
University of Huddersfield Repository

Shah, Mohammad Munshi Shahin, Chrpa, Lukáš, Kitchin, Diane E., McCluskey, T.L. and Vallati,

Mauro

Exploring Knowledge Engineering Strategies in Designing and Modelling a Road Traffic Accident

Management Domain

Original Citation

Shah, Mohammad Munshi Shahin, Chrpa, Lukáš, Kitchin, Diane E., McCluskey, T.L. and Vallati,

Mauro (2013) Exploring Knowledge Engineering Strategies in Designing and Modelling a Road

Traffic Accident Management Domain. In: Proceedings of the Twenty-Third International Joint

Conference on Artificial Intelligence. IJCAI 3-9 August 2013 . AAAI Press / International Joint

Conferences on Artificial Intelligence, Beijing, China, pp. 2373-2379. ISBN 978-1-57735-633-2

This version is available at http://eprints.hud.ac.uk/17280/

The University Repository is a digital collection of the research output of the

University, available on Open Access. Copyright and Moral Rights for the items

on this site are retained by the individual author and/or other copyright owners.

Users may access full items free of charge; copies of full text items generally

can be reproduced, displayed or performed and given to third parties in any

format or medium for personal research or study, educational or not-for-profit

purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;

• A hyperlink and/or URL is included for the original metadata page; and

• The content is not changed in any way.

For more information, including our policy and submission procedure, please

contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Huddersfield Repository

https://core.ac.uk/display/9841687?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Exploring Knowledge Engineering Strategies in Designing and Modelling a Road
Traffic Accident Management Domain

Mohammad M. Shah, Lukáš Chrpa, Diane Kitchin, Thomas L. McCluskey and Mauro Vallati

Department of Informatics

School of Computing and Engineering

University of Huddersfield, United Kingdom

Email:{s.shah, l.chrpa, d.kitchin, t.l.mccluskey, m.vallati}@hud.ac.uk

Abstract

Formulating knowledge for use in AI Planning en-
gines is currently something of an ad-hoc process,
where the skills of knowledge engineers and the
tools they use may significantly influence the qual-
ity of the resulting planning application. There is
little in the way of guidelines or standard proce-
dures, however, for knowledge engineers to use
when formulating knowledge into planning domain
languages such as PDDL. This paper seeks to in-
vestigate this process using as a case study a road
traffic accident management domain.

Managing road accidents requires systematic,
sound planning and coordination of resources to
improve outcomes for accident victims. We have
derived a set of requirements in consultation with
stakeholders for the resource coordination part
of managing accidents. We evaluate two separate
knowledge engineering strategies for encoding the
resulting planning domain from the set of require-
ments: (a) the traditional method of PDDL experts
and text editor, and (b) a leading planning GUI with
built in UML modelling tools.

These strategies are evaluated using process and
product metrics, where the domain model (the
product) was tested extensively with a range of
planning engines. The results give insights into the
strengths and weaknesses of the approaches, high-
light lessons learned regarding knowledge encod-
ing, and point to important lines of research for
knowledge engineering for planning.

1 Introduction

Knowledge Engineering for automated planning is the pro-
cess that deals with the acquisition, formulation, validation
and maintenance of planning knowledge, where a key prod-
uct is the domain model. The field has advanced steadily
in recent years, helped by a series of international compe-
titions1, the build up of experience from planning applica-
tions, along with well developed support environments (for

1for the most recent see http://icaps12.poli.usp.br/icaps12/ickeps

example, Europa [Barreiro et al., 2012], itSIMPLE [Vaquero
et al., 2007], GIPO [Simpson et al., 2007]). It is generally
accepted that effective tool support is required to build do-
main models and bind them with planning engines into ap-
plications. There have been reviews of such knowledge en-
gineering tools and techniques for AI Planning [Vaquero et
al., 2011], and some work was done in comparing tools us-
ing sets of “features” for the ICKEPS competitions [Barták
et al., 2010]. While these works are illuminating, they are
not founded on practice-based evaluation, in part, no doubt,
because of the difficulty in setting up evaluations of meth-
ods themselves. Given a new planning domain, there is little
published research to inform engineers on which method and
tools to use in order to effectively engineer a planning do-
main model. This is of growing importance, as domain inde-
pendent planning engines are now being used in a wide range
of applications, with the consequence that operational prob-
lem encodings and domain models have to be developed in a
standard language such as PDDL. In particular, at the difficult
stage of domain knowledge formulation, changing a state-
ment of the requirements into something formal - a PDDL
domain model - is still somewhat of a “black art”, usually
conducted by a team of AI experts using text editors. On the
other hand, the use of tools such as itSIMPLE or GIPO, with
which experts generate a high level diagrammatic description
and automatically generate the domain model, have not yet
been proven to be more effective than hand coding.

