
University of Huddersfield Repository

Parkinson, Simon and Longstaff, Andrew P.

Increasing the Numeric Expressiveness of the Planning Domain Definition Language

Original Citation

Parkinson, Simon and Longstaff, Andrew P. (2012) Increasing the Numeric Expressiveness of the 
Planning Domain Definition Language. Proceedings of The 30th Workshop of the UK Planning and 
Scheduling Special Interest Group (PlanSIG2012).

This version is available at http://eprints.hud.ac.uk/16366/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Huddersfield Repository

https://core.ac.uk/display/9840871?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Increasing the Numeric Expressiveness of the Planning Domain Definition
Language

Simon Parkinson and Andrew P. Longstaff
Centre for Precision Technologies

School of Computing and Engineering
University of Huddersfield, UK
s.parkinson@hud.ac.uk

a.p.longstaff@hud.ac.uk

Abstract

The technology of artificial intelligence (AI) planning is be-
ing adopted across many different disciplines. This has re-
sulted in the wider use of the Planning Domain Definition
Language (PDDL), where it is being used to model plan-
ning problems of different natures. One such area where
AI planning is particularly attractive is engineering, where
the optimisation problems are mathematically rich. The ex-
ample used throughout this paper is the optimisation (min-
imisation) of machine tool measurement uncertainty. This
planning problem highlights the limits of PDDL’s numeri-
cal expressiveness in the absence of the square root func-
tion. A workaround method using the Babylonian algorithm
is then evaluated before the extension of PDDL to include
more mathematics functions is discussed.

Introduction
Currently, PDDL provides four arithmetic operators (+,
-, /, *) that can be used in preconditions, effects,
durative-action, continuous effects, and conditional effects
(Fox & Long 2003). Combining these operators will often
provide the level of mathematical expressiveness that is re-
quired for abstract modelling of planning problems. How-
ever, when modelling planning problems that are mathemat-
ically rich, it is found that the expressive power of PDDL is
not enough to allow for a complete, real-world representa-
tion. In some planning problems, abstractions can be made
that can remove some of the calculations and still provide an
accurate and useful representation that is sufficient for find-
ing optimal and complete plans.

Previous work on creating a PDDL 2.2 encoding of the
temporal problem of minimising machine tool down-time
(Parkinson et al. 2012b) showed that automated planning
could produce complete and optimal calibration plans. In
addition to the PDDL encoding, a Hierarchical Task Net-
work (HTN) encoding was created (Parkinson et al. 2011a)
and a preliminary tool was developed to aid with the con-
struction of calibration plans in PROLOG (Parkinson et al.
2011b). This work was then verified by conducting indus-
trial tests where the calibration plans produced by an indus-
trial expert were compared against the automatically con-
structed plan (Parkinson et al. 2012a). Although optimising

Copyright © 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

calibration plans to reduce machine tool down-time is highly
beneficial to the engineering community, optimising calibra-
tion plans to reduce the estimated measurement uncertainty
is very useful when working on high precision machines
that are manufacturing to small tolerances. Recently, the
authors have been working on modelling the measurement
uncertainty minimisation problem by extending the tempo-
ral PDDL 2.2 encoding. In PDDL it is possible to model
the continuous and conditional effects that are required in
the measurement uncertainty estimation formula. However,
one of the equations is to calculate the standard deviation,
and therefore requires the use of the square root function
(ISO230-2 2006), which is not currently not part of regular
PDDL.

