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Backlash in Balancing Systems Using
Approximate Spring Characteristics

L. E. Kollar, G. Stepan, S. J. Hogan

Abstract

A mechanical model of a balancing system is constructed and its stability
analysis is presented. This model considers an interesting practical problem,
the backlash. It appears in the system as a nonlinear spring characteristic
with noncontinuous derivative. The upper equilibrium of the pendulum can
be stabilized without backlash. Backlash causes oscillations around this equi-
librium. Phase space diagrams are revealed based on simulations. Bifurca-
tion analysis is carried out by the continuation method. The noncontinuous
derivative of the spring characteristic causes problems during the calcula-
tion, therefore di�erent types of approximate characteristics are used. The
conditions of the existence of stable stationary and periodic solutions are
determined in case of the approximate systems and conclusions are obtained
for the exact piecewise linear system.

1 Introduction

Unstable equilibria of mechanical systems often have to be stabilized by
control force. A number of applications can be found in this �eld, e.g. the
bus running on icy road, the shimmying wheel or the balancing of standing
and walking robots.

A typical example of stabilization of unstable equilibria is the balancing.
The simplest model of balancing is that of the inverted pendulum [1-6]. The
angle and the angular velocity of the pendulum are detected and a horizontal
control force at the lowest point of the pendulum is determined by them
in a way that the stick should be balanced at its upper position. Control
parameters must be chosen from a bounded region for successful balancing.
The stability conditions have been calculated and the stability chart in the
plain of the control parameters has been constructed in earlier works [9].

A pendulum-cart system is considered in the subsequent chapters. The
inverted pendulum and the motor displaying the control force are placed on a
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cart and the motor drives one of the wheels of the cart through a teeth-belt.
Controlling is executed by a computer which is situated outside this cart.
Considering the backlash at the driving-wheel of the motor, the pendulum
will swing with small amplitude around its equilibrium. The stability domain
in the plain of the control parameters does not change, but it means the
domain where the upper position of the pendulum or the oscillation around
it is stable.

2 The pendulum-cart model

In order to describing a digital balancing system, the inverted pendulum is
placed on a cart as it can be seen in Figure 1 [8,10]. The motor drives one
of the wheels of this cart through a teeth-belt with sti�ness s. The system
has 3 degrees of freedom described by the general coordinates, x; ' and  .
The angle ' of the pendulum and the displacement x of the cart are detected
together with their derivatives.

Figure 1: The inverted pendulum on a cart and its stability map

The control force is determined by the motor characteristic. The driving-
torque is linearly proportional to the voltage Um of the motor and to the
angular velocity _ :

Mm = LUm �K _ : (1)

Considering PD controllers, we have:

Um = P'+D _'+ Pxx +Dx _x : (2)
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The system can be stabilized if the displacement of the cart is not detected
(Px = 0) and the di�erential gain Dx of the cart eliminates the damping K
of the motor. Then the control force has this simpli�ed form:

Q = L (P'+D _') : (3)

The system is reduced to a system with 2 degrees of freedom if a new
general coordinate is introduced. This is �, the alongation of the spring:

� = rm �
rw

Rw

x : (4)

The nonlinear equations of motion assume the form:0
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is the force in the spring.
The stability analysis is carried out by the Routh-Hurwitz criterion. If

the belt is ideally rigid, then � = 0, x determines  uniquely, so the system
has 2 degrees of freedom, namely x and '. The ' � 0 trivial solution of this
system is asymptotically stable if and only if

P > P0 =
1
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mm
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g
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#
and D > 0 : (7)

If the belt is elastic, then the trivial solution of the linearized form of (5)
is asymptotically stable if and only if

P > P0 and H2 > 0 : (8)
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where H2 is the maximum sized Hurwitz-determinant, not presented here
algebraically.