In this paper we explore the deployment of automated plan-
ning to assist the management of accident planning, using
a set of requirements derived from operational manuals and
stakeholder interaction. Moreover, in introducing a new plan-
ning domain, we take the opportunity to employ and hence
evaluate two separate methods for knowledge formulation:
(i) the traditional method of hand-coding by PDDL experts,
using a text editor and relying on dynamic testing for debug-
ging; (ii) itSIMPLE [Vaquero et al., 2007], an award-winning
GUI, utilising a method and tool support based on the Uni-
fied Modelling Language (UML). Evaluating these two ap-
proaches with respect to qualitative and quantitative mea-
sures, gives a range of interesting insights into their strengths
and weaknesses for encoding new domains. Evaluation mea-
sures used are based on two standard categories in the soft-
ware engineering literature - process (the method of encod-
ing and debugging the domain model) and product (the do-

main model, and its use within a planner to produce plans).
In particular, we provide a comparison of the operationality
of the planning domain models generated through the pro-
posed methods, based on the performance of state-of-the-art
domain independent planners.

2 Case Study: Management of Road Traffic

Accidents (RTAs)

Road traffic management operations are subject to rising
costs, rising public expectations, more complex and demand-
ing goals, and contain a great deal of legacy software. Re-
cent technological advances have in part confounded this by
providing more management controls and more surveillance
data. The need to look to reducing costs, while maintaining
level of service is a high priority. The area of incident man-
agement on the Road Traffic Network combines the challenge
above, while demanding an optimal solution in real time; fur-
ther, the space of possible states, and configurations of the
incident, is far too large to be able to generate concrete plans
a priori. Systematic, robust planning with the coordination of
human and technical resources is the key to managing these
incidents. In particular where the process involves safety of
victims and other road users, such as in RTA, the respond-
ing agencies need to deliver accident management activities
safely and efficiently [Owens et al., 2000].

Our work in producing a set of requirements for the au-
tomation of accident management plans has been performed
in the context of the EU-funded network Autonomic Road
Transport Support2 consisting of both academics and prac-
tising transportation engineers. Using contacts through this
network, two scientific exchanges with transportation special-
ists, contributions to transport workshops, and a set of manu-
als [HA, 2009; Owens et al., 2000; Benesch, 2011], we have
elicited a set of requirements for the RTA planning problem.

In the UK, the main responsibility for managing and deal-
ing with an incident lies with the highways agency (HA)
that serves that area, as well as the police, ambulance, traf-
fic offers and breakdown services. Part 7 of the UK’s High-
way’s Agency Manual [HA, 2009] is our major source of
knowledge. This identifies the service providers responsible
for dealing with accidents at an operational level, with police
leading co-ordination in and around the scene. The phases of
an incident are detection, verification, response, scene man-
agement, recovery and restoration. Here we assume that an
accident has been detected, and consider the planning ele-
ment for the subsequent phases, with the overall requirement
that the planning function is to provide whoever is leading
the incident management with an operational plan for man-
aging services. Incidents are centrally controlled, and there is
only one leader at any point in time (though leadership can
change, e.g. from the police to the HA). Within this context
there are major and critical levels of incident. The former can
be described as disasters; the HA require a Crisis manage-
ment Team to deal with this. We will concentrate on incidents
at critical levels, which consist of single or multiple accidents
in a region, and typically may consist of up to 10s of vehicles,
requiring several emergency vehicles, within a single region.

2www.cost-arts.org

2.1 Initial Domain Analysis

An initial conceptualisation of the RTA domain is described
in the following paragraphs.

A Road Network is represented by an undirected graph
(V,E) where vertices V stand for locations and edges E
for roads. It is useful to effectively abstract the topology of
the Road Network, since the Road Network usually consid-
ers a region covering several ‘clusters’, i.e., towns/cities or
districts (e.g. see Figure 1), with locations of interest (e.g.
Hospitals or Police Stations). We assume that all the loca-
tions within a ‘cluster’ are connected to each other. ‘Clusters’
are connected only if there is a road between them. Assets
X = Xs ∪Xm are divided into two categories, static assets Xs

(e.g. Police Stations, Hospitals, Fire Stations) and mobile as-
sets Xm (e.g. Police Cars, Ambulances, Fire Brigades). Let
T ⊆ R

