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Abstract 

 

Thermal errors can have significant effects on CNC machine tool accuracy. The 

errors usually come from thermal deformations of the machine elements 

created by heat sources within the machine structure or from ambient change. 

The performance of a thermal error compensation system inherently depends 

on the accuracy and robustness of the thermal error model. In this paper, 

Adaptive Neuro Fuzzy Inference System (ANFIS), Artificial Neural Network 

(ANN) and Particle Swarm Optimization (PSO) techniques were employed to 

design four thermal prediction models: ANFIS by dividing the data space into 

rule patches (ANFIS-Scatter partition model); ANFIS by dividing the data 

space into rectangular sub-spaces (ANFIS-Grid partition model); ANN with a 

back-propagation algorithm (ANN-BP model) and ANN with a PSO algorithm 

(ANN-PSO model). Grey system theory was also used to obtain the influence 

ranking of the input sensors on the thermal drift of the machine structure. Four 

different models were designed, based on the higher-ranked sensors on thermal 

drift of the spindle. According to the results, the ANFIS models are superior in 

terms of the accuracy of their predictive ability; the results also show ANN-BP 

to have a relatively good level of accuracy. In all the models used in this study, 

the accuracy of the results produced by the ANFIS models was higher than that 

produced by the ANN models. 

 

1. Introduction 
 

Errors due to the changes in the temperature of the machine tool elements 

create relative movement between the tool and the workpiece during the 

machining process, which affects the accuracy of the part being produced, these 

are known as the thermal errors [1]. According to various publications [2-4], 

thermal errors represent approximately 70% of the total positioning error of the 



CNC machine tool. With improvements of machine tool positioning accuracy, 

tooling, and enhanced machining performance improved, thermal errors have 

become more significant. As a result, a reduction of thermal errors is needed 

for high-precision manufacturing systems [5]. 

     Two different ways have been used to reduce the thermal errors of machine 

tools: Thermal error avoidance and thermal error compensation [1]. In thermal 

error avoidance, heat-source isolation, structural improvement and materials 

that have a low thermal expansion coefficient are used to reduce the thermal 

errors. Although, this can improve basic machine accuracy, it is neither cost-

effective nor applicable to the renewal of existing machine tools [1]. Thermal 

error compensation attempts to forecast the thermal errors and then compensate 

for them with software. Extensive research has been carried out in the area of 

thermal error compensation [2]. There are two main research areas in relation 

to this: Numerical analysis techniques such as the finite-element method [6] 

and the Newton-Raphson method [7] are utilized for thermal error 

compensation. These methods are restricted to qualitative analysis because of 

the complexity of machine tool structures, such as geometrical dimensions and 

machine joints. The second area uses empirical modelling, which is based on 

the measurement of temperature changes and thermal drift of the machine tools. 

Examples include multiple regression analysis [8], types of Artificial Neural 

Networks [9], fuzzy logic [10], adaptive network fuzzy inference system [11] 

and a combination of several different modelling  methods [2].  

     Among these error compensation methods, the Adaptive Neuro-Fuzzy 

Inference System and Artificial Neural Network models were the most 

promising methods: They showed satisfactory predictive accuracy in many 

real-world applications. These models have their own advantages, and 

disadvantages. Experiments show that neither of them needs a proper selection 

of thermal sensors and their locations, in order to ensure the prediction 

accuracy and robustness of these models. Further exploration regarding the 

selection of thermal sensors for thermal error compensation models is needed. 

     The motivations behind this paper are to develop a method competent in 

determining the key temperature sensors for modelling using grey system 

theory and also to determine the empirical relationships for the estimation of 

thermal errors. Adaptive Neuro Fuzzy Inference System (ANFIS) and 

traditional Artificial Neural Network (ANN) techniques were used to design 

four thermal prediction models: ANFIS by dividing the data space into rule 

patches (ANFIS-Scatter partition model); ANFIS by dividing the data space 

into rectangular sub-spaces (ANFIS-Grid partition model); ANN with a back-

propagation algorithm (ANN-BP model) and ANN with a PSO algorithm 

(ANN-PSO model), and compare the versatility, the robustness and their 

prediction accuracy. 

