
University of Huddersfield Repository

Liang, Shuo, Holmes, Violeta and Kureshi, Ibad

Hybrid Computer Cluster with High Flexibility

Original Citation

Liang, Shuo, Holmes, Violeta and Kureshi, Ibad (2012) Hybrid Computer Cluster with High
Flexibility. In: IEEE Cluster 2012, 24-28 September 2012, Beijing, China.

This version is available at http://eprints.hud.ac.uk/15840/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Huddersfield Repository

https://core.ac.uk/display/9840759?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Hybrid Computer Cluster with High Flexibility

Shuo Liang
School of Computing and Engineering

University of Huddersfield
Huddersfield, United Kingdom
Email: shuo.liang@hud.ac.uk

Dr Violeta Holmes
School of Computing and Engineering

University of Huddersfield
Huddersfield, United Kingdom

Email: v.holmes@hud.ac.uk

Ibad Kureshi
School of Computing and Engineering

University of Huddersfield
Huddersfield, United Kingdom

Email: i.kureshi@hud.ac.uk

Abstract—In this paper we present a cluster middleware,
designed to implement a Linux-Windows Hybrid HPC Cluster,
which not only holds the characteristics of both operating sys-
tem, but also accepts and schedules jobs in both environments.
Beowulf Clusters have become an economical and practical
choice for small-and-medium-sized institutions to provide High
Performance Computing (HPC)resources. The HPC resources
are required for running simulations, image rendering and
other calculations, and to support the software requiring a
specific operating system. To support the software, small-
scale computer clusters would have to be divided in two
or more clusters if they are to run on a single operating
system. The x86 virtualisation technology would help running
multiple operating systems on one computer, but only with
the latest hardware which many legacy Beowulf clusters do
not have. To aid the institutions, who rely on legacy non-
virtualisation-supported facilities rather than high-end HPC
resources, we have developed and deployed a bi-stable hybrid
system built around Linux CentOS 5.5 with the improved
OSCAR middleware; and Windows Server 2008 and Windows
HPC 2008 R2. This hybrid cluster is utilised as part of the
University of Huddersfield campus grid.

Keywords-cluster middleware, computer cluster, job sched-
uler, resource manager

I. INTRODUCTION

This paper is motivated by a growing need for High-
Performance Computing (HPC) resources in Higher Educa-
tion Institutions and the development of computer clusters
built from Commercial off-the-shelf components (COTS)
using open source cluster middleware. Building computer
clusters with legacy x86 hardware is an effective and practi-
cal choice for providing affordable HPC resources. In order
to cater for the variety of user demands, those Beowulf
clusters are expected to support applications that require
different hardware and software platforms.

Many universities in the UK started to establish their
departmental and campus clusters in the last decade, e.g. a
computer cluster at the University of Nottingham was built
in 2004/5, and it had hit the June 2005 TOP500. [1]

In the University of Huddersfield there are a number of
research groups requiring HPC resources for molecular and
fluid dynamics simulation, 3D rendering, etc. using software
such as DL-POLY, ANSYS, and Backburner. Some packages
can be run on Linux or Windows operating systems while

the others support multi-platform, supplying different user
interfaces and document support.

One way of running these applications on different operat-
ing systems is to divide a computer cluster into smaller sub-
clusters for each platform, which would lead to a duplication
and poor utilisation of the resources. Another solution is to
implement virtualised systems. Although the latest virtuali-
sation technology could be a better alternative, it cannot be
implemented effectively on legacy hardware. Hence, the aim
of our research work is to devise and implement a system
that will enable better utilisation of the HPC resources and
support multi-platform applications used by our research
community.

