp(t)dt+ pSp−1(t)dS(t) +

1

2
p(p− 1)V 2(S(t− τ))Sp(t)dt

)
= e−λtSp(t)

[
− λ+ pµ+ 1

2p(p− 1)V 2(S(t− τ))
]
dt

+pe−λtV (S(t− τ))Sp(t)dW (t).
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Hence

e−λtSp(t) = ξp(0) +

∫ t

0
e−λuSp(u)

[
− λ+ pµ+ 1

2p(p− 1)V 2(S(u− τ))
]
dt

+

∫ t

0
pe−λuV (S(u− τ))Sp(u)dW (u)

≤ ξp(0) +

∫ t

0
pe−λuV (S(u− τ))Sp(u)dW (u).

Due to the known property (2.9) we can take the expectation on both sides to
obtain

e−λtESp(t) ≤ ξp(0)

which yields assertion (2.10). To show (2.11) we compute, by the Itô formula again,
that

Sp(t) = ξp(0) +

∫ t

0

[
pµ+ 1

2p(p− 1)V 2(S(t− τ))
]
Sp(u)du

+

∫ t

0
pV (S(u− τ))Sp(u)dW (u)

≤ ξp(0) +

∫ t

0
λSp(u)du+

∫ t

0
pV (S(u− τ))Sp(u)dW (u).

Hence

E
(

sup
0≤t≤T

Sp(t)
)
≤ ξp(0) + E

∫ T

0
λSp(u)du+ E

(
sup

0≤t≤T

∫ t

0
pV (S(u− τ))Sp(u)dW (u)

)
.

But, by the well-known Burkholder–Davis–Gundy inequality (see e.g. [20, 22]),

E
(

sup
0≤t≤T

∫ t

0
pV (S(u− τ))Sp(u)dW (u)

)
≤ 3E

[( ∫ T

0
p2V 2(S(u− τ))S2p(u)du

)1
2
]

≤ 3pKE
{([

sup
0≤u≤T

Sp(u)
] ∫ T

0
Sp(u)du

)1
2
}

≤ 1
2E

[
sup

0≤u≤T
Sp(u)

]
+ 4.5p2K2E

∫ T

0
Sp(u)du.

Thus

E
(

sup
0≤t≤T

Sp(t)
)
≤ 2ξp(0) + (2λ+ 9p2K2)

∫ T

0
ESp(u)du.



December 19, 2011 14:55 Stochastics: An International Journal of Probability and Stochastic Pro-
cesses MaoSabanis˙final˙Version

10 X. Mao and S. Sabanis

But, by (2.10), ∫ T

0
ESp(u)du ≤

∫ T

0
ξp(0)eλudu =

ξp(0)

λ
(eλT − 1).

Therefore

E
(

sup
0≤t≤T

Sp(t)
)
≤ ξp(0)

(
2 +

9p2K2

λ

)
eλT

which is the required assertion (2.11).
�

Remark 2.5 One could improve the above estimate and obtain a smaller bound
given by

E
(

sup
0≤t≤T

Sp(t)
)
≤ ξp(0)(

p

p− 1
)peλT ,

where λ = p[r + p−1
2 K2], provided that r ≤ K2/2 (which is expected in real world

applications) and p ≥ 2. To see this, one observes that under Assumption 2.3, one
obtains for a t ∈ [kτ, (k + 1)τ ] ⊂ [0, T ], where k is some positive integer,

ESp(t) ≤ ξ(0)ep[r+0.5(p−1)K2]t

(as proven in Theorem 2.4). Moreover, one observes that

E
(
( sup
0≤t≤T

M(t))p
)
≤ (

p

p− 1
)pEMp(T ) (Doob’s inequality)

and

e−rpTE
(

sup
0≤t≤T

Sp(t)
)
≤ E

(
sup

0≤t≤T
Mp(t)

)
= E

(
( sup
0≤t≤T

M(t))p
)

due to the fact that e−rpt is a strictly decreasing function of t. Thus,

E
(

sup
0≤t≤T

Sp(t)
)
≤ (

p

p− 1
)pESp(T ) ≤ (

p

p− 1
)pξp(0)ep[r+

p−1

2
K2]T

Finally, for r ≤ K2/2 and p ≥ 2

2+
9p2K2

p[r + 0.5(p− 1)K2]
= 2+9

p

p− 1

K2

r
p−1 + 0.5K2

≥ 2+9
p

p− 1

K2

0.5K2 + 0.5K2
≥ 11

whereas

(1 +
1

p− 1
)p−1 ≤ e ⇒ (

p

p− 1
)p ≤ e(1 +

1

p− 1
) ≤ 2e

and thus

(
p

p− 1
)p < 2 +

9p2K2

p[r + 0.5(p− 1)K2]
.
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3. Delay Effect on European Options