The numerical expressive power of PDDL is sufficient
for modelling many problems that are challenging for many
planners (Fox, Long, & Magazzeni 2011; Ruml et al.
2011). Currently, planner development in continuous time-
dependent costs has resulted in the implementation of lin-
ear programming to solve mixed integer problems (Coles
et al. 2012). Planning problems of this nature are com-
mon and very difficult to solve, hence why planner develop-
ment has been focused in this area. One problem that has
been successfully solved is the liner shipping fleet reposi-
tions problem that has temporal, continuous time-dependent
costs conditional effects (Tierney et al. 2012). This im-
plementation of PDDL domains across many different dis-
ciplines is a success of its current expressiveness. The au-
thors believes that increasing the numerical expressiveness
will increase the versatilely and become more attractable for
many more, real-world applications. Fox et. al (Fox & Long
2002) describe PDDL’s expressive power as being strongly
driven by potential applications. This paper continues with
this philosophy and presents the idea of increasing the set of
mathematical functions available when modelling problems
in PDDL.

The first part of this paper provides a brief background
to PDDL arithmetic operators, highlighting the limitations.
Next, the measurement uncertainty optimisation problem is
shown as a mathematically rich example. This planning
problem requires the use of the square root function which
is not currently available in PDDL. A workaround solution
is presented, where a square root algorithm is encoded in the
form of an PDDL action using the Babylonian method. The



(:durative-action transfer-money
:parameters (?acc1 - Account ?acc2 - Account)
:duration(= ?duration (+(trns-out-time ?a1)

(trns-in-time ?a2)))
:condition

(and (at start (>=(trns-amt a1)(bal ?a1)))
(at start (>=(+(bal a2)(trns-amt ?a1))

(acc-limit ?a2))))
:effect

(and (at end (decrease(bal a1)
(trns-amt ?a1)))

(at end (increase(bal a2)
(trns-amt ?a1)))

(at end (increase(trns-amt a1)
(#t *(interest-rate ?a1)))))

)

Figure 1: PDDL action for moving money between two bank
accounts held with the same bank.

idea of increasing the numerical expressiveness of PDDL is
then discussed. A brief conclusion is then provides, high-
lighting the direction of future work.

PDDL Arithmetic Operators
Current set
PDDL provides access to four arithmetic operators (+, -,
/, *) (Fox & Long 2003). These operators can be used
in many aspects of an PDDL action. For example, consider
the following PDDL code seen in Figure 1 for transferring
money between two bank accounts held with the same bank.
The action uses the addition arithmetic operator (+) in the
precondition statement checking that the amount to transfer
does not take the destination account over its limit. This
precondition will be required if the destination account is
governed by the tax free amount a person can save per year.
The duration of the action also uses the addition arithmetic
operator to sum the transaction times of the source and des-
tination account. The durative action uses the multiplication
(*) arithmetic operator in the time-dependent effect to apply
the correct amount of interest to the source account. Other
arithmetic operators can be used in the same way to imple-
ment numeric pre, post and durative conditions.

Expressive limitations
The expressive power of PDDL has allowed for the mod-
elling of many complex real-world problems that have sig-
nificantly motivated planner development. However, the fol-
lowing planning problem highlights that PDDL is not nu-
merically expressive enough for all applications. The rest of
this section will briefly present the measurement uncertainty
optimisation (minimisation) planning problem, identifying
the useful features that PDDL provides, but also highlight-
ing the limitations with the numerical expressiveness. In the
section we also consider a possible solution of implement-
ing the square root function in regular PDDL by using the
Babylonian method.

Measurement uncertainty
Measurement uncertainty can be regarded as the doubt that
exists about the result of any measurement and a confidence
level of the assessment (Bell 2001). When estimating mea-
surement uncertainty there are lots of factors that must be
considered that involve; (1) the measuring device, (2) the ob-
ject to be measured, and (3) the environment (Birch 2003).
One method to estimate uncertainty then involves combining
the individual uncertainties using the root sum of squares to
produce a combined uncertainty uc. It is possible to opti-
mise (minimise) the measurement uncertainty by planning
the measurement procedure carefully. Two of the influenc-
ing factors and how they can be implemented in PDDL are
described below.

1. The temperature of the environment might influence the
measurement object and the measurement device. It
is possible for the temperature to change considerably
throughout the twenty four hour cycle in an industrial en-
vironment. It is, therefore, necessary to encode the tem-
perature profile into the model so that the temperature
over the duration of the measurement is known. The tem-
perature can then be used when estimating uc to help pro-
vide the best estimation as possible.