Software Name Description OS
Abaqus Finite Element Analysis L
Amber Assisted Model Building with Energy

Refinement aimed at biological sys-
tems

L

Backburner Rendering software for 3ds Max W
Blender Open Source 3D Modeller and Ren-

derer
L

CASTEP CAmbridge Sequential Total Energy
Package

L

COMSOL Multiphysics Modelling, Finite Ele-
ment Analysis, Engineering Simulation
Software

W&L

DL POLY General purpose classical molecular
dynamics (MD) simulation software

L

ANSYS FLUENT Computational Fluid Dynamics (CFD) W&L
GAMESS-UK Molecular QM code L
GULP General Utility Lattice Program L
LAMMPS Large-scale Atomic/Molecular Mas-

sively Parallel Simulator
L

MATLAB Numerical Computing Environment W&L
METADISE Minimum Energy Techniques Applied

to Defects, Interfaces and Surface En-
ergies

L

NWChem Multi-purpose QM and MM code L
Opera Finite Element Analysis for Electro-

magnetics
W

Table I
APPLICATIONS ON THE HUDDERSFIELD CAMPUS CLUSTER

(W:WINDOWS, L:LINUX)

Our initial objective was to devise a simple dual-boot
system to support both Windows and Linux platforms for
the software in table I. A number of case studies were

conducted to identify the efficiency and ease of use of these
software from the scientific and administrative users point
of view. Based on the results from our case studies and
the initial dual-boot system evaluation, the improved hybrid
system design had been developed. This system provides
more effective multi-platform middleware, which utilises
existing hardware to provide the maximum performance in
both Linux and Windows based environments.

The rest of the paper is organised as follows: Section II
introduces our motivation; Section III describes the initial
simple dual-boot system design and implementation; Section
IV describes our proposed hybrid system design. Section V
summarises the results and outlines possible future develop-
ment.

II. MOTIVATION

As a medium-sized Higher Education institution, the
University of Huddersfield is still finding its place within the
research community. The HPC Computing Resources centre
was built to aid new research efforts requiring powerful com-
putational resources. As part of the University Queensgate
campus grid project, a number of computer clusters were
built with Windows and Linux operating systems to cover
the requirements of Linux Scientific Computing Software
and Windows exclusive software [2]. While maintaining the
Queensgate Clusters, we had identified that the Clusters
need automated software to handle the specialisation for
dual-boot, re-imaging, etc. The need for multiple operat-
ing systems is driven by both user needs and application
requirements.

A lot of closed-source non-Java software, especially some
large-scale Windows software, that use a large number of
system exclusive API, have weaknesses in system platform
migration. Since their source code is not published, the
user can only run the program on the platform which the
developer has offered. Although some of the companies offer
multi-platform supports, others would not change a platform
policy for the benefit of a small group of users.

In case of an open-source software, not every open-source
project gives multi-platform support due to developers finite
focus or small demand. An open-source project is capable to
be forked from another new project in order to support new
platforms or functions according to the developers need.

There are several solutions, which could enable deploy-
ment of both Windows and Linux OS on the same system.
We have considered virtualisation and multi-boot technolo-
gies.

Virtualisation technology is not a new concept; it had been
developed and used in mainframe computers. In recent years,
the virtualisation has become applicable to PC and Worksta-
tion based machines since Intel (VT-x) and AMD (AMD-
V) have started to support hardware-assisted virtualisation
for x86 architecture. With hardware enhancements, the guest
OS can achieve better performance and more compatibility.

However, hardware support was not provided for their entire
range of products.

A multi-boot computer could be implemented by various
approaches, such as:

1) Changing active partition
2) Multi-system bootloader, e.g. GRUB (for Linux as

main system), GRUB4DOS (for Windows as main
system)

3) PXE also can enable multi-boot function
Pros: Multi-boot solution has wide range compatibility

of hardware. It does not require new technology, and there
is no performance reduction.

Cons: Reboot takes time, normally about 5 mins.
A Beowulf cluster at the University of Huddersfield was

built from re-used laboratory computers with Intel CoreTM
2 Quad-core Q8200 processor that have no virtualisation
support. Hence, we had to consider other ways to enable
the multi-platform cluster.

A multi-boot approach is in our opinion, better suited for
the legacy machines that have no hardware virtualisation
support. This system could sit alongside High-end HPC
resources making an efficient use of legacy machines.

III. THE INITIAL DUAL-BOOT OSCAR SYSTEM

Because of native incompatibility between Windows sys-
tem and UNIX-like system, and the above-mentioned so-
lutions limitations, the multi-boot computer cluster system
could be a viable solution for legacy hardware.