Recall that the motivations for us to introduce the DGBM (2.3) is the estimation
of volatility using the past asset price(s). We observe that there is a time lag τ
when we estimate the volatility. It is very important to know whether the time lag
τ is sensitive in the sense that a little change of τ will have a significant effect on
the underlying asset price and its associated option price. If this is the case, then
the time lag needs to be controlled tightly in practice; otherwise the delay effect
is robust. In this section we shall show the robustness of delay effect on European
options.
To make our problem more clearly, let us assume that one holds a European call

option at t = 0 on the underlying asset price with the exercise price E at the expiry
date T . Originally, the holder thinks the underlying asset price follows the DGBM
(2.3) so the price of the European call option at t = 0 is

Cτ = e−rTE(S(T )− E)+. (3.1)

On second thought, the holder may wonder that if the volatility at time t is esti-
mated by the corresponding option price at time t − τ̄ , instead of t − τ , then the
underlying asset price could follow an alternative DGBM

dS̄(t) = rS̄(t)dt+ V (S̄(t− τ̄))S̄(t)dW (t), (3.2)

whence the price of the European call option at t = 0 could be

Cτ̄ = e−rTE(S̄(T )− E)+. (3.3)

If the difference between Cτ and Cτ̄ is small when the difference between τ and
τ̄ is small, then the holder can simply choose either (2.3) or (3.2) as the equation
for the underlying asset price; otherwise the holder has to control the time delay
tightly.
Without loss of any generality, we may assume that τ̄ < τ . Note that the un-

derlying asset prices before time 0 should be the same for both S(t) and S̄(t).
Recalling that the underlying asset prices for the period t ∈ [−τ, 0] are known as
{ξ(t) : t ∈ [−τ, 0]}, we observe that the initial data for equation (3.2) should be
S̄(t) = ξ(t) on t ∈ [−τ̄ , 0].
The difference Cτ −Cτ̄ is due to the difference of the two time lags, namely τ− τ̄ .

Note that

|Cτ − Cτ̄ | ≤ e−rTE|(S(T )− E)+ − (S̄(T )− E)+|

≤ e−rTE|S(T )− S̄(T )|. (3.4)

Hence, if we can show

lim
τ−τ̄→0

E|S(T )− S̄(T )| = 0,

then

lim
τ−τ̄→0

|Cτ − C̄τ̄ | = 0.

This shows the continuity of the European call option price on the time lag. For this
purpose we need to impose a local Lipschitz condition on the volatility function.
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Assumption 3.1 The volatility function V is locally Lipschitz continuous. That
is, for each R > 0, there is a KR > 0 such that

|V (x)− V (x̄)| ≤ KR|x− x̄| ∀x, x̄ ∈ [0, R].

Let us first establish two lemmas.

Lemma 3.2: Let R ≥ ∥ξ∥ and define the stopping time

ρR = inf{t ≥ 0 : S(t) > R}.

Let θ be a stopping time such that 0 ≤ θ ≤ ρR. Then, for any 0 ≤ u < v < ∞,

E|S(v ∧ θ)− S(u ∧ θ)|2 ≤ 2R2(v − u)[r2(v − u) + K̄2
R],

where K̄R = max0≤x≤R V (x).

Proof : It follows from (2.3) that

S(v ∧ θ)− S(u ∧ θ) =

∫ v∧θ

u∧θ
rS(t)dt+

∫ v∧θ

u∧θ
V (S(t− τ))S(t)dW (t).

Hence

E|S(v ∧ θ)− S(u ∧ θ)|2 ≤ 2E|
∫ v∧θ

u∧θ
rS(t)dt|2 + 2E

∫ v∧θ

u∧θ
[V (S(t− τ))S(t)]2dt

≤ 2r2R2(v − u)2 + 2R2K̄2
R(v − u)

as required. �

Lemma 3.3: Let Assumption 3.1 hold. Let R ≥ ∥ξ∥ and τ − τ̄ ≤ 1. Define the
stopping times

ρR = inf{t ≥ 0 : S(t) > R} and ρ̄R = inf{t ≥ 0 : S̄(t) > R}

and set θR = ρR ∧ ρ̄R. Define

δ(τ − τ̄) = sup{|ξ(u)− ξ(v)| : u, v ∈ [−τ, 0], |u− v| ≤ τ − τ̄}.