2. Instrument drift can be described as a gradual change
in respect to an instrument’s reference value with which
measurements are made. This is mainly a concern for
electronic measurement equipment, such as temperature
sensors and laser interferometers. It is important to con-
sider the instruments state when calculating uc, and in
PDDL this can easily be modelled using durative actions
with time-dependent effects.

Implementation

Here we consider the estimation of measurement uncertainty
for measuring the positioning accuracy of a machine tool
using a laser interferometer as seen in (ISO230-2 2006).

Formula
U(M) =√
U2

D
+ U2

M
+ U2

M,M
+ U2

M,D
+ U2

E,M
+ U2

E,D
+ 1

2 .U
2
EV E

where U(M) is the measurement uncertainty of mean po-
sitional deviation, and the following uncertainties are ex-
pressed:
UD is the uncertainty due to the measurement device. UM is
due to misalignment. UM,M is due to temperature measure-
ment of the machine tool and UM,D for the measurement
device. UE,M is due possible error in the thermal expansion
coefficient of the machine tool and UE,Dfor the measuring
device. UEV E is the uncertainty due to environmental vari-
ation. In this paper the author has omitted how the above
uncertainties are calculated because the lengthy process is
not relevant to the undertaken work as they can be achieved
using the combination of the standard PDDL arithmetic op-
erators. However, it is necessary to note that both the envi-
ronmental temperature and instrument drift are used in their
calculation.



(at end (increase(u m)
(+(+(+(+(+(+(*(u D)(u D))

(*(u M)(u M)))
(*(u M-M)(u M-M)))
(*(u M-D)(u M-D)))
(*(u E-M)(u E-M)))
(*(u E-D)(u E-D)))
(*(/(1)(2))(*(u EVE)(u EVE))))))

Figure 2: PDDL encoding of the uncertainty equation

(:durative-action calculate-sqrt
:duration(= ?duration 1)
:condition
(and

(at start (<=(current-step)(number)))
(at start (start))

)
:effect
(and

(at start(increase(calculated-sqrt)
(*(+(calculated-sqrt)(/(number)

(calculated-sqrt)))0.5)))
(at end(increase(current-step)1))

)
)

Figure 3: Partial PDDL encoding to calculate the square root
using the Babylonian method

PDDL
Figure 2 shows the implementation of the formula to calcu-
late U(M). However, the equation is incomplete because
it does not implement the square root function. It would
still be useful to create a model that minimises a sequence
of measurement tasks and aims to reduce the combines un-
certainties without using the square root function. Creating
a model in this way would require post-processing the pro-
duced plan to complete the calculation. Additionally, many
planners will not accept this PDDL encoding because it is a
non-linear equation.

x0 ≈
√
S

xn+1 =
1

2
(xn +

S

xn
)

√
S = lim

n→∞
xn

(1)

Encoding workaround
In the absence of the square root function, it is possible to
encode a method which can enumerate the square root for a
given value. In Figure 3 a PDDL encoding is shown that uses
the Babylonian method that is shown in Equation 1 to cal-
culate the square root. This method will calculate the square
root for a given number S, however, the number of iterations

Iteration(i) Result (xn) Difference (xn−1 − xn)
1 5.50000000 4.50000000
2 3.65909091 1.84090909
3 3.19600508 0.46308583
4 3.16245562 0.03354946
5 3.16227767 0.00017796
6 3.16227766 0.00000001
7 3.16227766 0.00000000
8 3.16227766 0.00000000
9 3.16227766 0.00000000

10 3.16227766 0.00000000

Table 1: Results of using the Babylonian method in PDDL
2.1 to calculate the square root of 10. The correct result to
eight decimal places is 3.16227766. In the first iterations
xn = 10.

i required is equal S. It is often the case that a very close ap-
proximation will be produced within only a few iterations.
However, imposing an iteration limit will depend upon the
application and the desired level of accuracy.