A. System architecture

In our initial approach, the dual-boot cluster was imple-
mented on a small-scale cluster with 16 compute nodes
(COTS computers) and 64 processors. Our dual-boot system
is illustrated in Figure 1.

Job	 submission

Worker	
nodes

Domain

VIRTURE	
LINUX

VIRTURE	
WINDOWS

LINHEADWINHEAD

LINHEAD
JOB1__CPU_NEEDED
JOB2__CPU_NEEDED
JOB3__CPU_NEEDED
JOB4__CPU_NEEDED
...	 	

LINUX	 QUEUE

WINHEADJOB1__CPU_NEEDED
JOB2__CPU_NEEDED
JOB3__CPU_NEEDED
JOB4__CPU_NEEDED
...	 	

WIN	 QUEUEUsers

Win	 jobs Linux	 Jobs

Users

Send	 Requires:	 CPU_NEEDED
Per	 5	 mins

Feedback	 Requires:	 CPU_NEEDED
Once	 received	 requires

Figure 1. The initial dual-boot system

Windows and Linux head nodes had Windows HPC
server 2008 R2 and CentOS 5.4 with OSCAR 5.1 beta 2

installed respectively and provided the complete access to
the Windows and Linux clusters.

Windows HPC 2008 R2 offers a full GUI for system
managers. Administrators can easily deploy a cluster by
using several steps of configurations that involve network
configuration, creation of node templates and deployment
of nodes. All the rebooted compute nodes could be back
executable without additional setup. An additional program
was created and implemented on the Windows head node to
enable the communication with the Linux head node.

On the Linux head node, we have used OSCAR, which
is an open-source cluster middleware kit and has a friendly
and clear interface for setting up a Linux cluster. It supports
various Linux distributions, which gives more flexibility,
easier maintenance and quicker updates. OSCAR wizard
supports cluster head node installation, configuration of
cluster packages and building of the worker nodes images,
and complete cluster installation. In our clusters, CentOS 5.4
works well with OSCAR 5.1 beta 2. All our developments
are based on these versions of software. Another program
was created and implemented on the Linux head node
(‘LINHEAD in figure) to communicate with the program
in Windows head node (‘WINHEAD in figure).

Furthermore, we have developed a cluster middleware
package dualboot-oscar.

dualboot-oscar can be divided by function into dual-boot
/bf controller and dual-boot deployment.

B. Dual-boot Controller

1) A Implementation of dual-booting: The idea to imple-
ment automatic dual-boot system came from an article of
an IBM engineer [3]. It offers a method to switch a single
machine from current system to another system which is in
another partition.

GRUB (GNU GRand Unified Bootloader) is a bootloader
for Unix-like system and used in most Linux distributions. It
could be installed to the MBR (Master boot record) section
or head of a primary partition. When it is installed on MBR
section, it boots any primary partition and logical partition.
If GRUB is installed in MBR, it will ignore active partition.
Instead, it reads its configuration file and follows its own
logic.

By creating a shared partition, which is formatted to FAT
(File Allocation Table) file system, a GRUB configuration
file controlmenu.lst could be stored at this FAT parti-
tion. The default GRUB configuration file menu.lst in the
Linux EXT3 partition is relocated to the file in FAT partition,
by adding the command configfile in menu.lst.
After these procedures, both Windows and Linux were given
the read/write access to GRUB configuration file. Thus, they
can both control default OS. With the OS switching script,
which can edit or replace the file controlmenu.lst
with administrator system permission, compute node can be
easily switched between two different systems.

For switching in a multi-boot system a Perl script
bootcontrol.pl written by Carter [3] is used to modify
GRUB configuration file. Figure 2 shows the menu.lst in
its original place, /boot/grub/menu.lst. menu.lst
is set redirected to the file controlmenu.lst , which
can be seen in Figure 3 and is located in the FAT partition
for controlling default operating system.

To reduce the installations in Windows compute
node, Carter’s universal Perl script was replaced
by our new Windows and Linux batch scripts,
e.g. Windows .bat or Linux .sh file, which
rename files from controlmenu_to_linux.lst
or controlmenu_to_windows.lst
into controlmenu.lst. The two files
controlmenu_to_linux.lst and
controlmenu_to_windows.lst are pre-configured
and copied into FAT partition.