Then, for any T > 0,

E
(

sup
0≤t≤T

|S(t ∧ θR)− S̄(t ∧ θR)|
)
≤ cR

√
TecRT (δ(τ − τ̄) +

√
τ − τ̄), (3.5)

where cR is a positive constant independent of T and τ − τ̄ . In particular,

lim
τ−τ̄→0

E|S(T ∧ θR)− S̄(T ∧ θR)| = 0. (3.6)

Proof : As ξ(u) is continuous on u ∈ [−τ, 0], it must be uniformly continuous.
Thus δ(τ − τ̄) < ∞ and limτ−τ̄→0 δ(τ − τ̄) = 0. So (3.6) follows from (3.5). Our
proof is therefore complete if we can show (3.5).
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Set Z(t) = S(t ∧ θR)− S̄(t ∧ θR) for t ≥ 0. It follows from (2.3) and (3.2) that

Z(t) =

∫ t∧θR

0
r(S(u)− S̄(u))du

+

∫ t∧θR

0

[
V (S(u− τ))S(u)− V (S̄(u− τ̄))S̄(u)

]
dW (u)

=

∫ t∧θR

0
rZ(u)du+

∫ t∧θR

0

[
V (S(u− τ))S(u)− V (S̄(u− τ̄))S(u)

]
dW (u)

+

∫ t∧θR

0

[
V (S̄(u− τ̄))S(u)− V (S̄(u− τ̄))S̄(u)

]
dW (u).

Hence

E
(

sup
0≤t≤T

|Z(t)|
)
≤ J1 + J2 + J3, (3.7)

where

J1 = E
(

sup
0≤t≤T

∣∣∣ ∫ t∧θR

0
rZ(u)du

∣∣∣),
J2 = E

(
sup

0≤t≤T

∣∣∣ ∫ t∧θR

0

[
V (S(u− τ))S(u)− V (S̄(u− τ̄))S(u)

]
dW (u)

∣∣∣),
J3 = E

(
sup

0≤t≤T

∣∣∣ ∫ t∧θR

0

[
V (S̄(u− τ̄))S(u)− V (S̄(u− τ̄))S̄(u)

]
dW (u)

∣∣∣).

Compute

J1 ≤ E
∫ T∧θR

0
r|Z(u)|du ≤ E

∫ T

0
r|Z(u)|du =

∫ T

0
rE|Z(u)|du. (3.8)

In what follows, cR denotes a positive constant dependent on R etc. but indepen-
dent of T and τ− τ̄ while it many change line by line. Compute, by the Burkholder–
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Davis–Gundy inequality and Assumption 3.1,

J2 ≤
√
32E

([ ∫ T∧θR

0
|V (S(u− τ))− V (S̄(u− τ̄))|2S2(u)du

]1
2
)

≤ cRE
([ ∫ T∧θR

0
|S(u− τ)− S̄(u− τ̄)|2du

]1
2
)

≤ cRE
([ ∫ T∧θR

0
|S(u− τ)− S(u− τ̄)|2 + |S(u− τ̄)− S̄(u− τ̄)|2du

]1
2
)

≤ cRE
([ ∫ T

0
|S((u− τ) ∧ θR)− S((u− τ̄) ∧ θR)|2du

]1
2
)

+ cRE
([ ∫ T

0
|Z(u− τ̄)|2du

]1
2
)

≤ cR

[ ∫ T

0
E|S((u− τ) ∧ θR)− S((u− τ̄) ∧ θR)|2du

]1
2

+ cRE
([ ∫ T

0
|Z(u− τ̄)|2du

]1
2
)
. (3.9)

But, for u ∈ [0, τ̄ ],

E|S((u− τ) ∧ θR)− S((u− τ̄) ∧ θR)|2 = |ξ(u− τ)− ξ(u− τ̄)|2 ≤ δ2(τ − τ̄);

while, by Lemma 3.2, for u ∈ (τ̄ , τ ],

E|S((u− τ) ∧ θR)− S((u− τ̄) ∧ θR)|2

≤ 2|ξ(u− τ)− ξ(0)|2 + 2E|S((u− τ̄) ∧ θR)− S(0)|2

≤ 2δ2(τ − τ̄) + cR(τ − τ̄);

and for u > τ ,

E|S((u− τ) ∧ θR)− S((u− τ̄) ∧ θR)|2 ≤ cR(τ − τ̄).

Hence

[ ∫ T

0
E|S((u− τ) ∧ θR)− S((u− τ̄) ∧ θR)|2du

]1
2 ≤ cR

√
T (δ(τ − τ̄) +

√
τ − τ̄).

Moreover,

cRE
([ ∫ T

0
|Z(u− τ̄)|2du

]1
2
)
≤ cRE

([ ∫ T

0
|Z(u)|2du

]1
2
)

≤ cRE
([(

sup
0≤u≤T

|Z(u)|
) ∫ T

0
|Z(u)|du

]1
2
)

≤ cR

∫ T

0
E|Z(u)|du+

1

4
E
(

sup
0≤u≤T

|Z(u)|
)
.
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Substituting these into (3.9) yields

J2 ≤ cR
√
T (δ(τ − τ̄) +

√
τ − τ̄) + cR

∫ T

0
E|Z(u)|du+

1

4
E
(

sup
0≤u≤T

|Z(u)|
)
. (3.10)

Similarly, we can estimate

J3 ≤ cR

∫ T

0
E|Z(u)|du+

1

4
E
(

sup
0≤u≤T

|Z(u)|
)
. (3.11)

Substituting (3.8), (3.10) and (3.11) into (3.7) we obtain

E
(

sup
0≤t≤T

|Z(t)|
)
≤ cR

√
T (δ(τ − τ̄) +

√
τ − τ̄) + cR

∫ T

0
E|Z(u)|du

≤ cR
√
T (δ(τ − τ̄) +

√
τ − τ̄) + cR

∫ T

0
E
(

sup
0≤t≤u

|Z(t)|
)
du.