+
0 be a set of time-stamps. We define a function loc

which for an asset and time-stamp returns the location (or ⊥
which stands for a situation when the asset is on the way), for-
mally loc : X ×T → V ∪{⊥}. Clearly, for every static asset
x ∈ Xs loc(x, t) is constant (i.e. its value is not dependent on
the time-stamp). Mobile assets can be moved between loca-
tions using roads (i.e. a mobile asset can move from one loca-
tion to another if and only if these locations are connected by
road). Artefacts Y (e.g. accident victims, damaged cars etc.)
cannot move freely between locations (unlike mobile assets)
but they need a mobile asset (e.g. an ambulance) which can
transport them to different locations. We define a function in
which for an artefact and time-stamp returns either an asset
(static or mobile) an artefact is attached to, or a location an
artefact is located if the artefact is not attached to any asset,
or ⊥ if an artefact is being attached or detached from an as-
set, formally in : Y × T → X ∪V ∪{⊥}. An artefact can be
attached to an asset if and only if the artefact is currently
not attached to any other asset and the current location of
an artefact is the same as the current location of the asset.
Similarly, if an artefact is unattached from an asset then its
location will be the same as the current location of the as-
set. Each asset may have a limited capacity, i.e., a maximum
number of attached artefacts in the same time. We define a
function cap : X → N referring to an asset capacity. It must
hold that ∀t ∈ T,∀x ∈ X : |{y | y ∈Y ∧ in(y, t) = x}| ≤ cap(x).
Assets and artefacts can also interact with each other in order
to modify their characteristic properties. For instance, the po-
lice have to confirm an accident or a paramedic has to give
first aid to victims before they are taken to hospital. Hence,
we define properties as sets of values characterising artefacts
and/or assets (e.g. accident victims can be waiting for first
aid, being aided, aided or delivered to a hospital).

All the above thus specify the environment of the RTA
domain. This environment can be modified by (planning)
operators representing types of actions, specified via precon-
ditions (what must be met in order to apply the operator) and
effects (what is changed in the environment after applying the
operator). We define the following operator families which
modify the environment of the RTA domain (we assume that
the operator is applied in a time-stamp t and lasts for ∆t time).

move(x, l1, l2) moves a mobile asset x ∈ Xs from a location

l1 to a location l2 (l1, l2 ∈ V). As a precondition it must
hold that loc(x, t) = l1 and l1 and l2 are connected with a
road (i.e. (l1, l2)∈ E). An effect of applying the operator
is that loc(x, t+∆t) = l2 and ∀t ′ ∈ (t, t+∆t) : loc(x, t ′) =
⊥.

attach(y,x, l) attaches an artefact y ∈ Y to an asset x ∈ X in
a location l ∈ V . As a precondition it must hold that
loc(x, t) = in(y, t) = l, ∀t ′ ∈ [t, t +∆t] : loc(x, t ′) = l and
|{y′ | in(y′, t) = x}| < cap(x). An effect of applying
the operator is that in(y, t + ∆t) = x, ∀t ′ ∈ (t, t + ∆t) :
in(y, t ′) =⊥.

detach(y,x, l) detaches an artefact y ∈ Y from an asset x ∈ X
in a location l ∈ V . As a precondition it must hold that
∀t ′ ∈ [t, t +∆t] : loc(x, t ′) = l and in(y, t) = x. An effect
of applying the operator is that in(y, t +∆t) = l, ∀t ′ ∈
(t, t +∆t) : in(y, t ′) =⊥.

interact(e1,e2, l, p1, . . . , p6) refers to interaction between
artefacts or assets e1,e2 ∈ X ∪Y in a location l ∈ V .
As a precondition it must hold that ∀t ′ ∈ [t, t + ∆t] :
(loc(e1, t

′) = l ⇔ e1 ∈ X)∨ (in(e1, t
′) = l ⇔ e1 ∈ Y),

(loc(e2, t
′) = l ⇔ e2 ∈ X)∨ (in(e2, t

′) = l ⇔ e2 ∈Y) and
e1 and e2 has properties p1 and p2 in time t. An effect
of applying the operator is that properties of e1 and e2 in
any t ′ ∈ (t, t +∆t) are p3, p4 respectively and properties
of e1 and e2 in t +∆t are p5, p6 respectively.

There are further constraints which must be met. Operator
families attach and detach must not be executed simultane-
ously for a given asset (i.e., during attaching or detaching an
artefact no other artefact can be attached to or detached from
the given asset). Also artefacts must have certain properties
in order to be attached or detached from the assets (e.g. an
accident victim must be stabilised before it is loaded to an
ambulance).

Despite a very general scope of the operators’ definitions
it can illustrate well the main aspects of the RTA domain.
Clearly, we may have to consider a ‘cluster’-like topology of
the Road Network by introducing two ‘move’ operators, one
for moving within a ‘cluster’ and the other for moving be-
tween different ‘clusters’. ‘Attaching’ and ‘detaching’ arte-
facts to/from assets must reflect different kinds of artefacts
or assets. For instance, accident victims can be ‘attached’ to
ambulances or hospitals, in other words the victim is loaded
into the ambulance or is delivered into the hospital. ‘Interact-
ing’ between assets and/or artefacts captures situations such
as giving first aid to accident victims (an ambulance must be
at the accident scene), certifying an accident by police (a po-
lice car must be at the accident scene), or untrapping accident
victims by a fire brigade.