1 default=0
2 timeout=5
3 splashimage=(hd0,1)/grub/splash.xpm.gz
4 hiddenmenu
5
6 title changing to control file
7 root (hd0,5)
8 configfile /controlmenu.lst

Figure 2. An example of modified menu.lst

1 default 0
2 timeout=10
3 splashimage=(hd0,1)/grub/splash.xpm.gz
4
5 title CentOS-5.4_Oscar-5b2-linux
6 root (hd0,1)
7 kernel /vmlinuz-2.6.18-164.el5 ro root=/

dev/sda7 enforcing=0
8 initrd /sc-initrd-2.6.18-164.el5.gz
9

10 title Win_Server_2K8_R2-windows
11 rootnoverify (hd0,0)
12 chainloader +1

Figure 3. An example of modified controlmenu.lst

2) Batch job triggered dual-boot system: The batch job
triggered dual-boot system divides the entire dual-boot sys-
tem to scheduling and executing of dual-boot actions.

The system switching action is packed as a PBS or
Windows HPC job script, which locates a single node, mod-
ifies GRUBs configure file, and reboots the machine. The
advantage of sending switch orders through job scheduler is
that job scheduler can automatically locate free nodes, and
all the running jobs can be protected from other accidental
operations.

The PBS batch job, which is a BASH script as shown in
Figure 4, books one full node (with 4 cores), changes the
default boot OS, and reboot. The command sleep 10 is to
avoid rebooting action interrupting the OS changing action.

1
2 #####################################
3 ### Job Submission Script ###
4 # Change items in section 1 #
5 # to suit your job needs #
6 #####################################
7 # Section 1: User Parameters #
8 #####################################
9 #

10 #!/bin/bash
11 #PBS -l nodes=1:ppn=4
12 #PBS -N release_1_node
13 #PBS -q default
14 #PBS -j oe
15 #PBS -o reboot_log.out
16 #PBS -r n
17 #
18 #####################################
19 # Section 3: Executing Commands #
20 #####################################
21 echo \$PBS_JOBID >>/home/sliang/

reboot_log/rebootjob.log #write logs
22 sudo /boot/swap/bootcontrol.pl /boot/swap

/controlmenu.lst windows #changes
default boot OS

23 sudo reboot #reboot node
24 sleep 10 #leave 10 seconds to avoid job

be finished before reboot

Figure 4. An example of PBS job An OS switch job in torque

3) Daemon programs for queue monitoring : The key to
make the dual-boot cluster switch idle resources automati-
cally, are the daemon (background) programs. Two daemon
programs are running at each head node, which are designed
to determine the job queue state, judge the system switching
actions and send the switching batch job.

In the OSCAR head node, PBS does not provide APIs
(Application Programming Interface) for other programs.
Several Perl programs had been written for parsing the
output of PBS commands and submitting OS switching job.
A C++ program was written for TCP/IP communication with
Windows HPC 2008 R2 head node.

In the Windows HPC 2008 R2 head node, Microsoft
provides a SDK (Software Development Kit) for programs
to fetch the data and send the tasks, e.g. get the queue state
and nodes state. In the dualboot-oscar v1.0, two programs
are made for fetching queue state and communicating with
OSCAR head node. To reduce the difficulty of programming,
the communicating program is compiled in the Cygwin
environment.

4) Queue state fetching programs (detector): To define
the queue state, we define a scheduler is “stuck”, when

the scheduler has no job running and several jobs are
queuing. The detector reads how many compute nodes the
first queuing job needs.

The detector gives a text output of scheduler, by parsing
the PBS command pbsnodes (full detail of nodes in PBS
is shown in Figure 7) and qstat -f (for full detail queue
status, see Figure 8). The first line is the information for the
communicator, others are debug information. The format is
explained in Figure 5, which is a character sting sent through
network. The detector’s outputs in the queue state of running,
stuck and others is shown in Figure 5.