The stability chart is constructed as it is shown in Figure 1. The stability
domain shrinks as the sti�ness of the driving-belt decreases and at a certain
critical value, it disappears. This critical value has this form:

s > scrit =
3 (m +M)mmg�

m+ 4M + 2mm
r2
w

R2
w

�
l
: (9)

3 Numerical study of the phase-space

Backlash appears in the system as a nonlinear spring characteristic. The
force in the spring is the function of �:

Rs =

8><
>:
s (� + r0) � � �r0

0 j�j < r0
s (�� r0) � � r0

; (10)

where r0 is the value of backlash. This function is given in Figure 2(a).
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Figure 2: (a) The piecewise linear spring characteristic at s = 10[kN
m
] and

r0 = 1[mm], (b) The linear spring characteristic at s = 10[kN
m
]

New constant expressions appear in the equations of motion, that means
shifting of the solutions. The stability domain does not change but it is valid
only if j�j > r0. Otherwise, the system is just in backlash, so it cannot be
stabilized, because the control force is not displayed in this little domain.

If the control parameters are chosen from the stability domain, then roots
of the characteristic equation are complex numbers with negative real parts.
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Trajectories form stable focus around the
�
'; _';�; _�

�
= (0; 0;�r0; 0) equi-

libria.
If the system is just in backlash, then the roots of the characteristic

equation are positive and negative reals. Trajectories form saddle around
the (0; 0; 0; 0) equilibrium.
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Figure 3: Phase-diagrams on _��� plane, (a) P = 2[Nm]; D = 2[Nms];
(b) P = 20[Nm]; D = 2[Nms]; (c) P = 100[Nm]; D = 2[Nms];
(d) P = 20[Nm]; D = 2[Nms] with changed initial conditions

Simulations were accomplished using Runge-Kutta method for the study
of the phase-space [7]. Results are presented in Figure 3 for the given values of
parameters: m = 0:169[kg];M = 1:136[kg]; mm = 0:2[kg]; g = 9:81[m

s2
]; l =

0:5[m]; rw = 0:02[m]; Rw = 0:03[m]; rm = 0:01[m]; K = 0:01[Nms]; s =
10000[N

m
]; r0 = 0:001[m]. Figure 3(a), 3(b) and 3(c) show the phase diagrams

on _� � � plane near di�erent values of either of the control parameters,
P . The (0; 0;�r0; 0) equilibria are stable for smaller values of P . A stable
periodic solution appears for greater values of P and its amplitude is larger
and larger as P increases. Its amplitude tends to in�nity as P tends to the
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border of the stability domain. Now the stability domain means the domain
where stable stationary or periodic solution can be found.

The initial conditions are the same in these �gures. They are changed in
Figure 3(d) and P is the same as in Figure 3(b). The (0; 0; r0; 0) equilibrium
is stable, but if P is the same as in Figure 3(c), then it becomes unstable.
For certain values of P all the (0; 0;�r0; 0) equilibria and the limit cycle are
stable and the trajectories spiral to one of them depending on the initial
conditions. More investigations are needed for the exact knowledge of the
phase space.

4 Approximate spring characteristics

First, the linear characteristic is considered, as if there were no backlash in
the system. It is given in Figure 2(b). The bifurcation analysis is carried
out by the continuation method using the (5) nonlinear equations of mo-
tion. The bifurcation diagram for D = 2[Nms] is sketched in Figure 4(a).
A pitchfork bifurcation is occured at P0 = 0:1986[Nm] obtained from (7),
where the upper equilibrium becomes stable. It maintains its stability till
the supercritical Hopf-bifurcation occured at P1 = 139:7[Nm] obtained from
the Hurwitz-determinant in (8). An unstable stationary solution appears at
the pitchfork bifurcation and ' tends to �

2
as P increases. A stable peri-

odic solution appears at the supercritical Hopf-bifurcation and its amplitude
tends to �

2
as P increases.
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Figure 4: Bifurcation diagram for linear spring characteristic
(a) The bifurcation parameter is P , D = 2[Nms]
(b) The bifurcation parameter is D, P = 20[Nm]
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The bifurcation parameter is D and P = 20[Nm] in Figure 4(b). The
equilibrium is stable between the Hopf-bifurcation points. They occur atD =
0:1991[Nms] and D = 5:916[Nms] obtained from the Hurwitz-determinant
again in (8). It seems that periodic solution exists only near the border of
the stability domain at this value of P .
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Figure 5: Approximate spring characteristics
(a) Rs1; Ks = 2500 (thin line), Ks = 5000 (thick line)
(a) Rs2; Ks = 104 (thin line), Ks = 105 (thick line)