Since this holds for any T ≥ 0, the Gronwall inequality implies

E
(

sup
0≤t≤T

|Z(t)|
)
≤ cR

√
TecRT (δ(τ − τ̄) +

√
τ − τ̄).

as required. �

It is now easy to show the following theorem.

Theorem 3.4 : Under Assumption 3.1, with the definitions of (3.1) and (3.3),
we have

lim
τ−τ̄→0

|Cτ − Cτ̄ | = 0. (3.12)

Proof : Equation (3.4) implies that it is sufficient to show

lim
τ−τ̄→0

E|S(T )− S̄(T )| = 0.

For any sufficiently large R, let θR be the stopping time as defined in Lemma 3.3.
Then, one observes that

E|S(T )− S̄(T )| = E
(
|S(T )− S̄(T )|I{θR>T}

)
+ E

(
|S(T )− S̄(T )|I{θR≤T}

)
≤ E|S(T ∧ θR)− S̄(T ∧ θR)|+ E

(
[S(T ) + S̄(T )]I{θR≤T}

)
. (3.13)

and also

ES(T ∧ ρR) ≥ E
(
S(T ∧ ρR)I{ρR≤T}

)
= R P(ρR ≤ T ) (3.14)

which yields (in view of Theorem 2.1) that

P(θR ≤ T ) ≤ P(ρR ≤ T ) + P(ρ̄R ≤ T ) ≤ 2ξ(0)erT

R
→ 0 as R → ∞,
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while

E[S(T ) + S̄(T )] ≤ 2ξ(0)erT .

Hence, by the classical dominated convergence theorem,

lim
R→∞

E
(
[S(T ) + S̄(T )]I{θR≤T}

)
= 0.

Given any ε > 0, we can then find a sufficiently large R for

E
(
[S(T ) + S̄(T )]I{θR≤T}

)
< 1

2ε.

For this R, by Lemma 3.3, we can find a δ1 > 0 sufficiently small such that if
τ − τ̄ < δ1,

E|S(T ∧ θR)− S̄(T ∧ θR)| ≤ 1
2ε.

As a result,

E|S(T )− S̄(T )| < ε

whenever τ − τ̄ < δ1. This means

lim
τ−τ̄→0

E|S(T )− S̄(T )| = 0

and the desired assertion (3.12) follows. �
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Figure 3. Call: Implied volatility surfaces of a 1-week fixed delay.

Figure 3 1 provides a graphical representation of the sensitivity of a European

1This figure is courtesy of Nairn McWilliams
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call option as τ − τ̄ tends to 0. Real world data (Tesco share prices) are used under
a model with 1-week fixed delay. The strike price has been set as 95% of the initial
value (S(0) = 401.15).
In [3], a closed form expression is produced for pricing European call options.

One could in principle prove Theorem 3.4 by a more direct argument using the
aforementioned formula. However, we decided to use the above methodology in
order to be consistent with the approach taken in proofs of theorems that follow.
Although Theorem 3.4 shows that Cτ and Cτ̄ are close to each other when τ − τ̄

is sufficiently small, it does not give an explicit estimate on the difference (or the
error) in terms of τ − τ̄ etc. From this point of view, the following theorem is more
useful in practice.

Theorem 3.5 : Let Assumptions 2.3 and 3.1 hold. Let R be any sufficiently large
number such that R > ∥ξ∥. Then, with the definitions of (3.1) and (3.3), we have

|Cτ − Cτ̄ | ≤ e−rT
(
cRTe

cRT (δ(τ − τ̄) +
√
τ − τ̄) +

2ξ1.5(0)e[1.5r+0.5K2]T

√
R

)
, (3.15)

where cR is the number described in Lemma 3.3.

Proof : Using the notations as before, we compute, for any ε̄ > 0,

E
(
[S(T ) + S̄(T )]I{θR≤T}

)
≤ ε̄E[S(T ) + S̄(T )]2 +

1

4ε̄
P(θR ≤ T ).

Hence, by Theorem 2.4 and (3.14),

E
(
[S(T ) + S̄(T )]I{θR≤T}

)
≤ 2ε̄ξ2(0)e[2r+K2]T +

ξ(0)erT

2ε̄R
.