Position Definition Output
0 [Queue state] Stuck=1

Others=0
1-4 [Needed CPUs] Default=0000
5-67 [Stuck job ID] Default=none
68- [Undefined]

Figure 5. Output format of detectors

In Windows HPC 2008 R2 head node, the detector fetches
data through the API it provided, and follows the same
output format as in figure 5

1 [sliang@eridani pbs]$ /dualboot/
checkqueue.pl

2 00000none
3 Other state
4 R=0 nR=0
5
6 [sliang@eridani pbs]$ /dualboot/

checkqueue.pl
7 00000none
8 Job running, no queuing.
9 R=1 nR=0

10 1186.eridani.qgg.hud.ac.uk
11 Job_Name=sleep
12 Job_Ownner=sliang@eridani.qgg.hud

.ac.uk
13 state=R
14 time=2010 04 17 20 11 12
15
16 [sliang@eridani pbs]$ /dualboot/

checkqueue.pl
17 100041191.eridani.qgg.hud.ac.uk
18 Queue stuck
19 R=0 nR=1

Figure 6. Three kinds of outputs of PBS detector [4]

C. Dual-boot deployment

1) Modifying OSCAR deployment tool: The deployment
of initial dualboot-oscar requires several manual changes
in the deployment script generated by OSCAR. It has to
be redone each time administrator rebuilds the node image,
which brings huge inconvenience in system managing. The
changes include inserting FAT partition, clearing the initial

1 enode01.eridani.qgg.hud.ac.uk
2 state = free
3 np = 4
4 properties = all
5 ntype = cluster
6 status = opsys=linux, uname=Linux

enode01.eridani.qgg.hud.ac.uk
2.6.18 1 6 4 .el5 #1 SMP Fri

Sep 9 03:28:30 EDT 2011 x86_64
,sessions=? 0,nsessions=? 0,
nusers=0, idletime=257163,
totmem=15881584kb, availmem
=15825740kb, physmem=8069096kb
, ncpus=4, loadave=0.00,
netload=154924801596, state=
free,jobs=? 0,rectime
=1271497128

Figure 7. An example of pbsnodes output

1 Job Id: 1185.eridani.qgg.hud.ac.uk
2 Job_Name = release_1_node
3 Job_Owner = sliang@eridani.qgg.

hud.ac.uk
4 job_state = R
5 queue = default
6 server = eridani.qgg.hud.ac.uk
7 elease_1_node.e1185
8 exec_host = node16.eridani.qgg.

hud.ac.uk/3+node16.eridani.qgg
.hud.ac.uk/2+node16.eridani.
qgg.hud.ac.uk/1+node16.eridani
.qgg.hud.ac.uk/0

9 Priority = 0
10 qtime = Fri Apr 16 17:55:40 2010
11 Resource_List.nodes = 1:ppn=4
12 Variable_List = PBS_O_HOME=/home/

sliang,PBS_O_LANG=en_US.UTF-8,
13 PBS_O_PATH=/usr/kerberos/

bin:/usr/local/bin:/
usr/bin:/bin:/usr/
X11R6/

Figure 8. An example of qstat -f output [4]

section of the disk for Windows installing, and adding files
into the node image.

The standard node image is a pure EXT3 format lo-
cated in local disk of head node. To add a FAT parti-
tion and an empty partition for Windows, the disk layout
file ide.disk and the deployment script it generated;
oscarimage.master, needs to be manually modified.

The main points to be edited are:
1) Reserved space in ide.disk by adding partitions of

Windows and dual-boot FAT partition.
2) In oscarimage.master, replace mkpart by

mkpartfs, to make FAT works proper.
3) Add modify-window=1 size-only argument to

rsync commands, to support syncing FAT format

partitions.
4) remove the lines of Windows partition in fstab and

unmount commands to avoid errors.

2) Patching Windows HPC deployment tool : Windows
HPC has stored its configure file in a clear-text file, which is
C:\Program Files\Microsoft HPC Pack 2008
R2\Data\InstallShare\Config\diskpart.txt
shown in Figure 9.

1 select disk 0
2 clean
3 create partition primary
4 assign letter=c
5 format FS=NTFS LABEL="Node" QUICK

OVERRIDE
6 active
7 exit

Figure 9. original diskpart.txt

Because we already know our disk size, the modified
version only uses a part of the disk. In our case, it is a
250GB hard disk, so we reserved 150GB for Windows. The
modified version is shown in Figure 10.