Experimental Analysis
An example can be seen in Table 1 where the square root for
the number 10 is calculated. In the table it is noticeable that
after six iterations, the Babylonian method correctly calcu-
lates the square root to eight decimal places. It is also notice-
able that the difference between the current calculation xn+1

and the result with the previous calculation xn converges to
zero to eight decimal places after seven iterations, meaning
that the correct. This shows that the correct square root was
calculated in the seventh iteration. However, if accuracy to
only two decimal places was required, it would be possibly
to stop after six iterations.

Figure 4 shows the difference between xn+1 and xn per
iteration i when calculating the square root for the value
1000 using the Babylonian method. The experiment was
performed using the PDDL encoding as seen in Figure 3.
Although it is noticeable that it only took eleven iterations
to converge, the LPG-td planner (Gerevini, Saetti, & Serina
2003) performed 1000 iterations, which are not all required.
Solving this problem alone took 4.66 sections, but could be
significantly reduced if not all iterations were executed.

Combining this implementation with other models would
most likely have an adverse affect on plan generation and
quality. This shows that even if it is always possible to
encode an algorithm that could perform the desired mathe-
matical function in PDDL, it could be regarded as excessive
modelling effort.

Extended set
As a potential solution we propose extending the set of math-
ematical functions in PDDL. The author does realise that
this would not come without any complications. The fol-
lowing section briefly discusses some of the complications
and provides future challenges for planner development.

Firstly, deciding upon the set of functions could be con-



0 2 4 6 8 10 12

0

100

200

300

400

500

Iterations i

D
iff

er
en

ce
x
n
−
1
−
x
n

Figure 4: Results from calculating the square root for the
number 1000 using the Babylonian method. The graph only
shows the first eleven iterations because this is where the
method converges. The remaining iterations do not produce
an xn+1 that is different from xn to eight decimal places.

tentious. As different communities continue to adopt the use
of PDDL, different mathematical requirements will appear.
The author suggests that providing access to the functions
found in the cmath (math.h) class would be highly beneficial
and comprehensive enough for most applications. This in-
cludes trigonometric, hyperbolic, exponential and logarith-
mic, power, rounding, absolute value and remainder func-
tions.

Secondly, modifying currently available planners to cater
for a richer set of mathematics functions could result in sig-
nificant effort, so the author does not suggest making this
extension a requirement. For example, OPTIC(Tierney et
al. 2012) and COLIN(Coles et al. 2012) do not support
non-linear equations, and with the availability of these func-
tions, there would be more instances of people modelling
non-linear equations. Carrying out major modification work
to make the planner accept non-linear equations might not
be feasible. Additionally, further research will also be re-
quired to examine the effect that these mathematical func-
tions might have on a planner’s heuristic functions, as they
might impede performance and plan quality. The author sug-
gests that increasing the mathematics function set should be
taken into consideration for future planner developments to
increase their applicability in other disciplines, not just arti-
ficial intelligence planning research.

The implementation of the additional functions into the
PDDL language would require additional thought into how
they are going to be represented. The mathematical func-
tions that have an ASCII symbol, such as the square root
and power function should be recognisable by a PDDL text
parser and probably would not be used in any other part of
the PDDL model. However, trigonometric functions such
as cos and sin do not have a symbolic representation
and would require string representation, which could cause

significant interference with functions, actions and variable
names in PDDL. A possible solution would be to have a
special, unused character that could be used to denote the
start of a maths function. However, in an effort to simplify
things it would be better to prevent the names of mathemat-
ical functions being used as a string anywhere else in the
PDDL model other than to express formula.

Conclusions
This paper presents the limitations of the current PDDL
arithmetic operators. The measurement uncertainty min-
imsation problem is shown as an example that requires the
square root function if the PDDL encoding is to model the
real-world process without any abstractions. A possible
workaround is presented in the form of a PDDL encoding
to calculate the square root using the Babylonian method.
Although this method works, it is infeasible to over compli-
cate the model to implement mathematical functions. The
author then suggested the extension of the available math-
ematical functions to provide access to the cmath (math.h)
class.