Choosing ε̄ = e−0.5(r+K2)T /(2
√

Rξ(0)) yields

E
(
[S(T ) + S̄(T )]I{θR≤T}

)
≤ 2ξ1.5(0)e[1.5r+0.5K2]T

√
R

.

Substituting this and (3.5) into (3.13), we get

E|S(T )− S̄(T )| ≤ cRTe
cRT (δ(τ − τ̄) +

√
τ − τ̄) +

2ξ1.5(0)e[1.5r+0.5K2]T

√
R

.(3.16)

This, together with (3.4), gives the required assertion (3.15). �

In practice, for any given ε > 0, one can choose R large enough for

2ξ1.5(0)e[0.5r+0.5K2]T

√
R

< 0.5ε,

and then further choose τ − τ̄ sufficiently small for

cRTe
(cR−r)T (δ(τ − τ̄) +

√
τ − τ̄) < 0.5ε

to give |Cτ − Cτ̄ | < ε.
In Theorem 3.5 we impose Assumption 2.3, i.e. the boundedness of the volatil-

ity function. This may be restrictive sometimes. However, for the European put
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options, we can still control the error explicitly without the boundedness of the
volatility function. Let us assume that one holds a European put option at t = 0
on the underlying asset price with the exercise price E at the expiry date T . Ac-
cording to equation (2.3) or (3.2) that the underlying asset price follows, the price
of the European put option at t = 0 is

Pτ = e−rTE(E − S(T ))+ or Pτ̄ = e−rTE(E − S̄(T ))+, (3.17)

respectively.
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Figure 4. Put: Implied volatility surfaces of a 1-week fixed delay.

Figure 4 1 provides a graphical representation of the sensitivity of a European
put option as τ − τ̄ tends to 0 using the same parameters as in Figure 3.

Theorem 3.6 : Let Assumption 3.1 hold and let R be any sufficiently large num-
ber such that R > ∥ξ∥. Then, with the definitions of (3.17), we have

|Pτ − Pτ̄ | ≤ cRTe
(cR−r)T (δ(τ − τ̄) +

√
τ − τ̄) +

2Eξ(0)

R
, (3.18)

where cR is the number described in Lemma 3.3. In particular, we have

lim
τ−τ̄→0

|Pτ − Pτ̄ | = 0. (3.19)

1This figure is courtesy of Nairn McWilliams
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Proof : We still use the same notation as before. Compute

|Pτ − Pτ̄ | ≤ e−rTE|(E − S(T ))+ − (E − S̄(T ))+|

≤ e−rT
[
E
(
|(E − S(T ))+ − (E − S̄(T ))+| I{θR>T}

)
+E

(
|(E − S(T ))+ − (E − S̄(T ))+| I{θR≤T}

)]
≤ e−rT

[
E
(
|S(T )− S̄(T )| I{θR>T}

)
+ E P(θR ≤ T )

]
≤ e−rT

[
E|S(T ∧ θT )− S̄(T ∧ θR)|+ E

(
P(ρR ≤ T ) + P(ρ̄R ≤ T )

)]
.(3.20)

By Lemma 3.3 and (3.14), we obtain assertion (3.18). Letting τ − τ̄ → 0 in (3.18)
yields

lim sup
τ−τ̄→0

|Pτ − Pτ̄ | ≤
2Eξ(0)

R
.

As this holds for any sufficiently large R, assertion (3.19) must hold. �

4. Delay Effect on Lookback Options

Let us proceed now with the case where we examine the impact of the delay effect
on lookback options. If S(t) is governed by equation (2.3), then the payoff of such
an option is given by S(T )−min0≤t≤T S(t) and thus its price, which is denoted by
Lτ , is derived by calculating the corresponding discounted expected payoff

Lτ = e−rTE
(
S(T )− min

0≤t≤T
S(t)

)
. (4.1)

Similarly, if the asset price follows the DGBM (3.2), then the price of the lookback
option is given by

Lτ̄ = e−rTE
(
S̄(T )− min

0≤t≤T
S̄(t)

)
. (4.2)

Theorem 4.1 : Under Assumption 3.1, with the definitions of (4.1) and (4.2),
we have

lim
τ−τ̄→0

|Lτ − Lτ̄ | = 0. (4.3)

Proof : It is easy to see that

|Lτ − Lτ̄ | ≤ e−rT
(
E|S(T )− S̄(T )|+ E

∣∣ min
0≤t≤T

S(t)− min
0≤t≤T

S̄(t)
∣∣).