1 select disk 0
2 clean
3 create partition primary size=150000
4 assign letter=c
5 format FS=NTFS LABEL="Node" QUICK

OVERRIDE
6 active
7 exit

Figure 10. modified diskpart.txt in dualboot-oscar 1.0

Because this diskpart.txt script wipes out the whole
disk, the Windows partition has to be installed first, and each
time during reinstallation of Windows, Linux needs to be
reinstalled as well.

Our initial dual-boot systems performed well in produc-
tion trials, and it provided the dual-boot function between
Windows and Linux dynamically. We have evaluated the
time spends in booting from one OS to another takes no
more than five minuets. Keeping two job schedulers and
both Windows and Linux server in bi-stable mode gives
flexibility and speed-up, compared with other one-Linux-
schedular hybrid cluster in mono-stable mode. [5]

However, as evident from the above descriptions in de-
ploying and managing, there were number of system limi-
tations that needed to be overcome.

This system requires a substantial input from the admin-
istrators, that is not always practical and is time and labour
consuming in the process of reinstallation and reconfigura-
tion.

IV. IMPROVED EASY-TO-DEPLOY MULTI-BOOT
CLUSTER

The improved easy-to-deploy multi-boot systems was
designed to overcome the shortcomings of the initial sys-
tem. The new version can be divided into Controller and
Deployment similarly to the initial version.

Figure 11 shows a flowchart of the Controller of dualboot-
oscar v2.0. A control process begins with fetching a queue
state on the Windows head node. This state will be for-
warded to another daemon program on Linux head node.
Once Windows scheduler state arrives, the Linux daemon
fetches the state of Linux scheduler. With this information,
the Linux daemon can make a decision if switching is
required, and which operating system (OS) to be switched
to, as well as how many node to be switched. The reboot
order will be sent to the Windows or Linux daemon if one
of them have been identified as resources required. Each
daemon sends reboot batch jobs to its scheduler. The control
process terminates when all reboot jobs are run.

Linux Head Node Windows Head Node

Computing Nodes

PXE Boot
/tftpboot/menu.lst/

System Switching
Daemon (Linux)

System Switching
Daemon (Windows)

Queue Checking
Programme

1. Fetch Queue State (fixed Cycle)

PXE Boot
To

Windows/Linux

Scheduler Scheduler

5. Send Reboot Order

Queue Checking
Programme

3. Fetch Queue State

5. Send Reboot Order

5. Queue and Run Reboot
5. Queue and Run Reboot

4. Set Target OS Flag

2. Send Queue State

5. Send Reboot Order

Figure 11. Flow chart of dual-boot OSCAR 2.0

A. Dual-boot Controller in Version 2

Because the local GRUB bootloader has to be correctly
pointed by MBR section on a hard disk, the reimaging
of Windows partitions always rewrites MBR and damages
GRUB which boots Linux. Therefore, Windows has to be
installed before Linux. This is a considerable inconvenience
during the system maintenance. dualboot-oscar v2.0 only
places the PXE (Preboot Execution Environment) network
bootloader ROM in the head node. Thus, the MBR informa-
tion in each computer node does not have to be fixed after
either systems reimaging.

1) PXE boot ROM: PXELINUX is sub-project of SYS-
LINUX, whose aim of design is to help Linux booting
from different storage formats, e.g. CD-ROM, PXE and FAT.

PXELINUX could load our machines into PXE environment,
and it is also the method that OSCAR uses to deploy
compute nodes. However, PXELINUX has less ability in
controlling local partitions booting. It only can quit PXE
and lead to normal boot order.

The solution to let PXELINUX control compute nodes
boot order, is to load a ROM to PXE first, such as PXE-
GRUB, then let PXEGRUB load remote node.

Initially, the ROM of PXEGRUB in GRUB 0.97 was
chosen for the network bootloader.

PXEGRUB is an optional component of GNU
GRUB. It could be obtained by compiling from
source code with parameter --enable-diskless
and --enable-(suited NIC drivers). DHCP and
TFTP services could specify individual boot ROM and
configure file for each node.