 

2. Material and methods 
 

An artificial intelligence system is a system that can make decisions which 

would be considered intelligent if they were made by a human being. They 

adjust themselves using some conditions (input data), and they improve 

decisions automatically for future conditions. Artificial Neural Networks, fuzzy 



logic systems, particle swarm optimisation, and neuro-fuzzy systems are the 

most common artificial intelligence system types. In this part of the paper, the 

theory behind and structures for artificial intelligence systems will be 

described. Furthermore, proper selection of thermal sensors and their locations 

will be introduced using the grey system theory.    

 

2.1 Artificial Neural Networks (ANNs) 

 

Artificial Neural Networks, especially the Multi-Layer Perceptron networks 

(MLP) are an extension of perceptron neural networks, which have one or more 

hidden layers. A group of the neurons which are connected with each other 

through the environment form the whole ANN. Figure 1 shows the basic 

structure of the ANN. The learning algorithm is defined as a mathematical tool 

that sketches the methodology and the speed for the network, to obtain the 

steady state of network parameters successfully. There are many optimization 

methods which can be used to train the ANN, such as the back-propagation 

algorithm (BP) and particle swarm optimization (PSO). The choice of the error 

function and the optimization techniques are significant, because they may 

increase the stability of the ANN. The back-propagation algorithm is the basic 

learning mechanism: In this algorithm, the ANN output on presentation of input 

data is matched with the desired output to obtain the error. The error is used to 

incrementally adjust appropriate weights in the connection matrices to reduce 

it. Following many presentations of training data, the error value of the ANN is 

expected to be decreased to a satisfactory level, and the ANN will have then 

learned how to resolve the task modelled by training data. Particle swarm 

optimization (proposed by Eberhart and Kennedy [12]) is also an optimization 

technique. Researchers have applied it to train ANN and have found that ANN 

with PSO has a good training performance, a faster convergence rate and a 

better predicting ability than ANN with BP [13]. In this paper, in order to 

enhance the ability of ANN to make predictions it is adjusted with the PSO 

technique. 

 

 

Figure 1: Basic structure of ANN model. 



2.2 The Adaptive Neuro-Fuzzy System (ANFIS) 

 

The architecture and learning procedure of the Adaptive Neuro-Fuzzy System 

(ANFIS), have both been described by Jang [14]. According to Jang, the 

ANFIS is a neural network that is functionally the same as a Takagi-Sugeno 

type inference model. The ANFIS is a hybrid intelligent system that takes the 

advantages of ANN and the fuzzy logic theory into a single system. By 

employing the ANN technique to update the parameters of the Takagi-Sugeno 

type inference model, the ANFIS is given the ability to learn from given 

training data, the same as ANN. The solutions mapped out onto the Takagi-

Sugeno type inference model can therefore be described in linguistic terms.  

     The efficiency of any ANFIS model depends on the success in partitioning 

the input and output variables space correctly. This can be achieved by using a 

number of methods such as grid partitioning (ANFIS-Grid partition model), the 

subtractive clustering method (ANFIS-Scatter partition model) and fuzzy c-

means clustering [15]. The equivalent ANFIS network with two variables is 

shown in Figure 2:The first layer implements a fuzzification, the second layer 

executes the T-norm of the antecedent part of the fuzzy rules, the third layer 

normalizes the membership functions (MF), the fourth layer computes the 

consequent parameters, and finally the last layer calculates the overall output as 

the summation of all incoming signals [14]. 

 

 

Figure 2: Basic structure of ANFIS. 

 

2.3 GM (h, N) Model 
 

In grey system theory, the main function of the GM (h, N) model is a way to 

acquire a calculation of the measurement between the discrete sequences and to 

compensate the shortcomings in the traditional methodology [16].  Assume that 

the original data with a number of samples (N) is described in sequences ��������, � = 1,2, … . . , �.���  ��������, and sequences ��������, ��������, ��������, … . �������� are the influential 

factors of the system, then the GM (h, N) model is described as [16]: 
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Where, (i) �:Is the developing coefficient. (ii) �: Is defined as the grey input. 