But from the proof of Theorem 3.4 we know that

lim
τ−τ̄→0

E|S(T )− S̄(T )| = 0.
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We therefore only need to show

lim
τ−τ̄→0

E
∣∣ min
0≤t≤T

S(t)− min
0≤t≤T

S̄(t)
∣∣ = 0 (4.4)

in order to complete the proof. Let R be sufficiently large and θR be the stopping
time as defined in Lemma 3.3. Write

E
∣∣ min
0≤t≤T

S(t)− min
0≤t≤T

S̄(t)
∣∣ = E

(∣∣ min
0≤t≤T

S(t)− min
0≤t≤T

S̄(t)
∣∣ I{θR>T}

)
+ E

(∣∣ min
0≤t≤T

S(t)− min
0≤t≤T

S̄(t)
∣∣ I{θR≤T}

)
. (4.5)

Noting that we always have∣∣ min
0≤t≤T

S(t)− min
0≤t≤T

S̄(t)
∣∣ ≤ ξ(0),

we compute, by (3.14),

E
(∣∣ min

0≤t≤T
S(t)− min

0≤t≤T
S̄(t)

∣∣ I{θR≤T}

)
≤ ξ(0)P(θR ≤ T ) ≤ 2ξ2(0)erT

R
. (4.6)

On the other hand,

E
(∣∣ min

0≤t≤T
S(t)− min

0≤t≤T
S̄(t)

∣∣ I{θR>T}

)
≤ E

∣∣ min
0≤t≤T

S(t ∧ θR)− min
0≤t≤T

S̄(t ∧ θR)
∣∣. (4.7)

Note that for any t ∈ [0, T ],

S(t ∧ θR) = S(t ∧ θR)− S̄(t ∧ θR) + S̄(t ∧ θR)

≤ max
0≤t≤T

|S(t ∧ θR)− S̄(t ∧ θR)|+ S̄(t ∧ θR),

whence

min
0≤t≤T

S(t ∧ θR) ≤ max
0≤t≤T

|S(t ∧ θR)− S̄(t ∧ θR)|+ min
0≤t≤T

S̄(t ∧ θR).

This yields

min
0≤t≤T

S(t ∧ θR)− min
0≤t≤T

S̄(t ∧ θR) ≤ max
0≤t≤T

|S(t ∧ θR)− S̄(t ∧ θR)|.

Similarly,

min
0≤t≤T

S̄(t ∧ θR)− min
0≤t≤T

S(t ∧ θR) ≤ max
0≤t≤T

|S(t ∧ θR)− S̄(t ∧ θR)|.

We hence have

| min
0≤t≤T

S(t ∧ θR)− min
0≤t≤T

S̄(t ∧ θR)| ≤ max
0≤t≤T

|S(t ∧ θR)− S̄(t ∧ θR)|.

Substituting this into (4.5), and using Lemma 3.3, then gives

E
(∣∣ min

0≤t≤T
S(t)− min

0≤t≤T
S̄(t)

∣∣ I{θR>T}

)
≤ cRTe

cRT (δ(τ − τ̄) +
√
τ − τ̄). (4.8)
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Putting (4.6) and (4.8) into (4.5) yields

E
∣∣ min
0≤t≤T

S(t)− min
0≤t≤T

S̄(t)
∣∣ ≤ cRTe

cRT (δ(τ − τ̄) +
√
τ − τ̄) +

2ξ2(0)erT

R
.

Letting τ − τ̄ → 0 and then R → ∞ we obtain (4.4) as required. �

5. Delay Effect on Barrier Options

Let us now consider a barrier option under the DGBM (2.3). That is, consider an
up-and-out call option, which, at expiry time T , pays the European value with
the exercise price E if S(t) never exceeded a given fixed barrier, B, and pays zero
otherwise. Hence, the expected payoff at expiry time T is

E
(
(S(T )− E)+ I{0≤S(t)≤B, 0≤t≤T}

)
.

Accordingly, the price of the barrier option at t = 0 is

Bτ = e−rT E
(
(S(T )− E)+ I{0≤S(t)≤B, 0≤t≤T}

)
. (5.1)

Alternatively, if the asset price obeys the DGBM (3.2), the option price is

Bτ̄ = e−rT E
(
(S̄(T )− E)+ I{0≤S̄(t)≤B, 0≤t≤T}

)
. (5.2)

Theorem 5.1 : Under Assumption 3.1, with the definitions of (5.1) and (5.2),
we have

lim
τ−τ̄→0

|Bτ −Bτ̄ | = 0. (5.3)

Proof : Let A := {0 ≤ S(t) ≤ B, 0 ≤ t ≤ T} and Ā := {0 ≤ S̄(t) ≤ B, 0 ≤ t ≤
T}. Making use of the inequality

|(S(T )− E)+ − (S̄(T )− E)+| ≤ |S(T )− S̄(T )|,

we have

|Bτ −Bτ̄ | ≤ e−rTE
∣∣(S(T )− E)+IA − (S̄(T )− E)+IĀ

∣∣
≤ e−rT

[
E
(∣∣(S(T )− E)+ − (S̄(T )−E)+

∣∣ IA∩Ā
)

+ E
(
(S(T )− E)+IA∩Āc

)
+ E

(
(S̄(T )− E)+IAc∩Ā

) ]
≤ e−rT

[
E
(
|S(T )− S̄(T )|IA∩Ā

)
+ (B −E)P(A ∩ Āc)

+ (B − E)P(Ac ∩ Ā)
]
.