The RTA domain deals with a situation which arises imme-
diately after a traffic accident has been reported. Police must
certify and secure the accident scene. Fire brigades must free
accident victims trapped in a vehicle, and fire brigades must
extinguish any fire at the accident scene. Once victims are re-
leased and free of wreckage, paramedics must give first aid to
them, and then load them into ambulances and deliver them
to hospitals. Tow trucks then deliver damaged cars from the
accident scene to garages.

3 The Knowledge Engineering Methods

Having analysed the RTA domain, and conceptualised the re-
quirements, we set up the experiment to evaluate two methods
of planning domain knowledge formulation. As with any ex-
ercise on evaluating methods, there are problems to do with
the effect of human factors such as level of method expertise
of the knowledge engineers (so-called extraneous variables).
Each method was carried out in parallel over a period of time.
There was no time limit fixed a priori. Each team was com-
posed of two experts. All the experts were involved in the re-
quirements phase. The background of all participating in the
teams was that all except one (who is in the final year of an AI
Planning PhD) had a PhD in AI Planning. The expertise level
of the PDDL encoders (method A) was expert, whereas for
method B the team leader was competent rather than expert
in the use of the itSIMPLE tool.

The aim of the experiment was to evaluate two well known
approaches to formulate domain models and problem encod-
ings, within the RTA domain, where the problem was to gen-
erate management plans for a particular scenario. The criteria
for evaluation are arranged in two broad categories, using in-
spiration from the software engineering area:

• the process of the formulation: this is the encoding of
the conceptualised knowledge taken from the initial do-
main analysis, source documents and expertise, until it
reaches a final form in which it can be input to AI
Planning engine(s). Features such as defect identifica-
tion and removal, the nature of testing, and repeatabil-
ity/traceability of the process are considered here.

• the product of the formulation: this is the domain model
and problem files, with features such as maintainability,
size, complexity and operationality (the latter based on
the performance and quality of plans produced and range
of problems solved where they are consequences of the
model rather than the planner).

As an application scenario, we have chosen a region shown
in Figure 1, consisting of an area within the UK. For evaluat-
ing the methods we used a set of test instances, considering
the map shown in Figure 1, in which three accidents hap-
pen in Ainley Top, Greetland and Baliff Bridge. Police are
required to confirm accidents, number of victims and vehi-
cles involved. The victims are required to be taken as soon
as possible to one of the hospitals, and involved broken vehi-
cles are required to be removed from the road and taken to an
available garage. Three ambulances, four police cars, two fire
brigades and four tow trucks are available. We created test in-
stances involving from six to one hundred victims, and from
five to thirty cars, where some victims might be trapped in-
side cars. We also considered an instance in which the num-
ber of available emergency vehicles is doubled, to evaluate
the coordination that the different methods encodings are able
to achieve. In each case, the formulation proceeded until the
method produces a planning application which solves the test
instances of accident management as specified above.

We overview each method before we use it, but given space
restrictions the reader is encouraged to consult the literature
for full details.

3.1 Method A: Hand Encoding

PDDL [McDermott, 1998; Ghallab et al., 1998] is an
action-based domain definition language which is inspired by
STRIPS [Fikes and Nilsson, 1971] style planning. The core
of the PDDL formalism is for expressing the semantics of do-
main actions, using pre- and post- conditions to describe the
applicability and effects of actions. In this method the RTA
model was hand encoded by a team composed of two PDDL
experts, using a text editor and relying on dynamic testing.
In the ad-hoc method of generate and test, the experts iter-
ate over the following steps: (i) encode requirements, (ii) run
a set of planners on several easy problems, (iii) evaluate the
resulting plans (if any), and (iv) in the case of strange plans
(in relation to the RTA domain requirements) find a way to
fix the issue. Usually an expert has to iterate several times
through the steps above before plans are produced that match
the requirements.

3.2 Method B: itSIMPLE

The main goal of GUI tools is to provide knowledge engi-
neers with a systematic way to reduce modelling time and
errors. There are a number of tools available in the research
community, such as JABBAH [González-Ferrer et al., 2009]

and GIPO [Simpson et al., 2007]. itSIMPLE [Vaquero et al.,
2007; 2012] is a method and tools environment that enables
knowledge engineers to model a planning domain using the
UML standards. The main function of itSIMPLE is to take
UML’s Object Constraint Language as input through state
machine diagrams, and translate them into PDDL.