(iii) ��������:  The major sequence. (iv) The accumulation generating operation 
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According to the previous definition of GM (h, N), the GM (0, N) is a zero 

order grey system, which can be described as follows: �"������� = # �������������� = ���������� + ���������� + ⋯+ ��������������������(2) 

Where, "������� = 0.5������� − 1� + 0.5��������� = 2,3,4, … , +. 
The analytical steps are shown below. 

 

1- Substituting the AGO value, we can write. �"�����2� = ��������2� + ⋯+��������2� az�����3� = b�x�����3� + ⋯+ b0x0����3� …………………………………… .. �"�����+� = ��������+� + ⋯+ ��������n�                                                          (3) 

2- Dividing a1 in both sides, then the equations (3) can be written as 
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Assume�?@ = ABC<, where m=2,3,…,N, then equation(4) can be rearranged into: 
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3- The coefficients of the model can be obtained by solving this equation: ?H = �IJI�K�IJL                                                                                             (6) 

Where, 

Y = 

233
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778,    B =
233
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Therefore, the influence ranking of the major sequences (thermal sensors) on 

the output sequences (thermal drift) can be known by comparing the model 

values of (θ�~θ0). 

 



3. Experimental work 
 

In this study, experiments were performed on a small vertical milling centre 

(VMC). Three non-contact displacement transducers (NCDTs) were used to 

measure the drift of the tool in the X, Y and Z axes. The thermal data was 

measured using 58 temperature sensors placed in strips at the carrier and 

spindle boss surfaces as explained by White et al [3], other eleven ambient 

temperature sensors were placed around the machine to pick up the ambient 

temperature [6]. A general overview of the experimental setup is shown in 

Figure 3. 

 

 

Figure 3: A general overview of the experimental setup. 

 

The machine was examined by running the spindle at its highest speed of 8000 

rpm for 60 minutes to excite the largest thermal behaviour. It was then stopped 

for 60 minutes for cooling. The temperature sensors at the selected points on 

the machine tool and the thermal drift of the spindle were measured 

simultaneously; the thermal drift of the machine is shown in Figure 4. The 

maximum drift of the X-axis is 2 �m, the Y-axis is 60 �m, and the Z-axis is 22 

�m. In this paper, the X-axis thermal drift is much smaller than that of Y-axis 

and Z-axis due to mechanical symmetry and therefore can be ignored [3]: Only 

the Y-axis and Z-axis are considered.  

 

Figure 4: Thermal drift of the machine spindle. 
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The influence coefficient between the thermal error in the Y direction and the 

temperature sensors are calculated using the GM (0, N) model. The 

representative temperature sensors for modelling are selected from each group 

(Surface sensors and ambient sensors) according to their influence coefficient 

value. The representative thermal sensors T2, T16, T29, T55, T63 and T71 

(which are located on the column, carrier, spindle boss, and base) are used as 

the thermal key sensors for modelling.  

 

3.1 ANN Models 

 

Six temperature sensors (T2, T16, T29, T55, T63 and T71) were selected as 

input for models, and the thermal drift in Y direction was chosen as a target 

variable. Usually ANN models have three layers: Input, hidden and output 

layers. Although, for common engineering problems, one hidden layer is 

sufficient for model training, two or more hidden layers may be needed for very 

complex phenomena. An ANN models with three layers was used in this study. 

According to ANN models, the input layer has six sensors and the output layer 

has one sensor (the thermal drift in Y direction). The test (60 minutes heating 

and 60 minutes cooling) was used for training the models.  

     In order to examine the performance of the ANN models on non-training 

data, another test was carried out on the same machine in an operational cycle 

as follows: It was allowed to run at spindle speed 4000 rpm for 120 minutes, 

and then paused for 60 minutes before running for another 120 minutes; and 

then stopped for 180 minutes. During the experiment, the thermal errors were 

measured by the NCDTs, and the predicted displacements were obtained using 

ANN models. A validation test on the ANN-PB model and ANN-PSO model 

for thermal error prediction have shown satisfactory results (see Figure 5). 