Choose any R ≥ B ∨∥ξ∥ and let θR be the stopping time as defined in Lemma 3.3.
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Then

E
(
|S(T )− S̄(T )|IA∩Ā

)
≤ E

(
|S(T ∧ θR)− S̄(T ∧ θR)|IA∩Ā

)
≤ E|S(T ∧ θR)− S̄(T ∧ θR)|.

From Lemma 3.3, we have

lim
τ−τ̄→0

E
(
|S(T )− S̄(T )|IA∩Ā

)
= 0.

Hence, our proof is complete if we can show that

lim
τ−τ̄→0

P(A ∩ Āc) = 0 (5.4)

and

lim
τ−τ̄→0

P(Ac ∩ Ā) = 0. (5.5)

For any sufficiently small h, we have

A = { sup
0≤t≤T

S(t) ≤ B}

= { sup
0≤t≤T

S(t) ≤ B − h} ∪ {B − h < sup
0≤t≤T

S(t) ≤ B}

=: A1 ∪A2.

Hence,

A ∩ Āc = (A1 ∩ Āc) ∪ (A2 ∩ Āc) ⊆
{

sup
0≤t≤T

|S(t)− S̄(t)| ≥ h
}
∪A2.

So,

P(A ∩ Āc) ≤ P
(

sup
0≤t≤T

|S(t)− S̄(t)| ≥ h
)
+ P(A2).

Now, for any ε > 0, we may choose h so small that

P(A2) <
ε

3
.

Moreover,

P
(

sup
0≤t≤T

|S(t)− S̄(t)| ≥ h
)
≤ P

(
sup

0≤t≤T
|S(t)− S̄(t)| ≥ h, θR > T

)
+ P(θR ≤ T ).

By (3.14), we can choose R sufficiently large for

P(θR ≤ T ) ≤ 2ξ(0)erT

R
<

ε

3
.
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For this chosen R,

P
(

sup
0≤t≤T

|S(t)− S̄(t)| ≥ h, θR > T
)
≤ P

(
sup

0≤t≤T
|S(t ∧ θR)− S̄(t ∧ θR)| ≥ h

)
≤ 1

h
E
(

sup
0≤t≤T

S(t ∧ θR)− S̄(t ∧ θR)|
)
.

By Lemma 3.3, we can choose τ − τ̄ sufficiently small for

P
(

sup
0≤t≤T

|S(t)− S̄(t)| ≥ h, θR > T
)
<

ε

3
.

Summarizing the above arguments, we see that P(A ∪ Āc) < ε whenever τ − τ̄ is
sufficiently small. This confirms (5.4). Similarly, we can show (5.5). The proof is
therefore complete. �

All the above findings, where the robustness of the delay effect on various option
valuations under certain conditions is established, provide additional support on
the suitability of the DGBM approach. The next section tackles the problem of
pricing contingent claims under this approach in the absence of explicit pricing
formulae.

6. Euler–Maruyama Approximation

Theorem 2.1 states that the DGBM S(t) can be computed explicitly step by step,
since conditionally (on time-lagged information) one obtains a lognormally dis-
tributed random variable for each t. Nevertheless, the (unconditional) probability
distribution of S(t) is not known when t > τ . It is therefore difficult to compute
even simple vanilla options, not to mention more complicated path-dependent op-
tions such as lookback and barrier options.
An Euler–Maruyama numerical scheme is a well-established method to overcome

the aforementioned problem. There are numerous examples in the literature where
authors discretize SDDEs, typically with an Euler-type scheme (see e.g. [20–22])
so as to study their properties. Moreover, one can observe immediately that such
an approach will allow the use of Monte Carlo simulations so as to compute the
expected value of either a function of S(T ) or a functional of {S(t) : 0 ≤ t ≤ T},
and thus obtain the expected payoff of an option (see e.g. [8, 11, 27]).
In order to define the EM approximate solution to the DGBM (2.3), let us first

extend the definition of the volatility function V from R+ to the whole R by setting
V (x) = V (0) for x < 0. The advantages of such an extension are obvious. It does
not have any effect on the solution of the DGBM (2.3), since the solution is always
positive, and it also preserves the local Lipschitz continuity (resp. boundedness of
the volatility function) if Assumption 2.3 (resp. 3.1) holds. More importantly, it
enable us to define the EM approximate solution to the DGBM (2.3) following the
author’s earlier paper [21]. Let the time-step size ∆t ∈ (0, 1) be a fraction of τ , that
is ∆t = τ/N for some sufficiently large integer N . The discrete EM approximate
solution is defined as follows: Set sk = ξ(k∆t) for k = −N,−(N − 1), · · · , 1, 0 and
form

sk = sk−1[1 + r∆t+ V (sk−1−N )∆Wk], k = 1, 2, · · · , (6.1)

where ∆Wk = W (k∆t) − W ((k − 1)∆t). To define the continuous extension, we
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introduce the step process

s(t) =

∞∑
k=−N

sk I[k∆t,(k+1)∆t)(t), t ∈ [−τ,∞). (6.2)