Further work is being carried out by the author to adapt
a current PDDL parser and planner to accept more mathe-
matics functions. This will then allow for a complete rep-
resentation of the measurement uncertainty domain, which
can subsequently be used to provide a benchmark.

Alongside this future work, the authors will also continue
to consider the implementation of solutions that do not re-
quire planner modification. One area that will be explored
is the modification of the Babylonian PDDL encoding to re-
duce the iteration size. A method to estimate the iterations
required to converge will be explored. One possible solution
could be to use of a preprocessor to estimate the number of
iterations required which could subsequently be included in
the PDDL domain to restrict the number of iterations.

Acknowledgement
The authors gratefully acknowledge the UK’s Engineering
and Physical Sciences Research Council (EPSRC) funding
of the Centre for Advanced Metrology under its innovative
manufacturing program.

References
Bell, S. 2001. A beginner’s guide to uncertainty of mea-
surement. Measurement Good Practice Guide (11).
Birch, K. 2003. Estimating uncertainties in testing. Mea-
surement Good Practice Guide (36).
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D.
2012. COLIN: Planning with Continuous Linear Numeric
Change. Journal of Artificial Intelligence Research 44:1–
96.
Fox, M., and Long, D. 2002. Pddl+: Modelling continuous
time-dependent effects.
Fox, M., and Long, D. 2003. Pddl2.1: An extension to
pddl for expressing temporal planning domains. Journal of
Artificial Intelligence Research 20:2003.



Fox, M.; Long, D.; and Magazzeni, D. 2011. Automatic
Construction of Efficient Multiple Battery Usage Policies.
In ICAPS, 74–81.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs
in lpg. J. Artif. Intell. Res. (JAIR) 20:239–290.
ISO230-2. 2006. Part 2: Determination of accuracy and
repeatability of positioning numerically controlled axes.
Parkinson, S.; Longstaff, A. P.; Crampton, A.; Andrew, P.;
Fletcher, S.; Allen, G.; and Myers, A. 2011a. Hierarchi-
cal Task Based Process Planning For Machine Tool Cali-
bration. In Proceedings of The 29th Workshop of the UK
Planning and Scheduling Special Interest Group, 53–60.
PlanSIG2011.
Parkinson, S.; Longstaff, A. P.; Crampton, A.; Andrew, P.;
Fletcher, S.; Allen, G.; and Myers, A. 2011b. Represent-
ing the Process of Machine Tool Calibration in First-order
Logic. In Proceedings of the 17th International Confer-
ence on Automation & Computing. Chinese Automation
and Computing Society.
Parkinson, S.; Longstaff, A.; Fletcher, S.; Crampton, A.;
and Gregory, P. 2012a. Automatic planning for machine
tool calibration: A case study. Expert Systems with Appli-
cations 39(13):11367 – 11377.
Parkinson, S.; Longstaff, A. P.; Crampton, A.; and Gre-
gory, P. 2012b. The application of automated planning to
machine tool calibration. In McCluskey, T.; Williams, B.;
Silva, J. R.; and Bonet, B., eds., Proceedings of the Twenty-
Second International Conference on Automated Planning
and Scheduling, ICAPS 2012. California, USA: AAAI
Press. 216–224.
Ruml, W.; Do, M. B.; Zhou, R.; and Fromhertz, M. P. J.
2011. On-line Planning and Scheduling : An Application
to Controlling Modular Printers. JAIR 40:415–468.
Tierney, K.; Coles, A. J.; Coles, A. I.; Kroer, C.; Britt, A.;
and Jensen., R. M. 2012. Automated planning for liner
shipping fleet repositioning. In Proceedings of the Twenty
Second International Conference on Automated Planning
and Scheduling (ICAPS-12).