4 Evaluation of the methods

4.1 Execution

In method A, first the PDDL experts manually coded the RTA
domain using PDDL and PDDL2.1 [Fox and Long, 2001],
and utilised standard planners such as LPG [Gerevini et al.,
2003], and SGPlan [Chen et al., 2006]. The experts trans-
lated the informal description of the requirements directly
into PDDL, without developing any intermediate notation, us-
ing their skill and judgement to perform the encoding. Af-
ter approximately ten iterations of step (i) and (ii), simple
plans were generated which matched requirements. At the
next step, longer plans were generated for more complex
problems; in this case, unusual behaviour was noticed (e.g.,
a single ambulance was able to carry 10s of victims) and six
more cycles of debugging resulted in plans which solved the
test instances.

The steps in the method B, in general, follow the use of
UML in software engineering: (i) design of class diagrams;
(ii) definition of state machines; (iii) translation to PDDL;
(iv) generation of problem files. A user formulates the re-
quirements by designing several UML diagrams, and auto-
matically generates the corresponding PDDL (or PDDL2.1)
domain encoding. While the parameters of the operators and
their duration are defined in step (i), in step (ii) the state ma-
chine diagrams help the domain modeller to encode pre- and
post- condition of operators. In step (iii), we used itSIMPLE
to generate both PDDL and PDDL2.1, although it does not
cover all the spectrum of timing constraints expressible in

Queensbury

Halifax

Ainley Top

Huddersfield

Bradley

Brighouse

Greetland

Baliff Bridge

P G

F H P G

F H P G

P

H G

Figure 1: The Road Traffic Domain Model used for empir-
ical analysis. It consists of a portion of the county of West
Yorkshire. H, F, P and G respectively stand for Hospital, Fire
station, Police station and Garage locations.

PDDL [Vaquero et al., 2012]. The generation of PDDL prob-
lem files was done by instantiating objects represented by the
previously defined classes, describing their properties in the
initial state, and describing the desired properties of objects
at the goal state.

The amount of resource to perform the encoding was sim-
ilar for both the methods. They took approximately 1 person
week.

4.2 Process Comparison

Regarding method A, the main issue related with hand cod-
ing a real world domain in PDDL is that it tends to be ad-hoc,
without the direction or static checks that a tool supported
method would impose. The encoding is left to the skill and
judgement of the experts that are working on it. This lack of
structure leads to domain models that, even if representing the
same real world application, are different and hard to under-
stand if developed and maintained by different experts. More-
over, the process of this method is difficult to replicate while
everything is left to the sensitivity and to the knowledge of
experts. Since the itSIMPLE tool is designed for supporting
a disciplined design cycle and for supporting the transition
of requirements to formal specifications, the process is more

clearly defined and not difficult to repeat.
With respect to bug identification and removal, in the hand-

coded method, all but syntactic bugs were dealt with by dy-
namic testing of the model. Most of the development time
was spent in dynamic testing: analysing produced plans, iden-
tifying bugs and removing them from the model. While hand
encoding a domain, usually many issues are noticed only by
carefully reading the generated plans. One example of bug
identification is when the team of method A noticed broken
vehicles were being delivered to hospitals, instead of garages.
Removing the bug in this case amounted to adding further
constraints to the operators. On the other hand, most of the
time spent with itSIMPLE was in designing classes of ob-
jects and defining legal interactions between them. After that,
only a relatively short time is required for debugging. How-
ever, we found that where debugging was required, it was
initiated through dynamic testing: while the structure of the
model helps in its development and maintenance, it is the
failure of a planning engine to solve a goal which alerts the
developer to the presence of a bug, in most cases. This is per-
haps a failing peculiar to itSIMPLE, as there are systems with
stronger static tests (such as GIPO [Simpson et al., 2007])
which are capable of identifying bugs at an earlier stage than
dynamic testing. The need for static tests is reduced, however,
given the structure imposed by the UML method; additionally
this helps determine the completeness of the model, in terms
of classes and finite state machines. Also, itSIMPLE’s auto-
mated generation of the PDDL model, much like compilation
of a high level language into a low level language, has the
benefit of eliminating human errors in encoding details. The
tool offers the modellers a range of third party planners for
generating plans, along with features such as plan analysis,
where the plan generated can be viewed graphically.

There are advantages in using hand-coding over using tool
supported environments: the development of environments
tends to lag behind in the use of expressive modelling lan-
guages. itSIMPLE, although being continuously developed,
has some limitations in the type of PDDL that it can generate.
Also, some details such as parameter associations and metrics
are only possible to encode using dialog boxes within GUI-
based tools, which hamper their ease of use.