The continuous EM approximate solution is then defined by setting s(t) = ξ(t) for
t ∈ [−τ, 0] and forming

s(t) = ξ(0) +

∫ t

0
rs(u)du+

∫ t

0
V (s(u− τ))s(u)dW (u), t ≥ 0. (6.3)

It is easy to see that s(k∆t) = s(k∆t) = sk for all k = −N,−(N − 1), · · · . To use
the strong convergence result established in [21], let us impose one more condition.

Assumption 6.1 The initial data ξ is Hölder continuous with order γ ∈ (0, 12 ],
that is

sup
−τ≤u<v≤0

|ξ(v)− ξ(u)|
(v − u)γ

< ∞.

The following theorem follows directly from [21, Theorem 2.1 and Lemma 3.2].

Theorem 6.2 : Under Assumptions 2.3, 3.1 and 6.1, the continuous approximate
solution (6.3) will converge to the true solution of the DGBM (2.3) in the sense

lim
∆t→0

E
(

sup
0≤t≤T

|S(t)− s(t)|2
)
= 0, ∀T ≥ 0. (6.4)

Moreover, the step process (6.2) and the continuous approximate solution (6.3)
obey

lim
∆t→0

(
sup

0≤t≤T
E|s(t)− s(t)|2

)
= 0, ∀T ≥ 0. (6.5)

Proof : The result can be obtained directly from [21] (and is omitted here so as
to save some pages) �

Based on the strong convergence properties described in this theorem, we can
show that the expected payoff from the numerical method converges to the correct
expected payoff as ∆t → 0 for various options. For example, for a European call
option, it is straightforward to show

lim
∆t→0

|E(S(T )− E)+ − E(s(T )− E)+| = 0.

Note that using the step function s(T ) in the above is equivalent to using the
discrete solution (6.1). Hence, for a sufficiently small ∆t, e−rTE(s(T )− E)+ gives
a nice approximation to the European call option price e−rTE(S(T )−E)+.
Another example (where also the aforementioned numerical method can be ap-

plied) is the case of an up-and-out call option. Let us recall that this option has
the same payoff, at expiry T , as its European counterpart if S(t) does not exceed
the fixed barrier B, for any t ∈ [0, T ], and pays zero otherwise.
Suppose that the expected payoff of an up-and-out call option is computed via a

Monte Carlo simulation based on the method (6.2). Then, one obtains the following
result:
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Theorem 6.3 : For the DGBM (2.3) and numerical method (6.2), define

Γ := E
[
(S(T )− E)+1{0≤S(t)≤B, 0≤t≤T}

]
, (6.6)

Γ̄∆t := E
[
(s(T )− E)+1{0≤s(t)≤B, 0≤t≤T}

]
, (6.7)

where the exercise price, E, and barrier, B, are constant. If Assumptions 2.3, 3.1
and 6.1 hold, then

lim
∆t→0

|Γ− Γ̄∆t| = 0.

This theorem can be proved in the same way as [11, Theorem 5.1] was proved.
It is possible to remove Assumptions 2.3 and 6.1 but the proof is very technical so
we will present it elsewhere due to the page limit here.

7. Summary

The DGBM market model, which is described by an SDDE, is examined in this
paper as an alternative approach to modelling the evolution of asset prices. A num-
ber of points are presented that demonstrate the suitability of the aforementioned
approach:

• The DGBM (2.3) has a unique positive solution with a finite expected value for
any t ≥ 0 that leads to a complete market framework. As a result, one could
choose from a wide class of continuous volatility functions so as to fit empirical
data to equation (2.3) and price various contingent claims.

• All the results from Sections 3 to 5 hold under the mild assumption that the
volatility function V is locally Lipschitz continuous, except of course from The-
orem 3.5 where the boundedness of the volatility function is also needed. These
results reveal that the time-delay effect is robust.

• Although the DGBM can be computed explicitly step by step, the same is
not true for option pricing formulae under this approach. However, an Euler–
Maruyama numerical scheme is presented here that allows the implementation
of Monte Carlo simulation techniques so as to closely approximate true option
prices.

Finally, although Assumptions 2.3 and 6.1 are imposed for the numerical analysis
in Section 6, it is possible to remove these conditions. The reason for having these
Assumptions here is to obtain the strong convergence result, which is presented
by Theorem 6.2. The proof for the convergence without the above Assumptions is
very technical and it will be presented elsewhere.
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