The PXEGRUB also makes system switching simpler. The
dualboot-oscar v1.0s method uses a FAT partition which
stores configure file. As their configure files are stored at
the head node, a compute node could be switched by any
reboot action, including soft reboot and physically power
reset. This is an improvement to the initial system.

A lot of tests have been done in virtual machine on a
newer workstation, which does support virtualisation. The
tests proved the practicality of this new method in the virtu-
alised environment. Due to the discontinued development of
GRUB 0.97, new models of LAN cards are not supported.
Therefore, we needed to change our approach.

GRUB4DOS is an open-source fork of GRUB.
GRUB4DOS supports a wider range of disk formats
and load methods than GRUB. It also has a very easy-to-
obtain PXE ROM.

The PXE ROM of GRUB4DOS reads different menu files,
which are located in the directory of menu.lst/ under
the PXE directory (normally is /tftpboot/), named from
compute nodes’ LAN cards MAC address.

By modifying the menu files, dualboot-oscar can control
any machine’s boot order, as long as they are connected to
their head node.

Initially, the OS loading method is designed to make
menu.lst for each machine’s MAC, then it could boot
specific machines to specific operating system. However, the
daemon program in OSCAR head node would not easily
get information about which machine is scheduled to be
rebooted. The flowchart of this approach is shown in Figure
12.

Eventually, the method is developed into a single “flag”
control system. All the rebooting nodes will be led to the
same operating system, because the whole dual-boot cluster
will only need one system at one time. As in Figure 13, the
current approach is more concise.

2) Fetching queue states: The former way to get the
queue information can be kept. The output of queue state
checking programs could be collected and used by new

Send dual-boot job

Send ID to head node

Flick toggle of system arch

Send confirmation for reboot

Reboot to the target OS

Flow of system
switching

Linux
Head
Node

A Compute
 Node

Figure 12. Initial approach of PXE OS Boot Control of version 2

Send dual-boot job

Flick flag of system architecture

Reboot to the target OS

Flow of system
switching

Linux
Head Node

A Compute
 Node

Figure 13. Current way of PXE OS boot control of v2.0

communicator programs.
3) Head node communicators between Windows head and

OSCAR head: The two communicators are written in Perl.
Strawberry Perl or Active Perl is required in Windows Head
node. Its flow chart is in Figure 11. Windows queue status is
submitted to Linux side by TCP/IP socket communication.
Multi-boot service sends switch batch job (just reboot).

1) Windows communicator fetches queue state in fixed
cycles (intervals), e.g. 10mins.

2) Windows communicator sends queue state to Linux
communicator.

3) Linux communicator fetches PBS queue state and
decides how many machines are needed to switch OS.

4) Set target OS flag.
5) Send reboot order to Windows HPC scheduler or PBS

scheduler.
6) Machine will be rebooted when it is totally free, then

loaded into another OS.

B. Deployment of Version 2

A significant improvement is that the deployment of
v2.0 has become better integrated than v1.0. After patching
several supporting packages, OSCAR’s dual-boot deploying
scripts can be generated automatically each time. Windows

partition and OSCAR partition can be individually reimaged
without corrupting each other. Since there is no requirement
of creating FAT partition for dual-boot and fixing MBR, the
deployment is greatly simplified.

1) Patching OSCAR deployment tool: OSCAR
uses systemimager, systeminstaller, and
systemconfigurator to build compute node image,
install system packages on compute node, and configure
the nodes which are installed by systeminstaller.

By patching systemimager and
systeminstaller, a new disk format label skip,
is enabled in OSCAR’s disk image configure file, e.g.
ide.disk shown in Figure fig:ide.disk. The first partition
with label skip will be reserved for Windows.