4.3 Product Comparison

For comparing the domain models generated by methods A
and B, we selected a subset of the metrics suggested by
Roberts and Howe in [Roberts and Howe, 2007]. In this work
they described some techniques for predicting the perfor-
mance of domain-independent planners by evaluating a set
of metrics related to both the domain model and the planning
problem. Since we are comparing planning domain models
for understanding their quality, which depends also on the
performance of the planners that will solve the problems, such
a set of metrics could give some interesting insights. We con-
sidered also the number of lines, which could give a very in-
tuitive idea of the complexity of the models. The results of
this comparison are shown in Table 1, metrics considered are
the number of types, predicates and operators, the mean num-
ber of parameters per operator, the mean number of pos/neg
preconditions and the mean number of pos/neg effects.

Metric PDDL PDDL2.1
A B A B

types 19 22 19 22
predicates 16 18 16 16
operators 12 14 12 12
mean parameters 3.1 3.2 3.1 3.2
mean precond+ 4.3 3.8 4.3 4.0
mean precond- 0.2 0.4 0.2 0.4
mean eff+ 1.7 1.4 1.7 1.6
mean eff- 1.9 1.2 1.9 1.3
lines 225 263 248 259

Table 1: The values of the metrics selected for comparing the
domain models generated by methods A and B.

We found that the iterative process in Method A led to an
over-constrained domain encoding. Many of the constraints,
added in the form of pre- and/or post- conditions, were built
up incrementally during de-bugging in an ad-hoc fashion, in
order to avoid unwanted behaviours. The resulting model is
complex and hard to read and understand compared to the
model developed using method B. That method A leads to a
constrained model is confirmed by the higher mean number
of positive preconditions and effects. This is not noticeable by
the number of lines of the files because method B invites to
use many different types, as usual in KE approaches, which
are not listed in a very compact way. The PDDL domain
model generated by method B has 2 more actions than the
method A one; these operators are related to the untrapping
people and extinguish fire tasks and are used for avoiding that
the same fire brigade extinguishes several fires or untraps sev-
eral people at the same time. The method A model exploits a
“trick”: the PDDL experts added the same predicate as a pos-
itive and negative effect of the operator, which avoids the si-
multaneous execution of actions instantiated with similar pa-
rameters. Although these kind of tricks are commonly used
by experts, their impact on the performance of the planners
have not been studied, and moreover they make the domain
model harder to read and understand.

We observed that the structured and principled process of
encoding the requirements in Method B led to domain en-
codings that are clear and easy to understand. Moreover, we
found that the UML documentation is useful in maintenance,
as it helps trace the encoding to the initial requirements. The
main difference between PDDL and PDDL2.1 encodings is
that PDDL plans, since actions are instantly completed, are a
very compact version of the PDDL2.1 ones. The simpler en-
coding is not very realistic, however, as emergency vehicles
are used without taking into account their distance from the
accident location, since distance cannot be described in the
simpler encoding.

To compare the operationality of the products, we investi-
gated the performance achieved by planning systems on the
models generated exploiting by methods A and B. We ran
LPG and SGPlan on a set of test instances using the different
models. We selected them due to their ability to handle dura-
tive actions and negative preconditions, which are both used
in the generated domains, because they are readily available
and performed well at IPCs. The results of the experiment are

LPG

Instance CPU time # Actions Duration
A B A B A B

6P, 5V, 1T 0.03 0.03 97 90 28 29
30P, 10V, 2T, 1F 0.5 0.3 318 317 90 108
100P, 30V, 5T, 3F 35.6 22.8 1015 1001 350 311
100P, 30V, 5T, 3F * 62.4 37.9 1033 988 254 246

SGPLAN

Instance CPU time # Actions Duration
A B A B A B

6P, 5V, 1T 0.12 0.09 95 96 95 96
30P, 10V, 2T, 1F 0.36 0.59 324 338 324 338
100P, 30V, 5T, 3F 1.25 1.50 998 1018 998 1018
100P, 30V, 5T, 3F * 2.85 3.60 993 1068 993 1068

LPG

Instance CPU time # Actions Duration
A B A B A B

6P, 5V, 1T 0.04 0.03 94 91 82 76
30P, 10V, 2T, 1F 0.7 0.3 317 321 198 220
100P, 30V, 5T, 3F 57.8 25.2 1000 1012 530 526
100P, 30V, 5T, 3F * 86.0 42.1 1025 1029 315 330

SGPLAN

Instance CPU time # Actions Duration
A B A B A B

6P, 5V, 1T 0.11 0.13 88 97 117 141
30P, 10V, 2T, 1F 0.48 0.54 331 332 528 415
100P, 30V, 5T, 3F 1.45 1.81 1006 1048 1634 1115
100P, 30V, 5T, 3F * 3.64 4.40 1000 1062 1543 1322

Table 2: For every instance, the CPU time (seconds), the
number of actions and the duration of plans generated by
LPG and SGPlan on domains encoded using methods A and
B. The upper table refers to PDDL encodings, the lower to
PDDL2.1. Instances are described by the number of victims
(P), the number of vehicles involved (V), the number of vic-
tims trapped (T) and the number of cars on fire (F); * indicates
that the number of available emergency vehicles is doubled.

shown in Table 2 in terms of CPU time, number of actions
and plans duration.