 

Figure 5: (a) ANN-BP model output vs. the actual thermal drift. (b) ANN-PSO 

model output vs. the actual thermal drift. 

 

3.2 ANFIS Models 

 

Similar procedures (ANN models) were carried out on the ANFIS models. The 

construction of two models (ANFIS-Grid and ANFIS-Scatter) is described as 
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follows: The number of the membership function is (2×3×2×2×3×2 and 

5×5×5×5×5×5) and in total (144 and 5) rules can be obtained to define their 

relationship with thermal displacement. The same test (60 minutes heating and 

60 minutes cooling) was used for training the models. The Gaussian functions 

were used to describe the membership degree of these variables. After setting 

the initial parameter values in the ANFIS models, the input membership 

functions were adjusted using a hybrid learning scheme. The error between the 

output and expected values can be computed.  

Simulation results show that the ANFIS models can provide a good prediction 

result with the validation data. Figure 6 presents the comparison between 

thermal drift from the actual measured data and the output of the models.  

 

 

Figure 6: (a) ANFIS-Grid model output vs. the actual thermal drift. (b) ANFIS-

Scatter model output vs. the actual thermal drift. 

 

3.3 Results  

 

The results of the GM (0, N) model can determine which sensors on the 

machine structure contribute most significantly to the total thermal drift. The 

models of ANFIS and ANN for the prediction of thermal drift were then 

constructed using six selected inputs and one output. 

The results of this paper are as follows: 

• The ANFIS models for the prediction of thermal drift revealed a more 

reliable prediction when compared with ANN models. 

• The model prediction of thermal drift showed that the ANFIS-Grid 

partition model has a high prediction performance. The residual value of 

the model is smaller than ± 5 �m. 

Three performance criteria including root mean square error (RMSE), Nash-

Sutcliffe efficiency coefficient (E) and correlation coefficient (R) were used to 

judge the most optimum model. From the Table 1 (as a result of the comparison 

of RMSE, E and R indices for predicting thermal drift) it was revealed that the 

prediction performance of the ANFIS-Grid model is higher than those of 

ANFIS-Scatter, ANN-BP and ANN-PSO models, respectively. Thus, the 

accuracy of outputs decreases gradually from the ANFIS to the ANN models.  
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Table 1: Performance calculation of the used models. 

Model Training stage Validation stage 

E RMSE E RMSE R 

ANFIS-Grid partition 0.990 0.225 0.89 2.8125 0.9530 

ANFIS-Scatter partition 0.990 0.213 0.86 3.2057 0.9343 

ANN-BP 0.990 0.3578 0.8098 3.7684 0.9287 

ANN-PSO 0.980 0.4207 0.6158 5.3557 0.7567 

 

4. Conclusions 
 

In this paper, various traditional ANN and hybrid ANFIS models were 

proposed for the prediction of the thermal errors on a CNC machine tool, and 

the following conclusions can be drawn:  

• The new technique GM (0, N) model is able to find the optimal 

temperature sensors for thermal error modelling. The advantage of using 

key temperature sensors is greater economic efficiency and reduces 

modelling time. In addition, the robustness of the models can be increased 

and the predicting precision of the models using the optimal combination 

of the temperature sensors are enhanced. 

• Experimental results show that the thermal error in the Y direction can be 

significantly reduced to less than ±5 �m using ANFIS models with 

validation data (different conditions of rotational speeds on the machine 

tool). The results also show that the ANN models can reduce the thermal 

error to less than ±10 �m. However, BP algorithms are limited during the 

training procedure, in that they are sensitive to the weight's initial values. If 

the weights are not correctly chosen, the training process might be 

cornered in a local minimum or maximum. In contrast, while a PSO 

algorithm gives unsatisfying results, further investigation is necessary in 

order to overcome some of the limitations of BP. A PSO algorithm also 

gives fast convergence during the training stage. 
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