Backlash means nonlinear spring characteristic with noncontinuous deriva-
tive as it is shown in Figure 2(a). Two kinds of approximation given in (11)
are applied. They have more advantageous properties from view point of the
calculations. The �rst one, Rs1 is di�erentiable any times, the second one,
Rs2 is di�erentiable once only, but its �rst derivative at � = �r0 is exactly
the spring sti�ness s. Both of these approximations include a parameter Ks,
and approximations are more and more accurate as it tends to in�nity. Rs1

and Rs2 in the vicinity of r0 is depicted in Figure 5(a) and 5(b) for di�erent
values of Ks.

Rs1 =
s

Ks

ln
1 + eKs(��r0)

1 + e�Ks(�+r0)
;

Rs2 =

8><
>:

s (� + r0) � � �r0
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5 The bifurcation analysis
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Figure 6: Bifurcation diagrams using Rs1, Ks = 2500
(a) The bifurcation parameter is P , D = 2[Nms]
(b) The bifurcation parameter is D, P = 20[Nm]
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Figure 7: Bifurcation diagrams using Rs1, Ks = 5000
(a) The bifurcation parameter is P , D = 2[Nms]
(b) The bifurcation parameter is D, P = 20[Nm]

The bifurcation analysis in the vicinity of the upper equilibrium of the
pendulum is implemented using the approximate spring characteristics. The
bifurcation diagrams in case of Rs1 are drawn in Figure 6(a), 6(b), 7(a) and
7(b). Ks = 2500 in Figure 6 and Ks = 5000 in Figure 7. The bifurcation
parameter is P in Figure 6(a) and 7(a) and D in Figure 6(b) and 7(b).
Changing P at a �xed value of D, the pitchfork bifurcation is found at
the same P0 where in the linear case. Increasing Ks, the Hopf-bifurcation
point is closer and closer to P0. A stable limit cycle appears at this point
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and its amplitude increases as P approaches P1, the value where the Hopf-
bifurcation occured in the linear case. Changing D at a �xed value of P ,
two Hopf-bifurcation points are indicated in Figure 6(b). The equilibrium is
stable between them, but it cannot be stabilized at the same value of P for
greater Ks. Only the limit cycle is stable between the borders of the stability
domain calculated in the linear case.
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Figure 8: Bifurcation diagrams using Rs2, Ks = 105

(a) The bifurcation parameter is P , D = 2[Nms]
(b) The bifurcation parameter is D, P = 75[Nm]
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Figure 9: Bifurcation diagrams using Rs2, Ks = 3 � 106

(a) The bifurcation parameter is P , D = 2[Nms]
(b) The bifurcation parameter is D, P = 75[Nm]

The bifurcation diagrams in case of Rs2 are shown in Figure 8(a), 8(b),
9(a) and 9(b). Ks = 105 in Figure 8 and Ks = 3 � 106 in Figure 9. The
bifurcation parameter is P in Figure 8(a) and 9(a) and D in Figure 8(b) and

9



9(b). Changing P at a �xed value of D, the pitchfork bifurcation is found
at the same P0 where in the linear case. Increasing Ks, the Hopf-bifurcation
point moves towards less values of P , but it stops at P2 = 69:89[Nm]. An
unstable limit cycle appears at this point and the numerical calculation is
interrupted at about P3 = 46[Nm]. Its amplitude tends to 0 as Ks increases.
The L2-norm of the state variables can be seen in the �gures, therefore the
value where the stationary solution is indicated is r0. A bifurcation point is
supposed at P3 and the equilibrium is unstable for greater values of P . A
stable limit cycle which was found with the other approximation is indicated
again, but the calculation had stopped before the amplitude of the limit
cycle would have decreased to 0. P is greater at the stopping point than
P0. A homoclinic orbit is showed up with simulations at this value, thus a
homoclinic bifurcation is assumed here. Changing D at a �xed value of P ,
two Hopf-bifurcation points are indicated. The equilibrium is stable between
them, but the unstable limit cycle is also found between them with decreasing
amplitude as Ks increases. The stable limit cycle is also indicated here.
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Figure 10: The stability chart with the bifurcation curves