These results indicate that LPG with the hand written
domain models needs more CPU time, both in PDDL and
PDDL2.1, than with the models generated through method
B. In the number of actions and duration of the plans there
are no significant differences. The performance of LPG while
exploiting method B models is very interesting; for generat-
ing good quality solutions, it requires significantly less CPU
time.

On the other hand, SGPlan displays a very different per-
formance profile compared to LPG. In this case, the domains
encoded by method B slow down the plan generation pro-
cess, but method B encodings lead to plans with significantly
shorter makespan when generated by LPG. While SGPlan is
faster than LPG at plan generation, it was not effective at ex-
ploiting the parallelisation of actions in solution plans, which
unlike in LPG’s performance, resulted in plans with a high
makespan.

5 Conclusions and Future Work

In this paper we have developed requirements for a new plan-
ning domain, the RTA domain, addressing the problem of
managing emergency situations in road traffic accidents. We
have elicited a set of requirements, and used domain analy-
sis to make precise and unambiguous relevant features for the
planning problem. We then described two methods used for
formulating requirements into domain models, and set up an
evaluation experiment where they were used to design and
create RTA domain models. Special attention was given to
knowledge engineering aspects such as how long it takes to
create a model or which tools can be used to verify the model.
We observed that creating different models does not take very
different amounts of time (taking into account the developers’
expertise). We also noticed that most of the existing domain-
independent planners do not support many features required
for modelling real world situations: i.e., negative precondi-
tions and durative actions. This is, clearly, a big limitation for
their application. The main outcome from our work to feed
back to tools developers is to provide facilities to couple plan-
ning engines and formulation tools (see [Shah et al., 2013] for
more details of such lessons learned).

As for the comparison, we can conclude that using itSIM-
PLE (method B) achieved superior results in both process and
product metrics. From the process point of view, method B
is easier to replicate and does not require high expertise in
planning languages. From the product point of view, mod-
els are clearer to read, understand, and easier to maintain us-
ing method B. Moreover, the domain model produced with it
led to a better performance from both the selected planners,
even if on different metrics: LPG is significantly faster in plan
generation, and SGPlan generates better quality plans, using
method B’s domain model.

Given the fact that different planners exploit different
search techniques, they could have very different perfor-
mance on the same domain encoding, as shown in our exper-
imental analysis. The strategy that we suggest, that is derived
from the experience gathered in this work, is (i) to define a
metric to be optimized, (ii) select a (set of) planner(s) which
handle the required features, (iii) test the planners on some
easy instances, and (iv) selecting the planners, or the set of
planners, which achieves the best results w.r.t. the predefined
metric.

Future work will involve a simulation framework for eval-
uating plan execution, where we can couple model design
and plan generation more tightly. This may reveal opportu-
nities for improving domain models in general, and the RTA
model in particular. We are also interested in simulating more
complex road accidents, with blocked roads or accidents oc-
curring in locations difficult to reach (e.g. on narrow roads).
Moreover, we should consider more expressive approaches,
for instance, PDDL+ [Howey et al., 2004], capturing fea-
tures of continuous planning since it might produce more
robust system working in real-time and be able to react to
unexpected events. Another interesting area might be to com-
pare our centralised approach to using a multi-agent approach
which moves the problem from centralized to a distributed
point of view.

References
[Barreiro et al., 2012] J. Barreiro, M. Boyce, M. Do,

J. Frank, M. Iatauro, T. Kichkayloz, P. Morrisy, J. Ong,
E. Remolina, T. Smith, and D. Smith. EUROPA: A Plat-
form for AI Planning, Scheduling, Constraint Program-
ming, and Optimization. In Proceedings of the 22nd Inter-
national Conference on Automated Planning & Schedul-
ing (ICAPS-12) – The 4th International Competition on
Knowledge Engineering for Planning and Scheduling,
2012.

[Barták et al., 2010] R. Barták, S. Fratini, and T.L. Mc-
Cluskey. The third competition on knowledge engineer-
ing for planning and scheduling. AI Magazine, 31:95 – 98,
2010.