1 /dev/sda1 16000 skip
2 /dev/sda2 100 ext3 /boot

defaults bootable
3 /dev/sda5 512 swap
4 /dev/sda6 * ext3 /

defaults
5 /dev/shm - tmpfs /dev/shm

defaults
6 nfs_oscar:/home - nfs /home

rw

Figure 14. ide.disk in v2.0

2) Patching Windows HPC deployment tool: Deployment
for Windows HPC compute nodes in v2.0 is similar to v1.0.
By modifying diskpart.txt, Windows HPC deploy tool
will only make one primary partition with specified size
using the script shown in Figure 10. In the case of a
number of compute nodes needing reimaging, a different
diskpart.txt file shown in Figure 15 can be used
to replace the diskpart.txt in Figure 10. This script
does not corrupt the Linux partition and only formats the
Windows partition.

1 select disk 0
2 select partition 1
3 format FS=NTFS LABEL="Node" QUICK

OVERRIDE
4 active
5 exit

Figure 15. ide.disk in v2.0 for reimaging

The dualboot-oscar was deployed on our cluster “Eri-
dani”. Our system was tested on an application requiring
optimisation of Genetic Algorithms using the Distributed
and Parallel MATLAB. To run calculations on a cluster,
it was necessary to have Matlab Distributed Computing
Server (MDCS). MATLAB and MDCS had been installed
on a shared folder in the Windows head node of “Eridani”.
[6] The compute nodes, which this application used were

switched to Windows system by our dualboot-oscar. As
load shifted between the two OS environment, the system
seamlessly adjusted.

This case study confirmed that our dualboot-oscar pro-
vided better utilisation of “Eridani” and supported both
Linux and Windows applications.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a new design and implementa-
tion of dual-boot cluster middleware – dualboot-oscar. We
have identified the need for flexible multi-platform systems
in High-Performance Computing, evaluated current solution
in HPC hybrid resources management. As a result of our
investigation of commercial and open-source software for
multi-platform systems, we have developed a dual-boot
cluster system with OSCAR and Windows HPC, which is
suitable for virtualisation-incompatible systems.

Version 1.0 of dualboot-oscar had been fully deployed on
the cluster “Eridani” in the QGG. The principle of version
2.0 is stable and has been tested on “Eridani”. Version 2.0
preserves the performance advantages from version 1.0 and
has achieved the improvement in the system maintenance
and reduction of manual modification and installation in
system setup. This dual-boot system benefits both users and
administrators in our QGG campus grid. It is a flexible,
multi-purpose cluster tool that enables better utilisation of
our cluster resources. The daemon (background) programs
were devised to enable dynamic switching of cluster nodes
between Windows or Linux depending on users demand.
Currently the daemons for queue monitoring are still follow-
ing the rule “first-come first-serve”. This could be improved
to adapt the rules from diverse administration requirements.

A further version of this dual-boot package is being con-
sidered as either a package of tools and software patches for
some particular version of OSCAR or a dual-boot enabled
fork of OSCAR project. This project could be hosted online
as an open-source project to be carried on by anyone who
wants to contribute to it.

VI. ACKNOWLEDGEMENTS

The authors would like to acknowledge the use of the
University of Huddersfield computational grid known as the
Queensgate Grid in carrying out this work.

REFERENCES

[1] TOP500.Org, “TOP500 Supercomputing Sites,” 2011.
[Online]. Available: http://www.top500.org/

[2] V. Holmes and I. Kureshi, “Huddersfield university campus
grid: Qgg of oscar clusters,” Journal of Physics: conference
series, vol. 256, no. 1, p. 012022, December 2010. [Online].
Available: http://eprints.hud.ac.uk/9896/

[3] M. Carter, “Automate OS switching on a dual-
boot Linux system,” Mar. 2006. [Online]. Available:
http://www.ibm.com/developerworks/linux/library/l-osswitch/

[4] S. Liang, “A Dynamic OS Switching Solution for Dual-boot
Clusters,” Master’s Thesis, 2010.

[5] I. Kureshi, V. Holmes, and S. Liang, “Hybrid HPC
– Establishing a Bi-Stable Dual Boot Cluster for
Linux with OSCAR middleware and Windows HPC
2008 R2,” in AHM2010, Cardiff, 2008. [Online]. Avail-
able: http://www.allhands.org.uk/2010/sites/default/files/2010/
TuesW2KureshiHybridPC.pdf

[6] D. Haupt, “Genetic algorithms parallelization,” Master’s The-
sis, Brno University Of Technology, Brno, 2011.