Examinations are accomplished for the systems with approximate spring
characteristics and conclusions can be obtained for the exact piecewise linear
system, thus the stability domain in the plain of the control parameters can
be constructed as it is sketched in Figure 10. It is bordered with the same
straight line and parabola as it was bordered in case of the linear system (the
system without backlash). Fix points are stable in a little domain near the
straight line. Stable limit cycle appears at the homoclinic bifurcation point
indicated with the dotted line. Fix points lose their stability at the other
bifurcation point indicated with the smashed line, so all the �x points and
the limit cycle are stable between the dotted and the smashed line, and only

10



the limit cycle is stable in the remaining part of the stability domain.

6 Conclusions

Backlash causes the decrease of stability domain of the equilibrium. The size
of the stability domain found in case of the linear spring characteristic is
the same, but a stable periodic solution exists instead of a stable stationary
solution in the largest part of this domain. The physical meaning of the
periodic solution is the oscillation of the stick around its vertical equilibrium.
The physical meaning of the stable �x points is that the control force does
not push the stick further than the vertical line and it oscillates with less and
less amplitude on either side of the vertical position.

Acknowledgements: This research was supported by the Hungarian Scien-
ti�c Research Foundation under grant no. OTKA T030762 and the Ministry
of Culture and Education under grant no. FKFP 0380/97.

References

[1] Mori, S., Nishihara, H., Furuta, K., Control of an unstable mechanical
system, Int. J. Control 23, (1976) 673-692.

[2] St�ep�an, G., A model of balancing, Periodica Polytechnica 28, (1984)
195-199.

[3] St�ep�an, G., Retarded Dynamical Systems, Longman, Harlow, UK, 1989.

[4] Henders, M. G., Sondack, A. C., 'In-the-large' behaviour of an inverted
pendulum with linear stabilization, Int. J. of Nonlinear Mechanics 27,
(1992) 129-138.

[5] Kawazoe, Y., Manual control and computer control of an inverted pen-
dulum on a cart, Proc. 1st Int. Conf. on Motion and Vibration Control,
pp. 930-935, Yokohama, 1992.

[6] Enikov, E., St�ep�an, G., Stabilizing an Inverted Pendulum - Alternatives
and Limitations, Periodica Polytechnica, Vol. 38, pp. 19-26, 1994.

11



[7] L�or�ant, G., St�ep�an, G., The Role of Non-Linearities in the Dynamics of
a Single Railway Wheelset, Machine Vibration 5, (1996) 18-26.

[8] Enikov, E., St�ep�an, G., Micro-Chaotic Motion of Digitally Controlled
Machines, J. of Vibration and Control, accepted in 1997.

[9] St�ep�an, G., Koll�ar, L. E., Balancing with Re
ex Delay, Mathematical
and Computer Modelling, accepted in 1997.

[10] Koll�ar, L. E., Backlash in Machines Stabilized by Control Force, Proc.
of First Conference on Mechanical Engineering pp. 147-151, Budapest,
1998.

Authors

Kollar, Laszlo E. Hogan, S. John
Department of Applied Mechanics Dep. of Engineering Mathematics
Budapest University of University of Bristol
Technology and Economics Queen's Building, University Walk
H-1521, Budapest Bristol BS8 1TR
Hungary UK
kollar@galilei.mm.bme.hu S.J.Hogan@bristol.ac.uk
http://www.mm.bme.hu http://www.fen.bris.ac.uk/engmaths

Stepan, Gabor
Department of Applied Mechanics
Budapest University of
Technology and Economics
H-1521, Budapest
Hungary
stepan@galilei.mm.bme.hu
http://www.mm.bme.hu

12