[Benesch, 2011] Benesch. Traffic Incident Management Op-
erations Guidelines. Iowa Department of Transportation,
Faderal Highway Administration, 1200 New jersey Av-
enue, SE, Washington, DC 20590, March 24 2011.

[Chen et al., 2006] Y. Chen, B.W. Wah, and C. Hsu. Tempo-
ral planning using subgoal partitioning and resolution in
SGPlan. Journal of Artificial Intelligence Research (JAIR),
26:323–369, 2006.

[Fikes and Nilsson, 1971] R. E. Fikes and N. J. Nilsson.
Strips: A new approach to the application of theorem prov-
ing to problem solving. Artificial Intelligence, 2:189–208,
1971.

[Fox and Long, 2001] M. Fox and D. Long. PDDL2.1: An
extension to PDDL for expressing temporal planning do-
mains . In Technical Report, Dept of Computer Science,
University of Durham, 2001.

[Gerevini et al., 2003] A. Gerevini, A. Saetti, and I. Serina.
Planning through stochastic local search and temporal ac-
tion graphs. Journal of Artificial Intelligence Research
(JAIR), 20:239 – 290, 2003.

[Ghallab et al., 1998] M. Ghallab, A. Howe, C. Knoblock,
D. McDermott, A. Ram, M. Veloso, D. Weld, and
D. Wilkins. PDDL - the planning domain definition lan-
guage. Technical Report CVC TR-98-003/DCS TR-1165,
Yale Center for Computational Vision and Control, 1998.

[González-Ferrer et al., 2009] A. González-Ferrer,
J. Fernández-Olivares, and L. Castillo. JABBAH: A
java application framework for the translation between
business process models and htn. In Working notes of the
19th International Conference on Automated Planning
& Scheduling (ICAPS-09) – Proceedings of the 3rd
International Competition on Knowledge Engireeng for
Planning and Scheduling(ICKEPS), pages 28–37, 2009.

[HA, 2009] HA. Highways Agency Network Management
Manual. Highways Agency, Network Services, Network
Management Policy Team, City Tower, Piccadilly Plaza,
MANCHESTER M1 4BE, 5.10 edition, July 2009.

[Howey et al., 2004] R. Howey, D. Long, and M. Fox. Auto-
matic plan validation, continuous effects and mixed initia-
tive planning using PDDL. In Proceedings of the Sixteenth
International Conference on Tools with Artificial Intelli-
gence, pages 294 – 301, 2004.

[McDermott, 1998] J. McDermott. 1998 AIPS planning
competiton. ftp.cs.yale.edu/pub/mcdermott/aipscomp-
results.html, 1998.

[Owens et al., 2000] N. Owens, A. Armstrong, P. Sullivan,
C. Mitchell, D. Newton, R. Brewster, and T. Trego. Traffic
Incident Management Handbook. Technical Report Office
of Travel Management, Federal Highway Administration,
2000.

[Roberts and Howe, 2007] M. Roberts and A. Howe.
Learned models of performance for many planners. In
Proceedings of the ICAPS-07 Workshop of AI Planning
and Learning (PAL), 2007.

[Shah et al., 2013] M.M. Shah, L. Chrpa, F. Jimoh,
D. Kitchin, T.L. McCluskey, S. Parkinson, and M. Vallati.
Knowledge engineering tools in planning: State-of-the-art
and future challenges. In Submitted to the Knowledge
Engineering for Planning and Scheduling workshop – The
23rd International Conference on Automated Planning &
Scheduling (ICAPS-13), 2013.

[Simpson et al., 2007] R.M. Simpson, Diane E. Kitchin, and
T.L. McCluskey. Planning domain definition using
gipo. Knowledge Engineering Review, 22(2):117–134,
June 2007.

[Vaquero et al., 2007] T.S. Vaquero, V. Romero, F. Tonidan-
del, and J.R. Silva. itSIMPLE2.0: An integrated tool
for designing planning domains. In Proceedings of the
17th International Conference on Automated Planning
& Scheduling (ICAPS-07), pages 336–343. AAAI Press,
2007.

[Vaquero et al., 2011] T.S. Vaquero, J.R. Silva, and J.C.
Beck. A brief review of tools and methods for knowledge
engineering for planning & scheduling. In Proceedings of
the Knowledge Engineering for Planning and Scheduling
workshop – The 21th International Conference on Auto-
mated Planning & Scheduling (ICAPS-11), 2011.

[Vaquero et al., 2012] T.S. Vaquero, R. Tonaco, G. Costa,
F. Tonidandel, J.R. Silva, and J.C. Beck. itSIMPLE4.0:
Enhancing the modeling experience of planning problems.
In System Demonstration – Proceedings of the 22nd Inter-
national Conference on Automated Planning & Schedul-
ing (ICAPS-12), 2012.

